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Power laws and symmetries in a minimal model of financial market economy
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A financial market is a system resulting from the complex interaction between participants in a closed econ-
omy. We propose a minimal microscopic model of the financial market economy based on the real economy’s
symmetry constraint and minimality requirement. We solve the proposed model analytically in the mean-field
regime, which shows that various kinds of universal power-law-like behaviors in the financial market may depend
on one another, just like the critical exponents in physics. We then discuss the parameters in the proposed model
and we show that each parameter in our model can be related to measurable quantities in the real market, which
enables us to discuss the cause of a few kinds of social and economic phenomena.
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I. INTRODUCTION

Modeling the real financial market has been a major chal-
lenge in the field of traditional economics [1,2] and in the
emergent field of econophysics [3–14]. The financial market
can be modeled at a phenomenological level by writing down
a stochastic differential equation for the price change; this
approach was first taken by Bachelier [15], a few years before
Einstein’s investigation of Brownian motion [16]. The pri-
mary difficulty lies in modeling the interaction and behavior
of individual participants of a financial market at the micro-
scopic level [1,8]. The classical economics approach assumes
the rationality of human beings and that they maximize the
predefined utility functions with some given information. The
rationality assumption results in the efficient market hypothe-
sis, which predicts that the price of the stock market (or any
market in general) follows a random walk and that ultimately
the driving force of price change is exogenous, i.e., caused by
an injection of new information [17]. However, these predic-
tions deviate far from what we observe in reality. For example,
large price jumps occur about seven to eight times per stock
per day on average, but only one report is released regarding
each of the stocks every three days [18]; this suggests that
external information is not sufficient to explain the market
dynamics.

A series of universal statistical relations that could not
be explained by classical economics is known to hold [19]
(known as the stylized facts); one of the fundamental prob-
lems of socioeconomic modeling is to explain the existence of
these stylized facts [20]. For example, let St denote the price of
a stock at time t ; then the return is defined as rt := ln St/St−1.
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The return is known to be heavy tailed with kurtosis roughly
equal to 4. If one measures the. cumulative distribution func-
tion of the largest returns of a stock, it is known to obey
a power-law distribution with exponent roughly −3 to −5;
the daily traded number of stock shares (called volumes) are
known to have a power-law distribution with exponent −3
[19]. What is more surprising about these facts is that these
stylized facts appear almost universally across different na-
tions, markets, and time [21,22]; they even hold for the newly
established bitcoin market [23]. This signature of universality
calls for an explanation, while no consistent model exists yet
to unify these phenomena. In fact, it might even be a question
of whether such a unifying model could exist. This situation
is somewhat similar to the situation of turbulence in fluid
dynamics. The first-principle theories following directly from
the Navier-Stokes equation cannot explain the emergence of
turbulence yet. However, it is widely expected that an ulti-
mate correct theory needs to explain the well-known observed
Kolmogorov 5/3 power law [24,25] (along with a few other
universal empirical facts).

In contrast to the classical economic models, the econo-
physics approaches to the problem are often microscopically
oriented and with phenomenology as high-level guidance. The
line of work closest to physics is the Ising spin-based models
in [26,27]. These models are based on the classical Ising
model and the main results are obtained by relabeling the
physical objects in the relevant economic terms. For example,
a spin is interpreted as a single investor and the pairwise
interaction between two spins is interpreted as the tendency
of people to be influenced by other people around them. This
line of work has been further developed to model even more
complicated interactions between the investors [28]. However,
the major criticism of these models is that they are unlikely to
be realistic models of the markets and the agents constituting
them. For example, the action of an agent is unlikely to behave
like a spin, which only purchases +1 or −1 unit of stock
at any given time. (For detailed reviews and comparisons
of the above-discussed models see [29–31].) There are also
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microscopically founded models in the standard economics
literature [31–34], often called the heterogeneous agent-based
models. However, these works have a vastly different purpose
from the present work; they mostly focus on studying the
agents’ behavior in the specified model of the market and
thereby explaining the market crashes and boom. The present
work’s goal is to explain the universality of many stylized
facts.

