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The construction and classification of crystalline symmetry protected topological (SPT) phases in interacting
bosonic and fermionic systems have been intensively studied in the past few years. Crystalline SPT phases are
not only of conceptual importance, but also provide us great opportunities towards experimental realization
since space group symmetries naturally exist for any realistic material. In this paper, we systematically classify
the crystalline topological superconductors (TSC) and topological insulators (TI) in 2D interacting fermionic
systems by using an explicit real-space construction. In particular, we discover an intriguing fermionic crystalline
topological superconductor that can only be realized in interacting fermionic systems (i.e., not in free-fermion or
interacting bosonic systems). Moreover, we also verify the recently conjectured crystalline equivalence principle
for generic 2D interacting fermionic systems.
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I. INTRODUCTION

A. The goal of this paper

In the past decade, a lot of efforts have been made on the
theoretical prediction and experimental searching for topolog-
ical superconductors (TSC) and topological insulators (TI) in
noninteracting or weakly-interacting systems [1,2]. However,
in realistic materials, strong electronic interactions typically
play a very important role and can not be neglected or
treated as perturbations, especially in low-dimensional sys-
tems. Therefore, a complete construction and classification
of TSC/TI in interacting fermionic systems become a very
important but challenging problem. It turns out that a large
class of TSC/TI require certain symmetry protection and they
can be connected to a trivial disorder phase (e.g., an s-wave
BCS-superconductor or an atomic insulator) in the absence of
global symmetry. Such kind of “integer” TSC/TI are short-
range entangled quantum states and they are actually the
simplest examples of symmetry-protected topological (SPT)
phases [3].
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Thanks to the cutting-edge breakthrough in the classifica-
tion and construction of SPT phases for interacting bosonic
and fermionic systems recently [4–19], a complete under-
standing of “integer” TSC/TI protected by internal symmetry
(e.g., time-reversal symmetry or spin rotational symmetry)
for interacting electronic systems has been achieved [11,20–
24]. In general, by “gauging” the internal (unitary) symme-
try [25–37] and investigating the braiding statistics of the
corresponding gauge fluxes/flux lines, different SPT phases
can be uniquely identified. Moreover, gapless edge states or
anomalous surface topological orders have also been proposed
as another very powerful way to characterize different SPT
phases in interacting systems [23,38–45].

In recent years, the notion of SPT phases was further
extended to systems with crystalline symmetry protection
and the so-called crystalline SPT phases have been inten-
sively studied [46–69]. Crystalline SPT phases are not only
of conceptual importance, but also provide us great oppor-
tunities towards experimental realization since space group
symmetries naturally exist for any realistic material. The
crystalline TI first proposed in free fermion systems is the
simplest example of crystalline SPT phases, and it has al-
ready been realized in many different materials [70–73]. For
free fermion systems, there are two systematic methods for
classifying and characterizing the crystalline TI: one is the
so-called symmetry indicators [53,67,74–77], which classifies
and characterizes the crystalline TI by symmetry representa-
tions of band structures at high-symmetry momenta; another
is a real-space construction based on the concept of topolog-
ical crystal [49,60]. Very recently, boundary modes [78–80]
of the so-called higher-order TSC/TI [81–86] protected by

2643-1564/2022/4(3)/033081(33) 033081-1 Published by the American Physical Society

https://orcid.org/0000-0002-4455-0691
https://orcid.org/0000-0001-9733-8566
https://orcid.org/0000-0003-0678-9770
https://orcid.org/0000-0002-7269-6401
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.033081&domain=pdf&date_stamp=2022-07-29
https://doi.org/10.1103/PhysRevResearch.4.033081
https://creativecommons.org/licenses/by/4.0/


ZHANG, YANG, QI, AND GU PHYSICAL REVIEW RESEARCH 4, 033081 (2022)

crystalline symmetry (with additional time-reversal symmetry
in certain cases) also attract a lot of interest in both 2D and
3D. In general, an nth-order TSC/TI protects gapless modes
at the system boundary of codimension n. For example, a
second-order 3D TI has gapless states on its hinges, while
its surfaces are gapped, and a third-order 3D TI has gapless
states on its corners, while both its surfaces and hinges are
gapped. Nevertheless, most of these studies are still focusing
on free fermion systems and it is not quite clear whether
the corresponding gapless boundary modes are stable or not
against interactions. On the other hand, for interacting bosonic
systems, it was pointed out that the classification of crystalline
SPT phases is closely related to the SPT phases with internal
symmetry. In Ref. [51], a crystalline equivalence principle
was proposed with a rigorous mathematical proof: i.e., crys-
talline topological phases with space group symmetry G are in
one-to-one correspondence with topological phases protected
by the same internal symmetry G, but acting in a twisted way,
where if an element of G is a mirror reflection (orientation-
reversing symmetry), it should be regarded as a time-reversal
symmetry (antiunitary symmetry). This principle indicates
the profound relationship between crystalline SPT phases
and SPT phases protected by internal symmetry. Thus, the
classification of crystalline SPT phases for free-fermion and
interacting bosonic systems can be computed systematically.

Despite the huge success in understanding crystalline SPT
phases for free-fermion and interacting bosonic systems, a
systematical understanding of crystalline SPT phases for
interacting fermionic systems is still lacking. Although it
has been believed that the strategy of classification schemes
[51,59–61] should still work and some simple examples have
been studied [62,64,87], most studies focus on the systems
with point group symmetry only and the generic cases are
unclear. Recent study on generalizing crystalline equivalence
principle into interacting fermionic systems shed new light
towards a complete understanding of crystalline SPT phases
for interacting fermion. In Ref. [87], by some explicit cal-
culations for both crystalline SPT phases and SPT phases
protected by internal symmetry, it has been demonstrated that
the crystalline equivalence principle is still valid for 2D crys-
talline SPT phases protected by point group symmetry, but in
a twisted way, where spinless (spin-1/2) fermions should be
mapped into spin-1/2 (spinless) fermions.

In this paper, we aim at systematically constructing and
classifying crystalline TSC/TI for 2D interacting fermionic
systems and establishing a general paradigm of real-space
construction for interacting fermionic crystalline SPT phases.
We will consider both spinless and spin-1/2 fermionic sys-
tems. In particular, we obtain an intriguing fermionic TSC
that cannot be realized in either free-fermion or interacting
bosonic systems: a p4m (#11 wallpaper group) symmetric
2D system with spinless fermions. These TSC can be re-
alized in systems with coplanar spin order and might have
very interesting experimental implementations. Furthermore,
we compare all our results with the classifications of 2D
fermionic SPT (FSPT) phases protected by corresponding
internal symmetries. We confirm the crystalline equivalence
principle for generic 2D interacting fermionic systems, where
a mirror reflection symmetry action should be mapped onto
a time-reversal symmetry action, and that spinless (spin-1/2)

fermionic systems should be mapped into spin-1/2 (spinless)
fermionic systems.

Our general real-space construction scheme includes fol-
lowing three major steps:

Cell decomposition: For a specific wallpaper group, firstly
we can divide it into an assembly of unit cells; then we divide
each unit cell into an assembly of lower-dimensional blocks.

Block-state decoration: For a specific wallpaper group with
cell decomposition, we can decorate lower-dimensional block
state on different blocks. A gapped assembly of block states is
called obstruction free decoration.

Bubble equivalence: For a specific obstruction-free deco-
ration, we need to further examine whether such a decoration
can be trivialized or not. Finally, the obstruction and trivializa-
tion free block state decoration corresponds to a 2D fermionic
crystalline SPT phase.

In addition, we also need to examine the possible nontrivial
stacking relation between block states with different dimen-
sions to determine the actual group structure of 2D fermionic
crystalline SPT phases.

B. Space group symmetry for spinless and spin-1/2 systems

Here we would like to clarify the precise meaning of “spin-
less” and “spin-1/2” fermions for systems with and without
U f (1) charge conservation symmetry.

For a fermionic system with total symmetry group G f ,
there is always a subgroup Z f

2 = {1, Pf = (−1)F }, where F
is the total number of fermions. Z f

2 is the center of G f be-
cause all physical symmetries commute with Pf , i.e., cannot
change fermion parity of the system. In particular, for systems
without U f (1) charge conservation symmetry, we can define
the bosonic (physical) symmetry group by a quotient group
Gb = G f /Z

f
2 . In reverse, for a given physical symmetry group

Gb, there are many different fermionic symmetry groups G f ,
which are the central extension of Gb by Z f

2 . It can be ex-
pressed by the following short exact sequence:

0 → Z f
2 → G f → Gb → 0 (1)

and different extensions G f are characterized by different
factor systems of Eq. (1) that are 2-cocycles ω2 ∈ H2(Gb,Z2).
Consequently, we denote G f as Z f

2 ×ω2 Gb.
For systems with additional U f (1) charge conservation, the

group element is Uθ = eiθF . Aforementioned fermion parity
operator Pf = Uπ is the order 2 element of U f (1), hence we
denote this charge conservation symmetry by U f (1) with a su-
perscript f . It is easy to notice that U f (1) charge conservation
is a normal subgroup of the total symmetry group G f , which
can be expressed by the following short exact sequence:

0 → U f (1) → G f → G → 0 (2)

where G := G f /U f (1). In reverse, for a given physical sym-
metry group G, we can define G f = U f (1) �ω2 G. Here ω2

is related to the extension of the physical symmetry group G.
The multiplication of the total symmetry group G f is defined
as

(1, g) × (1, h) = (e2π iω2(g,h)F , gh) ∈ G f (3)
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with ω2 ∈ R/Z = [0, 1) as a U (1) phase, associated with
g, h ∈ G. Therefore ω2 is a 2-cocycle in H2(G,R/Z).

The spin of fermions (spinless or spin-1/2) is characterized
by different choices of 2-cocycles ω2, i.e., the spinless corre-
sponds to a trivial ω2 while spin-1/2 fermion corresponds to
specific choice of nontrivial ω2.

For example, consider even-fold dihedral group D2n sym-
metry with two generators R and M satisfying R2n = M2 = I
(n ∈ Z and I is identity) for systems without U f (1) symmetry.
Different extensions of fermion parity are characterized by
different 2-cocycles ω2,

ω2 ∈ H2(D2n,Z2) = Z3
2. (4)

In particular, the spinless fermions corresponding to the trivial
2-cocycle ω2 satisfy

R2n = 1,

M2 = 1, (5)

while the spin-1/2 fermions corresponding to the 2-cocycle
ω2 satisfy

R2n = Pf ,

M2 = Pf ,

MRM−1R = 1. (6)

To satisfy these conditions, we consider the 2-cocycle ω2

as following. For ∀ag, bh ∈ D2n defined as

D2n = {(a, g) = ag|0 � a � (2n − 1), 0 � g � 1}, (7)

we choose

ω2(ag, bh) =
⌊

[(−1)g+ha]2n + [(−1)hb]2n

2n

⌋

+ (1 − δa)(a + 1)h + g · h, (8)

where we define [x]n ≡ x(mod n), �x� as the greatest integer
less than or equal to x, and

δa =
{

1 if a = 0

0 otherwise.
(9)

For systems with U f (1) symmetry, spinless and spin-1/2
fermions are characterized by different 2-cocycle ω2,

ω2 ∈ H2(D2n,R/Z) = Z2. (10)

In particular, the spinless fermions corresponding to the trivial
2-cocycle ω2 satisfy

(MRn)2 = 1 (11)

while the spin-1/2 fermions corresponding to the 2-cocycle
ω2 satisfy

(MRn)2 = Pf . (12)

C. Summary of main results

Here we first summarize all classification results of 2D
crystalline TSC for both spinless and spin-1/2 fermionic sys-
tems. We label the classification attributed to p-dimensional
block-state decorations by EdD. For the systems with spin-
less fermions, the classification results are summarized in

TABLE I. Interacting classification of 2D crystalline TSC for
spinless fermionic systems. The results are listed layer by layer,
together with their group structures (represented by G0). We label
the classification indices with fermionic/bosonic root phases with
red/blue. The fermionic Z4 indices are obtained from nontrivial
extensions between 1D and 0D block states, thus stacking two root
phases will become another fermionic crystalline TSC. In particular,
1D block state of the p4m case is an intriguing fermionic SPT
phase that cannot be realized by free-fermion and interacting bosonic
systems.

Gb E 1D
0 E 0D

0 G0

p1 Z2
2 Z2 Z2 × Z4

p2 Z1 Z3
2 × Z2 Z3

2 × Z2

pm Z3
2 Z2

2 × Z2 Z5
2 × Z2

pg Z2
2 Z2 Z2 × Z4

cm Z2
2 Z2 × Z2 Z3

2 × Z2

pmm Z1 Z4
2 × Z4

2 Z4
2 × Z4

2

pmg Z2 Z2
2 × Z2

2 Z3
2 × Z2

2

pgg Z2 Z2 × Z2 Z2
2 × Z2

cmm Z1 Z3
2 × Z2

2 Z3
2 × Z2

2

p4 Z1 Z2
2 × Z4 × Z2 Z2

2 × Z4 × Z2

p4m Z2 Z3
2 × Z3

2 Z4
2 × Z3

2

p4g Z1 Z2
2 × Z2

2 Z2
2 × Z2

2

p3 Z1 Z2 × Z3
3 Z2 × Z3

3

p3m1 Z2 Z2 × Z2 Z2
2 × Z2

p31m Z2 Z2 × Z2 × Z3 Z2
2 × Z2 × Z3

p6 Z1 Z2
2 × Z2

3 Z2
2 × Z2

3

p6m Z1 Z2
2 × Z2

2 Z2
2 × Z2

2

Table I, and the classification data are listed layer by layer,
i.e., classification contributed by 0D/1D block-state decora-
tions, respectively. For the systems with spin-1/2 fermions,
the classification results are summarized in Table II layer
by layer. Furthermore, we also study the group structure
of the classifications by explicitly investigating the possible
nontrivial stacking relation between 1D and 0D block states:
For certain cases, stacking of several 1D block states can be
deformed into a 0D block state, hence the total group could
be a nontrivial extension between 1D and 0D block states. In
particular, we label the classification indices with fermionic
root phase by red, and the classification indices with bosonic
root phase by blue.

For 2D crystalline TI protected by both wall paper group
and U f (1) charge conservation symmetry, we generalize the
procedures of real-space construction highlighted in Sec. II
to include the internal U f (1) symmetry. It turns out that 1D
block-state decoration does not contribute any nontrivial crys-
talline topological phase because of the absence of nontrivial
1D root phase in the presence of U f (1) symmetry. All clas-
sification results are summarized in Table III. Again we label
the classification indices with fermionic root phase by red, and
the classification indices with bosonic root phase by blue.

The rest of the paper is organized as follows: In Sec. II, we
introduce the general paradigm of the real-space construction
of crystalline SPT phases protected by wallpaper group in
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TABLE II. Interacting classification of 2D crystalline TSC for
spin-1/2 fermionic systems. The results are listed layer by layer,
together with their group structure (represented by G1/2). We label
the classification indices with fermionic/bosonic root phases with
red/blue. We note that except for p1 and pg cases(spinless fermion
and spin-1/2 fermion are the same for these two cases), all Z4 indices
are from twofold rotation(the on-site symmetry group of arbitrary
0D block is Z f

4 , which is the nontrivial Z f
2 extension of Z2.) and

stacking two root phases will become a bosonic crystalline SPT
phase. Similarly, for p4 case, two of three Z8 fermionic indices are
from fourfold rotation and stacking two root phases will also become
a bosonic SPT phase. The fermionic Z8 index of the p4g case can
be understood in the same way. All other fermionic Z8 indices are
obtained from nontrivial extension between 1D and 0D block states.
For these cases, stacking two fermionic root phases will become
another fermionic crystalline TSC. In addition, the Z12 index of p6
case is obtained from sixfold rotation and stacking two fermionic
root phases will also lead to a bosonic phase.

Gb E 1D
1/2 E 0D

1/2 G1/2

p1 Z2
2 Z2 Z4 × Z2

p2 Z3
2 Z4

4 Z4 × Z3
8

pm Z2 Z2
4 Z4 × Z8

pg Z2
2 Z2 Z4 × Z2

cm Z2 Z4 Z2 × Z4

pmm Z1 Z8
2 Z8

2

pmg Z2
2 Z3

4 Z4 × Z2
8

pgg Z2
2 Z2

4 Z2 × Z4 × Z8

cmm Z2 Z4 × Z4
2 Z8 × Z4

2

p4 Z2
2 Z2

8 × Z4 Z2 × Z3
8

p4m Z1 Z6
2 Z6

2

p4g Z2 Z8 × Z2
2 Z2 × Z8 × Z2

2

p3 Z1 Z2 × Z3
3 Z2 × Z3

3

p3m1 Z1 Z4 Z4

p31m Z1 Z4 × Z3 Z4 × Z3

p6 Z2 Z12 × Z4 × Z3 Z12 × Z8 × Z3

p6m Z1 Z4
2 Z4

2

2D interacting fermionic systems. In Sec. III, we explicitly
show how to construct and classify the crystalline TSC in
2D interacting fermionic systems for five different crystal-
lographic systems by using real-space construction, for both
spinless and spin-1/2 fermions. All classification results are
summarized in Tables I and II. Furthermore, we also clas-
sify the crystalline TI in 2D interacting fermionic systems
with additional U f (1) charge conservation by using similar
real-space construction scheme in Sec. IV, and the results are
summarized in Table III. In Sec. V, by comparing these results
with the classification results of 2D FSPT phases protected
by the corresponding on-site symmetry groups, we verify the
crystalline equivalence principle for generic 2D interacting
fermionic systems. Finally, conclusions and discussions about
further applications of real-space construction and experimen-
tal implications are presented in Sec. VI. In the Supplemental
Material [88], we first discuss the 2D crystalline TI protected
by point group symmetry and compare the results with the
classifications of 2D FSPT phases protected by the corre-

TABLE III. The interacting classification of crystalline TI for
2D interacting fermionic systems. The results for both spinless
and spin-1/2 fermions are summarized together. We note that
the classifications are the same for those wall paper groups with
only one reflection axis. We label the classification indices with
fermionic/bosonic root phases with red/blue.

Gb Spinless Spin-1/2

p1 Z Z
p2 Z × Z3

4 × Z2 Z × Z3
4 × Z2

pm Z × Z4 × Z2 Z × Z4 × Z2

pg Z Z

cm Z × Z2 Z × Z2

pmm Z × Z3
4 × Z4

2 2Z × Z8
2

pmg Z × Z2
4 × Z2 Z × Z2

4 × Z2

pgg Z × Z4 × Z2 Z × Z4 × Z2

cmm Z × Z2
4 × Z2

2 2Z × Z4 × Z4
2

p4 Z × Z8 × Z4 × Z4 × Z2 Z × Z8 × Z4 × Z4 × Z2

p4m Z × Z8 × Z4 × Z3
2 2Z × Z2 × Z6

2

p4g Z × Z8 × Z2
2 Z × Z2 × Z4 × Z2

2

p3 Z × Z2
3 × Z3

3 Z × Z2
3 × Z3

3

p3m1 Z × Z2
3 × Z2 Z × Z2

3 × Z2

p31m Z × Z3 × Z6 Z × Z3 × Z6

p6 Z × Z12 × Z6 × Z3 Z × Z12 × Z6 × Z3

p6m Z × Z12 × Z2
2 2Z × Z6 × Z3

2

sponding internal symmetry, then we discuss the real-space
construction of TSC and TI for all remaining cases of wallpa-
per groups.

