
PHYSICAL REVIEW RESEARCH 4, 033078 (2022)

Nonorthogonal wavelet transformation for reconstructing gravitational wave signals
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Detections of gravitational-wave signals from compact binary coalescences have enabled us to study extreme
astrophysical phenomena and explore fundamental physics. A crucial requisite for these studies is to have
accurate signal models with characteristic morphologies, which have been challenging for many decades, and
researchers are still endeavoring to incorporate important physics. Therefore, morphology-independent methods
have been developed for identifying a signal and its reconstruction. The reconstructed signal allows us to test the
agreement between the observed signal and the waveform posterior samples from parameter estimation. These
methods model observed signals using a nearly orthogonal wavelet basis in the frame of continuous wavelet
transformation. Here, we propose log-uniform scales to construct the wavelets, which are are highly redundant
(nonorthogonal) compared to the conventional octave scales but more efficient for reconstructing the signals at
high frequencies. And we introduce a semi-model-dependent reconstruction method using the posterior samples
of the events, where we model the signal using Gabor-Morlet wavelets with log-uniform scales. We demonstrate
the ability to detect deviation using a numerical simulation of an eccentric binary black hole merger, where the
signal in the data does not belong to the search template waveform manifold. Finally, we apply this method to
each binary black hole merger event in GWTC-1. We have found that the signal produced by the GW150914
event has 96% agreement with the waveform posterior samples. As the detector sensitivity improves and the
detected population of black hole mergers grows, we expect the proposed method will provide even stronger
tests.
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I. INTRODUCTION

Detecting gravitational waves (GWs) from the merging
compact binaries consisting of black holes and neutron stars
has ushered in a new era of observational astronomy [1,2].
So far, the network of Advanced LIGO and Advanced Virgo
detectors has observed more than 90 of these events [3–8].
Observations of compact binary mergers allow us to de-
sign a range of novel tests of general relativity (GR) in the
strong-field regime [9–11]. A current limitation on tests of
beyond-GR physics with compact binary coalescences is the
lack of understanding of the strong-field merger regime in
nearly all modified theories of gravity. Thereby, we generally
perform the tests assuming GR to be the null hypothe-
sis or evaluate the consistency of the data with predictions
from the theory. At the same time, the latter test can reveal
if any unknown binary parameter influences the observed
signal.

The continuous wavelet transformation (CWT) based time-
frequency analysis has played a crucial role in identifying the
gravitational wave events and detecting the deviation from
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general relativity. Most potential gravitational wave sources,
such as compact binary mergers and supernovae explosions,
produce nonstationary signals. The CWT is a powerful anal-
ysis tool that allows us to obtain a time-frequency localized
projection of a nonstationary signal. This procedure calculates
the wavelet coefficients by performing a scalar product be-
tween the signal and wavelet basis. These coefficients are used
not only for time-frequency analysis but also to reconstruct
the original time-domain signal. The existing time-frequency-
based methods such as coherent wave burst (CWB) [12–14],
BAYESWAVE [15,16], and X-pipeline [17,18] are designed
for searching unmodeled gravitational-wave bursts and recon-
structing the signal from the coherent response of a network
of detectors. The previous studies reported satisfactory agree-
ment between the reconstructed signal and the estimated
waveform of binary black hole (BBH) mergers for the louder
events [3,19,20].

The conventional burst search method identifies a cluster
of pixels from the time-frequency map of a detector’s strain
data if each of those pixels has more power than one expects
from the noise alone, called triggers. If the triggers from a
network of detectors are coincident, then the method claims
a detection of a signal [21]. The CWB method first constructs
a multiresolution time-frequency map of the strain data using
Wilson-Daubechies-Meyer wavelets [22] and uses the same
strategy to detect the events. After that, the method employs a
coherent framework of the constrained maximum likelihood
approach to yield the event properties: sky location, wave
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polarization, and signal reconstruction [13,23]. In contrast the
BAYESWAVE method employs a framework of Bayesian statis-
tics without relying on any prior assumption of waveform
morphology [15]. This method reconstructs the gravitational
wave signals and instrumental noise, where both of them are
characterized as a superposition of Gabor-Morlet wavelets
or chrirplets [24]. The number of time-localized wavelets
and their parameters are determined via the reversible jump
Markov chain Monte Carlo algorithm. After that, whether the
likelihood of the event is favored to be a true gravitational
wave signal or instrumental glitch is determined by using a
Bayesian model selection strategy. Finally, the posterior sam-
ples are used to reconstruct the signal as a superposition of the
wavelets.

A wavelet can be regarded as a time-frequency localized
bandpass filter. The bandwidth of which is determined by the
properties of that wavelet. The reconstructed signal has an
inevitable noise contribution that passes through those wavelet
filters. The match between the reconstructed signal and the
estimated waveform increases with the signal-to-noise ratio
(SNR). However, we would never achieve absolute agreement
(unit match) even if our predicted theory is complete be-
cause of the additional noise that passes through the coherent
wavelets.

In this paper, we propose a quasi-model-dependent method
for reconstruction of signal from noisy data. We identify the
essential wavelets using binary black hole merger waveforms
estimated using standard Bayesian analysis [25–28]. The un-
modeled reconstruction methods identify the wavelets that are
coherent across the network of detectors. The collection of
those coherent wavelets in the time-frequency plane forms a
cluster. Similarly, the essential wavelets form a cluster in the
time-frequency plane which can be collectively viewed as a
single patch with an irregular boundary.