We argue that one major limitation of previous works is
the lack of first-principles modeling of the cash flow. In a
real economy, the stock price (or the price of any commercial
goods) must be decided by the cash flow into and out of
this stock. This cash flows out of the stock to the hands of
the individual participants and they must then reinvest based
on their present wealth. A key component of first-principle
modeling of the financial market must then be the modeling
of cash flow, and the total wealth of the economy should be
conserved if there is no explicit money-printing process. We
therefore explicitly model the cash flow between the wealth
of the individuals to the market, with partial conservation
of money. Moreover, inspired by the scaling phenomena in
physics, we argue that the existence of the universal relations
in finance and economics may be understood through a similar
mechanism in physics, where symmetries may lead to univer-
salities. Therefore, we propose to establish a simple model of
a financial economy, motivated by (i) symmetry constraints
and (ii) the requirement of minimality.

In summary, this work proposes a minimal model of a
closed economy where the participants trade in a financial
market, motivated by the real economic system’s symmetries
and microscopic necessities. From this minimal model, we
see that the commonly observed universal scaling laws appear
naturally and robust to initial conditions changes. The model’s
parameters can be related to measurable statistics of the real
economy, increasing the explanatory and predictive power of
the proposed theory.

The organization of this paper is as follows. In the next
section we introduce the model most directly related to the
proposed model, the limitation of which we use to motivate
the present work. In Sec. III we establish the proposed model.
In Sec. IV we analyze our model in the mean-field regime. In
Sec. V we link the model to the real economy and discuss the
insights the model may provide to enhance our understanding
of the economy. In the Supplemental Material we also demon-
strate the usefulness of the proposed model by showing that it
may be used as a computation model for simulating realistic
financial data [35].

II. BACKGROUND AND BASIC MODELS

A. Dynamics of price

Finance is the study of the market. Two core concepts in
finance are time and uncertainty. Time relates to the fact that
the market is dynamic, i.e., changing with time. For example,
the average price of a stock is different today from next month.
The uncertainty aspect refers to the fact that the future price
of anything cannot be determined for sure, i.e., knowing all
the past prices and all the relevant information does not suf-
fice to predict the price tomorrow with 100% certainty. The

combination of these two fundamental facts results in a (con-
jectured) consequence that the price of any product in the
market obeys some stochastic differential equation

dSt = f (St )dt + dBt (1)

for some random process dBt . Alternatively, the price may
obey a stochastic difference equation

�St = f (St )�t + ηt (2)

for some random noise ηt . One picture assumes that the fun-
damental process of price change is continuous in time; the
other assumes discreteness. So far, there is no clear favoring
of one over another in the literature since it is unclear whether
the fundamental price formation process is continuous time
or discrete time (or neither). This indeterminacy is a conse-
quence of the following observation: While the transactions
may take place at any point in time, the transactions need to
occur in a discrete manner. One cannot make a “continuous”
money transaction.

Two most commonly adopted equations to describe the
motion of a stock price is the geometric Brownian motion

St+1 = (1 + rs)St + σt Stηt , (3)

where ηt is drawn from a Gaussian distribution. Here the word
“geometric” refers to the fact that the noise term σt Stηt is
proportional to the price St itself. The other model is more
recent and is often called the Heston model [36],

dSt = μSt dt + √
νt St dWt ,

dνt = κ (θ − νt )dt + ξ
√

νt dUt , (4)

where νt is the instantaneous volatility. Unlike the geomet-
ric Brownian motion model, the Heston model assumes that
the variance νt of the noise is also random and follows a
random walk of its own. These two models are the widely
adopted phenomenological models of price motion. The lim-
itation of these two equations are obvious: (i) The investors
are coarse grained into the noise term and do not appear in
the equations explicitly and (ii) the deterministic part of the
equations is a simple linear dynamics, which cannot reflect
the complicated nonequilibrium dynamics that the market is
going through.

B. Dynamics of wealth

There has also been strong interest in modeling the wealth
dynamics of individuals. There is a strong sense of how
physics in general and thermodynamics in particular should
be relevant to this problem because the wealth, like energy,
should be conserved in total despite complicated microscopic
exchanges of money between the investors [37,38]. Two basic
phenomenological models of the evolution of wealth in an
economy were proposed in [39,40]. Reference [40] starts from
the generalized Lotka-Volterra model, while Ref. [39] models
the dynamics through an Ising spin model. Both approaches
run into the problem that the full model is not analytically
solvable and the simplifying approach assumes that all the
participants in the economy are identical and that they feel
a static force; this approximation is in essence a mean-field
approach, as is also used in [39]. In the mean-field limit, these
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FIG. 1. Illustration of the dynamics of a market. The market consists of the price of a stock and a number of investors (also called agents
and participants in this work). At every time step t , the investors make financial decisions based on their wealth and the observed price. These
decisions, taken together, create a net demand. The net demand creates motion in the stock price. Previously, the dynamics of the wealth and
the dynamics of the price were separately modeled in a phenomenological way; the main contribution of this work is to propose a minimal
model that connects the two kinds of dynamics.