II. GENERAL PARADIGM OF REAL-
SPACE CONSTRUCTION

In this section, we highlight the general paradigm of
real-space construction of crystalline SPT phases for 2D in-
teracting fermionic systems. There are three major steps:
Firstly, we decompose the whole system into an assem-
bly of unit cells, each of which is composed by several
lower-dimensional blocks; secondly, we decorate some proper
lower-dimensional block states on them and check their valid-
ity (for SPT phases, we require a fully gapped bulk ground
state without ground-state degeneracy), that is, if the bulk
state of a block-state construction cannot be fully gapped,
we call such a decoration obstructed; finally, we consider the
so-called bubble equivalence to investigate all possible trivial-
izations (We note that certain block-states decorations actually
lead to a trivial crystalline SPT phase). An obstruction-free
and trivialization-free decoration corresponds to a nontrivial
crystalline SPT phase. Below we demonstrate these proce-
dures in full details by using the #14 wallpaper group p3m1
as an example.

A. Cell decomposition

For a 2D system with an arbitrary wallpaper group sym-
metry, we can divide the whole system into an assembly of
unit cells, where different unit cells are identical and related
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FIG. 1. Cell decomposition of #14 wallpaper group p3m1. Left panel illustrates the intercell decomposition that decomposes a lattice to
an assembly of unit cells; right panel illustrates the intracell decomposition that decompose a unit cell to an assembly of lower-dimensional
blocks.

by translation symmetries, as illustrated in the left panel of
Fig. 1. Therefore, we should only specify the physics in each
unit cell.

Then we decompose a specific unit cell of the wallpaper
group p3m1 into an assembly of lower-dimensional blocks
(see the right panel of Fig. 1). Here Rμ3 represents three-
fold rotational symmetry operation centered at the 0D block
labeled by μ3, and Mτ1 represents the reflection symmetry
operation with the axis (indicated by the vertical dashed line
in right panel of Fig. 1) coincided with the 1D block labeled
by τ1.

The physical background of the “intracell” decomposition
is the “extended trivialization” in each cell [49]. Suppose |ψ〉
is an SPT state that cannot be trivialized by a symmetric finite-
depth local unitary transformation. Due to the translational
symmetry, |ψ〉 can be expressed in terms of a direct product
of the wavefunctions of all cells,

|ψ〉 =
⊗

c

|ψc〉. (13)

Because of the translational symmetry, investigation of a
specific |ψc〉 in a cell is enough for understanding the SPT
state |ψ〉. As a consequence, |ψc〉 will inherit the property
that cannot be trivialized by a symmetric finite-depth local
unitary transformation Oloc. Nevertheless, we can still define
an alternative local unitary to extensively trivialize |ψc〉. First
we can trivialize the region σ (see the right panel of Fig. 1):
restrict Oloc to σ as Oloc

σ and act it on |ψc〉,
Oloc

σ |ψc〉 = |Tσ 〉 ⊗ ∣∣ψσ̄
c

〉
, (14)

where the system is in the product state |Tσ 〉 in region σ

and the remainder of the system σ̄ is in the state |ψσ̄
c 〉. To

trivialize the system symmetrically, we denote that VgOloc
σ V −1

g
trivializes the region gσ , where g ∈ D3. Therefore, we act on

|ψc〉 with

Oloc =
⊗
g∈D3

VgOloc
σ V −1

g , (15)

which results in an extensively trivialized wavefunction

|ψ ′
c〉 = Oloc

R |ψc〉

=
⊗
g∈D3

|Tgσ 〉 ⊗
3⊗

j=1,h∈D3

∣∣ψhτ j

〉 ⊗ 3⊗
k=1,p∈D3

∣∣ψpμk

〉
, (16)

where τ j, j = 1, 2, 3 and μk, k = 1, 2, 3 label the 1D and
0D blocks as illustrated in the right panel of Fig. 1. Now
all nontrivial topological properties of |ψc〉 are encoded in
lower-dimensional block states |ψhτ j 〉 and |ψpμk 〉, hence all
nontrivial properties of |ψ〉 are encoded in lower-dimensional
blocks in different unit cells.

B. Block-state decoration

Subsequently, with cell decompositions, we can deco-
rate some proper lower-dimensional block states on the
corresponding lower-dimensional blocks. Some symmetry op-
erations act internally on some lower-dimensional blocks,
hence the lower-dimensional block states should respect the
corresponding on-site symmetry on which they decorate. As
an example, we still consider the #14 wallpaper group p3m1
with the cell decomposition as illustrated in Fig. 1, the three-
fold rotational symmetry operations act on gμ j (g ∈ D3 and
j = 1, 2, 3) internally, and reflection symmetry operations act
on hτk (h ∈ D3 and k = 1, 2, 3) internally, hence the root
phases decorated on 0D and 1D blocks are 0D FSPT phases
protected by Z3 � Z2 on-site symmetry and 1D FSPT phases
protected by Z2 on-site symmetry, respectively. All dD block
states form the group {BS}dD, and all block states form the

033081-5



ZHANG, YANG, QI, AND GU PHYSICAL REVIEW RESEARCH 4, 033081 (2022)

following group:

{BS} =
1⊗

d=0

{BS}dD. (17)

Here “BS” is the abbreviation of “block states”.
Furthermore, the decorated states should respect the

no-open-edge condition. Once we decorate some lower-
dimensional block states on the corresponding blocks, they
might leave several gapless modes on the edge of the corre-
sponding blocks, and there are several gapless edge modes
coinciding near the blocks with lower dimension. Repeatedly
consider the wallpaper group p3m1 as an example, if we
decorate a Majorana chain on the 1D block labeled by τ1

(because of the rotational symmetry, there are also two Ma-
jorana chains decorated at the 1D blocks labeled by Rμ3τ1 and
R2

μ3
τ1, respectively), leaving three dangling Majorana modes

near the 0D block labeled by μ3. In order to contribute an SPT
state, the bulk of the system should be fully gapped, hence the
aforementioned gapless modes should be gapped out (by some
proper interactions, mass terms, entanglement pairs, etc.) in
a symmetric way. If the bulk of the system cannot be fully
gapped (i.e., several aforementioned 0D modes cannot be
gapped in a symmetric way), we call the corresponding deco-
ration obstructed. Equivalently, an obstruction-free decoration
should satisfy the no-open-edge condition. All obstruction-
free dD block states form the group {OFBS}dD ⊂ {BS}dD as a
subgroup of {BS}dD, and all obstruction-free block states form
the following group:

{OFBS} =
1⊗

d=0

{OFBS}dD ⊂ {BS}. (18)

Here “OFBS” is the abbreviation of “obstruction-free block
states”, and {OFBS} is a subgroup of {BS}.

C. Bubble equivalence

In order to obtain a nontrivial SPT state from obstruction-
free block state decorations, we should further consider
possible trivializations. For blocks with dimension larger than
0, we can further decorate some codimension 1 degree of free-
dom that could be trivialized when they shrink to a point. This
construction is called bubble equivalence, and we demonstrate
it for different dimensions:

a. 2D bubble equivalence. For 2D blocks, we can consider
a 1D chain, which can be shrunk to a point inside each
2D block, and there is no on-site symmetry on them for all
possible cases. In fermionic systems, the only possible state
we can decorate is Majorana chain. There are two distinct
boundary conditions: periodic boundary condition (PBC) with
odd fermion parity and antiperiodic boundary condition (anti-
PBC) with even fermion parity, as seen Fig. 2. According to
the definition of bubble equivalence, we only choose the “Ma-
jorana bubbles” with anti-PBC because it can be trivialized if
we shrink it into a point: If we decorate a Majorana chain with
anti-PBC on a 2D block, we can shrink it to a smaller one
by a 2D local unitary (LU) transformation without breaking
any symmetry. Repeatedly apply this LU transformation on
“Majorana” bubble, we can shrink it to a point and eliminate

FIG. 2. Majorana chain with periodic boundary condition (PBC,
left panel) and antiperiodic boundary condition (anti-PBC, right
panel). The boundary conditions are indicated by the red arrows in
both panels. Here ellipses represent the physical sites, and the solid
oriented line from j to k indicates the paring direction, corresponding
to the iγ jγk term in parent Hamiltonian. For the Majorana chain with
PBC, the graph is not Kasteleyn oriented, and the ground state has
odd fermion parity; for the Majorana chain with anti-PBC, the graph
is Kasteleyn oriented, thus the ground state has even fermion parity.

it (because a Majorana chain with anti-PBC has even fermion
parity) by a symmetric finite-depth circuit.

Technically, it is well known that for two Majorana modes
γ j and γk , their entanglement pair iγ jγk can be created by the
following projection operator [18,19]:

Pj,k = 1
2 (1 − iγ jγk ) (19)

and the direction is from γ j to γk . Consequently the creation
operator of a Majorana chain containing 2N Majorana modes
with anti-PBC on the 2D block σ can be generated by an
assembly of these projection operators

Aσ =
N−1∏
i=1

P2i,2i+1 × 1

2
(1 + iγ2Nγ1). (20)

Here the last bracket shows the direction of the Majorana
entanglement pair 〈γ1, γ2N 〉 is from γ1 to γ2N , as an explicit
indication of the anti-PBC of the Majorana chain we have
created. Finally the operator of creating a 2D Majorana bubble
in the entire lattice is

A =
⊗

σ

Aσ . (21)

In particular, 2D Majorana bubble cannot change the parity of
Majorana chains on 1D blocks: each 1D block is the shared
border of two nearby 2D blocks, hence the number of Majo-
rana chains on this 1D block can only be changed by 0 or 2 by
2D Majorana bubble.

b. 1D bubble equivalence. For 1D blocks, we can consider
two 1D irreducible representation of the corresponding total
on-site symmetry of the 1D blocks that should be trivialized if
they shrunk to a point. There are two possibilities:

The first one is fermionic 1D bubble; consider two complex
fermions with the following geometry:

a
.

†
l a†

r (22)
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Where yellow and red dots represent two complex fermions a†
l

and a†
r who are trivialized when they are fused, i.e., a†

l a†
r |0〉

is a trivial atomic insulating state with even fermion parity.
We demonstrate that this 1D bubble can be shrunk to a point
and trivialized by a finite-depth circuit: If we decorate a 1D
bubble, we can enclose a†

l and a†
r by an LU transformation.

Repeatedly apply this LU transformation, we can shrink these
two modes to a point. Therefore, the creation operator of
fermionic 1D bubbles in the entire lattice is

B f
j =

⊗
τ

(aτ
l )†(aτ

r )†. (23)

Another one is bosonic 1D bubble: Consider two com-
plex fermions with the geometry indicated in Eq. (22), where
yellow and red dots represent two bosons b†

l and b†
r that

carry 1D irreducible representations of the physical symmetry
group (total symmetry group quotient by fermion parity Z f

2 )
of corresponding 1D blocks. They should be trivialized by
shrinking them to a point: b†

l b†
r |0〉 carries trivial 1D irreducible

representation of the physical symmetry group. The creation
operator of bosonic 1D bubbles in the entire lattice is

Bb
j =

⊗
τ

(bτ
l )†(bτ

r )†. (24)

And the creation operator of general 1D bubbles is

Bj = B f
j ⊗ Bb

j . (25)

Enlarge these bubbles and approximate to the nearby
lower-dimensional blocks, the FSPT phases decorated on the
bubble can be fused with the original states on the nearby
lower-dimensional blocks, which leads to some possible triv-
ializations of lower-dimensional block-state decorations.

Suppose there are m different kinds of 1D bubble construc-
tions, labeled by Bj, j = 1, ..., m. With this notation we can
label an arbitrary bubble construction by an operator,

Al0

β∏
j=1

B
lj

j , l0, l j ∈ Z,

where l0/l j means that we take 2D/1D bubble construction
A/Bj by l0/l j times. According to the definition of the bubble
construction, taking an arbitrary bubble construction on the
trivial state will lead to another trivial state, and all these trivial
states form another group as following:

{TBS} =
{

Al0

β∏
j=1

B
lj

j |0〉
∣∣∣∣∣l0, l j ∈ Z

}
. (26)

Here “TBS” is the abbreviation of “trivial block states”,
and {TBS} ⊂ {OFBS} because all trivial block states are
obstruction-free block states. {TBS} includes trivial block
states with different dimensions: {TBS}dD (d = 0, 1). There-
fore, an obstruction and trivialization free block state can be
labeled by a group element of the following quotient group:

G = {OFBS}/{TBS} (27)

and all group elements in G are not equivalent because we
have already divided all trivial states connected by bubble
constructions. Equivalently, group G gives the classification
of the corresponding crystalline topological phases.

In particular, we note that the block states are con-
structed layer-by-layer. Therefore, we should specify the
d-dimensional obstruction-free and trivialization-free block
states,

EdD = {OFBS}dD/{TBS}dD. (28)

We should note that EdD is not a group in the sense of SPT
classification, because in order to obtain the ultimate classifi-
cation of SPT phases, we should further consider the possible
stacking between block states with different dimensions. EdD

can only be treated as a group only in the sense of dD block
states.

With all obstruction and trivialization free block states with
different dimensions, the ultimate classification with accurate
group structure of 2D crystalline fSPT phases is extension
between E1D and E0D,

G = E1D ×ω2 E0D, (29)

here the symbol ×ω2 depicts the possible extensions of E1D

and E0D that is characterized by following short exact se-
quence:

0 → E1D → G → E0D → 0. (30)

In the following, we explicitly apply these procedures
to calculate the classification of crystalline TSC and TI
by several representative examples for each crystallographic
systems.

III. CONSTRUCTION AND CLASSIFICATION OF
CRYSTALLINE TOPOLOGICAL SUPERCONDUCTOR

In this section, we describe the details of real-space con-
struction for crystalline TSC in 2D interacting fermionic
systems by analyzing several typical examples. It is well
known that all 17 wallpaper groups can be divided into five
different crystallographic systems:

Square lattice: with rotational symmetry of order 4, includ-
ing p4, p4m, p4g.

Parallelogrammatic lattice: with only rotational symmetry
of order 2, and no other symmetry than translational, including
p1, p2.

Rhombic lattice: with reflection combined with glide re-
flection, including cm, cmm

Rectangle lattice: with reflection or glide reflection, but not
both, including pm, pg, pmm, pmg, pgg.

Hexagonal lattice with rotational symmetry of order 3 or
6, including p3, p3m1, p31m, p6, p6m.

The key distinction between different crystallographic sys-
tems is 0D blocks as centers of different point group.

In particular, we apply the general paradigm of real-space
construction highlighted in Sec. II to investigate five represen-
tative cases that belong to different crystallographic systems:

(1) square lattice: p4m;
(2) parallelogrammatic lattice: p2;
(3) rhombic lattice: cmm;
(4) rectangle lattice: pgg;
(5) hexagonal lattice: p6m.
All other cases are assigned in the Supplemental Material

[88]. The classification results are summarized in Tables I and
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FIG. 3. #11 wallpaper group p4m and its cell decomposition.

II, for spinless and spin-1/2 fermions, respectively. Further-
more, for a 2D spinless system with p4m wallpaper group
symmetry, there is an intrinsic interacting fermionic crys-
talline TSC that cannot be realized in free fermion systems
or interacting bosonic systems.

A. Square lattice: p4m

For square lattice, we demonstrate the TSC protected by
p4m symmetry as an example. In the remainder of this pa-
per, we use the same label of p-dimensional blocks that can
be related by symmetry actions for abbreviation. The corre-
sponding point group is dihedral group D4, and for 2D blocks
σ , there is no on-site symmetry group; for 1D blocks τ1, τ2, τ3,
the on-site symmetry group is Z2 via the reflection symmetry
acting internally; for 0D blocks μ1 and μ3, the on-site symme-
try group is Z4 � Z2 via the D4 symmetry acting internally;
for 0D blocks μ2, the on-site symmetry group is Z2 � Z2 via
the D2 ⊂ D4 symmetry acting internally, as seen in Fig. 3.

We discuss systems with spinless and spin-1/2 fermions
separately. The “spinless”/“spin-1/2” fermion means that the
point subgroup is extended trivially/nontrivially by fermion
parity Z f

2 [87].

1. Spinless fermions

For spinless systems, we first consider the 0D block-state
decoration, for 0D blocks μ j ( j = 1, 2, 3), the classification
data of the corresponding 0D block states can be characterized
by different 1D irreducible representations of the full symme-
try group (n = 2, 4),

H1
[
Z f

2 × (Zn � Z2),U (1)
] = Z3

2. (31)

For arbitrary 0D block [whose classification data are calcu-
lated in Eq. (31)], three Z2 have different physical meanings:
The first Z2 represents the parity of complex fermion (even

or odd), the second Z2 represents the rotation eigenvalue −1,
and the third Z2 represents the reflection eigenvalue −1. So at
each 0D block, the block state can be labeled by (±,±,±),
where these three ± represent the fermion parity and eigen-
values of two independent reflection generators, respectively.
We should note that even-fold dihedral group can also be
generated by two independent reflection operations: For 0D
blocks μ1/μ3, D4 symmetry can be generated by reflection
operations Mτ1/Mτ2 and Mτ3 (Mτ1 , Mτ2 , Mτ3 represent the
reflection operation with respect to the axis, which coincide
with the 1D block labeled by τ1, τ2, τ3); for 0D block μ2, D2

symmetry can be generated by reflection operations Mτ1 and
Mτ2 . According to this notation, the obstruction-free 0D block
states form the following group:

{OFBS}0D
p4m,0 = Z9

2 (32)

where the group elements can be labeled by

[(±,±,±), (±,±,±), (±,±,±)],

here three brackets represent the block states at μ1, μ2, and
μ3, respectively.