The patch area determines how much noise persists in the
reconstructed signal. The wavelets are discretely placed over
the timescale plane, where the patch area is determined by the
placement method and sparseness. The dyadic grid placement
is considered to be the most efficient method, leading to the
construction of an orthonormal wavelet basis. This placement
assumes an output of octave decomposition (power-of-2 log-
arithmic) to construct the grid. The sparseness of the grid
imposes a limit on the acceptable loss in signal characteristics.
We target to achieve maximum sparseness and still have an
adequate representation. A highly sparse grid might provide
a sufficient signal representation, but the area covered by the
essential wavelets would be larger than the case of a denser
grid. In contrast, an overdense grid cannot reduce the patch
area beyond a specific limit and also increases the computa-
tional cost.

In this paper, we propose a log-uniform scale to place the
wavelets over the timescale domain. Further, we derive an
inverse wavelet transformation formula for the log-uniform
scale. The wavelets with such scales are highly redundant (i.e.,
overcomplete), but they can further reduce the area covered
by the essential wavelets. As a result, We can reduce the
noise contribution in the reconstructed signal, which leads
to a more accurate signal reconstruction. Moreover, the es-
sential wavelets with log-uniform scale can provide a more
appropriate signal representation than the octave scale for the

high-frequency linear chirp signals. It implies that the log-
uniform scale is more efficient for reconstructing the signals
from low mass binary systems.

This paper is organized as follows: Section II describes the
reconstruction methods using the continuous wavelet trans-
formation with octave and log-uniform scales. Section III
demonstrates the performance of the reconstruction methods
for the linear chirp signals and gravitational wave signals in
simulated Gaussian noise. Section IV describes the efficiency
of the wavelet reconstruction method when a signal in the data
does not belong to the manifold of the search template wave-
form by injecting an eccentric waveform. Section V exhibits
results of our analysis for binary black hole merger events
observed by the Advanced LIGO and Virgo detectors during
the first and second observation runs. Finally, we conclude in
Sec. VI.

II. RECONSTRUCTION FORMULAS FOR
NONORTHOGONAL WAVELETS

The CWT of a continuous signal x(t ) is a linear mapping
onto a timescale space of wavelets:

X (a, b) =
∫

x(t ) �∗
a,b(t ) dt

= 1√
a

∫
x(t ) ψ∗

(
t − b

a

)
dt,

(1)

where ψ∗ is the complex conjugate of the shifted and scaled
version of the time-localized mother wavelet ψ , in which a
and b are the scale and time-shift parameters, respectively.
Therefore, the CWT provides a timescale representation of
the signal by performing a sliding cross-correlation with a
continuous family of wavelets. The quantity 1/

√
a outside the

integral is an energy normalized factor. It assures that each
wavelet has the same energy, whatever the value of scaling
and shift. The function ψ (t ) must satisfy a set of mathematical
criteria to be a wavelet, it must have finite energy,

Eψ =
∫ ∞

∞
|ψ (t )|2 dt < ∞, (2)

and must follow the admissibility condition

Cψ =
∫ ∞

∞

|ψ̃ (ω)|2
ω

dω < ∞, (3)

where ψ̃ (ω) is the Fourier transform of ψ (t ), ω = 2π f is
the angular frequency, and Cψ is called the admissibility con-
stant. The above condition implies that ψ̃ (ω) approaches zero
faster than ω and must not have zero frequency component,
ψ̃ (0) = 0. If the wavelet function satisfies both criteria, then
the inverse wavelet transform can be described as a superpo-
sition of the dual wavelets:

x(t ) = 1

Cψ

∫ ∞

0

∫ ∞

−∞
X (a, b) �a,b(t )

1

a2
db da. (4)

An alternative approach by inversion formula was found by
Morlet; we can even choose a completely different wavelet
function, a Dirac δ function δ((b − t )/a) instead of the analyz-
ing wavelet, and that leads to a single integral inverse formula
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[29],

x(t ) = 2

Cδ

∫ ∞

0
Re {X (a, t )} 1

a3/2
da, (5)

where Cδ is the admissibility constant of the δ function that
can be computed using Eq.(3). In this work, we use this single
integral inversion formula for reconstructing the gravitational
wave signals.

The wavelet function can be regarded as an impulse re-
sponse of a bandpass filter. The associated frequency of
the wavelet can be treated as frequency value in the time-
frequency domain, which is known as the pseudofrequency
( fp). It depends on the central frequency ( fc) and the scale
parameter of the wavelet,

fp = fc/a (6)

This equation can used to represent the CWT in the time-
frequency frame similarly to the short-time Fourier transform.

One of the most commonly used mother wavelets is the
Morlet wavelet [30], which is a complex nonorthogonal
wavelet. As a complex wavelet can separate the phase and
amplitude components associated with the signal, it is more
suited to determine the instantaneous frequency. The Morlet
wavelet consists of a harmonic oscillation with Gaussian win-
dow,

ψ (t ) = A fcπ
−1/4(ei2π fct − e−(2π fc )2/2)e−t2/2, (7)

where A fc = (1 − e−4π2 f 2
c − 2e−3π2 f 2

c )−1/2 is the normaliza-
tion constant. The second term in the parentheses is a
correction to preserve the admissibility condition. It ensures
that the zero-frequency component vanishes. In practice, we
ignore this term as it is approximately zero for values of
fc � 0. Note that the above equation does not contain the
time-shift and scale parameters. When we analyze a signal,
we replace the variable t with (t − b)/a.