two models reduce to a similar form

dWi

dt
= −a0Wi + a1 + σWiε(t ), (5)

where Wi denotes the wealth of the ith participant in the
economy. In [39], a0 is proportional to the rate of mone-
tary exchange J between two different individuals and a1 is
proportional to J times the average wealth in the economy;
equivalently, a0Wi models the amount of money that the ith
participant pays to other participants, while a1 models the
payment that Wi receives from others. From this view, the
connectivity of the underlying Ising model and the rate of ex-
change J is crucial since a phase transition from an egalitarian
society to a highly unequal society happens in the same way
that a phase transition occurs in the standard Ising model when
the disordered phase transitions to an ordered phase as the
temperature is reduced. In [40] the interpretation is similar: a1

is interpreted as the regular income received by a person and
a0 is the redistribution of wealth due to taxation, subsidies,
and other fixed economic activities.

Given the Langevin equation above, the way to proceed is
to write its equivalent Fokker-Planck equation and solve the
stable distribution. Treating a0 and a1 as constants,1 it is easy
to show that the stationary distribution is

P(Wi ) ∼ W −1+a0/σ
2

i exp

(
− a1

σ 2Wi

)
(6)

and the exponent a is the desired exponent of wealth. One
limitation of these approaches is that the key parameter a0 is
not an observable; a0 is proportional to the average rate of
economic contact between participants in the market, but there
is no way to measure this degree of contact objectively. When
interpreted as wealth redistribution by government policies, it
is far from clear how a0 may be calculated unambiguously.
The problem is exacerbated when one recognizes that the
effect of fiscal policy on the economy is highly non-linear

1The calculation in the original work is actually about the rela-
tive wealth and is slightly more complicated in computation, but
the ultimate interpretation does not change. To make these works
more easily compared with the present work, we solve this slightly
simplified version of the original.

and that a first-order expansion in Wi is insufficient to model
such policies [41,42]. We attribute the difficulty of making
sense of the parameter a0 to the lack of the specification of
the underlying economic model in these models. One cannot
model economic exchanges correctly without specifying how
the transactions between investors occur. Therefore, we argue
that one crucial step in the development of a first-principle
theory of the market dynamics is the development of a model
that consistently connects the dynamics of the price and the
dynamics of the wealth. See Fig. 1 for an illustration of the
market dynamics we propose to understand.

We propose to model the investors’ wealth and the dy-
namics of the market in a consistent framework. Some other
attempts in this direction also exist [43,44], where the price
and the wealth dynamics are modeled simultaneously; how-
ever, these models often have a large number of parameters,
and the goal is to understand the population dynamics of the
investors in market crashes and booms. In contrast, this work
aims at establishing a minimal model to identify symmetries’
role in forming generic and universal patterns in a financial
market economy.

III. PROPOSED MODEL

This section establishes our model, justified by empirical
facts and fundamental symmetries in the problem. Let there
be a single stock with price S(t ) and N investors (agents) in
the market. The complete state of the ith agent is given by
a pair of scalars Mi(t ) and 
i(t ), where Mi is the amount of
money the agent holds and 
i(t ) the number of shares. Note
that standard models such as the New-Keynesian models often
assume a setting where a risky stock exists alongside a risk-
less fixed-return government bond. However, this two-stock
model is only meaningful when one incorporates a utility
maximization procedure done in the standard economic mod-
els [43,45,46]. Our framework can be extended to treat this
setting, but this adds unjustified complication to the model,
reducing the analytical tractability and interpretive power that
we are attempting to achieve in the discussion.

At any time t ∈ Z+, there are two possible actions for
each agent bi(t ), pi(t ) ∈ [0, 1], which denote the percentage
of money the agent will invest in the stock and the percentage
of share the agent will sell, respectively. Note that b and p
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are unitless. A key feature that differentiates our model from
the previous models is that we parametrize agents’ actions
by the unitless variables b and p that denote the willingness of
the buying and selling, independent of how much money the
agent has. This choice of b and p is natural to investment since
it does not cause any income effect.2 After the transaction
at time t , the change in the cash that the ith agent holds
is the return due to the stock sale minus the money spent:
�Mi = pi(t )
i(t )S(t ) − bi(t )Mi(t ); likewise, one can write
down the change in one’s stock holding �
i. Therefore, at
a given time t , the change in money and stock holding for the
ith agent is then