Subsequently we consider the 1D block-state decoration.
For τ1, τ2, and τ3, the total symmetry group is Z f

2 × Z2, so
there are two possible 1D block states: Majorana chain and
1D FSPT state, and all 1D block states form a group,

{BS}1D
p4m,0 = Z6

2. (33)

Below we discuss the decorations of these two root phases
separately.

a. Majorana chain decoration. Consider Majorana chain
decoration on 1D blocks labeled by τ1, which leaves four
dangling Majorana modes at each 0D block μ1/μ3, and two
dangling Majorana modes at each 0D block μ2. Near μ1,
Majorana modes have the following rotation and reflection
symmetry (all subscripts are taken with modulo 4):

Rμ1 : γ j → γ j+1, Mτ2 : γ j → γ4− j. (34)

The local fermion parity operator and its symmetry properties
read

Pf = −
4∏

j=1

γ j, Rμ1 , Mτ2 : Pf → −Pf . (35)

Hence these four Majorana modes break the fermion parity.
Thus Majorana chain decoration on τ1 does not contribute to
nontrivial crystalline TSC because of the violation of the no-
open-edge condition. It is similar for 1D blocks τ2 and τ3, so
all types of Majorana chain decoration are obstructed.

b. 1D FSPT state decoration. The 1D FSPT state decora-
tion on τ1, τ2 and τ3 will leave eight dangling Majorana modes
(ξ j, ξ

′
j , j = 1, 2, 3, 4) at each 0D block labeled by μ1/μ3 and

four dangling Majorana modes (η j, η
′
j , j = 1, 2) at each 0D

block labeled by μ2. At μ1/μ3 (we discuss μ1 as an example),
the corresponding eight Majorana modes have the following
rotation and reflection symmetry properties (all subscripts are
taken under modulo 4, e.g., ξ5 ≡ ξ1 and ξ ′

5 ≡ ξ ′
1),

Rμ1 : ξ j → ξ j+1, ξ ′
j → ξ ′

j+1

Mτ1 : ξ j → ξ6− j, ξ ′
j → −ξ ′

6− j
, j = 1, 2, 3, 4. (36)
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We can define four complex fermions from these eight dan-
gling Majorana modes,

c†
j = 1

2 (ξ j + iξ ′
j ), j = 1, 2, 3, 4. (37)

And from the point group symmetry properties (36), we can
obtain the point group symmetry properties of the above com-
plex fermions as

Rμ1 : (c†
1, c†

2, c†
3, c†

4) → (c†
2, c†

3, c†
4, c†

1 ),

Mτ1 : (c†
1, c†

2, c†
3, c†

4) → (c1, c4, c3, c2). (38)

We denote the fermion number operators nj = c†
j c j, j =

1, 2, 3, 4. Firstly we consider the Hamiltonian with Hubbard
interaction (U > 0) that can gap out these dangling Majorana
modes,

HU = U
∑
j=1,2

(
n j − 1

2

)(
n j+2 − 1

2

)
. (39)

And it can also be expressed in terms of Majorana modes with
symmetry properties as shown in Eq. (36),

HU = −U

4
(ξ1ξ

′
1ξ3ξ

′
3 + ξ2ξ

′
2ξ4ξ

′
4). (40)

It is easy to verify that HU respects all symmetries. There is
a fourfold ground-state degeneracy from (n1, n3) and (n2, n4),
which can be viewed as two spin-1/2 degrees of freedom,

τ
μ
13 = (c†

1, c†
3)σμ

(
c1

c3

)
(41)

and

τ
μ
24 = (c†

2, c†
4)σμ

(
c2

c4

)
(42)

where σμ, μ = x, y, z are Pauli matrices. In order to lift this
ground-state degeneracy (GSD), we should further consider
the interactions between these two spins. The symmetry prop-
erties of these two spins can be easily obtained from (38),

(
τ x

13, τ
y
13, τ

z
13

) → (
τ x

24, τ
y
24, τ

z
24

)
Rμ1 : (

τ x
24, τ

y
24, τ

z
24

) → (
τ x

13,−τ
y
13,−τ z

13

)
(
τ x

13, τ
y
13, τ

z
13

) → (−τ x
13, τ

y
13,−τ z

13

)
Mτ1 : (

τ x
24, τ

y
24, τ

z
24

) → (−τ x
24,−τ

y
24, τ

z
24

)
. (43)

Then we can further add a spin Hamiltonian (J > 0),

HJ = J
(
τ x

13τ
x
24 + τ

y
13τ

z
24 − τ z

13τ
y
24

)
. (44)

According to the symmetry properties of spin operations (43),
we can easily verify that the spin Hamiltonian HJ is symmetric
under all symmetries. We can also verify the symmetry prop-
erties in Majorana representations by expressing HJ in terms

of Majorana modes as

HJ = − J

4
(ξ1ξ

′
3 − ξ ′

1ξ3)(ξ2ξ
′
4 − ξ ′

2ξ4)

− J

4
(ξ1ξ3 + ξ ′

1ξ
′
3)(ξ2ξ

′
2 − ξ4ξ

′
4)

+ J

4
(ξ1ξ

′
1 − ξ3ξ

′
3)(ξ2ξ4 + ξ ′

2ξ
′
4) (45)

and it is invariant under the symmetry properties defined in
Eq. (36). The GSD is lifted by a symmetric Hamiltonian HU +
HJ , and the nondegenerate ground state is

|ψ〉0D = − 1
2 (|↑,↑〉 + i|↑,↓〉 − i|↓,↑〉 − |↓,↓〉) (46)

where ↑ and ↓ represent spin-up and spin-down of two spin-
1/2 degrees of freedom (�τ13 and �τ24), and the ground-state
energy is −3J . It is easy to verify that this state is invariant
under arbitrary symmetry actions because |ψ〉0D is the eigen-
state of the operators Rμ1 and Mτ1 as two generators of D4

group at each μ1,

Rμ1 |ψ〉0D = i|ψ〉0D,

Mτ1 |ψ〉0D = −|ψ〉0D. (47)

Thus the corresponding eight Majorana modes are gapped out
by interactions in a symmetric way.

Next we consider the dangling Majorana modes from the
1D FSPT decorations on τ1 at μ2 with the rotation and reflec-
tion symmetry properties,

Rμ2 : (η1, η
′
1, η2, η

′
2) → (η2, η

′
2, η1, η

′
1),

Mτ1 : (η1, η
′
1, η2, η

′
2) → (η1,−η′

1, η2,−η′
2). (48)

We can define two complex fermions from these four dangling
Majorana modes,

c† = 1
2 (η1 + iη2), c′† = 1

2 (η′
1 + iη′

2) (49)

and from the symmetry properties (48), we can obtain the
point group symmetry properties of the above complex
fermions,

R : (c†, c′†) → (ic, ic′),

M : (c†, c′†) → (c†,−c′†). (50)

We denote the fermion number operators n = c†c and n′ =
c′†c′. First we consider the Hamiltonian with Hubbard in-
teraction (U ′ > 0) that can gap out these dangling Majorana
modes,

H ′
U = U ′(n − 1

2

)(
n′ − 1

2

)
. (51)

And it is easy to verify that H ′
U respects all symmetries accord-

ing to the symmetry properties of defined complex fermions
(50). There is a twofold ground-state degeneracy from (n, n′)
that can be viewed as a spin-1/2 degree of freedom,

τμ = (c†, c′†)σμ

(
c

c′

)
. (52)

In order to investigate whether the degenerate ground states
can be gapped out or not, we focus on the projective Hilbert
space spanned by two states c†|0〉 and c′†|0〉. In this projective
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Hilbert space, two generators of D2 symmetry on each μ2, Rμ2

and Mτ1 can be represented by two 2 × 2 matrices,

Rμ2 =
(

0 1

1 0

)
= σ x,

Mτ1 =
(

1 0

0 −1

)
= σ z. (53)

It is obvious that these two generators are anticommute,

Rμ2 Mτ1 = −Mτ1 Rμ2 ,

i.e., a sufficient condition shows that the projective Hilbert
space is a projective representation of the symmetry group D2

at each 0D block labeled by μ2. Hence, the twofold ground-
state degeneracy cannot be lifted.

We demonstrate this conclusion in Majorana representation
and elucidate that all possible mass terms are not compatible
with symmetries. A mass term is formed by two Majorana
operators, and all possible mass terms are

η1η2, η1η
′
1, η1η

′
2, η2η

′
1, η2η

′
2, η

′
1η

′
2

and their linear combinations. Under twofold rotation Rμ2 ,
these mass terms will be transformed to

−η1η2, η2η
′
2, η2η

′
1, η1η

′
2, η1η

′
1,−η′

1η
′
2

so there are only two mass terms that are symmetric under
Rμ2 : η1η

′
1 + η2η

′
2 and η1η

′
2 + η2η

′
1 and their linear combina-

tions. Subsequently, under the reflection Mτ1 , these terms are
not symmetric,

−(η1η
′
1 + η2η

′
2),−(η1η

′
2 + η2η

′
1).

Therefore, there is no symmetric mass term to lift the GSD.
Accordingly, 1D FSPT state decoration on τ1 is obstructed
because of the degenerate ground state, and similar arguments
can also be held on 1D blocks labeled by τ2 (and the ob-
struction also happens at 0D block μ2, as the center of D2

symmetry). 1D FSPT state decoration on τ3 is obstruction-free
because this decoration leaves eight dangling Majorana modes
at each 0D block labeled by μ1 and μ3, and both of them are
centers of D4 symmetry.

There is one exception: If we decorate a 1D FSPT phase
on each 0D block labeled by τ1 and τ2 simultaneously, it
leaves eight dangling Majorana modes at each 0D block μ2

(η j, η
′
j, j = 1, 2, 3, 4), with the following rotation and reflec-

tion symmetry properties:

Rμ2 :

{
(η1, η

′
1, η2, η

′
2) → (η2, η

′
2, η1, η

′
1)

(η3, η
′
3, η4, η

′
4) → (η4, η

′
4, η3, η

′
3),

Mτ1 :

{
(η1, η

′
1, η2, η

′
2) → (η1,−η′

1, η2,−η′
2)

(η3, η
′
3, η4, η

′
4) → (η4,−η′

4, η3,−η′
3).

(54)

This situation is quite similar with aforementioned gapping
situation at each 0D block labeled by μ1 or μ3, with lower
point group symmetry (D2 ∈ D4). Thus eight dangling Ma-
jorana modes at each 0D block μ2 from decorating a 1D
FSPT state on each τ1 and τ2 can be gapped by previously
discussed interactions HU + HJ [cf. Eqs. (39) and (44)] in
a symmetric way, and the 1D FSPT state decoration on τ1

and τ2 simultaneously is obstruction-free. We should note

that this block state has no free-fermion realization because
as aforementioned, we should introduce some interactions to
satisfy the no-open-edge condition, as noninteracting mass
terms cannot gap them out. Hence the crystalline TSC realized
here is an intrinsic interacting FSPT phase. In summary, all
obstruction-free 1D block states are

(i) 1D FSPT state decoration on τ1 and τ2 simultaneously;
(ii) 1D FSPT state decoration on τ3.

and they form the following group:

{OFBS}1D
p4m,0 = Z2

2 (55)

where the group elements can be labeled by

[m1 = m2, m3],

here mj = 0, 1 ( j = 1, 2, 3) represents the number of dec-
orated 1D FSPT states on τ j , respectively. According to
aforementioned discussions, a necessary condition of an
obstruction-free block state is m1 = m2.

With all obstruction-free block states, below we will dis-
cuss all possible trivializations. First we consider the 2D
bubble equivalences: we decorate a Majorana bubble on each
2D block σ (see Fig. 4), and then demonstrate that they can
be deformed into double Majorana chains at each nearby
1D block, and this is exactly the definition of the nontrivial
1D FSPT phase protected by on-site Z2 symmetry. Fig. 4(b)
shows that these Majorana bubbles can be deformed to double
Majorana chains. For p4m case, all 1D blocks are lying on
the reflection axis, and reflection operation are acting on them
internally: reflection operation (on-site Z2 symmetry on 1D
blocks) exchanges two Majorana chains deformed from “Ma-
jorana” bubble constructions, and this is exactly the definition
of the nontrivial 1D FSPT phase protected by on-site Z2

symmetry. Equivalently, we can say that 1D FSPT state deco-
rations on all 1D blocks can be deformed to a trivial state via
2D bubble equivalence. Next, we further investigate whether
2D bubble equivalence can change the fermion parity of 0D
blocks or not. We have already seen that 2D Majorana bubble
equivalence leaves double Majorana chains on all 1D blocks.
Correspondingly, it leaves 16 Majorana modes at each 0D
block μ1/μ3 and eight Majorana modes at each 0D block μ2

as the edge modes of double Majorana chains on 1D blocks.
Apparently, these Majorana modes cannot be connected to
Majorana chains with PBC surrounding the 0D blocks (with
fermion parity odd): It is well known that Majorana chain is
not compatible with reflection symmetry; however, the Ma-
jorana chain with PBC surrounding 0D block must across
at least one reflection axis. As a result, the overall effect of
2D Majorana bubble equivalence is deforming the 1D FSPT
phase (protected by on-site Z2 symmetry) decorations on all
1D blocks to a trivial state.

Subsequently we consider the 1D bubble equivalences. For
instance, we decorate a pair of complex fermions [cf. Eq. (22)]
on each 1D block τ1: Near each 0D block μ1, there are four
complex fermions forming the following atomic insulator:

|ψ〉μ1
p4m = c†

1c†
2c†

3c†
4|0〉 (56)
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(a) (b) (c)

FIG. 4. Deformation of “Majorana” bubble construction. (a) 1D vacuum block state that all 1D blocks are in vacuum state. Here μ1, μ2,
and μ3 label different 0D blocks and σ enclosed by a dashed triangle labels 2D blocks in one unit cell. (b) Decorate a “Majorana” bubble
in each 2D block in a symmetric way. Each solid oriented triangle expresses a Majorana chain with anti-PBC. (c) Enlarge the “Majorana”
bubbles, they can be deformed to the 1D block state with 1D FSPT states protected by on-site Z2 symmetry on all 1D blocks. Here each double
oriented lines expresses a 1D FSPT states protected by on-site Z2 symmetry that can be constructed by two Majorana chains.

with two independent reflection properties,

Mτ1 |ψ〉μ1
p4m = c†

1c†
4c†

3c†
2|0〉 = −|ψ〉μ1

p4m,

Mτ3 |ψ〉μ1
p4m = c†

3c†
4c†

1c†
2|0〉 = |ψ〉μ1

p4m, (57)

i.e., at 0D blocks μ1, 1D bubble construction on τ1 changes
the reflection eigenvalue of Mτ1 , and leaves the reflection
eigenvalue of Mτ2 invariant. Near each 0D block μ2, there are
two complex fermions forming another atomic insulator,

|ψ〉μ2
p4m = c′†

1 c′†
2 |0〉 (58)

with two independent reflection properties,

Mτ1 |ψ〉μ2
p4m = c′†

1 c′†
2 |0〉 = |ψ〉μ2

p4m,

Mτ2 |ψ〉μ2
p4m = c′†

2 c′†
1 |0〉 = −|ψ〉μ2

p4m,
(59)

i.e., at 0D blocks μ2 1D bubble construction on τ1 changes
the reflection eigenvalue of Mτ2 , and leaves the reflection
eigenvalue of Mτ1 invariant. This 1D bubble equivalence is
illustrated in Fig. 5. Similar 1D bubble constructions can be
held on 1D blocks τ2 and τ3, and we summarize the effects of
1D bubble constructions as following:

(1) 1D bubble construction on τ1: simultaneously changes
the eigenvalues of Mτ1 at μ1 and Mτ2 at μ2;

μ1 μ2

c†1
c†2

c†3

c†4

c′†1 c′†2

FIG. 5. 1D bubble equivalence on τ1. Atomic insulators (56) and
(58) are constructed by this procedure.

(2) 1D bubble construction on τ2: simultaneously changes
the eigenvalues of Mτ1 at μ2 and Mτ2 at μ3;

(3) 1D bubble construction on τ3: simultaneously changes
the eigenvalues of Mτ3 at μ1 and Mτ3 at μ3;
With all possible trivializations, we are ready to study the
trivial states. Start from the original 0D trivial block state

[(+,+,+), (+,+,+), (+,+,+)].

If we take 1D bubble constructions on τ j by l j times ( j =
1, 2, 3), the above trivial 0D block state will be transformed
to a new 0D block state labeled by

[(+, (−1)l1 , (−1)l3 ), (+, (−1)l2 , (−1)l1 ),(+, (−1)l2 ,(−1)l3 )].
(60)

According to the definition of bubble equivalence, all these
states should be trivial. It is easy to see that there are only three
independent quantities (l j, j = 1, 2, 3) in Eq. (60). Together
with the 2D Majorana bubble construction that deforms the
vacuum 1D block state to 1D FSPT states decorated on all 1D
blocks, all these trivial states form the group,

{TBS}p4m,0 = {TBS}1D
p4m,0 × {TBS}0D

p4m,0 = Z2 × Z3
2 = Z4

2,

(61)

where {TBS}1D
p4m,0 represents the group of trivial states with

nonvacuum 1D blocks (i.e., 1D FSPT phase decorations on
all 1D blocks), and {TBS}0D

p4m,0 represents the group of trivial
states with nonvacuum 0D blocks.

Therefore, all independent nontrivial block states with dif-
ferent dimensions are classified by

E1D
p4m,0 = {OFBS}1D

p4m,0

/{TBS}1D
p4m,0 = Z2,

E0D
p4m,0 = {OFBS}0D

p4m,0

/{TBS}0D
p4m,0 = Z6

2,
(62)

where one Z2 is from the nontrivial 1D block state, and other
six Z2 are from the nontrivial 0D block states.

With all nontrivial block states, we consider the group
structure of the ultimate classification. The physical meaning
of the group structure is whether stacking of 1D block state
extends to 0D block state or not. We argue that there is no
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stacking between block states with different dimensions for
p4m symmetry. In order to investigate the possible stacking,
we consider two identical 1D block states: for example, we
decorate two copies of 1D FSPT states on each 1D block
labeled by τ3, which leaves 16 dangling Majorana modes at
each 0D block labeled by μ1/μ3. It is easy to verify that two
copies of 1D FSPT states should be a trivial 1D block state be-
cause the root phase has a Z2 structure. First of all, according
to previous discussions, these decoration cannot be deformed
to a Majorana chain surrounding the 0D block to change the
corresponding fermion parity because the Majorana chain is
not compatible with the reflection symmetry. Subsequently at
each 0D block μ1/μ3, we can treat these 16 Majorana modes
as eight complex fermions: c j and c′

j ( j = 1, 2, 3, 4) form two
atomic insulators,

|φ〉 = a†
1a†

2a†
3a†

4|0〉
|φ′〉 = a′†

1 a′†
2 a′†

3 a′†
4 |0〉 (63)

and the wavefunction of these eight complex fermions is direct
product of |φ〉 and |φ′〉,

|�〉 = |φ〉 ⊗ |φ′〉. (64)

|φ〉 and |φ′〉 are eigenstates of two generators of D4 symmetry,
Mτ1 and Mτ3 ,

Mτ1 |φ〉 = a†
2a†

1a†
4a†

3|0〉 = |φ〉,
Mτ1 |φ′〉 = a′†

2 a′†
1 a′†

4 a′†
3 |0〉 = |φ′〉,

Mτ3 |φ〉 = a†
1a†

4a†
3a†

2|0〉 = −|φ〉,
Mτ3 |φ′〉 = a′†

1 a′†
4 a′†

3 a′†
2 |0〉 = −|φ′〉. (65)

Then the eigenvalues of |�〉 under Mτ1 and Mτ3 are trivial,

Mτ1 |�〉 = |�〉,
Mτ3 |�〉 = |�〉. (66)

Therefore, stacking of 1D block state cannot extend to 0D
block state, and the ultimate classification of 2D crystalline
SPT phases with p4m symmetry for spinless fermions is

Gp4m,0 = E1D
p4m,0 × E0D

p4m,0 = Z7
2. (67)

2. Spin-1/2 fermions

Now we turn to discuss systems with spin-1/2 fermions.
We first consider the 0D block-state decoration. For each 0D
block μ j ( j = 1, 2, 3), the classification data can also be char-
acterized by different 1D irreducible representations of the full
symmetry group Z f

2 ×ω2 (Zn � Z2) (n = 2, 4, and the symbol
×ω2 means that the physical symmetry group is nontrivially
extended by fermion parity Z f

2 , which is characterized by a
2-cocycle ω2, see Sec. I B):

H1
[
Z f

2 ×ω2 (Zn � Z2),U (1)
] = Z2

2. (68)

To calculate this, we should firstly calculate the following two
cohomologies:

H0(Zn � Z2,Z2) = Z2

H1[Zn � Z2,U (1)] = Z2
2. (69)

But the 0-cocycle n0 ∈ H0(Zn � Z2,Z2) does not contribute
a nontrivial 0D block state: a specific n0 is obstructed if
and only if (−1)ω2�n0 ∈ H2[Z4 � Z2,U (1)] is a nontrivial
2-cocycle with U (1) coefficient. From Refs. [19] and [87]
we know that nontrivial 0-cocycle n0 = 1 (fermion parity
odd) leads to a nontrivial 2-cocycle (−1)ω2�n0 ∈ H2[Z4 �

Z2,U (1)], and the 0D block states at μ j with odd fermion
parity are obstructed. Hence different Z2’s in the classification
data represent the rotation and reflection eigenvalues at each
D4 or D2 center. As a consequence, all obstruction-free 0D
block states form the following group:

{OFBS}0D
p4m,1/2 = Z6

2. (70)

Then we demonstrate that there is no trivialization. For
spinless fermions, we have demonstrated that the eigen-
value −1 of Mτ1/Mτ2 is trivialized by atomic insulator
|ψ〉μ1

p4m/|ψ〉μ2
p4m [cf. Eqs. (56) and (58), and Fig. 5]. Never-

theless, to fulfill the spin-1/2 condition (M2
τ1

= M2
τ2

= −1),
there is an additional minus sign under reflections,

Mτ1 |ψ〉μ1
p4m = c†

1c†
4c†

3(−c†
2)|0〉 = |ψ〉μ1

p4m,

Mτ2 |ψ〉μ2
p4m = c′†

1 (−c′†
2 ) = |ψ〉μ2

p4m, (71)

i.e., eigenvalues of Mτ1 and Mτ2 remain invariant. Equiva-
lently, there is no trivialization for 0D block states,

{TBS}0D
p4m,1/2 = Z1. (72)

As the consequence, the classification attributed to 0D
block states is

E0D
p4m,1/2 = Z6

2. (73)

Subsequently we consider the 1D block-state decoration.
For arbitrary 1D blocks, the total symmetry group is Z f

4 ,
hence there is no nontrivial 1D block state due to the triv-
ial classification of the corresponding 1D FSPT phases, and
the classification attributed to 1D block-state decorations is
trivial,

E1D
p4m,1/2 = {OFBS}1D

p4m,1/2 = Z1. (74)

Therefore it is obvious that there is no stacking between 1D
and 0D block states because of the trivial contribution from
1D block state. The ultimate classification with accurate group
structure is

Gp4m,1/2 = E0D
p4m,1/2 × E1D

p4m,1/2 = Z6
2. (75)

B. Parallelogrammatic lattice: p2

For parallelogrammatic lattice, we demonstrate the crys-
talline TSC protected by p2 symmetry as an example. The
corresponding point group of p2 is rotation group C2. For
1D and 2D blocks, there is no on-site symmetry group, but
the rotational subgroup C2 acts on each 0D blocks internally,
just identical with on-site Z2 symmetry, as seen Fig. 6. Be-
low we discuss systems with spinless and spin-1/2 fermions
separately.