The central frequency fc is a crucial parameter in the time-
frequency analysis to regulate the tradeoff between temporal
precession and spectral resolution. It controls the number of
cycles of the wavelet without modifying the shape of the
Gaussian window. A large value of central frequency leads
to an increased temporal precision at the cost of decreased
spectral precision and vice versa for a smaller value of central
frequency. It is impossible to achieve simultaneously good
precision in time as well as in frequency. A rule of thumb
can be proposed for analyzing the gravitational waves from
compact binary mergers. The signals from low-mass systems
spend several tens of seconds or more than a hundred seconds
in the bandwidth of Advanced LIGO–like detectors, looking
like long-duration chirp signals. A larger value of central
frequency is convenient to achieve an overall good time-
frequency precision for those systems. On the other hand, a
smaller value of central frequency is suitable for high mass
systems as their signals are short-duration bursts with a tiny
chirp.

A. Choice of wavelet scales: Octave

The CWT generally suffers due to the redundancy at large
scales, where the neighboring wavelets are highly correlated.
Once a wavelet function is chosen, it is important to choose

the tightest set of scales that forms an orthonormal wavelet
set. The key mathematical criterion to choose a set of discrete
wavelets is that every function f ∈ L2(R)1 must be fully ex-
pressed as a superposition of those wavelets, i.e., the set is
complete in L2(R). The conventional approach of choosing
the scales is an output of octave decomposition [31,32],

a j = a0 2 jδ j, j = 0, 1, 2, . . . , J,

J = δ j−1 log2 (Nδt/a0),
(8)

where N is the total number of samples in x(t ), δt is sampling
interval, a0 = 2δt fc is the smallest resolvable scale, and δ j is
the spacing between the discrete scales. For Morlet wavelets,
an adequate scale resolution can be achieved for the values of
δ j � 0.5. The quantity J that determines the highest value of
the scale is associated with the Nyquist frequency. The octave
scale leads to a simpler implementation of inverse discrete
wavelet transformation as the quantity da/a = a0δ j ln(2) is
a constant. Now, the inverse formula Eq. (5) yields

xn = δ jδt1/2

Cδψ0(0)

J∑
j=1

Re {Xn(a j )}
a1/2

j

. (9)

B. Choice of log-uniform scale

For nonorthogonal wavelet analysis, one can adopt an ar-
bitrary set of scales to build up a more complete picture if
that set satisfies the completeness criteria. We propose a log-
uniform scale,

1

a j
= 1

a j−1
− δ� = 1

a0
− jδ�. (10)

The quantity δ� = δ fp/ fc stands for the inverse of spacing
between two discrete wavelets and the smallest resolvable
scale a0 = fc/δ fp. In this work, we choose δ fp = 1/T , where
T is duration of the time series. The log-uniform scale leads
to an uniformly spaced pseudofrequency. In this formalism,
Morlet wavelet transformation is equivalent to the scaled Ga-
bor transformation as the pseudofrequencies are uniformly
spaced. For log-uniform scale da/a2 = δ�, thus, the discrete
inverse formula (5) yields

xn = δ� δt1/2

Cδ ψ0(0)

J∑
j=1

a1/2
j Re {Xn(a j )}. (11)

C. Identifying the essential wavelets

The conventional method for identifying essential wavelets
is a straightforward approach, where one discards the low-
magnitude wavelet coefficients by applying a threshold, which
is known as wavelet thresholding [33,34]. This approach aims
to remove the noise from data without affecting the basic
features of the signal. In this work, we propose a slightly
different approach. We employ the modeled waveforms that
are obtained from the standard Bayesian parameter estimation
analysis. We compute wavelet coefficients for a waveform

1L2(R) denotes the space of square integrable functions on the real
line (R).
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and set a threshold on coefficient value to select the essen-
tial wavelets. The threshold is chosen such that the resultant
power from the essential wavelets is equal to a percentage
of total power of the spectrogram. We calculate the threshold
(E∗) for a given value of fractional power loss (R∗) by solving
an equation,

R∗ = 1 −
∑
n, j

|X (n, j)|2 [|X (n, j)|2 � E∗]
/∑

n, j

|X (n, j)|2.

(12)

We shall call that R∗ the spectral loss parameter. As the
number of essential wavelets is considerably fewer than the
total number of wavelets, a significant amount of noise can be
removed while preserving the basic features of the signal.

D. Area occupied by the essential wavelets

Reconstructing a signal using the essential wavelets trades
sensitivity, by which we are able to remove the noise from
data. However, the reconstructed signal would always contain
a nominal amount of inseparable noise, which passes through
the wavelet filters. As a wavelet is regarded as a time-localized
bandpass filter, it can be seen as a patch on the time-frequency
plane. The area (time-frequency bandwidth) of that patch can
be used to determine the amount noise released through that
wavelet. Therefore, the total amount of inseparable noise can
be estimated by calculating the total area covered by the
essential wavelets.

The area on the time-frequency plane covered by a cluster
of wavelets {(bi, ai )}n0

i=1 is related to their placement. For oc-
tave scale wavelets with a central frequency of fc, the covered
area is

AOctave = δt a0δ j ln(2)
n0∑

i=1

ai

= 2 ln(2) δ j( fcδt )2
n0∑

i=1

1/ fpi, (13)

where fpi is the ith pseudofrequency, fpi = fc/ai. The time-
frequency area governed by a cluster of wavelets {(bi, ai )}n0

i=1
with log-uniform scale is

Alog-uniform =
n0∑

i=1

δt/T . (14)

Figure 1 shows that the log-uniform scale occupies a
smaller area than the octave scale. The figure indicates that the
log-uniform scale allows ∼13% less noise in the reconstructed
signal than the octave scale for a high mass system, but can
provide a nearly identical signal representation.