�Mi(t ) = pi(t )
i(t )S(t ) − bi(t )Mi(t ),

�
i(t ) = −pi(t )
i(t ) + bi(t )Mi(t )

S(t )
. (7)

Note that the above equations are correct by definition and
what is hard to model is the price change to close the system
of equations above. Also, there is strong evidence that setting
bi and pi to be random variables may be appropriate here.
It was discovered that when incorrect financial operations
(such as spending more money than one has) are forbidden,
computer agents making random financial decisions produce
a price trajectory that is very close to a trajectory produced
by real human beings [47]. In the classical economics liter-
ature, such choices are said to be following the algorithm of
a zero-intelligence agent [47,48]. Therefore, a model based
on zero-intelligence traders offers strong explanatory power
because it allows one to identify whether an observed socioe-
conomic phenomenon is caused by human rationality or by
the fundamental properties of the market mechanisms.

We assume that the change in price �St is an analytical
function of all the observables in the market, such as the price
and order histories. The price change thus takes the general
functional form

�S(t ) = g
[{p(t ′)
(t ′), b(t ′)M(t ′), S(t ′)}t

t ′=1

]
, (8)

i.e., S(t ) can be a general functional. It follows from standard
classical economic arguments that the price is determined by
the supply and demand curve of the market [49]. We therefore
expand S(t ) to the first order in the immediate average demand
D(t ) := 1

N

∑N
i=1 �
i(t ), �S(t ) = c0 − 1

λ
D(t ) + O(D2), for

some positive constant λ, which can be called the market
depth [26] and is the susceptibility of the price of a perturba-
tive external demand. Moreover, the price should not change
when there is no net excessive demand in the market, and so
c0 = 0, and we arrive at our price change function

�S(t ) = −1

λ
D(t ). (9)

Note that λ may still be a function of the observables in the
market; for example, they may both depend on price.

While the price change function we use is linear, it gener-
ates nontrivial dynamics. Similar linear price impact functions

2For example, it does not seem reasonable to assume that richer
people will invest a higher fraction of their wealth in the market in
comparison to poorer people.

can be derived from classical economic arguments [49] and
have been used in the Ising spin-based market model [26].
An increasing amount of research studies the exact functional
form of the price impact [6]; these interesting price impact
functions can be studied in our framework by simply redefin-
ing the price impact function above. In this work we use the
linear price impact function. Therefore, the following set of
equations determines our model of the market:

�Mi(t ) = pi(t )
i(t )S(t ) − bi(t )Mi(t ), (10a)

�
i(t ) = −pi(t )
i(t ) + bi(t )Mi(t )

S(t )
, (10b)

�S(t ) = 1

λ

N∑
i=1

�
i(t ). (10c)

Note that, in this model, total wealth is only partially con-
served. Equations (10a) and (10b) conserve the total wealth,
while (10c) breaks such conservation.3 However, we do not
think this is a significant problem because, in the real econ-
omy, it is never the case that the wealth and the financial
market constitute a closed system and part of the wealth may
be distributed to other nonfinancial objects. In physics terms,
one might imagine the existence of a conceptual heat bath
of money. While the total money of the system and the bath
should be conserved, it is not the case that the wealth in the
system is conserved. This also reflects the difficulty of deter-
mining the price impact function and that better modeling of
�S will be crucial for future research.

Despite the formal simplicity of Eqs. (10), λ needs to
depend on the price and other parameters. In this work we
assume that both the cash and the shares are infinitesimally di-
visible, which is a standard assumption in theoretical finance.
Under this assumption, two fundamental symmetries exist in
a financial market.4 (i) Our decisions and the market should
be unaffected by a rescaling of the unit of money M → kM
and S → kS for some k > 0 and therefore the dynamical
equations should be invariant to such rescaling. This rescal-
ing symmetry was used previously in [39,40] to derive the
equation of motion of the wealth distribution but has not been
applied to market modeling. (ii) Likewise, the financial market
should be invariant to a redefinition of the unit of the shares

 → z
 and S → S/z for some z > 0. While Eqs. (10a) and

3One popular way to enforce total wealth conservation is to define
the price impact function through a Walrasian auction, but the Wal-
rasian auction is in itself a highly nonlinear mechanism and involves
making unjustifiable the price-demand curve of each agent.