1. Spinless fermions

For spinless fermions, the total on-site symmetry of each
0D block labeled by μ j, j = 1, 2, 3, 4, is Z f

2 × Z2, and the
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FIG. 6. #2 wallpaper group p2 and its cell decomposition.

classification data can be characterized by different 1D irre-
ducible representations of the symmetry group Z f

2 × Z2,

H1[Z f
2 × Z2,U (1)

] = Z2
2. (76)

Here one Z2 is from the fermion parity, and the other
is from the rotation eigenvalue −1. Thus at each 0D block,
the block state can be labeled by (±,±) where one ±
represents the fermion parity and the other represents rota-
tion eigenvalue, respectively. According to this notation, the
obstruction-free 0D block states form the following group:

{OFBS}0D
p2,0 = Z8

2 (77)

and the group elements can be labeled by (four brackets rep-
resent the block states at μ j, j = 1, 2, 3, 4)

[(±,±), (±,±), (±,±), (±,±)].

Subsequently we consider the 1D block-state decorations.
The unique possible 1D block state is Majorana chain due to
the absence of on-site symmetry on arbitrary 1D block, and
all 1D block states form a group,

{BS}1D
p2,0 = Z3

2. (78)

Then we consider the possible obstructions: Majorana chain
decoration on τ1 leaves two dangling Majorana modes at each
0D block labeled by μ2, which can be glued by an entangle-
ment pair iγ1γ2. Nevertheless, this entanglement pair breaks
C2 symmetry:

Rμ2 : iγ1γ2 → iγ2γ1 = −iγ1γ2, (79)

hence this decoration is obstructed, and does not contribute
nontrivial crystalline TSC because of the violation of the no-
open-edge condition. It is similar for all other 1D blocks. As
a consequence, 1D block-state decorations do not contribute
any nontrivial crystalline TSC because all block states are
obstructed,

E1D
p2,0 = {OFBS}1D

p2,0 = Z1. (80)

FIG. 7. 2D bubble equivalence for #2 wallpaper group p2. Near
each 0D block (μ2 for example), Majorana modes surrounded by
green-dashed circle are deformed toward an enclosed Majorana chain
surrounding the 0D block μ2. Left panel shows the bubble construc-
tion, and right panel is the deformed Majorana chain, which is not
Kasteleyn oriented, and the state has odd fermion parity.

With all obstruction-free block states, we consider possible
trivializations via bubble construction. First of all, we consider
the 2D bubble equivalence: as illustrated in Fig. 7, we decorate
a Majorana chain with anti-PBC on each 2D block that can be
trivialized if it shrinks to a point. At each nearby 1D block,
we can see that these Majorana bubbles can be deformed
into double Majorana chains. Consequently, Majorana bubble
construction has no effect on 1D blocks. At each nearby 0D
block (μ2 as an example, see Fig. 7), these Majorana bubbles
can be deformed into an alternative Majorana chain with odd
fermion parity surrounding it. Distinct from the p4m case,
this Majorana chain respects all symmetries of p2, so this
Majorana bubble construction can change the fermion parities
of all 0D blocks simultaneously.

Furthermore, consider 1D bubble equivalence on τ1: on
each 1D block labeled by τ1, we decorate a pair of complex
fermions [cf. Eq. (22)]: Near each 0D block μ2, there are two
complex fermions forming an atomic insulator,

|ψ〉μ2
p2 = c†

1c†
2|0〉 (81)

with rotation property

Rμ2 |ψ〉μ2
p2 = c†

2c†
1|0〉 = −|ψ〉μ2

p2 . (82)

Hence the rotation eigenvalue −1 can be trivialized by atomic
insulator |ψ〉μ2

p2 . Similar for μ1, and we can conclude that
rotation eigenvalues at 0D blocks labeled by μ1 and μ2 are
not independent. Similar bubble equivalences can be held on
arbitrary 1D blocks τ j , j = 1, 2, 3, 4, and rotation eigenvalues
at all 0D blocks are not independent.

With all possible bubble constructions, we are ready to
study the trivial states. Start from the original trivial state

[(+,+), (+,+), (+,+), (+,+)],

if we take 2D bubble construction l0 times, and take 1D bubble
constructions on τ j with l j times ( j = 1, 2, 3), above trivial
state will be transformed to a new 0D block state labeled by

[((−1)l0 , (−1)l1+l2 ), ((−1)l0 , (−1)l1+l3 ),

× ((−1)l0 , (−1)l2 ), ((−1)l0 , (−1)l3 )]. (83)
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According to the definition of bubble equivalence, all these
states should be trivial. Alternatively, all 0D block states can
be viewed as a vector of an 8-dimensional Z2-valued vector
space, and all trivial 0D block states with the form as Eq. (83)
can be viewed as a 4-dimensional vector subspace generated
by l0, l1, l2, l3. Hence all trivial 0D block states form the
group,

{TBS}0D
p2,0 = Z4

2. (84)

Therefore, all independent nontrivial 0D block states are
labeled by different group elements of the following quotient
group:

E0D
p2,0 = {OFBS}0D

p2,0

/{TBS}0D
p2,0 = Z4

2. (85)

It is obvious that there is no stacking between 1D and
0D block states, and the ultimate classification with accurate
group structure is

Gp2,0 = E1D
p2,0 × E0D

p2,0 = Z4
2. (86)

2. Spin-1/2 fermions

For spin-1/2 fermions, first we consider the 0D block-
state decoration, whose candidate states can be characterized
by different 1D irreducible representations of the symmetry
group Z f

4 (nontrivial Z f
2 extension of Z2 on-site symmetry),

H1
[
Z f

4 ,U (1)
] = Z4. (87)

All root phases are characterized by eigenvalues {i,−1,−i, 1}
of Z f

4 . So at each 0D block, the block state can be labeled by
ν ∈ {i,−1,−i, 1}. According to this notation, the obstruction-
free 0D block states form the following group:

{OFBS}0D
p2,1/2 = Z4

4 (88)

and different group elements can be labeled by

[ν1, ν2, ν3, ν4]

where ν j labels the 0D block state at μ j (j=1,2,3,4). It is
easy to see that there is no trivialization on 0D block states
(i.e., {TBS}0D

p2,1/2 = Z1), so the classification attributed to 0D
block-state decoration is

E0D
p2,1/2 = {OFBS}0D

p2,1/2

/{TBS}0D
p2,1/2 = Z4

4. (89)

Subsequently consider the 1D block-state decorations. The
unique possible 1D block state is still the Majorana chain
due to the absence of on-site symmetry on each 1D block.
The Majorana chain decoration on τ1 leaves two dangling
Majorana modes at each 0D block labeled by μ2, which can be
glued by an entanglement pair iγ1γ2, and it respects rotational
symmetry,

Rμ2 : iγ1γ2 → −iγ2γ1 = iγ1γ2. (90)

Hence Majorana chain decoration on τ1 is an obstruction-free
block state because of the satisfaction of the no-open-edge
condition. It is similar for 1D blocks labeled by τ2 and τ3.
Hence all obstruction-free 1D block states form the following
group:

{OFBS}1D
p2,1/2 = Z3

2. (91)

We have demonstrated that the 2D Majorana bubble con-
struction cannot change the parity of Majorana chains on
each 1D block in Sec. II, hence there is no trivialization
(i.e., {TBS}1D

p2,1/2 = Z1), so the classification attributed to 1D
block-state decorations is

E1D
p2,1/2 = {OFBS}1D

p2,1/2

/{TBS}1D
p2,1/2 = Z3

2. (92)

With the classification data Eqs. (89) and (92), we consider
the group structure of the corresponding classification. Equiv-
alently, we investigate whether 1D block state extends 0D
block state or not. As an example, we decorate two copies of
Majorana chains on each 1D block labeled by τ1, which leaves
four dangling Majorana fermions at each 0D block labeled by
μ1/μ2. Similar with Ref. [62], these Majorana chains can be
smoothly deformed to another assembly of Majorana chains
surrounding 0D blocks labeled by μ1 and μ2 as follows (each
yellow ellipse represents a physical site):

γ1 γ′
1

γ4 γ′
4

γ2

γ3

γ′
2

γ′
3

(93)

with rotational symmetry properties: γ j → γ ′
j and γ ′

j →
−γ j . The gapped Hamiltonian corresponding to the graph in
Eq. (93) is

H = −iγ1γ
′
1 − iγ4γ

′
4 − iγ2γ3 − iγ ′

2γ
′
3. (94)

We can further define four complex fermions according to
eight Majorana modes in Eq. (93) as follows:

c1 = (γ2 + iγ1)/2 c2 = (γ3 + iγ4)/2,

c′
1 = (γ ′

2 + iγ ′
1)/2 c′

2 = (γ ′
3 + iγ ′

4)/2. (95)

It is easy to find the ground state of Eq. (94),

|φ〉0D = (c†
1 − c†

2 − ic′†
1 + ic′†

2 − c†
1c′†

1 c′†
2 + c†

2c′†
1 c′†

2

+ ic†
1c†

2c′†
1 − ic†

2c†
2c′†

1 )|0〉 (96)

with the twofold rotation property

Rμ1 |φ〉0D = i|φ〉0D. (97)

If a 0D block state with eigenvalue eiπq/2 under twofold ro-
tation is attached to each 1D block state near each 0D block
labeled by μ1, the rotation eigenvalue r of the obtained 0D
block state becomes

r = eiπ/2+iπq, q ∈ Z, (98)

and there is no solution to the formula r = 1. Therefore, near
each 0D block labeled by μ1/μ2, 1D block states extend 0D
block states, hence the 0D block states at μ1/μ2 have the
group structure Z8 as the nontrivial extension of Z4 and Z2

that should be attributed to 0D and 1D block-state decorations,
respectively.

Similar for other 1D and 0D block states, we can obtain that
the 0D block states have the group structure Z8 for an arbitrary
0D block. Nevertheless, stacking between 1D and 0D block
states at different 0D blocks are not independent. For instance,
if we decorate two copies of Majorana chain on 1D blocks τ1,
these two Majorana chains extend the 0D block states at both
μ1 and μ2. It is not hard to verify that only three 0D blocks
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FIG. 8. #9 wallpaper group cmm and its cell decomposition.

have independent stacking between 1D and 0D block states,
hence the ultimate classification with accurate group structure
is

Gp2,1/2 = E1D
p2,1/2 ×ω2 E0D

p2,1/2 = Z4 × Z3
8, (99)

here the symbol ×ω2 means that independent nontrivial 1D
and 0D block states E1D

p2,1/2 and E0D
p2,1/2 have nontrivial exten-

sion, characterized by the following short exact sequence:

0 → E1D
p2,1/2 → Gp2,1/2 → E0D

p2,1/2 → 0. (100)

C. Rhombic lattice: cmm

For rhombic lattice, we demonstrate the crystalline TSC
protected by cmm symmetry as an example. The correspond-
ing point group of cmm is dihedral group D2, and for 2D
blocks σ and 1D blocks τ1, there is no on-site symmetry; and
for 1D blocks τ2/τ3 and 0D blocks μ1, the on-site symmetry
is Z2 via the reflection symmetry acting internally; for 0D
blocks μ2 and μ3, the on-site symmetry group is Z2 � Z2 via
the D2 symmetry acting internally. The cell decomposition of
cmm is illustrated in Fig. 8.

1. Spinless fermions

For spinless fermions, consider the 0D block-state decora-
tion: For 0D blocks μ1, the total symmetry group of each is
Z f

2 × Z2, and candidate states can be characterized by differ-
ent 1D irreducible representations of the symmetry group,

H1
[
Z f

2 × Z2,U (1)
] = Z2

2. (101)

So at each 0D block labeled by μ1, the block state can be
labeled by (±,±), and these two ±’s represent the fermion
and rotation eigenvalue, respectively. For 0D blocks μ2 and
μ3, the classification data can be characterized by different
irreducible representations of the full symmetry group Z f

2 ×

(Z2 � Z2),

H1
[
Z f

2 × (Z2 � Z2),U (1)
] = Z3

2. (102)

So at each 0D block, the block state can be labeled by
(±,±,±), and these three ±’s represent the fermion par-
ity and eigenvalues of two independent reflection generators
Mτ2 and Mτ3 , respectively. According to this notation, the
obstruction-free 0D block states form the group

{OFBS}0D
cmm,0 = Z8

2 (103)

where the group elements can be labeled by

[(±,±), (±,±,±), (±,±,±)], (104)

here three brackets represent the block states at μ1, μ2, and
μ3, respectively.

Subsequently we consider the 1D block-state decoration.
For 1D block τ1, the total symmetry group is just fermion
parity Z f

2 , so the only nontrivial 1D block state is Majorana
chain; for 1D blocks τ2 and τ3, the total symmetry group is
Z f

2 × Z2, so there are two possible 1D block states: Majorana
chain and 1D FSPT state (composed by double Majorana
chains), so all 1D block states form a group

{BS}1D
cmm,0 = Z5

2. (105)

Then we discuss the decorations of these two root phases
separately.

a. Majorana chain decoration. First we consider the Ma-
jorana chain decoration on 1D blocks τ1, which leaves
two/four dangling Majorana modes at each 0D block μ1/μ2.
Near μ1, Majorana modes have following rotational symme-
try properties:

Rμ1 : γ1 ↔ γ2 (106)

with local fermion parity and its symmetry property

Pf = iγ1γ2, Rμ1 : Pf → −Pf . (107)

Hence these two Majorana modes break the fermion parity on
0D block μ1. Thus Majorana chain decoration on 1D block
τ1 is obstructed because of the violation of the no-open-edge
condition.

Then we consider the Majorana chain decoration on 1D
blocks τ2 that leaves two Majorana modes at each 0D block
μ2/μ3. Near μ2, Majorana modes have following reflection
symmetry properties:

Mτ3 : γ1 ↔ γ2 (108)

with local fermion parity and its symmetry property

Pf = iγ1γ2, Mτ3 : Pf → −Pf . (109)

Hence these two Majorana modes break the fermion parity
on 0D block μ2. Thus Majorana chain decoration on τ2 is
obstructed because of the violation of the no-open-edge con-
dition. Majorana chain decoration on 1D blocks τ3 is similar,
hence all types of Majorana chain decorations are obstructed.

b. 1D FSPT state decoration. First we consider the 1D
FSPT state decoration on 1D blocks τ2 that leaves four dan-
gling Majorana modes (ξ j, ξ

′
j, j = 1, 2) at each 0D block

μ2/μ3. Near μ2/μ3, the corresponding four Majorana modes
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have the symmetry properties ( j = 1, 2),

Mτ2 : ξ j → ξ j, ξ ′
j → −ξ ′

j,

Mτ3 : ξ1 ↔ ξ2, ξ ′
1 ↔ ξ ′

2. (110)

Similar with the 1D block-state decorations for p4m case,
these four Majorana modes cannot be gapped out because
they form a projective representation of D2 group at each
corresponding 0D block, and a nondegenerate ground state is
forbidden. Accordingly, the 1D FSPT state decoration on τ2

or τ3 is obstructed because of the degenerate ground state.
There is one exception: If we decorate 1D FSPT phases on

1D blocks τ2 and τ3 simultaneously, it leaves eight dangling
Majorana modes at each μ2 and μ3. Similar with the 0D block
labeled by μ2 in p4m case (see Fig. 3), these eight dangling
Majorana modes can be gapped symmetrically. As a conse-
quence, the only nontrivial obstruction-free 1D block state is
1D FSPT state decorations on τ2 and τ3 simultaneously, and
all obstruction-free 1D block states form a group

{OFBS}1D
cmm,0 = Z2 (111)

where the group elements can be labeled by m2 = m3 (m2/m3

represents the number of decorated 1D FSPT states on τ2/τ3).
With all obstruction-free block states, we discuss all

possible trivializations. First we consider the 2D bubble equiv-
alences: we decorate a Majorana chain with anti-PBC on
each 2D block and enlarge all Majorana bubbles near each
1D block labeled by τ1, and it can be deformed to double
Majorana chains that can be trivialized because there is no
on-site symmetry; near each 1D block labeled by τ2/τ3, it can
also be deformed to double Majorana chains, nevertheless,
these double Majorana chains cannot be trivialized because
there is an on-site Z2 symmetry on each τ2/τ3. Equivalently,
1D FSPT state decorations on 1D blocks τ2 and τ3 can be de-
formed to a trivial state via 2D Majorana bubble equivalence.
Furthermore, similar with the p4m case, there is no effect
on 0D blocks labeled by μ2 and μ3 by taking 2D Majorana
bubble equivalence; nevertheless, similar with the p2 case, 2D
Majorana bubble construction changes the fermion parity of
each 0D block labeled by μ1.

Subsequently we consider the 1D bubble equivalences.
For instance, we decorate a pair of complex fermions [cf.
Eq. (22)]: Near each 0D block μ1, there are 2 complex
fermions forming the following atomic insulator:

|ψ〉μ1
cmm = c†

1c†
2|0〉 (112)

with rotation property

Rμ1 |ψ〉μ1
cmm = c†

2c†
1|0〉 = −|ψ〉μ1

cmm, (113)

i.e., 1D bubble construction on τ1 changes the rotation eigen-
value at each 0D block μ1. Near each 0D block μ2, there are
four complex fermions forming another atomic insulator,

|ψ〉μ2
cmm = c′†

1 c′†
2 c′†

3 c′†
4 |0〉 (114)

with two independent reflection symmetry properties (D2

symmetry at 0D block μ2 can also be generated by two in-
dependent reflections Mτ2 and Mτ3 )

Mτ2 |ψ〉μ2
cmm = c′†

3 c′†
4 c′†

1 c′†
2 |0〉 = |ψ〉μ2

cmm,

Mτ3 |ψ〉μ2
cmm = c′†

4 c′†
3 c′†

2 c′†
1 |0〉 = |ψ〉μ2

cmm,
(115)

i.e., 1D bubble construction on τ1 does not change anything
on μ2. Similar 1D bubble constructions can be held on 1D
blocks τ2 and τ3, and we summarize the effects of 1D bubble
constructions as following:

(1) 1D bubble construction on τ1: changes the eigenvalue
of Rμ1 at μ1;

(2) 1D bubble construction on τ2: simultaneously changes
the eigenvalues of Mτ3 at μ2 and μ3;

(3) 1D bubble construction on τ3: simultaneously changes
the eigenvalues of Mτ2 at μ2 and μ3;

With all possible trivializations, we are ready to study the
trivial states. Start from the original trivial 0D block state
(nothing is decorated on arbitrary 0D blocks),

[(+,+), (+,+,+), (+,+,+)].