III. PERFORMANCE OF THE RECONSTRUCTION
PROCEDURES

In this section, we demonstrate the performance of the
wavelet based signal reconstruction and compare between the
choice of octave and log-uniform scales. First, we exhibit that
the essential wavelets are adequate to represent a chirp signal
containing a broad range of frequencies. Second, we carry out
injection analysis to evaluate the performance for real data

FIG. 1. An illustration of the area covered by the cluster of
essential wavelets is produced using a gravitational waveform of
a nonspinning equal mass binary system with a chirp mass of
30M�. The areas bounded by the log-uniform wavelets and octave
scale wavelets are 13 and 15, respectively. For this computation,
we have assumed an aLIGO [35] noise curve with a fixed lower
cutoff frequency of 20 Hz, and the waveform is generated using the
SEOBNRv4 model [36]. We have considered R∗ = 0.05 for deter-
mining the essential wavelets.

analysis. The gravitational wave signals are drawn from a
binary black hole merger and added to a simulated Gaussian
noise.

A. Reconstruction of chirp signal without noise

We consider a simple chirp signal with a constant ampli-
tude and phase up to a quadratic order in time (t ),

x(t ) = sin(2π f0t + 2π f0t2), (15)

where f0 is the starting frequency of the signal and the time
range is chosen to be between 0 and 2 s. Therefore, the ending
frequency of the chirp is 3 f0. This type of chirp signal is ade-
quate to exhibit the performance of the reconstruction method
over a broad range of frequencies. We consider five different
cases to identify the essential wavelets. For each case, the total
power contained in the essential wavelets equals a fraction of
signal power.

It is inevitable to have an overall amplitude loss since the
number of essential wavelets is a small subset of the set of
wavelets representing the whole timescale space. However,
for a given value of R∗, we can set the overall amplitude by
looking at the amplitude loss when determining the essential
wavelets. An alternative approach is to define normalized min-
imum squared error (NMSE) for a reconstructed signal xrec(t ),

ENMSE =
∫

|x(t )/‖x‖ − xrec(t )/‖xrec‖|2 dt, (16)

where the symbol ‖ · ‖ denotes the norm. We use the above
equation to quantify the adequateness of the essential wavelets
to characterize a linear chirp signal.

In Fig. 2, we illustrate the accuracy of the wavelet recon-
struction of the linear chirp signals. The solid and dashed
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FIG. 2. Performance of octave and log-uniform scale wavelet re-
construction for linear chirp signals. The signals are generated using
Eq. (15). The y-axis represents the normalized minimum squared
error in the reconstructed signal. The solid line and dashed line cor-
respond to the log-uniform scale and octave scale, respectively. The
bottom and top x axes represent the starting and ending frequencies
of the chirp, respectively. The legend represents a set of spectral loss
parameters (R∗) as described in Eq. (12). We used those values to
choose the essential wavelets.

lines correspond to the log-uniform scale and octave scale,
respectively. We consider five different cases of fractional loss
in spectrogram power to select the essential wavelets used for
reconstruction. The reconstruction of high-frequency chirps
using log-uniform scale wavelets is more accurate than the
octave scale and vice versa for the low-frequency chirps.

B. Reconstruction of gravitational wave signal
in simulated noise

We estimate the performance of the reconstruction meth-
ods for gravitational wave signals from compact binary
mergers of equal mass nonspinning black holes. For each
case, an identical signal is injected in many noise realizations
of stationary Gaussian distribution weighted by Advanced
LIGO zero-detuned high-power (aLIGO) design sensitivity
[35]. The waveforms are generated for an wide range of
chirp masses between 10M� and 40M� using the SEOBNRv4
model [36] with a fixed lower cutoff frequency of 20 Hz.
To determine the reconstruction accuracy with signal-to-noise
ratio (SNR) of the injection (injected SNR), we choose a set
of values between 5 and 50. The injected SNR (ρinj) of a
waveform (hinj ) is defined as

ρ2
inj = 4

∫ fhigh

flow

h̃∗
inj( f ) h̃inj( f )

Sn( f )
df , (17)

where h̃inj( f ) denotes the Fourier transform of hinj(t ) and
Sn( f ) denotes the one-sided detector noise power spectral
density.

We reconstruct the signal from noisy data using the log-
uniform scale wavelet transform, where the essential wavelets
are selected using Eq. (12). To quantify the signal reconstruc-
tion accuracy, we calculate the match between the injected

signal hinj and reconstructed signal hrec, which is defined as
the inner product between two normalized waveforms (ĥ∗ =
h∗/

√〈h∗ | h∗〉):
M (hinj, hrec) := 〈ĥinj | ĥrec〉, (18)

where the term within angular brackets represents the follow-
ing inner product:

〈hinj | hrec〉 = 4 Re
∫ fhigh

flow

df
h̃∗

inj( f ) h̃rec( f )

Sn( f )
, (19)

where h̃inj( f ) and h̃rec( f ) denote the Fourier transforms of
hinj(t ) and hrec(t ), respectively.

The match between two waveforms varies between −1
and 1, depending on their correlation but not their overall
amplitudes. A match value of 1 indicates a perfect positive
correlation such that two waveforms change with equal pro-
portion, and 0 means no correlation. The equal proportion
changes with reverse direction indicate perfect negative corre-
lation, for which match value is −1. To quantify the agreement
between the wavelet reconstruction for a network of detectors,
we compute the network match (Mnet) as given in [37],

Mnet =
∑

k

〈
hk

inj

∣∣ hk
rec

〉
( ∑

k

〈
hk

inj

∣∣ hk
inj

〉 · ∑
k

〈
hk

rec

∣∣ hk
rec

〉)1/2 , (20)

where k represents the kth detector. In this paper, we consider
the three-detector configurations of Hanford (H1), Livingston
(L1), and Virgo (V1). We consider aLIGO design sensitiv-
ity for H1 and L1 detectors [35,38,39], and advanced Virgo
design sensitivity for V1 [40,41]. Please note that we demon-
strate the injection analysis in this section assuming a single
detector with the aLIGO design sensitivity.