4On the other hand, we note that these two symmetries are broken if
either the money or the share is not infinitesimally divisible, which is
the case in reality. For example, in any monetary system, the smallest
amount of usable cash is lower bounded. Also, in real financial mar-
kets, the smallest number of buyable shares is also lower bounded.
Our assumption amounts to assuming that these two bounding effects
are negligible. This assumption is also empirically justified. Taking
the stock price of Apple as an example, the current price of Apple
per stock is roughly $200 per share, while the smallest unit of USD is
$0.01. Also, the daily average traded volume of Apple is roughly 108,
orders of magnitudes larger than the minimum tradeable volume.
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(10b) are invariant to such rescaling, Eq. (10c) is not for
an arbitrary λ. Therefore, these two facts present additional
functional constraints in the form of λ. One way to impose
such a constraint is by defining

1

λ
= S(t )

λ0
(t )
, (11)

where 
(t ) := 1
N

∑N
i 
i(t ) is the average holding of the stock

share at time t . Additionally, we are also also interested in the
wealth Wi(t ) := Mi(t ) + S(t )
i(t ) of the individuals and its
stationary distribution p(Wi ).

IV. MEAN-FIELD ANALYSIS

It is well known that coupled sets of differential equa-
tions are difficult to analyze and this is also a major challenge
in the field of financial modeling; in some sense, the lack
of analytical tractability is a major limitation of many of the
financial models in the field [44]. The lack of an analytical
solution limits the models’ explanatory power. This problem
also exists in the model we proposed in Eqs. (10). We thus
limit our theoretical study to the following minimalistic mean-
field limit. We will see that, even in this simple mean-field
analysis, the model already exhibits rich behavior.

The agents defined in the preceding section take arbitrary
strategies bi(t ) and pi(t ), which may result in arbitrarily
complex interaction and price dynamics. The simplest choice
for such strategies is a time-independent strategy. We also
set bi and pi to be random variables (i.e., we take the
zero-intelligence limit). We proceed further by taking the
mean-field limit, where bi(t ) = b and pi(t ) = p for all i; we
also require the agents to start from the same initial condi-
tion such that Mi(0) = M0 and 
i(0) = 
0. Now we take
the continuous-time limit, which is equivalent to assuming
that the market depth λ is sufficiently large so that the price
cannot change too drastically in a short period of time. For
an arbitrary quantity X , �X → Ẋ dt , p → pdt , and b → bdt ;
the set of equations becomes

Ṁ(t ) = p
(t )S(t ) − bM(t ),


̇(t ) = −p
(t ) + bM(t )

S(t )
,

Ṡ(t ) = 1

λ

̇(t ), (12)

where we have assumed the factor of N in the definition of
λ and removed the dependence on the subscript i because the
agents are identical in the mean-field limit.

In general, λ = λ(S) can be a function of the price and
the set of differential equations may be written as a single
differential equation for S (see [35]),

Ṡ(t ) = b
[
M0 − ∫ t

0 dt λ dS
dt S(t )

]
λS(t )

− p

λ

(

0 +

∫ t

0
dt λ

dS

dt

)
+ σε(t ), (13)

where, to account for the random nature of the price, we add
a noise term σε(t ) to the right-hand side and ε(t ) ∼ N (0, 1).
In addition, σ is the volatility of the price and may also be

a function of price. This stochastic term models some fun-
damental uncertainty in the determination of the price and
may be derived by treating b and p as random variables in
the zero-intelligence limit (or it may be a result of injection of
external information into the market).

Theoretically, we focus on studying the theoretical prop-
erties of (13) with different choices of λ and σ , determined
through symmetry constraints. In this section we also use
the integrals of the deterministic equations as the definition
of the other relevant variables; for example, 
(t ) := 
(0) +∫ t

0 dt Ṡ/λ. The distribution for S can be solved by first writing
out the Fokker-Planck equation and finding the stationary
distribution. We then take the set of equations (12) as the
definition for other quantities to find the distribution of wealth
and return. We present the calculation in [35]. We show the
solutions for the most representative examples in Table I. We
consider four different choices. (i) In the case of λ = λ0 and
σ = σ0, no symmetry exists in the system. We see that it
results in an unrealistic distribution for the price and wealth.
The exponent for the power-law part has a positive exponent,
while the real-world distributions always have negative ex-
ponents. (ii) In the case of λ = λ0/S(t ) and σ = σ0S(t ), the
system is invariant to a rescaling of the unit of money (re-
ferred to as the S → kS symmetry) and no explicit power-law
behavior emerges in this case. (iii) In the case of λ = λ0
(t )
and σ = σ0, the system is symmetric to redefining the unit
of stock shares; again, one does not see the emergence of
universal scaling behavior. (iv) The case of λ = λ0
(t )/S(t )
and σ = σ0S(t ) is the simplest kind of model that is invariant
to the redefinition of both the unit of money and the share.
We see that, perhaps surprisingly, unitless scaling laws emerge
for both the price and wealth distributions. More importantly,
the exponents do not depend on the initial condition of the
markets; this suggests the universality of these distributions.
We discuss the meaning of the derived exponent in detail in
the next section. Note that, when λ = c0Sc1 (the fourth case),
Eq. (14) simplifies to