If we take 2D Majorana bubble construction l0 times, and
take 1D bubble equivalences on τ j with l j times ( j = 1, 2, 3),
above trivial state will be deformed to a new 0D block state
labeled by

[((−1)l0 , (−1)l1 ), (+, (−1)l3 , (−1)l2 ),

× (+, (−1)l3 , (−1)l2 )]. (116)

According to the definition of bubble equivalence, all these
states should be trivial. It is easy to see that there are only four
independent quantities (l j = 0, 1, 2, 3) in Eq. (116), hence all
these trivial states form the following group:

{TBS}cmm,0 = {TBS}1D
cmm,0 × {TBS}0D

cmm,0

= Z2 × Z3
2 = Z4

2, (117)

here {TBS}1D
cmm,0 represents the group of trivial states, and

{TBS}0D
cmm,0 represents the group of trivial states with nonvac-

uum 0D blocks.
Therefore, all independent nontrivial block states with dif-

ferent dimensions form the following groups:

E1D
cmm,0 = {OFBS}1D

cmm,0

/{TBS}1D
cmm,0 = Z1,

E0D
cmm,0 = {OFBS}0D

cmm,0

/{TBS}0D
cmm,0 = Z5

2,
(118)

and together form the classification

Gcmm,0 = E0D
cmm,0 = Z5

2, (119)

here all Z2’s are from the nontrivial 0D block states. It is
obvious that there is no nontrivial group extension because
of the absence of nontrivial 1D block state, and the group
structure of Gcmm,0 has already been correct.

2. Spin-1/2 fermions

Now we turn to discuss systems with spin-1/2 fermions.
First we consider the 0D block-state decorations: For 0D
blocks labeled by μ1, the twofold rotational symmetry acts
on each of them internally, hence the total symmetry is Z f

4 :
nontrivial Z f

2 extension of on-site Z2 symmetry. And all dif-
ferent 0D block states, which can be characterized by different
1D irreducible representations of the corresponding symmetry
group are

H1[Z f
4 ,U (1)

] = Z4, (120)
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and there is no trivialization on them. Furthermore, for 0D
blocks labeled by μ2 and μ3, the dihedral group symmetry
D2 acts on each of them internally, and similar with the p4m
case, the classification of corresponding 0D block states can
be characterized by different 1D irreducible representations of
the full symmetry group

H1
[
Z f

2 ×ω2 (Z2 � Z2),U (1)
] = Z2

2. (121)

Here different Z2’s represent the rotation and reflection eigen-
values at each D2 center. As a consequence, all obstruction-
free 0D block states form the following group:

{OFBS}0D
cmm,1/2 = Z4 × Z4

2, (122)

and there is no trivialization on them. For spinless fermions,
the rotation eigenvalue −1 at 0D block μ1 is changed by
atomic insulator |ψ〉μ1

cmm [cf. Eq. (112)]. Nevertheless, for spin-
1/2 fermions, there is an additional minus sign under rotation
to fulfill the condition R2

μ1
= −1,

Rμ1 |ψ〉μ1
cmm = c†

2(−c†
1) = |ψ〉μ1

cmm, (123)

i.e., |ψ〉μ1
cmm does not change the rotation eigenvalue −1 at 0D

block μ1. Similar for all other 0D blocks.
As a consequence, the classification attributed to 0D block-

state decorations is

E0D
cmm,1/2 = Z4 × Z4

2. (124)

Subsequently we investigate the 1D block-state decoration.
On τ1, the unique possible 1D block state is Majorana chain
because of the absence of the on-site symmetry; on τ2 and τ3,
the total symmetry group is Z f

4 , hence there is no candidate
block state due to the trivial classification of the corresponding
1D FSPT phases. The Majorana chain decoration on τ1 leaves
two dangling Majorana modes at each μ1, and four dangling
Majorana modes at each μ2. At μ1, the two dangling Majo-
rana modes, which can be gapped out by an entanglement pair
without breaking any symmetry are

Rμ1 : iγ1γ2 → −iγ2γ1 = iγ1γ2, (125)

at μ2, the four Majorana modes have the following reflection
symmetry properties (D2 symmetry can also be generated by
two independent reflections Mτ2 and Mτ3 ):

Mτ2 : (η1, η2, η3, η4) → (η2,−η1, η4,−η3),

Mτ3 : (η1, η2, η3, η4) → (η4, η3,−η2,−η1). (126)

Consider the following Hamiltonian containing two entangle-
ment pairs of these four Majorana modes:

Hμ2 = −iη1η3 − iη2η4. (127)

It is easy to verify that Hμ2 is invariant under the symmetry
actions (126). As a consequence, all obstruction-free 1D block
states form the following group:

{OFBS}1D
cmm,1/2 = Z2, (128)

and it is easy to see that there is no trivialization (i.e.,
{TBS}0D

cmm,1/2 = Z1). So the classification attributed to 1D
block-state decorations is

E1D
cmm,1/2 = Z2. (129)

With the classification data as Eqs. (124) and (129), we
consider the group structure of the corresponding classifica-
tion. Equivalently, we investigate if 1D block state extends 0D
block state. The only possible case of stacking should happen
on 1D blocks labeled by τ1 because other 1D blocks have
no nontrivial block state, similar with p4m and p2 cases. We
decorate two copies of Majorana chains on τ1 that leave two
dangling Majorana modes at each 0D block labeled by μ1 and
four dangling Majorana modes at each 0D block labeled by
μ2. At μ1, these Majorana chains can be smoothly deformed
to the state described by Eqs. (93) and (96), with the symmetry
properties as Eq. (97). So similar with p2 case, near each 0D
block labeled by μ1, 1D block states extend 0D block state,
and 0D block states at μ1 have the group structure Z8 as a
consequence. At μ2, these Majorana chains can be smoothly
deformed to two copies of the state described by Eqs. (93)
and (96), and have eigenvalue −1 under twofold rotational
symmetry. The classification data of 0D block states at μ2

is determined by Eq. (121), hence if a 0D block state with
eigenvalue −1 under twofold rotation is attached to each 1D
block state near each 0D block labeled by μ2, the rotation
eigenvalue s of the obtained 0D block state becomes

s = (−1) × (−1) = 1. (130)

Therefore, near 0D block μ2 there is an appropriate 1D block
state, which itself forms a Z2 structure under stacking, and
there is no stacking between 1D and 0D block states at μ2 as a
consequence. Finally, the ultimate classification with accurate
group structure is

Gcmm,1/2 = E0D
cmm,1/2 ×ω2 E1D

cmm,1/2 = Z8 × Z4
2, (131)

here the symbol “×ω2 ” means that 1D and 0D block states
E1D

cmm,1/2 and E0D
cmm,1/2 have nontrivial extension, and described

by the following short exact sequence:

0 → E1D
cmm,1/2 → Gcmm,1/2 → E0D

cmm,1/2 → 0. (132)

D. Rectangle lattice: pgg

For rectangle lattice, we demonstrate the crystalline TSC
protected by pgg symmetry as an example. pgg is a nonsy-
morphic wallpaper group and the corresponding point group
is dihedral group. The corresponding point group for this case
is twofold dihedral group D2. For 2D blocks σ and 1D blocks
τ1 and τ2, there is no on-site symmetry, and for 0D blocks μ1

and μ2, the on-site symmetry is Z2 because twofold rotational
symmetry C2 acts on the 0D blocks internally, as seen Fig. 9.

1. Spinless fermions

First we investigate the 0D block-state decoration. For an
arbitrary 0D block, the total symmetry group is an on-site
Z2 symmetry together with the fermion parity: Z f

2 × Z2, and
the classification data can be characterized by different 1D
irreducible representations of the symmetry group

H1
[
Z f

2 × Z2,U (1)
] = Z2

2, (133)

these two Z2’s represent the fermion parity and eigenvalues
of twofold rotational symmetry on each 0D block, respec-
tively. So at each 0D block, the block state can be labeled by
(±,±). According to this notation, the obstruction-free 0D
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FIG. 9. #8 wallpaper group pgg and its cell decomposition.

block states form the following group:

{OFBS}0D
pgg,0 = Z4

2, (134)

and the group elements can be labeled by (two brackets repre-
sent the block states at μ1 and μ2)

[(±,±), (±,±)].

Subsequently we investigate the 1D block-state decoration.
Due to the absence of the on-site symmetry, the unique possi-
ble 1D block state is Majorana chain. So all 1D block states
form a group

{BS}1D
pgg,0 = Z2

2. (135)

Then we discuss the possible obstructions: we discuss the 1D
block-state decorations on τ1 and τ2 separately.

a. Majorana chain decoration on τ1. Majorana chain dec-
oration on τ1 leaves four dangling Majorana modes at each
corresponding 0D blocks μ1 with the following rotational
symmetry properties:

Rμ1 : γ j → γ j+2. (136)

Here all subscripts are taken with modulo 4 (i.e., γ5 represents
the Majorana mode labeled by γ1). Consider the following
Hamiltonian near each 0D block μ1:

H = iγ1γ2 + iγ3γ4, (137)

it is obvious that H is symmetric under (136), and it can gap
out the four Majorana modes at each μ1.

b. Majorana chain decoration on τ2. Majorana chain dec-
oration on τ2 leaves two dangling Majorana modes at each
corresponding 0D block, which can be gapped out by an
entanglement pair. Nevertheless this entanglement pair breaks
the fermion parity, and the no-open-edge condition is violated.

As a consequence, all obstruction-free 1D block states
form the following group:

{OFBS}1D
pgg,0 = Z2, (138)

and we have demonstrated that the 2D Majorana bubble can-
not change the parity of Majorana chains of each 1D block in
Sec. II, hence there is no trivialization (i.e., {TBS}1D

pgg,0 = Z1).

Therefore, all independent nontrivial 1D block states are la-
beled by different group elements of the following group:

E1D
pgg,0 = {OFBS}1D

pgg,0

/{TBS}1D
pgg,0 = Z2. (139)

With all obstruction-free block states, we consider possible
trivializations via bubble construction. First of all, we consider
the 2D bubble equivalence: We decorate a Majorana chain
with anti-PBC on each 2D block that can be trivialized if it
shrinks to a point. Similar with the p2 case, by some proper
local unitary transformations, this assembly of bubbles can
be deformed to an assembly of Majorana chains with odd
fermion parity surrounding each of 0D block, and the fermion
parities of all 0D blocks are changed simultaneously. Equiva-
lently, the fermion parities of 0D blocks labeled by μ1 and μ2

are not independent.
Then we study the role of rotation symmetry. Consider

the 1D bubble equivalence on τ2: we decorate a pair of com-
plex fermions [cf. Eq. (22)]: Near μ2, there are two complex
fermions, which form an atomic insulator,

|ψ〉μ2
pgg = c†

1c†
2|0〉 (140)

with rotation property as (Rμ2 represents the rotation opera-
tion centered at the 0D block labeled by μ2)

Rμ2 |ψ〉μ2
pgg = c†

2c†
1|0〉 = −|ψ〉μ2

pgg, (141)

i.e., |ψ〉μ2
pgg can trivialize the rotation eigenvalue −1 at each 0D

block labeled by μ2, similar for the 0D block labeled by μ1.
Hence the rotation eigenvalues at μ1 and μ2 are not indepen-
dent; and we further consider the 1D bubble equivalence on
τ1: Near each 0D block labeled by μ1, there are four complex
fermions, which form another atomic insulator

|ψ〉μ1
pgg = c′†

1 c′†
2 c′†

3 c′†
4 |0〉 (142)

with rotation property as (Rμ1 represents the rotation opera-
tion centered at the 0D block labeled by μ1)

Rμ1 |ψ〉μ1
pgg = c′†

3 c′†
4 c′†

1 c′†
2 = |ψ〉μ1

pgg. (143)

So there is no trivialization from this bubble construction.
With all possible bubble constructions, we are ready to

study the trivial states. Start from the original trivial state,

[(+,+), (+,+)],

if we take 2D bubble construction l0 times and 1D bubble
construction on τ2 with l2 times, above trivial state will be
deformed to a new 0D block state labeled by

[((−1)l0 , (−1)l2 ), ((−1)l0 , (−1)l2 )]. (144)

According to the definition of bubble equivalence, all these
states should be trivial. It is easy to see that there are only
two independent quantities in the state (144), hence all trivial
states form the group

{TBS}0D
pgg,0 = Z2

2. (145)

Therefore, all independent nontrivial 0D block states are la-
beled by different group elements of the following quotient
group:

E0D
pgg,0 = {OFBS}0D

pgg,0

/{TBS}0D
pgg,0 = Z2

2. (146)
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It is straightforward to see that there is no stacking between
1D and 0D block states, and the ultimate classification with
accurate group structure is

Gpgg,0 = E0D
pgg,0 × E1D

pgg,0 = Z3
2. (147)

2. Spin-1/2 fermions

First we investigate the 0D block-state decorations. All 0D
blocks are twofold rotation centers, hence the total symmetry
group of each 0D block is Z f

4 , and different 0D block states,
which can be characterized by different 1D irreducible repre-
sentations of the corresponding symmetry group are

H1
[
Z f

4 ,U (1)
] = Z4. (148)

All root phases at each 0D block are characterized by group
elements of {1, i,−1,−i}. So at each 0D block, the block state
can be labeled by ν ∈ {1, i,−1,−i}. According to this nota-
tion, the obstruction-free 0D block states form the following
group:

{OFBS}0D
pgg,1/2 = Z2

4, (149)

and different group elements can be labeled by

[ν1, ν2]

where ν1 and ν2 label the 0D block state at μ1 and μ2. It is
easy to see that there is no trivialization on 0D block states
(i.e., {TBS}0D

pgg,1/2 = Z1), so the classification attributed to 0D
block-state decorations is

E0D
pgg,1/2 = {OFBS}0D

pgg,1/2

/{TBS}0D
pgg,1/2 = Z2

4. (150)

Subsequently we investigate the 1D block-state decoration.
The unique possible 1D block state is Majorana chain because
of the absence of on-site symmetry.

a. Majorana chain deocration on τ1. Majorana chain dec-
oration on τ1 leaves four dangling Majorana modes at each
0D blocks labeled by μ1 with identical symmetry properties
with the spinless fermions [cf. Eq. (136)], hence these four
Majorana modes can be gapped out by some entanglement
pairs in a symmetric way, and the no-open-edge condition is
satisfied.

b. Majorana chain decoration on τ2. Majorana chain dec-
oration on τ2 leaves two dangling Majorana modes at each 0D
block μ2, which can be gapped out by an entanglement pair
in a symmetric way. Therefore the no-open-edge condition is
satisfied. Consequently, all obstruction-free 1D block states
form the following group:

{OFBS}1D
pgg,1/2 = Z2

2. (151)

Then we demonstrate that there is no trivialization from
bubble constructions: For spinless fermions, eigenvalue −1
of rotation Rμ1 is changed by atomic insulator |ψ〉μ1

pgg [cf.
Eq. (140)]. Nevertheless, for spin-1/2 fermions, there is an
additional minus sign under rotation to fulfill the condition
R2

μ1
= −1,

Rμ1 |ψ〉μ1
pgg = c†

2(−c†
1)|0〉 = |ψ〉μ1

pgg, (152)

i.e., |ψ〉μ1
pgg does not change the eigenvalue of Rμ1 .

FIG. 10. #17 wallpaper group p6m and its cell decomposition.

As the consequence, the classification of 2D FSPT phases
with pgg symmetry attributed to 1D block-state decoration is

E1D
pgg,1/2 = {OFBS}1D

pgg,1/2

/{TBS}1D
pgg,1/2 = Z2

2. (153)

Then we study the possible stacking between 1D and 0D block
states. If we decorate two Majorana chains on each 1D block
labeled by τ1, similar with cmm case, there is no stacking
between 1D and 0D block states; if we decorate two Majorana
chains on each 1D block labeled by τ2, similar with p2 case, it
can be smoothly deformed to an assembly of 0D root phases
at 0D blocks μ2. Therefore, the ultimate classification with
accurate group structure is

Gpgg,1/2 = E1D
pgg,1/2 ×ω2 E0D

pgg,1/2 = Z2 × Z4 × Z8, (154)

here the symbol “×ω2 ” means that 1D and 0D block states
E1D

cmm,1/2 and E0D
cmm,1/2 have nontrivial extension, described by

the following short exact sequence:

0 → E1D
pgg,1/2 → Gpgg,1/2 → E0D

pgg,1/2 → 0. (155)

E. Hexagonal lattice: p6m

For hexagonal lattice, we demonstrate the crystalline TSC
protected by p6m symmetry as an example. The correspond-
ing point group of p6m is dihedral group D6, and for 2D
blocks labeled by σ , there is no on-site symmetry; for arbitrary
1D block, the on-site symmetry is Z2, which is attributed to
the reflection symmetry acting internally; for 0D blocks μ1,
the on-site symmetry group is Z6 � Z2, which is attributed to
the D6 group acting internally; for 0D blocks μ2, the on-site
symmetry is Z2 � Z2, which is attributed to the D2 ⊂ D6

acting internally; for 0D blocks μ3, the on-site symmetry is
Z3 � Z2, which is attributed to the D3 ⊂ D6 acting internally.
The cell decomposition is shown in Fig. 10.

1. Spinless fermions

Consider the 0D block-state decorations, for μ j , j =
1, 2, 3, the classification data can be characterized by different
1D irreducible representations of the full symmetry groups,
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respectively,

H1
[
Z f

2 × (Z6 � Z2),U (1)
] = Z3

2,

H1
[
Z f

2 × (Z2 � Z2),U (1)
] = Z3

2,

H1
[
Z f

2 × (Z3 � Z2),U (1)
] = Z2

2. (156)

Similar to the p4m case, the 0D block states at μ1 and μ2

can be labeled by (±,±,±) where the three ±’s represent the
fermion parity and eigenvalues of two independent reflection
generators Mτ1 and Mτ2 , respectively. However, the 0D block
states at μ3 should be labeled by (±,±) where the two ±’s
represent the fermion parity and reflection symmetry eigen-
values of Mτ3 .(We note that there is only one independent
reflection eigenvalue for Dn symmetry group with odd n.) Ac-
cording to this notation, the obstruction-free 0D block states
form the following group:

{OFBS}0D
p6m = Z8

2, (157)

and the group elements can be labeled by (three brackets
represent the block states at μ1, μ2, and μ3)

[(±,±,±), (±,±,±), (±,±)].