A whitened Gaussian noise is considered to be distributed
normally over the timescale domain. This implies that the
noise energy is equally distributed over the timescale domain.
The amount of noise retained in the reconstructed signal is
determined by the spectral loss parameter R∗. A higher value
of R∗ can further reduce the inseparable noise in the recon-
structed signal. At the same time, the essential wavelets would
not be able to represent the complete signal characteristics.
It implies that the spectral loss parameter plays a role that
imposes a limitation on achieving the maximum overlap be-
tween the injected and reconstructed signals. Therefore, we
want to optimize this parameter. For a given source parameter
and injected SNR, we perform the injection analysis with a set
of R∗ values. The noise averaged match for a given injected
signal hinj(�λ, ρinj ) and R∗ can be defined as

〈M (R∗)〉noise = 1

N

N∑
i=1

M (hinj, hrec[ni]), (21)

where hrec[ni] represents the reconstructed signal from the
data of ith noise realization ni. To determine the essential
wavelets for a given value of R∗, we compute the wavelet
coefficients of the whitened waveform and plug them into
Eq. (12).

Figure 3 shows the noise averaged match as a function
of R∗ for a set of injected SNR values and the number of
essential wavelets as a function of R∗. If we fix the spec-
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FIG. 3. The noise averaged match (〈M 〉noise) as a function of
spectral loss parameter (R∗) is produced using a gravitational wave-
form of a nonspinning equal mass binary system with a chirp mass
of 30M�. The solid dot on the curve indicates its maximum. The
right y axis shows the relative number of essential wavelets (N̄W )
as a function of R∗. The unit value of N̄W corresponds to a 99.9%
match between the original and reconstructed signals for the zero
noise case. These results are produced assuming the aLIGO noise
curve with a fixed lower cutoff frequency of 20 Hz. The waveforms
are generated using the SEOBNRv4 model.

tral loss parameter and increase the injected SNR, the signal
contribution to each essential wavelet increases. At the same
time, the average noise contribution remains the same since
the number of essential wavelets and their properties does not
change. This leads to an improvement in the reconstruction
accuracy. A fixed SNR curve in Fig. 3 indicates that a smaller
value of R∗ allows many nonessential wavelets in the analysis.
The signal contribution to those wavelets is trivial, but the
inseparable noise in the reconstructed signal increases. On
the other hand, a higher value of R∗ discards many moderate
essential wavelets. Thus, the choice of R∗ is a tradeoff between
the signal and noise contributions to the wavelets. To find
an optimum value R, we maximize the quantity 〈M (R∗)〉noise

over R∗.
Figure 4 demonstrates the mismatch (1 − M ) in re-

construction for nonspinning binary systems with equal
component masses. The solid curve represents the median of
the mismatch distribution, and the shaded region shows the
±σ width of that distribution. For the case of a fixed optimal
SNR, we can see that mismatch substantially decreases with
an increase of chirp mass. It is intuitively expected: the num-
ber of essential wavelets for high chirp mass systems is fewer
than in low chirp mass systems. The waveform of a binary
system with high chirp mass can be characterized using a few
wavelets as the waveform is short. In contrast, the waveform
of a low chirp mass system is longer, for which one requires a
large number of wavelets to represent the signal.

As the injection chirp mass increases, the number of essen-
tial wavelets decreases, and they cover a smaller area over the
time-frequency plane. The signal contribution to the essential

FIG. 4. The figures shows the mismatch between the injected
gravitational wave signal and reconstructed signal, where the filter
wavelets were constructed using the log-uniform scale as defined in
Eq. (10). To produce the injections, we have assumed nonspinning
equal mass binary black holes with a wide range of chirp mass as
labeled in the x axis. The legend indicates the optimal SNR of the
injected signal. We have injected an identical signal into many noise
realization to produce the distribution of mismatch for each chirp
mass. We have assumed the aLIGO noise curve with a fixed lower
cutoff frequency of 20 Hz. The waveforms are generated using the
SEOBNRv4 model.

wavelet coefficients increases with the injection chirp mass
for a fixed SNR case. At the same time, the noise contribution
decreases due to the smaller area. That explains why the
reconstruction signal for a high chirp mass system is more
accurate than that of a low chirp mass.

IV. IDENTIFYING THE DEVIATION

So far, we have discussed the performance of wavelet
reconstruction where injected waveforms were used for de-
termining the essential wavelets. Those results tell us the
efficiency of the semi-model-dependent wavelet reconstruc-
tion method when a signal in the data belongs to the search
template waveform manifold. However, a signal in real data
may not belong to that manifold. Deviations could arise due
to the influence of unknown binary parameters (such as ec-
centricity if the waveform model only considers the circular
binary), missing physics in the waveform model, deviation
from GR, or noise artifacts. We demonstrate one of such
cases, an injection waveform simulation for an eccentric
BBH merger. Since recent template-based analysis by LIGO
and Virgo Collaborations (LVC) used a quasicircular wave-
form [4], we consider the recently developed IMRPhenomXP
model to generate the template waveform [42]. This model
includes the effect of orbital precession but does not consider
orbital eccentricity.