Subsequently we investigate the 1D block-state decoration.
For all 1D blocks, the total symmetry group is Z f

2 × Z2, and
the candidate 1D block state is Majorana chain and 1D FSPT
state. So all 1D block states form a group

{BS}1D
p6m,0 = Z6

2. (158)

Then we discuss the decorations of these two root phases
separately.

a. Majorana chain decoration. Consider Majorana chain
decorations on 1D blocks labeled by τ1, which leave six dan-
gling Majorana modes at each μ1 and two dangling Majorana
modes at each μ2. Near each 0D block μ1, six dangling Majo-
rana modes have the following rotational symmetry properties
(all subscripts are taken with modulo 6):

Rμ1 : γ j → γ j+1, j = 1, ..., 6. (159)

Then we consider the local fermion parity and its rotational
symmetry property,

Pf = i
6∏

j=1

γ j, Rμ1 : Pf → −Pf . (160)

Thus these six dangling Majorana modes break fermion parity
symmetry and a nondegenerate ground state is forbidden. The
corresponding Majorana chain decoration on 1D blocks τ1

is obstructed because of the violation of the no-open-edge
condition. On τ2, the Majorana chain decoration leaves six
dangling Majorana modes at each μ1 and three dangling Ma-
jorana mdoes at each μ3. It is well-known that odd number
of Majorana modes cannot be gapped out, hence Majorana
chain decoration on τ2 is obstructed. On τ3, Majorana chain
decoration leaves two dangling Majorana modes at each μ2

and three dangling Majorana modes at each μ3. Similar with
the τ2 case, Majorana chain decoration is obstructed. Note that
if we consider all 1D blocks together and decorate a Majorana
chain on each, it leaves 12 dangling Majorana modes at each
μ1, four dangling Majorana modes at each μ2 and 6 dangling

Majorana modes at each μ3. Consider Majorana modes at
each μ2, with the following rotation and reflection symmetry
properties (all subscripts are taken with modulo 4):

Rμ3 : γ ′
j → γ ′

j+2, Mτ3 : γ ′
j → γ ′

6− j . (161)

Then we consider the local fermion parity and its rotation and
reflection symmetry properties,

P′
f = −

4∏
j=1

γ ′
j,

{
Rμ3 : P′

f → P′
f

Mτ3 : P′
f → −P′

f
. (162)

Thus these Majorana modes cannot be gapped in a symmetric
way, and Majorana chain decoration on all 1D blocks is ob-
structed. As a consequence, Majorana chain decoration does
not contribute a nontrivial crystalline TSC.

b. 1D FSPT state decoration. 1D FSPT state decoration
on τ1 leaves 12 dangling Majorana modes at each μ1 and
four dangling Majorana modes at each μ2. Similar with the
p4m and cmm cases, four Majorana modes at each μ2 form
a projective representation of D2 symmetry group, and a non-
degenerate ground-state is forbidden. Thus the 1D FSPT state
decoration on τ1 is obstructed.

1D FSPT state decoration on τ2 leaves 12 dangling Ma-
jorana modes at each μ1 and six dangling Majorana modes
at each μ3. Consider the Majorana modes at each μ3, with
the following rotation and reflection symmetry properties (all
subscripts are taken with modulo 3):

Rμ3 : η j → η j+1, η′
j → η′

j+1

Mτ3 : η j → −η5− j, η′
j → η′

5− j
, j = 1, 2, 3.

(163)

Then we consider the local fermion parity with its rotation and
reflection symmetry properties,

Pτ2
f = i

3∏
j=1

η jη
′
j,

{
Rμ3 : Pτ2

f → Pτ2
f

Mτ3 : Pτ2
f → −Pτ2

f

. (164)

Hence these six Majorana modes break fermion parity sym-
metry and cannot be gapped out in a symmetric way. The
corresponding 1D FSPT state decoration is obstructed be-
cause of the violation of the no-open-edge condition.

1D FSPT state decoration on τ3 leaves four dangling Ma-
jorana modes at each μ2 and six dangling Majorana modes
at each μ3. Similar with the 1D FSPT state decoration on τ2

case, six Majorana modes at each μ3 cannot be gapped out in
a symmetric way: consider the Majorana modes as the edge
modes of decorated Majorana chains on τ3 at each μ3, with
the following rotation and reflection symmetry properties (all
subscripts are taken with modulo 3):

Rμ3 : ζ j → ζ j+1, ζ ′
j → ζ ′

j+1, (165)

Mτ3 : ζ j → −ζ5− j, ζ ′
j → ζ ′

5− j, (166)

with the local fermion parity and its rotation and reflection
symmetry properties,

Pτ3
f = i

3∏
j=1

ζ jζ
′
j,

{
Rμ3 : Pτ3

f → Pτ3
f

Mτ3 : Pτ3
f → −Pτ3

f

. (167)
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Thus 1D FSPT state decoration on τ3 is obstructed, and it
does not contribute nontrivial crystalline TSC because of the
violation of the no-open-edge condition.

Note that if we consider 1D blocks labeled by τ2 and τ3

together and decorate a 1D FSPT state on each of them, this
decoration leaves 12 dangling Majorana modes at each μ1 and
μ3, and four dangling Majorana modes at each μ2. For the
Majorana modes as the edge modes of the decorated 1D FSPT
states at each μ2, as aforementioned, they can be gapped out
in a symmetric way. For Majorana modes as the edge modes
of the decorated 1D FSPT states at each μ1/μ3, the local
fermion parity is the product of Pτ2

f and Pτ3
f , with the following

symmetry properties:

P′′
f = Pτ2

f Pτ3
f ,

{
Rμ3 : P′′

f → P′′
f

Mτ3 : P′′
f → P′′

f

. (168)

Hence any symmetry operations commute with the fermion
parity. Furthermore, there is no nontrivial projective repre-
sentation of the D3 group acting internally (identical with
the internal symmetry group Z3 � Z2), it can be obtained
by calculating the following 2-cohomology of the symmetry
group:

H2[Z3 � Z2,U (1)] = Z1. (169)

Therefore, these 12 dangling Majorana modes form a linear
representation of the symmetry group, and can be gapped out
by some proper interactions in symmetry way. Nevertheless,
four Majorana modes at each 0D block labeled by μ2 form
a projective representation of the D2 symmetry group that
forbids the nondegenerate ground state, so the 1D FSPT state
decoration on τ2 and τ3 is still obstructed because of the
violation of no-open-edge condition at each 0D block μ2.

There is one exception: If we decorate a 1D FSPT phase
on each 1D block (including τ j, j = 1, 2, 3), the dangling
Majorana modes at each 0D block can be gapped out in a
symmetric way. In the aforementioned discussions we have
elucidated that at each μ3, there are 12 dangling Majorana
modes via 1D FSPT state decorations that can be gapped in
a symmetric way; and at each μ2, there are eight dangling
Majorana modes and similar with the p4m and cmm case, they
can be gapped out in a symmetric way because they form a
linear representation of the corresponding symmetry group.
Near each 0D block labeled by μ1, this decoration leaves 24
dangling Majorana modes as the edge modes of decorated
1D FSPT phases. Consider half of them from 1D FSPT state
decorations on τ1 with the following rotation and reflection
symmetry properties (all subscripts are taken with modulo 6):

Rμ1 : γ j → γ j+1, γ ′
j → γ ′

j+1

Mτ1 : γ j → γ8− j, γ ′
j → γ ′

8− j (170)

Then we consider the local fermion parity and its rotation and
reflection symmetry properties:

Pτ1
f = −

6∏
j=1

γ jγ
′
j , Rμ1 , Mτ1 : Pτ1

f → Pτ1
f . (171)

Hence arbitrary symmetry actions commute with the fermion
parity of these 12 Majorana modes, and they form either a
linear representation or a projective representation of the D6

symmetry. Similar arguments can be held for other 12 Majo-
rana modes. We should note that there is only one nontrivial
projective representation of the D6 symmetry group acting
internally (i.e., Z6 � Z2 on-site symmetry) that can easily to
be verified by the following 2-cohomology:

H2[Z6 � Z2,U (1)] = Z2. (172)

So these 24 Majorana modes together can always form a
linear representation of the D6 symmetry at each 0D block
labeled by μ1, and they can be gapped out in a symmetric
way. Thus the 1D FSPT state decorations on all 1D blocks
simultaneously is obstruction-free, and all obstruction-free 1D
block states form the following group:

{OFBS}1D
p6m,0 = Z2, (173)

and the group elements can be labeled by m1 = m2 = m3.
Here mj = 0, 1 ( j = 1, 2, 3) represents the number of dec-
orated 1D FSPT states on τ j , respectively. According to
aforementioned discussions, a necessary condition of an
obstruction-free block state is m1 = m2 = m3.

With all obstruction-free block states, subsequently we
discuss all possible trivializations. First we consider the 2D
bubble equivalence: Similar with the p4m case, Majorana
bubbles can be deformed to double Majorana chains at each
nearby 1D block, and this is exactly the definition of the
nontrivial 1D FSPT phase protected by on-site Z2 symmetry
(by reflection symmetry acting internally). As a consequence,
1D FSPT state decorations on all 1D blocks can be deformed
to a trivial state via 2D Majorana bubble equivalences. Fur-
thermore, repeatedly similar with the p4m case, Majorana
bubble constructions have no effect on 0D blocks.

Subsequently we consider the 1D bubble equivalences. For
example, on each 1D block labeled by τ2, we decorate a pair of
complex fermions [cf. Eq. (22) and Fig. 11(a)]: Near each 0D
block labeled by μ1, there are six complex fermions, which
form an atomic insulator with even fermion parity,

|ψ〉μ1
p6m =

6∏
j=1

c†
j |0〉, (174)

hence |ψ〉μ1
p6m cannot change the fermion parity of the 0D

block labeled by μ1. Near each 0D block labeled by μ3,
there are three complex fermions, which form another atomic
insulator with odd fermion parity

|ψ〉μ3
p6m = c′†

1 c′†
2 c′†

3 |0〉 (175)

and it can change the fermion parity at each 0D block labeled
by μ3. Then we consider the symmetry properties of these
atomic insulators: the eigenvalues of |ψ〉μ1

p6m at μ1 under two
independent reflection operations are

Mτ1 |ψ〉μ1
p6m = c†

6c†
5c†

4c†
3c†

2c†
1 = −|ψ〉μ1

p6m,

Mτ2 |ψ〉μ1
p6m = c†

1c†
6c†

5c†
4c†

3c†
2 = |ψ〉μ1

p6m,
(176)

i.e., 1D bubble construction on τ2 can change the eigenvalue
of Mτ1 and leave the eigenvalue of Mτ2 invariant. The eigen-
value of |ψ〉μ3

p6m at μ3 under reflection Mτ2 is

Mτ2 |ψ〉μ3
p6m = c′†

1 c′†
3 c′†

2 |0〉 = −|ψ〉μ3
p6m, (177)
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FIG. 11. 1D bubble construction on τ2. (a) 1D type-I (fermionic) bubble construction, where complex fermions are indicated by solid black
dots. Atomic insulators (174) and (175) are created by this procedure. (b) 1D type-II (bosonic) bubble construction, where bosonic modes are
indicated by solid orange dots. Bosonic states (178) and (179) are created by this procedure.

i.e., 1D bubble construction on τ2 can change the eigenvalue
of Mτ2 . Similar 1D bubble constructions can be held on other
1D blocks, and we summarize the effects of 1D bubble con-
structions as following:

(1) 1D bubble construction on τ1: simultaneously changes
the eigenvalues of Mτ2 at μ1 and Mτ3 at μ2;

(2) 1D bubble construction on τ2: simultaneously changes
the eigenvalues of Mτ1 at μ1, Mτ2 at μ3 and the fermion parity
of μ3;

(3) 1D bubble construction on τ3: simultaneously changes
the eigenvalues of Mτ1 at μ2, Mτ2 at μ3 and the fermion parity
of μ3.

There is another type of 1D bubble construction on τ2 and
τ3 (we denote the above “fermionic” 1D bubble construction
by “type-I” and this “bosonic” 1D bubble construction by
“type-II”): we decorate an bosonic 1D bubble [cf. Eq. (22)
and Fig. 11(b)] on each τ2 (here both yellow and red dots
represent the 0D bosonic mode with reflection eigenvalue
−1), near μ1, there are six 0D bosonic modes, each of them
carries reflection eigenvalue −1 (six bosonic modes changes
nothing),

|φ〉μ1
p6m = b†

1b†
2b†

3b†
4b†

5b†
6|0〉. (178)

Near μ3, there are three 0D bosonic modes, each of them
carries reflection eigenvalues −1,

|φ〉μ3
p6m = b′†

1 b′†
2 b′†

3 |0〉. (179)

Hence |φ〉μ3
p6m changes the reflection eigenvalue by −1 at μ3.

Similar for 1D bubble constructions on τ3.
With all possible bubble constructions, we are ready to

investigate the trivial states. Start from the original 0D
trivial block state (nothing is decorated on arbitrary 0D
blocks):

[(+,+,+), (+,+,+), (+,+)],

if we take type-I 1D bubble constructions on τ j with l j times
( j = 1, 2, 3), and type-II 1D bubble constructions on τ2 and
τ3 with l ′

2 and l ′
3 times, above trivial state will be deformed to

a new block state labeled by

[(+, (−1)l2 , (−1)l1 ), (+, (−1)l3 , (−1)l1 ),

× ((−1)l2+l3 , (−1)l2+l3+l ′2+l ′3 )]. (180)

According to the definition of bubble equivalence, all these
states should be trivial. Alternatively, all 0D block states can
be viewed as vectors of an 8-dimensional Z2-valued vector
space V , and all trivial 0D block states with the form as
Eq. (180) can be viewed as vectors of the subspace of V . The
dimension of this subspace is four because there are only four
independent indices in l1, l2, l3, and l ′

2 + l ′
3. Together with the

2D bubble equivalence, all trivial states form the group

{TBS}p6m,0 = {TBS}1D
p6m,0 × {TBS}0D

p6m,0

= Z2 × Z4
2 = Z5

2, (181)

here {TBS}1D
p6m,0 represents the group of trivial states with

nonvacuum 1D blocks (i.e., 1D FSPT phase decorations on
all 1D blocks simultaneously), and {TBS}0D

p6m,0 represents the
group of trivial states with nonvacuum 0D blocks.

Therefore, all independent nontrivial block states are la-
beled by the group elements of the following quotient groups:

E1D
p6m,0 = {OFBS}1D

p6m,0

/{TBS}1D
p6m,0 = Z1,

E0D
p6m,0 = {OFBS}0D

p6m,0

/{TBS}0D
p6m,0 = Z4

2,
(182)

here all Z2’s are from the nontrivial 0D block states. It is
obvious that there is no nontrivial group extension because
of the absence of nontrivial 1D block state. Therefore, the
ultimate classification of 2D crystalline FSPT phases with
p6m symmetry for spinless fermions is

Gp6m,0 = E1D
p6m,0 × E0D

p6m,0 = Z4
2. (183)

2. Spin-1/2 fermions

Consider the 0D block-state decoration, and similar with
the p4m case, the classification data can also be character-
ized by different 1D irreducible representations of alternative
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symmetry groups,

H1
[
Z f

2 ×ω2 (Z6 � Z2),U (1)
] = Z2

2,

H1
[
Z f

2 ×ω2 (Z2 � Z2),U (1)
] = Z2

2,

H1
[
Z f

2 ×ω2 (Z3 � Z2),U (1)
] = Z4. (184)

For D6 and D2 centers, the physical meanings of two Z2’s in
the classification data are rotation and reflection eigenvalues,
respectively. Furthermore, the group structure of the classi-
fication of 0D FSPT phases protected by Z3 � Z2 on-site
symmetry for systems with spin-1/2 fermions is Z4. Equiv-
alently, we can label different 0D block states by the group
elements of the fourfold cyclic group,

Z4 = {1, i,−1,−i}. (185)

So the 0D block states at μ1 and μ2 can be labeled by
(±,±), here these two ±’s represent the twofold rotation and
reflection symmetry eigenvalues (alternatively, they can also
represent the eigenvalues of two independent reflection oper-
ations because even-fold dihedral group can also be generated
by two independent reflections); the 0D block states at μ3

can be labeled by ν ∈ {1, i,−1,−i} as the eigenvalues of Z f
4

symmetry. According to this notation, all obstruction-free 0D
block states form the following group:

{OFBS}0D
p6m,1/2 = Z4

2 × Z4, (186)

and the group elements can be labeled by (three brackets
represent the block states at μ1, μ2, and μ3)

[(±,±), (±,±), ν].

Then we investigate the possible trivializations. Consider
the 1D bubble equivalence on 1D blocks labeled by τ1: on
each τ1, the total on-site symmetry is Z f

4 : nontrivial Z f
2 exten-

sion of the on-site symmetry Z2. Next we decorate an Eq. (22)
onto each of them, here the yellow/red dots represent the 0D
FSPT modes protected by Z f

4 symmetry, which are labeled by
i & − i ∈ Z4, cf. Eq. (185), and they can be trivialized if they
shrink to a point. Near each 0D block labeled by μ3, there are
three 0D FSPT modes labeled by i ∈ Z4 and they can change
the label of 0D block state decorated at each 0D block μ3

by −i ∈ Z4. Therefore, the 0D block state on each μ3 can be
trivialized by this bubble construction. Near 0D block μ1, this
1D bubble construction changes nothing because there is no
Z f

4 on-site symmetry on μ1. Similar 1D bubble construction
can be held on τ3.

With all possible bubble constructions, we are ready to
investigate the trivial states. Start from the original trivial state
(nothing decorated on arbitrary 0D block),

[(+,+), (+,+), 1],

if we take above 1D bubble constructions on τ2 and τ3 with l2
and l3 times, above trivial state will be deformed to a new 0D
block state labeled by

[(+,+), (+,+), (−i)3(l2+l3 )]. (187)

According to the definition of bubble equivalence, all these
states should be trivial and all trivial states form the group

{TBS}0D
p6m,1/2 = Z4. (188)

Therefore, all independent nontrivial 0D block states are la-
beled by different group elements of the following quotient
group:

E0D
p6m,1/2 = {OFBS}0D

p6m,1/2

/{TBS}0D
p6m,1/2 = Z4

2. (189)

Subsequently we consider the 1D block-state decoration.
For arbitrary 1D blocks, the total on-site symmetry on them
is Z f

4 : nontrivial Z f
2 extension of Z2 on-site symmetry, hence

there is no nontrivial 1D block state due to the trivial clas-
sification of the corresponding 1D FSPT phases, and the
classification attributed to 1D block-state decorations is triv-
ial,

E1D
p6m,1/2 = {OFBS}1D

p6m,1/2 = Z1. (190)

Therefore, it is obvious that there is no stacking between
1D and 0D block states, and the ultimate classification with
accurate group structure is

Gp6m,1/2 = Z4
2. (191)

IV. CONSTRUCTION AND CLASSIFICATION
OF CRYSTALLINE TI

So far we have discussed the construction and classification
of crystalline TSC in 2D interacting fermionic systems. In
this section, we will discuss the crystalline TI with additional
U f (1) symmetry by generalizing the real-space construction
highlighted in Sec. II. In particular, all block-states deco-
rations will admit an additional U f (1) internal symmetry.
Below we demonstrate that 1D block-state decoration has no
contribution and all nontrivial crystalline TI in 2D interact-
ing fermionic systems can be constructed by 0D block-state
decoration.

For 1D blocks, there are two different cases: symmetry
group with/without the reflection symmetry operation. Since
bosonic and fermionic systems can be mapped to each other
by Jordan-Wigner transformation, the classification data of 1D
SPT phases for bosonic and fermionic systems are identical:
by calculating the different projective representations of the
symmetry group. (However, the group structure of the classifi-
cation data could be different in general as stacking operation
has different physical meaning for boson and fermion sys-
tems.)

For symmetry groups without reflection symmetry opera-
tion, the on-site symmetry group of an arbitrary 1D blocks
should be U f (1) charge conservation only, and the corre-
sponding classification for 2D systems with spinless/spin-1/2
fermions can be calculated by the following group cohomol-
ogy:

H2[U f (1),U (1)] = Z1. (192)

Thus, there is no nontrivial 1D block state for this case.
For the symmetry group with reflection symmetry opera-

tion, the on-site symmetry group of some 1D blocks should
be U f (1) charge conservation and Z2 symmetry via reflection
symmetry acting internally. The corresponding classification
for 2D systems with spinless/spin-1/2 fermions can be calcu-
lated by the following group cohomology:

H2[U f (1) × Z2,U (1)] = Z1. (193)
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Again, there is also no nontrivial 1D block state for this
case.

Below we will again study five representative cases belong-
ing to different crystallographic systems:

(1) square lattice: p4m;
(2) parallelogrammatic lattice: p2.
(3) rhombic lattice: cmm;
(4) rectangle lattice: pgg;
(5) hexagonal lattice: p6m;

and all other cases are assigned in the Supplemental Material
[88]. The classification results are summarized in Table III.