The inclusion of eccentricity in the injected signal
leads to a deviation from the search template waveform
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FIG. 5. An illustration of wavelet reconstruction (solid red line) and LALINFERENCE (cyan band) with the IMRPhenomXP waveform
model, obtained from an injection analysis using an eccentric numerical relativity waveform SXS:BBH:0323 picked from thr SXS catalog
with a total mass of 60M�. The dashed black line represents the injected waveform. For this computation, we have used the three-detector
configuration of Advanced LIGO and Advanced Virgo.

manifold. To demonstrate this, we consider a numerical-
relativity simulation of an eccentric inspiral-merger-ringdown
(IMR) waveform picked from the Simulating eXtreme Space-
times (SXS) catalog [43]. This system is a nonspinning
binary with mass ratio of 1.22. The numerical simulation is
performed for an eccentric BBH system, where eccentric-
ity evolves with time. The reference eccentricity is eref =
0.194 as measured at a reference orbital frequency of M f0 =
0.0137. In our analysis, we scale the simulation for a total
mass of 60M�, which is suitable for ground based detectors.

We keep the system in the face-on configuration where the
inclination angle is 0◦. As the component masses are nearly
equal and zero inclination, the contribution of higher-order
modes to the injected signal is negligible. This configura-
tion assures us that the deviation enters only due to the
orbital eccentricity. We inject the signal assuming the three-
detector configuration of Advanced LIGO and Advanced
Virgo [35,38–41]. We set the source’s sky position and dis-
tance such that the injected SNR in H1, L1, and V1 are 25, 20,
and 15, respectively. Since the average result of our wavelet
reconstruction over many Gaussian noise realizations with an
identical injected signal leads to the case of zero noise, we
consider a zero-noise realization to construct the data stream.
We analyze the data using the standard Bayesian parame-
ter estimation library LALINFERENCENEST [27], a Bayesian
inference nested sampling code implemented in the LIGO Al-
gorithm Library (LALSUITE) [44]. We use the python-based
package PESUMMARY [45] to process the data from parameter
estimation analysis and generate the template waveform in the
detector frame.

In order to reconstruct the signal from data stream, we
follow these steps:

(1) For each posterior sample, we generate the CBC tem-
plate waveform in the detector frame. Since GR allows only
two polarization states, referred to as the plus (h+) and cross
(h×), the time-domain response hI (t ) of a given detector I is
determined by the antenna response functions (F+

I and F×
I ) of

those polarizations [46],

hI (t ) = F+
I (α, δ, ψ, t )h×(t − �tI ; DL, ι, �λ)

+ F×
I (α, δ, ψ, t )h+(t − �tI ; DL, ι, �λ), (22)

where α and δ denote the source sky location in terms of right
ascension and declination, ψ is the polarization angle, DL is
the luminosity distance to the source, ι is the inclination angle
of the binary plane, �λ represents the set of intrinsic parameters
of the binary system, and �tI [≡�tI (α, δ, t )] is the travel
time of the signal from geocenter to the detector.

(2) Whiten the waveform weighted by the noise amplitude
spectral density such that the norm of the whitened waveform
is equal to its optimal SNR.

(3) Compute the wavelet coefficients for each whitened
template waveform using the CWT as shown in Eq. (1), where
wavelets are constructed using the log-uniform scale.

(4) Determine the essential wavelets using Eq. (12), where
spectral loss parameter R∗ is obtained from Eq. (21). We inject
the best fit template (corresponding to the maximum likeli-
hood sample) waveform in many simulated noise realizations
and estimate the value of R∗ for each detector’s data. We have
found that the values of R∗ for H1, L1, and V1 are 2.5%, 4%,
and 5%, respectively. Please note that we estimate the spectral
loss parameter for the maximum likelihood sample and use
that value for all the posterior samples.

(5) Use those essential wavelets to reconstruct the signal
from detector strain.

The above-described procedure is used to obtain a recon-
structed signal for each posterior sample. These wavelet-based
reconstructed signals are very similar, and their 90% interval
is very thin and looks like a line. Therefore, we illustrate
the median of reconstructed signals at every time index.2

2Note that the median of the reconstructed signals is used only for
the illustration in time-domain.
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TABLE I. Comparison between the LALINFERENCE template waveform and log-uniform wavelet reconstruction for an eccentric numerical
relativity waveform SXS:BBH:0323 picked from SXS catalog with a total mass of 60M�. The numerical simulation is performed for a
nonspinning, nearly equal-mass eccentric BBH system, where the measured reference eccentricity is eref = 0.194 at a reference orbital
frequency of M f0 = 0.0137. The quantity M̃ denotes the median of the match values.

Detector ρinj M̃ inj
bif M̃ rec

bif M̃ inj
rec ρ̃res

Hanford (H1) 25 0.954 0.968 0.984 6.2
Livingston (L1) 20 0.95 0.959 0.978 5.5
Virgo (V1) 15 0.959 0.959 0.978 4.2
Network 35.6 0.949 0.958 0.981

Figure 5 illustrates the results from wavelet reconstruction,
90% credible region of LALINFERENCE template waveform,
and injected waveform. We can see the amplitude and phase
of the reconstructed waveform are approximately consistent
with the injected waveform. In contrast, the LALINFERENCE

waveform is out of phase over a bit of the region, which
indicates a significant deviation from the search template
waveform manifold. We also compute three different matches
using the reconstructed signal (hrec), LALINFERENCE template
waveform (hbif ) obtained from posterior samples as de-
scribed in step 1, and injected waveform (hinj): M (hinj, hbif ),
M (hbif , hrec), and M (hinj, hrec). Table I summarizes the
match comparison. It signifies that the wavelet-based recon-
structed waveform is more faithful than LALINFERENCE.