A. Square lattice: p4m

According to the cell decomposition (see Fig. 3), for 0D
blocks labeled by μ j ( j = 1, 2, 3), different 0D block states
are characterized by different irreducible representations of
the corresponding on-site symmetry group (n = 2, 4),

H1[U f (1) × (Zn � Z2),U (1)] = Z × Z2
2. (194)

For systems with spinless fermions, the 0D block states at
μ j ( j = 1, 2, 3) can be labeled by (nj,±,±), where n j ∈ Z
represents the U f (1) charge carried by complex fermions
decorated on μ j and two ±’s represent the eigenvalues of two
independent reflection generators. According to this notation,
the obstruction-free 0D block states form the following group:

{OFBS}U (1)
p4m,0 = Z3 × Z6

2, (195)

and different group elements can be labeled by (three brackets
represent the block states at μ1, μ2, and μ3)

[(n1,±,±), (n2,±,±), (n3,±,±)]. (196)

Nevertheless, we should further consider possible trivializa-
tions. For systems with spinless fermions, we first consider
the 1D bubble equivalence on 1D blocks labeled by τ1: we
decorate a 1D “particle-hole” bubble on each τ1 that can be
trivialized if we shrink them to a point. Near each 0D block
labeled by μ1, there are four particles forming the following
atomic insulator,

|φ〉μ1
p4m = p†

1 p†
2 p†

3 p†
4|0〉, (197)

it has eigenvalues under independent reflections,

Mτ1 |φ〉μ1
p4m = p†

1 p†
4 p†

3 p†
2 = −|φ〉μ1

p4m, (198)

Mτ3 |φ〉μ1
p4m = p†

3 p†
4 p†

1 p†
2 = |φ〉μ1

p4m, (199)

i.e., eigenvalue −1 of Mτ1 at each 0D block μ1 can be trivi-
alized by the atomic insulator |φ〉μ1

p4m. Near μ2, there are two
holes forming another atomic insulator,

|φ〉μ2
p4m = h†

1h†
2|0〉, (200)

it has eigenvalues under independent reflections,

Mτ1 |φ〉μ2
p4m = h†

1h†
2|0〉 = |φ〉μ2

p4m, (201)

Mτ2 |φ〉μ2
p4m = h†

2h†
1|0〉 = −|φ〉μ2

p4m, (202)

i.e., eigenvalues −1 of the reflection Mτ2 at each 0D block
μ2 can be trivialized by atomic insulator |φ〉μ2

p4m. Therefore,
aforementioned 1D bubble construction leads to the depen-
dence of reflection eigenvalues at μ1 and μ2 (can be changed

simultaneously). Similar 1D bubble construction can be held
on τ2 and τ3 as well.

Now we move to the U f (1) charge sector. As shown in
Fig. 3, we note that within a specific unit cell, there is one 0D
block labeled by μ1 and μ3, two 0D blocks labeled by μ2.
Consider the 1D bubble construction on τ1: it adds four U f (1)
charges at each 0D block μ1 and removes two U f (1) charges
at each 0D block μ2, hence the U f (1) charge at μ1 and μ2

are not independent. Similar arguments are also applied to 1D
blocks labeled by τ2 and τ3.

With the help of above discussions, we consider the 1D
bubble equivalence. Start from the trivial state,

[(0,+,+), (0,+,+), (0,+,+)]. (203)

Taking aforementioned 1D bubble constructions on τ j with
l j ∈ Z times, it will lead to a new 0D block state labeled by

[(4l1 + 4l3, (−1)l1 , (−1)l3 ), (−2l1 + 2l2, (−1)l2 , (−1)l1 ),

× (−4l2 − 4l3, (−1)l2 , (−1)l3 )], (204)

which should be trivial. Alternatively, all 0D block states can
be viewed as vectors of a 9-dimensional vector space V , where
the U f (1) charge components are Z-valued and all other
components are Z2-valued attributed to rotation and reflection
eigenvalues. Then all trivial 0D block states with the form as
Eq. (204) can be viewed as a vector subspace V ′ of V . It is
easy to see that there are only three independent quantities in
Eq. (204): l1, l2 and l3, so the dimension of the vector subspace
V ′ should be three. For the U f (1) charge sector, we have the
following relationship:

−(4l1 + 4l3) − 2(−2l1 + 2l2) = −4l2 − 4l3, (205)

i.e., there are only two independent quantities, which serves
a 2Z × 4Z trivialization. The remaining one degree of free-
dom of the vector subspace V ′ should be attributed to the
eigenvalues of point group symmetry action with (−1)l1 =
(−1)l2 = (−1)(−l3 ), which serve a Z2 trivialization. Therefore,
all trivial states with the form as shown in Eq. (204) compose
the following group:

{TBS}U (1)
p4m,0 = 2Z × 4Z × Z2, (206)

and different independent nontrivial 0D block states can be
labeled by different group elements of the following quotient
group:

GU (1)
p4m,0 = {OFBS}U (1)

p4m,0

/{TBS}U (1)
p4m,0

= Z × Z8 × Z4 × Z3
2. (207)

For systems with spin-1/2 fermions, the classification data
of the corresponding 0D block states can be characterized by
different irreducible representations of the corresponding on-
site symmetry group (n = 2, 4),

H1[U f (1) ×ω2 (Zn � Z2),U (1)] = 2Z × Z2
2. (208)

The precise meaning of ω2 are refer to Sec. I B). To calculate
this classification data, we should firstly calculate the follow-
ing two cohomologies [88]:

n0 ∈ H0(Zn � Z2,Z) = Z,

ν1 ∈ H1[Zn � Z2,U (1)] = Z2
2. (209)
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Here Z represents the U f (1) charge carried by complex
fermions, and two Z2’s represent the rotation and reflection
eigenvalues. We demonstrate that the odd number of the
U f (1) charge at each 0D block is not allowed: a specific n0 is
obstructed if and only if (−1)ω2�n0 ∈ H2[Zn � Z2,U (1)] is
a nontrivial 2-cocycle with U (1)-coefficient. From Refs. [19]
and [87] we know that for cases without U f (1) charge conser-
vation, nontrivial 0-cocycle n0 = 1 ∈ H0(Zn � Z2,Z2) leads
to nontrivial 2-cocycle (−1)ω2�n0 ∈ H2[Zn � Z2,U (1)]. So
for U f (1) charge conserved cases, odd n0 ∈ H0(Zn � Z2,Z)
lead to nontrivial 2-cocycle (−1)ω2�n0 ∈ H2[Zn � Z2,U (1)].
As a consequence, for systems with spin-1/2 fermions, we can
only decorate even number of complex fermions on each 0D
block and all obstruction-free block states form a group,

{OFBS}U (1)
p4m,1/2 = (2Z)3 × Z6

2. (210)

Then we consider the possible trivializations via 1D bubble
constructions. Similar to the TSC case, since the reflection
properties of |φ〉μ1

p4m and |φ〉μ2
p4m at μ1 and μ2 are changed

by an additional −1, there is no trivialization. The discussion
of U f (1) charge sector is identical to the spinless case: start
from the original trivial state (203), take above 1D bubble
constructions on τ j with l j ∈ Z times, it leads to a new 0D
block state labeled by

[(4l1 + 4l3, 0, 0), (−2l1 + 2l2, 0, 0), (−4l2 − 4l3, 0, 0)].

(211)

Again, all states with the form (211) are trivial, forming the
following group:

{TBS}U (1)
p4m,1/2 = 2Z × 4Z. (212)

Different independent nontrivial 0D block states can be la-
beled by different group elements of the following quotient
group:

GU (1)
p4m,1/2 = {OFBS}U (1)

p4m,1/2

/{TBS}U (1)
p4m,1/2

= 2Z × Z7
2. (213)

Here 2Z means that we can only decorate even number of
complex fermions on each 0D block.

B. Parallelogrammatic lattice: p2

Similar to the p4m case, different 0D block states are
characterized by different irreducible representations of the
symmetry group,

H1[U f (1) × Z2,U (1)] = Z × Z2. (214)

Here Z represents the U f (1) charge and Z2 represents the
rotation eigenvalues. So 0D block states at μ j ( j = 1, 2, 3, 4)
can be labeled by (nj,±), here n j ∈ Z represents the U f (1)
charge carried by complex fermions on μ j and ± represents
the eigenvalue of twofold rotation operation. According to
this notation, all obstruction-free 0D block states form the
following group:

{OFBS}U (1)
p2,0 = Z4 × Z4

2. (215)

We should further consider possible trivializations: for
systems with spinless fermions, consider the 1D bubble
equivalence on 1D blocks labeled by τ1: we decorate a 1D

“particle-hole” bubble on each τ1. Near each 0D block labeled
by μ1, there are two particles forming the following atomic
insulator:

|ξ 〉μ1
p2 = p†

1 p†
2|0〉, (216)

with following rotation property:

Rμ1 |ξ 〉μ1
p2 = p†

2 p†
1|0〉 = −|ξ 〉μ1

p2, (217)

i.e., rotation eigenvalue −1 at each 0D block μ1 can be trivi-
alized by atomic insulator |ξ 〉μ1

p2 . Near μ2, there are two holes
forming another atomic insulator,

|ξ 〉μ2
p2 = h†

1h†
2|0〉 (218)

with rotation property

Rμ2 |ξ 〉μ2
p2 = h†

2h†
1|0〉 = −|ξ 〉μ2

p2, (219)

i.e., rotation eigenvalue −1 at each 0D block μ2 can be triv-
ialized by atomic insulator |ξ 〉μ2

p2 . Therefore, aforementioned
1D bubble construction leads to the dependence of rotation
eigenvalues at μ1 and μ2.

Now we move to the U f (1) charge sector. Repeatedly
consider the aforementioned 1D bubble construction on τ1: it
adds two U f (1) charges at each 0D block μ1 and removes two
U f (1) charges at each 0D block μ2, hence the U f (1) charge
at μ1 and μ2 are not independent. We summarize effects of all
possible 1D bubble constructions:

(1) 1D bubble construction on τ1: Add two U f (1) charges
on μ1, eliminate two U f (1) charges on μ2, and simultane-
ously change the rotation eigenvalues of μ1 and μ2;

(2) 1D bubble construction on τ2: Add two U f (1) charges
on μ1, eliminate two U f (1) charges on μ3, and simultane-
ously change the rotation eigenvalues of μ1 and μ3;

(3) 1D bubble construction on τ3: Add two U f (1) charges
on μ2, eliminate two U f (1) charges on μ4, and simultane-
ously change the rotation eigenvalues of μ2 and μ4;

With the help of above discussions, we consider the 1D
bubble equivalence. Start from the original trivial state,

[(0,+), (0,+), (0,+), (0,+)]. (220)

Taking aforementioned 1D bubble constructions on τ j with
l j ∈ Z times ( j = 1, 2, 3), this trivial state will be deformed
to a new 0D block state labeled by

[(2l1 + 2l2, (−1)l1+l2 ), (−2l1 + 2l3, (−1)l1+l3 ),

× (−2l2, (−1)l2 ), (−2l3, (−1)l3 )]. (221)

According to the definition of bubble equivalence, this state
should be trivial. Alternatively, all 0D block states can be
viewed as vectors of an 8-dimensional vector space V , where
the complex fermion components are Z valued, and all other
components are Z2 valued. Then all trivial 0D block states
with the form as Eq. (221) can be viewed as a vector space V ′
of V . It is easy to see that there are only three independent
quantities in Eq. (221): l1, l2, and l3. So the dimension of
the vector subspace V ′ should be three. For the U f (1) charge
sector, there are 3 independent quantities in the following four
variables:

2l1 + 2l2,−2l1 + 2l3,−2l2,−2l3.
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Thus all 1D bubble constructions serve a (2Z)3 trivialization
in U f (1) charge sector, and all trivial states form the following
group:

{TBS}U (1)
p2,0 = (2Z)3, (222)

and different independent nontrivial 0D block states can be
labeled by different group elements of the following quotient
group:

GU (1)
p2,0 = {OFBS}U (1)

p2,0

/{TBS}U (1)
p2,0

= Z4 × Z4
2/(2Z)3 = Z × Z7

2. (223)

For systems with spin-1/2 fermions, 0D obstruction-free
block states are identical with spinless case,

{OFBS}U (1)
p2,1/2 = Z4 × Z4

2, (224)

then repeatedly consider the aforementioned 1D bubble con-
structions: rotation properties of |ξ 〉μ1

p2 and |ξ 〉μ2
p2 at μ1 and

μ2 are changed by an additional −1 and it leads to no triv-
ialization. Furthermore, it is easy to verify that the complex
fermion decorations for spinless and spin-1/2 fermions are
identical. So again we start from the original trivial state (220),
take above 1D bubble constructions on τ j with l j ∈ Z times
( j = 1, 2, 3), and it will lead to a new 0D block state labeled
by

[(2l1 + 2l2,+), (−2l1 + 2l3,+), (−2l2,+), (−2l3,+)].
(225)

Similar with the spinless case, all states with this form are
trivial, forming the following group:

{TBS}U (1)
p2,1/2 = (2Z)3, (226)

and different independent nontrivial 0D block states can be
labeled by different group elements of the following quotient
group:

GU (1)
p2,1/2 = {OFBS}U (1)

p2,1/2

/{TBS}U (1)
p2,1/2

= Z4 × Z4
2/(2Z)3 = Z × Z3

4 × Z2. (227)

We notice that the classifications of 2D crystalline TI
protected by p2 symmetry for both spinless and spin-1/2
fermions are identical. Now we give a comprehension of
this issue: for both spinless and spin-1/2 fermions (R2 = 1
and R2 = −1, respectively), the group structures of the total
symmetry groups are identical: direct product of U f (1) charge
conservation and twofold rotation symmetry: U f (1) × C2. We
explicitly formulate the U f (1) charge conservation and C2

rotation symmetry as

C2 = {E , R}, U f (1) = {eiθ |θ ∈ [0, 2π )}. (228)

For systems with spinless fermions, R2 = 1. Nevertheless, we
can twist the group elements of C2 by a U f (1) phase factor as

R′ = Reiπ/2, eiπ/2 ∈ U f (1) (229)

then we reformulate the total symmetry group with the twisted
operators

C2 = {E , R′}, U f (1) = {eiθ |θ ∈ [0, 2π )}. (230)

But R′2 = −1 for this case. Therefore, the symmetry groups
for both spinless and spin-1/2 fermions are identical, and

can be deformed to each other by Eq. (229). We stress that
such a statement is true for all wallpaper group with a single
reflection axis.

C. Rhombic lattice: cmm

Repeatedly consider the cell decomposition of cmm as
illustrated in Fig. 8. For 0D blocks labeled by μ1, different
0D block states are characterized by different irreducible rep-
resentations of the symmetry group as

H1[U f (1) × Z2,U (1)] = Z × Z2. (231)

Here Z represents the U f (1) charge and Z2 represents the
rotation eigenvalue −1. For 0D blocks labeled by μ2 and
μ3, different 0D block states are characterized by different
irreducible representations of the symmetry group as

H1[U f (1) × (Z2 � Z2),U (1)] = Z × Z2
2. (232)

Here Z represents the U f (1) charge and two Z2’s represent
the two independent reflection eigenvalue −1. Thus 0D block
states at μ1 can be labeled by (n1,±), here n1 ∈ Z represents
the U f (1) charge at each μ1 and ± represents the eigenvalues
of twofold rotation operation Rμ1 ; and 0D block states at
μ2/μ3 can be labeled by (n2/n3,±,±), here n2/n3 ∈ Z repre-
sents the U f (1) charge at each μ2/μ3, and two ±’s represent
the eigenvalues of two independent reflection generators Mτ2

and Mτ3 . According to this notation, all obstruction-free 0D
block states form the following group:

{OFBS}U (1)
cmm,0 = Z3 × Z5

2. (233)

We should further consider possible trivializations: for
systems with spinless fermions, consider the 1D bubble
equivalence on 1D blocks labeled by τ1: we decorate a 1D
“particle-hole” bubble [cf. Eq. (22), here yellow and red dots
represent particle and hole, respectively] on each τ1, and they
can be trivialized if we shrink them to a point. Near each 0D
block labeled by μ1, there are two particles forming atomic
insulator,

|ξ 〉μ1
cmm = p†

1 p†
2|0〉. (234)

Near μ2, there are four holes forming another atomic insula-
tor,

|ξ 〉μ2
cmm = h†

1h†
2h†

3h†
4|0〉. (235)

Similar with the crystalline TSC, rotation eigenvalue at each
μ1 can be changed by |ξ 〉μ1

cmm. Then we consider the 1D bub-
ble equivalence on 1D blocks labeled by τ2: we decorate an
identical 1D “particle-hole” bubble as aforementioned on each
τ2. Near each 0D block labeled by μ2, there are two particles
forming the following atomic insulator:

|η〉μ2
cmm = p′†

1 p′†
2 |0〉. (236)

Near μ3, there are two holes forming another atomic insulator,

|η〉μ3
cmm = h′†

1 h′†
2 |0〉. (237)

Similar with the crystalline TSC, eigenvalue of Mτ3 at each
μ2/μ3 can be changed by |η〉μ2

cmm/|η〉μ3
cmm. The bubble con-

struction on τ3 can be understood in a similar way.
Subsequently we consider the U f (1) charge sector. First

of all, as shown in Fig. 8, we should identify that within a
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specific unit cell, there are two 0D blocks labeled by μ1 and
one 0D block labeled by μ2/μ3. Repeatedly consider above
1D bubble construction on τ1: it adds two complex fermions
on each 0D block μ1 and removes four complex fermions at
each 0D block μ2 (by adding four holes), hence the numbers
of complex fermions at μ1 and μ2 are not independent. Then
we consider aforementioned 1D bubble equivalence on 1D
blocks τ2/τ3: it adds two complex fermions at each 0D block
μ2 and adding two holes at each 0D block μ3, hence the U f (1)
charge at μ2 and μ3 are not independent.

With the help of above discussions, we consider the 0D
block-state decorations. Start from the original trivial state
(nothing is decorated on all blocks),

[(0,+), (0,+,+), (0,+,+)]. (238)

Taking aforementioned 1D bubble construction on τ j with
l j ∈ Z times ( j = 1, 2, 3), it will lead to a new 0D block state
labeled by

[(2l1, (−1)l1 ), (−2l1 + 2l2 + 2l3, (−1)l3 , (−1)l2 )

× (−2l2 − 2l3, (−1)l3 , (−1)l2 )]. (239)

According to the definition of bubble equivalence, all states
with this form should be trivial. Alternatively, all 0D block
states can be viewed as vectors of an 8-dimensional vector
space V , where the complex fermion components are Z valued
and all other components are Z2 valued. Then all trivial 0D
block states with the form as Eq. (239) can be viewed as a
vector subspace V ′ of V . It is easy to see that there are only
three independent quantities in Eq. (239): l1, l2, and l3. So the
dimensionality of the vector subspace V ′ should be three. For
the U f (1) charge sector, we have the following relationship:

−2l1 − (−2l1 + 2l2 + 2l3) = −2l2 − 2l3, (240)

i.e., there are only two independent quantities, which serve a
(2Z)2 trivialization. The remaining one degree of freedom of
the vector subspace V ′ should be attributed to the eigenval-
ues of point group symmetry action with (−1)l2 = (−1)(−l3 ),
which serves a Z2 trivialization. Therefore, all trivial states
(239) form the following group:

{TBS}U (1)
cmm,0 = (2Z)2 × Z2, (241)

and different independent nontrivial 0D block states can be
labeled by different group elements of the following quotient
group:

GU (1)
cmm,0 = {OFBS}U (1)

cmm,0

/{TBS}U (1)
cmm,0

= Z3 × Z5
2/(2Z)2 × Z2 = Z × Z2

4 × Z2
2. (242)

For systems with spin-1/2 fermions, like the cases with-
out U f (1) charge conservation, the classification data of the
0D block states of 0D blocks labeled by μ2 and μ3 can be
characterized by different irreducible representations of the
corresponding on-site symmetry group,

H1[U f (1) ×ω2 (Z2 � Z2),U (1)] = 2Z × Z2
2. (243)

Here 2Z represents the U f (1) charge carried by complex
fermion, and two Z2’s represent the two independent reflec-
tion eigenvalues [similar with the p4m case, we can only
decorate even number of U f (1) charge on each 0D block].

and all obstruction-free 0D block states form the following
group:

{OFBS}U (1)
cmm,1/2 = Z × (2Z)2 × Z5

2. (244)

Then we discuss possible trivializations. Repeatedly consider
aforementioned 1D bubble constructions, and now the rotation
properties of |ξ 〉μ1

cmm, |ξ 〉μ2
cmm, |η〉μ2

cmm and |η〉μ3
cmm at μ j, j =

1, 2, 3 are changed by an additional −1; the reflection prop-
erties of |η〉μ2

cmm and |η〉μ3
cmm at μ2 and μ3 are also changed by

an additional −1. All of them lead to no trivialization. Fur-
thermore, it is easy to see that all arguments about the U f (1)
charge sector are identical. Again we start from the original
trivial state (238), and take above 1D bubble constructions on
τ j with l j times ( j = 1, 2, 3), it will lead to a new 0D block
state labeled by

[(2l1,+), (−2l1 + 2l2 + 2l3,+,+)(−2l2 − 2l3,+,+)].
(245)

Similar with the spinless case, all states with this form are
trivial, forming the following group:

{TBS}U (1)
cmm,1/2 = (2Z)2, (246)

and all different independent nontrivial 0D block states can be
labeled by different group elements of the following quotient
group:

GU (1)
cmm,1/2 = {OFBS}U (1)

cmm,1/2/{TBS}U (1)
cmm,1/2

= Z × (2Z)2 × Z5
2/(2Z)2 = 2Z × Z4 × Z4

2.

(247)

We should notice that the group structure of the classifica-
tion should be 2Z × Z6

2 rather than Z × Z5
2: two independent

quantities are l1 and l2 + l3, hence the classification con-
tributed from complex fermion decorations on μ1 should be
Z/2Z = Z2. Equivalently, 0D block state (1,+) at μ1 is
nontrivial.

D. Rectangle lattice: pgg

Repeatedly consider the cell decomposition of pgg as il-
lustrated in Fig. 9. For an arbitrary 0D block, different 0D
block states are characterized by different irreducible repre-
sentations of symmetry group as

H1[U f (1) × Z2,U (1)] = Z × Z2. (248)

Here Z represents the U f (1) charge and Z2 represents the
eigenvalues of twofold rotational symmetry operation. So the
0D block state decorated on μ j ( j = 1, 2) can be labeled by
(n j,±), where n j ∈ Z represents the U f (1) charge carried by
complex fermions on μ j and ± represents the eigenvalues of
twofold rotational symmetry on μ j . According to this nota-
tion, all obstruction-free 0D block states form the following
group:

{OFBS}U (1)
pgg,0 = Z2 × Z2

2. (249)

We should further consider the possible trivialization. For
systems with spinless fermions, consider the 1D bubble equiv-
alence on τ2: we decorate a 1D “particle-hole” bubble [cf.
Eq. (22)] on each τ2 that can be trivialized if we shrink them
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to a point. Near each 0D block labeled by μ1, there are two
particles that form an atomic insulator,

|φ〉μ1
pgg = p†

1 p†
2|0〉, (250)

with rotation property as

Rμ1 |φ〉μ1
pgg = p†

2 p†
1|0〉 = −|φ〉μ1

pgg, (251)

i.e., rotation eigenvalue −1 can be trivialized by the atomic
insulator |φ〉μ1

pgg at each 0D block labeled by μ1. Near each
0D block labeled by μ2, there are two holes that form another
atomic insulator,

|φ〉μ2
pgg = h†

1h†
2|0〉, (252)

with rotation property as

Rμ2 |φ〉μ2
pgg = h†

2h†
1|0〉 = −|φ〉μ2

pgg, (253)

i.e., rotation eigenvalue −1 can be trivialized by the atomic
insulator |φ〉μ2

pgg at each 0D block labeled by μ2. Thus the 1D
bubble construction on τ2 can change the rotation eigenvalues
of μ1 and μ2 simultaneously, which lead to the dependence of
rotation eigenvalues of μ1 and μ2.

Subsequently we consider the U f (1) charge sector: con-
sider 1D bubble equivalence on 1D blocks τ2 [cf. Eq. (22)]:
it adds two U f (1) charges at each 0D block μ1 and removes
two U f (1) charges at each 0D block μ2, hence the numbers
of U f (1) charges at μ1 and μ2 are not independent.

With the help of above discussions, we consider the 0D
block-state decorations. Start from the trivial state,

[(0,+), (0,+)]. (254)

Taking aforementioned 1D bubble construction on τ2 with n ∈
Z times will obtain the group containing all trivial states,

{TBS}U (1)
pgg,0 = {[(2n, (−1)n), (−2n, (−1)n)]|n ∈ Z}

= 2Z. (255)

Therefore, the ultimate classification of crystalline TSC
protected by pgg symmetry for 2D systems with spinless
fermions is

GU (1)
pgg,0 = {OFBS}U (1)

pgg,0

/{TBS}U (1)
pgg,0

= Z2 × Z2
2/2Z = Z × Z4 × Z2. (256)

For systems with spin-1/2 fermions, 0D obstruction-free
block states are identical with spinless case,

{OFBS}U (1)
pgg,1/2 = Z2 × Z2

2. (257)

Then repeatedly consider the aforementioned 1D bubble con-
structions: The rotation properties of |φ〉μ1

pgg and |φ〉μ2
pgg are

changed by an additional −1, which leads to no trivialization.
It is easy to verify that the complex fermion decorations for
spinless and spin-1/2 fermions are identical. Repeatedly con-
sider the 1D bubble construction on τ2 and it will lead to the
following group containing all trivial states:

{TBS}U (1)
pgg,1/2 = {[(2n,+), (−2n,+)]|n ∈ Z} = 2Z. (258)

Therefore, the ultimate classification of crystalline topological
phases protected by pgg symmetry for 2D systems with spin-
1/2 fermions is

GU (1)
pgg,1/2 = {OFBS}U (1)

pgg,1/2

/{TBS}U (1)
pgg,1/2

= Z2 × Z2
2/2Z = Z × Z4 × Z2. (259)

μ1

p†1
p†2

p†3

p†4

p†5
p†6

μ2
h†

1
h†

2

FIG. 12. 1D particle-hole bubble construction on τ1, where par-
ticle/hole is labeled by solid/hollow dot. Atomic insulators (263) and
(264) are created by this procedure.

E. Hexagonal lattice: p6m

Repeatedly consider the cell decomposition of p6m as il-
lustrated in Fig. 10. For 0D blocks labeled by μ1 and μ2,
different 0D block states are characterized by different irre-
ducible representations of the symmetry group as n = 6, 2,

H1[U f (1) × (Zn � Z2),U (1)] = Z × Z2
2. (260)

Here Z represents the U f (1) charge. For μ1, two Z2’s repre-
sent the reflection eigenvalues of Mτ1 and Mτ2 , respectively;
for μ2, two Z2’s represent the reflection eigenvalues of Mτ1

and Mτ3 , respectively.
For 0D blocks labeled by μ3, different 0D block states are

characterized by different irreducible representations of the
symmetry group as

H1[U f (1) × (Z3 � Z2),U (1)] = Z × Z2. (261)

Here Z represents the U f (1) charge and Z2 represents the
eigenvalue −1 of the reflection Mτ2 .

Therefore, the 0D block states on μ1 and μ2 can be labeled
by (n1/n2,±,±), where n1/n2 represents the U f (1) charges
on μ1/μ2 and two ±’s represent the reflection eigenvalues;
the 0D block states on μ3 can be labeled by (n3,±), where
n3 represents the U f (1) charges on μ3 and ± represents the
eigenvalue of reflection operation. According to this nota-
tion, all obstruction-free 0D block states form the following
group:

{OFBS}U (1)
p6m,0 = Z3 × Z5

2. (262)

We should further consider possible trivializations: for
systems with spinless fermions, consider the 1D bubble
equivalence on 1D blocks labeled by τ1: we decorate a 1D
“particle-hole” bubble [cf. Eq. (22) and Fig. 12] at each τ1.
Near each 0D block labeled by μ1, there are six particles
forming the following atomic insulator:

|ξ 〉μ1
p6m = p†

1 p†
2 p†

3 p†
4 p†

5 p†
6|0〉. (263)

There are two holes forming another atomic insulator,

|ξ 〉μ2
p6m = h†

1h†
2|0〉. (264)

Similar with the crystalline TSC, eigenvalue of Mτ2 can be
changed by Eq. (263) at each μ1, and eigenvalue of Mτ3 can
be changed by Eq. (264) at each μ2.
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Then we consider the 1D bubble equivalence on 1D blocks
labeled by τ3: we decorate an identical 1D “particle-hole”
bubble as aforementioned on each τ3. Near each 0D block
labeled by μ2, there are two particles forming the following
atomic insulator:

|η〉μ2
p6m = p′†

1 p′†
2 |0〉. (265)

Near each 0D block μ3, there are three holes forming another
atomic insulator,

|η〉μ3
p6m = h′†

1 h′†
2 h′†

3 |0〉. (266)

Similar with the crystalline TSC, eigenvalue of Mτ1 can be
changed by |η〉μ2

p6m at each μ2, and eigenvalue of Mτ2 can be
changed by |η〉μ3

p6m at each μ3.
1D bubble construction on τ2 can be understood in a similar

way, which changes the eigenvalue of Mτ1 at μ1 and the eigen-
value of Mτ2 at μ3. In addition, we also need to consider an
alternative 1D bubble equivalence on 1D blocks τ2 (we label
above 1D “particle-hole” bubble construction by “type-I”, and
label this 1D “bosonic” bubble construction by “type-II”): we
decorate an alternative 1D bubble on each 1D block labeled
by τ2 [cf. Eq. (22) and Fig. 11(b)], here both yellow and red
dots represent the 0D bosonic modes carry eigenvalues −1 of
reflection symmetry. According to this 1D bubble construc-
tion, the reflection eigenvalue at each 0D block μ3 is changed
by −1 while the reflection eigenvalue at each 0D block μ2

remains invariant. Another type-II 1D bubble construction can
also be constructed on τ3.

Subsequently we consider the U f (1) charge sector. First of
all, we should identify that within a specific unit cell, there
is one 0D block labeled by μ1, two 0D blocks labeled by
μ3 and three 0D blocks labeled by μ2. Repeatedly consider
the aforementioned 1D bubble construction on τ1: it adds six
U f (1) charges at each 0D block μ1 and removes two U f (1)
charges at each 0D block μ2, hence the number of U f (1)
charges at μ1 and μ2 are not independent. Similar argument
can also be applied for τ2 and τ3.

With the help of above discussions, we consider the 0D
block-state decorations. Start from the original trivial state,

[(0,+,+), (0,+,+), (0,+)]. (267)

Taking aforementioned type-I 1D bubble constructions on τ j

with l j times ( j = 1, 2, 3), and type-II 1D bubble construc-
tions on τ2/τ3 with l ′

2/l ′
3 times, it will lead to a new 0D block

state labeled by

[(6l1 + 6l2, (−1)l2 , (−1)l1 ), (−2l1 + 2l3, (−1)l3 , (−1)l1 ),

× (−3l2 − 3l3, (−1)l2+l3+l ′2+l ′3 )]. (268)

According to the definition of bubble equivalence, all states
with this form should be trivial. Alternatively, all 0D block
states can be viewed as vectors of an 8-dimensional vector
space V , where the complex fermion components are Z valued
and all other components are Z2 valued. Then all trivial 0D
block states with the form as Eq. (268) can be viewed as a
vector subspace V ′ of V . As a consequence, there are only
four independent quantities in Eq. (268): l1, l2, l3, and l ′

2 + l ′
3.

So the dimensionality of the vector subspace V ′ should be
four. For the U f (1) charge sector, we have the following

relationship:

−(6l1 + 6l2) − 3(−2l1 + 2l3) = 2(−3l2 − 3l3), (269)

i.e., there are only two independent quantities that serve a
2Z × 3Z trivialization. The remaining two degrees of free-
dom of the vector subspace V ′ should be attributed to the
eigenvalues of point group symmetry actions labeled by
(−1)l1 = (−1)(−l2 ) = (−1)l3 and (−1)l ′2+l ′3 , which serve a Z2

2
trivialization. Therefore, all trivial states with form as shown
in Eq. (268) compose the group

{TBS}U (1)
p6m,0 = 2Z × 3Z × Z2

2, (270)

hence different independent nontrivial 0D block states can be
labeled by different group elements of the following quotient
group:

GU (1)
p6m,0 = {OFBS}U (1)

p6m,0

/{TBS}U (1)
p6m,0

= Z3 × Z5
2/2Z × 3Z × Z2

2 = Z × Z12 × Z2
2. (271)

For systems with spin-1/2 fermions, like the cases with-
out U f (1) charge conservation, the classification data of the
corresponding 0D block states on μ1, μ2, and μ3 can be
characterized by different irreducible representations of the
corresponding on-site symmetry group,

H1[U f (1) ×ω2 (Z6 � Z2),U (1)] = 2Z × Z2
2,

H1[U f (1) ×ω2 (Z2 � Z2),U (1)] = 2Z × Z2
2. (272)

Here each 2Z represents the U f (1) charge carried by com-
plex fermion, and different Z2’s represent the rotation and
reflection eigenvalues at each 0D block labeled by μ1 and μ2

(similar with the p4m case, we can only decorate even number
of U f (1) charge on each 0D block). and all obstruction-free
0D block states form the following group:

{OFBS}U (1)
p6m,1/2 = Z × (2Z)2 × Z5

2, (273)

then repeatedly consider the aforementioned 1D bubble con-
structions, the reflection properties of the atomic insulators:
|ξ 〉μ1

p6m, |ξ 〉μ2
p6m, |η〉μ1

p6m, |η〉μ2
p6m, and |η〉μ3

p6m are changed by an
additional −1, and all of them lead to no trivialization. Other
1D bubble constructions are identical. So again we start from
the original trivial state (267), take above type-I 1D bubble
constructions on τ j with l j times ( j = 1, 2, 3), and type-II 1D
bubble constructions on τ2/τ3 with l ′

2/l ′
3 times, it will lead to

a new 0D block state labeled by

[(6l1 + 6l2,+,+), (−2l1 + 2l3,+,+),

× (−3l2 − 3l3, (−1)l ′2+l ′3 )]. (274)

The U f (1) charge sector is identical with spinless case,
and there is one independent nonzero reflection eigenvalue
(−1)l ′2+l ′3 . Therefore, all trivial states with form as shown in
Eq. (274) compose the following group:

{TBS}U (1)
p6m,1/2 = 2Z × 3Z × Z2, (275)

and different independent nontrivial 0D block states can
be labeled by different group elements of the following
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group:

GU (1)
p6m,1/2 = {OFBS}U (1)

p6m,1/2

/{TBS}U (1)
p6m,1/2

= Z × (2Z)2 × Z5
2/(2Z × 3Z × Z2)

= 2Z × Z6 × Z3
2. (276)

V. GENERALIZED CRYSTALLINE
EQUIVALENCE PRINCIPLE

In this section, we discuss how to generalize the crystalline
equivalence principle that is rigorously proven for interact-
ing bosonic systems [51]. By comparing the classification
results of the topological crystalline TSC summarized in Ta-
ble I, Table II and the classification results of crystalline
TI summarized in Table III with the classification results of
the 2D FSPT phases protected by the corresponding on-site
symmetry [89,90], we verify the fermionic crystalline equiv-
alence principle for all TSC and TI (for both spinless and
spin-1/2 cases) constructed in this paper.

In particular, we should map the space group symmetry to
on-site symmetry according to the following rules:

(1) Subgroup of translational symmetry along a particular
direction should be mapped to the on-site symmetry group
Z. Equivalently, the total translational subgroup should be
mapped to the on-site symmetry group Z2;

(2) n-fold rotational symmetry subgroup should be
mapped to the on-site symmetry group Zn;

(3) Reflection symmetry subgroup should be mapped to
the time-reversal symmetry group ZT

2 , which is antiunitary;
and

(4) Spinless (spin-1/2) fermionic systems should be
mapped into spin-1/2 (spinless) fermionic systems.

The additional twist on spinless and spin-1/2 fermions can
be naturally interpreted as the spin rotation of fermions: a 2π

rotation of a fermion around a specific axis results in a −1
phase factor [88].

Apparently, bosonic/fermionic crystalline SPT phases
will be mapped to the corresponding on-site symmetry
bosonic/fermionic SPT phases. In fact, there is even a more
precise one to one mapping between crystalline SPT phases
and the corresponding on-site symmetry SPT phases. It is well
known that the 2D fermionic SPT states protected by on-site
symmetry have a layered structure: They can be constructed
by decorating (subject to certain obstructions) 1D Majorana
chains to 1D symmetry domain walls, 0D complex fermion
modes to intersection points of domain walls, in addition
to the bosonic SPT layer. We find that all crystalline SPT
states constructed via 1D block state with Majorana chain
decorations will be mapped to on-site symmetry SPT states
with Majorana chain decorations to 1D symmetry domain
wall, while all crystalline SPT states constructed via 1D
block state with FSPT decorations or 0D complex fermion
decoration will be mapped to on-site symmetry SPT states
with 0D complex fermion modes decoration to intersection
points of domain walls. For crystalline topological insula-
tor with an additional U f (1) charge conservation symmetry,
there would be no Majorana chain decoration for the cor-
responding on-site symmetry SPT phases, that is why there

is also no 1D block state in our crystalline SPT states
construction.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we derive the classification of crystalline
TSC and TI in 2D interacting fermionic systems by using
the explicit real-space constructions. For a 2D system with
a specific wallpaper group symmetry, we first decompose the
system into an assembly of unit cells. Then according to the
so-called extensive trivialization scheme, we can further de-
compose each unit cell into an assembly of lower-dimensional
blocks. After cell decompositions, we can decorate some
lower-dimensional block states on them, and investigate the
obstruction and trivialization for all block states by check-
ing the no-open-edge condition and bubble equivalence. An
obstruction/trivialization free decoration corresponds to a
nontrivial crystalline SPT phase. We further investigated the
group structures of the classification data by considering the
possible stacking between 1D and 0D block states. Finally,
with the complete classification results, we compare our re-
sults with classification of 2D FSPT phases protected by the
corresponding on-site symmetry, we verify the crystalline
equivalence principle for generic 2D interacting fermionic
systems.

We believe that the real-space construction scheme for
crystalline SPT is also applicable to 3D interacting fermionic
systems, with similar procedures discussed in this work. We
conjecture that the crystalline equivalence principle is also
correct for 3D crystalline FSPT phases as well. In future
works, we will try to construct and fully classify the crys-
talline TSC/TI in 3D interacting fermionic systems.

We stress that the method in this paper can also be applied
to cases with mixture of internal and space group symmetries,
i.e., when considering about the lower-dimensional block
states, we should also include the internal symmetry together
with the space group symmetry acting internally that leads
to different lower-dimensional root phases and bubbles. Then
based on these root phases, we can further discuss possible ob-
structions and trivializations by using the general paradigms
highlighted in Sec. II.

Moreover, we also predict an intriguing fermionic crys-
talline TSC (that cannot be realized in both free-fermion
and interacting bosonic systems) with p4m wall paper group
symmetry. The iron-based superconductor could be a natural
strongly correlation electron system to realize such a new
phase, especially the monolayer iron selenide/pnictide [91].
Since the spin-orbit interaction in FeSe is relatively small
[distinct from Fe(Se,Te) because of the absence of tellurium],
we can effectively treat fermions in this system as spinless.
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