However, we cannot compute M (hrec, hinj ) and
M (hbif , hinj ) for an actual event case as it is infeasible
to know the true signal in data. We propose to compute the
residual SNR (ρres) obtained by subtracting each template
waveform of LALINFERENCE posterior samples from the
corresponding wavelet-based reconstructed waveform. LVC
commonly uses this procedure in the test of GR with BBH
events [9–11,47]. We report the median of residual SNR in
the last column of Table I.

V. ANALYSIS OF EVENTS IN GWTC-1

We apply the proposed method to each binary black hole
event in the first gravitational-wave transient catalog GWTC-1
[3] to reconstruct the signals from individual detectors. In this
analysis, we use the on-source data from the Gravitational
Wave Open Science Center [48,49], released for GWTC-1
[3]. For determining the essential wavelets, we use the poste-
rior samples of source properties obtained from reanalysis of
GWTC-1 using BILBY [50,51]. Parameter estimation analysis
was performed using the IMRPhenomPv2 [52,53] waveform
model, and power spectral density was estimated using the
BAYESLINE algorithm [54].

In order to reconstruct the signal from data using the
posterior samples, we follow the steps described in Sec. IV.
Figure 6 shows the results for GW150914 [1]: CBC template
waveform from posterior sample and wavelet reconstruction.
The agreement for H1 data is better than L1 data as the
reconstruction accuracy increases with SNR. For H1 data, the
most probable value (mode) of the match values is 0.975, and
the maximum is 0.982. We also compute the network match
values and their mode 0.962. It implies an excellent agree-
ment between the GR template waveform and the observed
data. We have seen that the reconstructed signal does remain

FIG. 6. Log-uniform scale wavelet reconstruction results of the GW150914 event, obtained using the on-source data of H1 and L1
detectors, where the times (in seconds) are shown relative to a reference time 1126259462.0. The solid black line in the top-left panel shows
the median reconstructed signal obtained from H1 data and the solid blue line in the bottom-left panel from L1 data. The orange band in these
panels is produced using the CBC template waveforms from parameter estimation samples. We demonstrate the reconstructed signals and CBC
template waveforms in units of the standard deviation of the noise, which implies the norm is SNR. The right panel shows the histogram of the
match between every posterior waveform and the corresponding wavelet-based reconstructed signal.
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TABLE II. List of match values of GWTC-1 events obtained by computing the match between the reconstructed waveform and the Bayesian
inference template waveform. We report the chirp mass and the SNR to indicate the efficiency of the reconstruction as demonstrated in
Sec. III B. We report the median (denoted by tilde) value of the distribution. Dashes (–) correspond to a detector not being included in the
analysis.

Event M̃c ρ̃ H1
bif ρ̃ L1

bif ρ̃ V1
bif M̃H1 M̃L1 M̃V1 M̃net

GW150914 31.0 20.6 14.3 – 0.96 0.94 – 0.95
GW151012 18.3 6.5 5.9 – 0.73 0.74 – 0.73
GW151226 9.7 9.8 6.9 – 0.80 0.66 – 0.74
GW170104 25.7 9.5 10.0 – 0.86 0.89 – 0.87
GW170608 8.5 12.1 9.2 – 0.78 0.49 – 0.60
GW170729 51.5 6.0 8.3 1.7 0.89 0.91 −0.21 0.85
GW170809 29.7 6.0 10.8 1.1 0.86 0.92 0.02 0.89
GW170814 27.0 9.3 14.2 3.8 0.88 0.93 0.74 0.91
GW170818 32.1 4.7 9.8 4.3 0.80 0.90 0.82 0.87
GW170823 38.9 7.1 9.5 – 0.88 0.93 – 0.91

almost identical even when the essential wavelets are selected
using different posterior samples. Therefore, we consider the
case of the maximum likelihood sample only to illustrate the
signal is time domain. Note that match values are computed
between every posterior waveform and the corresponding
wavelet-based reconstructed signal; we call this on-source
match.

Our reconstruction method trades with sensitivity for iden-
tifying the essential wavelets and removing the noise from
on-source data. Consequently, the technique cannot discern
the early inspiral or late ringdown part of the CBC wave-
forms where the signals are weaker. In the time-frequency
domain, the early inspiral part spreads over time, whereas the
late-ringdown part of the signal spreads over the frequency
direction. In Fig. 6, it is visible that the early inspiral part
of the L1 signal (before 0.25 seconds) fades out. However,
the H1 signal is still present and consistent with the template
waveform because of the higher SNR in H1. At the same time,
the late ringdown part of both the signals hasc disappeared. In
a time-frequency frame, the ringdown part of a signal spreads
out over frequency despite having a fixed frequency because
of its exponential decay term, leading to a Lorentzian spread
along the frequency direction.

Further, we perform the reconstruction analysis on the re-
maining events of GWTC-1 [55–59] and report the results in
Table II. In order to understand the reconstruction efficiency
depending on the SNR and chirp mass, we also reported
them in the same Table. These values are obtained from the
posterior samples by BILBY [51]. The solid vertical line in
Fig. 7 shows the 90% interval of the on-source network match
values, and the solid circle marks their mode value. We found
the best agreement with GR for the GW150914 event, and the
minimum for GW170608, albeit the observed SNR from the
latter event was higher than the nominal threshold in both the
detectors. The match value depends not only on SNR but also
on the time-frequency area covered by the essential wavelets
of the signal. In Sec. III B, we saw that the match value
increases with injection chirp mass while the injection SNR
is kept at a fixed value. GW170608 event has the lowest chirp
mass in the catalog, for which its essential wavelets occupy
the largest area over the time-frequency plane.

The vertical dashed line in Fig. 7 shows the 90% interval of
expected match that is determined by injecting the maximum
likelihood BILBY waveform (h∗

bif ) in many Gaussian noise
realizations; a similar study is shown in Fig. 4. We have
reconstructed the signal from each realization and computed
the match with h∗

bif . We see that there is significant overlap
between the distribution of expected match and on-source
match, except for GW151226 and GW170608. In particular,
the distributions are far from each other for GW170608, for
which a further study is worthy. We will focus on it in future
work.

For GW170729, the match V1 datum is negative, which is
unexpected. The reconstructed signal and template waveform

FIG. 7. Network match between the CBC template waveform by
Bayesian parameter estimation and the wavelet-based reconstructed
waveform. The vertical solid line represents the 90% credible interval
of the on-source match. The dot over each line is the mode of the on-
source match distribution. The vertical dashed line indicates the 90%
interval of the expected match under the assumption of Gaussian
noise, which is similar to Fig. 4.
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FIG. 8. Signal reconstruction results of GW170729 with a refer-
ence time 1185389807.3. We plot the 90% credible interval of the
CBC template waveform (orange band) and median reconstructed
signal (blue). The blue dashed line in the bottom panel shows the
projected signal of H1 and L1 over V1, where the sky location and
polarization angle are taken from parameter estimation samples.

are nearly in antiphase for most of the posterior samples, as
shown in Fig. 8, leading to a negative match value. It could
be due to the noise artifacts. The antiphase could occur due
to poor constraint of event time in the detector frame. The
total widths of event time distribution for H1, L1, and V1
are 19, 18, and 63 ms, respectively. The spread for V1 data
is significantly larger than the other two. It is impossible to
draw an appropriate conclusion about whether the deviation
presents or not when the SNR is very low. Thereby, we also
compute the network match excluding the contribution of V1.
The median network match for two detectors is 0.88, and the
mode is 0.89. An extensive study on agreement between the
CBC template waveform and the BAYESWAVE reconstruction
also found the similar results [60], where the contribution of
V1 data was not considered for this study. We excluded the
contribution of V1 for GW170729 to produce Fig. 7. As a
further investigation, we project the H1 and L1 signals over
V1 based on the sky location and polarization angle of pa-
rameter estimation samples. We follow these steps to obtain
the projected signal: (a) perform the inverse transformation of
the whitening procedure over H1 and L1 reconstructed signals
and apply a time shift based on the sky location to obtain
these signals in geocentric coordinates, (b) obtain the two
GW polarizations based on the sky location and polarization
angle, and (c) project on the frame of V1 detector as shown
in the bottom panel (blue dashed curve) of Fig. 8. We can see
that the projected signal and CBC template waveform are in
phase, and the median match is 0.64. It implies that the noise
probably plays a role in the V1 reconstructed signal being
antiphase.

VI. CONCLUSION

This paper presents a wavelet-based semi-model-
dependent method for reconstructing the gravitational
wave signals produced from compact binary mergers.
We have employed the framework of continuous wavelet
transformation, where Morlet wavelets represent the
signals. The semi-model-dependent approach determines
the essential wavelets using the posterior samples from
parameter estimation to reconstruct the signals from the data.

In general, the wavelets are constructed using an output of
octave scale, which provides the tightest set of wavelets. Such
wavelets yield a nearly orthogonal wavelet basis. In this paper,
we have proposed a log-uniform scale for constructing the
wavelets. Such wavelets are highly redundant, i.e., nonorthog-
onal wavelets. However, this new scale is more efficient for
representing the linear chirp signals at high frequencies than
the octave scale. As the wavelets are regarded as time local-
ized bandpass filters, a reconstructed signal always contains
a nominal amount of noise that passes through the essential
wavelets. The amount of noise depends on the area covered
by the essential wavelets over the time-frequency plane. We
have shown that the essential wavelets with the log-uniform
scale occupy a smaller space than with the octave scale, which
enables us to reconstruct the weak signals better.

We have conducted injection analysis to evaluate the re-
construction efficiency for the signals from binary black
hole mergers by computing the match between the injected
waveform and the reconstructed signal. The reconstruction
accuracy increases with the SNR such that the mismatch
is approximately proportional to SNR squared, 1 − M �
1/SNR2. Also, the reconstruction accuracy strongly depends
on chirp mass. We have seen that the mismatch at a fixed SNR
decreases as chirp mass increases.

We have demonstrated the ability to detect the devia-
tion where the injected waveform is outside the region of
space enclosed by the search template waveform manifold.
We have performed the parameter estimation analysis us-
ing LALINFERENCE by injecting an electric BBH waveform,
where the template waveforms are generated by a quasicircu-
lar waveform model, IMRPhenomXP. After that, we studied
the match between the injected waveform and the recon-
structed waveform. As reported in Table I, the LALINFERENCE

waveform agrees less with the injected waveform than the
wavelet reconstruction. Also, the LALINFERENCE waveform
is out of phase over a bit of the region. In comparison, the
amplitude and phase of the reconstructed waveform are nearly
consistent with the injected waveform.

We have applied this wavelet-based reconstruction analy-
sis to each binary black hole merger event in GWTC-1. We
have seen a satisfactory agreement between the reconstructed
signal and the estimated theoretical waveform. As the grav-
itational wave catalog grows, we expect the wavelet-based
semi-model-dependent reconstruction method to provide a
more precise view of the agreement between the observed data
and the waveform model.

There are many avenues for future work and extensions of
this method: combining the octave and log-uniform scales to
have an optimal method for reconstructing the signals from
compact binaries; applying this new method for reconstruct-
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ing the signal from binary neutron star mergers; developing
appropriate statistics for detecting the deviations and investi-
gating the match study when instrumental an glitch presents
in on-source data; and applying this method to GWTC-2 and
GWTC-3 [4,5].
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