Ṡ(t ) = b
[
2M0 + λ′S2

0

/
(c1 + 2)

]
2λS(t )

−
(

b

c1 + 2
+ p

c1 + 1

)
S(t )

− p

λ

(

0 − λ′S0

c1 + 1

)
+ σε(t ), (14)

where we have defined a constant λ′ := c0Sc1
0 .

It is worth exploring the fourth model with both sym-
metries deeper. Besides the price and wealth distributions,
stylized facts are also known to exist for the return Rt :=
ln(St/St−1) ≈ δt d

dt ln(S) and the traded volume Vt := �
t ≈
δt
̇(t ). See Table II for a summary of these quantities in our
theory. We see that the price, wealth, and volume obey heavy-
tailed distributions with unitless exponents. The mean-field
theory not only predicts the formula for each of the quantities,
but it also predicts two relations between them, which we
list in the fourth column. This relation is reminiscent of the
scaling relations in critical phenomena. Moreover, our theory
predicts that the Pareto exponent of wealth β is always smaller
than the exponents of volume and price.
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TABLE I. Distributions of price and wealth when (14) obeys different kinds of symmetry. When both rescaling symmetries are satisfied,
one obtains meaningful predictions for the price and wealth; universal power-law scaling that is initial-condition independent only emerges
when both symmetries are modeled in the dynamical equation. Here b is the average tendency of buying, p is the average tendency of selling,
and λ0 is the susceptibility of price to an excessive demand.

λ, σ Symmetry Price distribution Wealth distribution (W � 1)

λ = λ0, σ = σ0 Sb(2M0+λS2
0 )/λσ 2

e f1(S) W b(2M0+λS2
0 )/λσ 2−1/2

λ = λ0
S , σ = σ0S S → kS not power law not power law

λ = λ0
, σ = σ0 
 → k
 not power law not power law
λ = λ0


S , σ = σ0S S → kS, 
 → k
 S−1−(2/σ 2 )[b/(λ0+1)+p/λ0]e f4(S) W −1−[2/σ 2 (λ0+1)][b/(λ0+1)+p/λ0]

V. IMPLICATIONS

While we explicitly referred to each agent as a person,
one agent may also be interpreted as a collection of people
who share the propensity for investment, e.g., an institution, a
fund, or even the economy as a whole (when the mean-field
limit is taken). Of particular interest here is when the agents
are interpreted as representative of the whole economy. In
this interpretation, bi and pi become the economy’s average
tendency to buy and sell. This interpretation is especially
appropriate for the mean-field model in Eq. (14) because all
the agents are assumed to be identical. In this light, we discuss
the implications of the proposed model.

We first link the model’s parameters to real-world measur-
able quantities. Four unitless quantities σ0, λ0, b, and p exist in
our theory and the scaling exponents predicted by our theory
are dependent on them. The market depth λ0 may be measured
by measuring β and γ :

λ0 = γ

γ − β
. (15)

Since the market depth must be positive, we have that γ � β;
this means that the tail of he trading volume cannot be heavier
than the tail of the wealth. This condition agrees with the
intuition that the investment one makes cannot be larger than
the amount of available wealth. For an economy, this is also
true. At a macroscopic level, one expects γ to be very close
to its lower limit, i.e., γ ≈ β due to borrowing and leverag-
ing money from the bank for investment. This agrees with
the measured value in real economies where β ≈ 1.36 and
γ ≈ 1.40 [50,51]. Plugging in these values, we can estimate
the value λ0 ≈ 35 ∼ 101, or 1/λ0 = 0.029.

TABLE II. Pareto exponents of price, wealth, and traded stock
volume and the relation between different exponents. We note that
the model predicts the power-law exponents to be dependent on
one another, which is reminiscent of the scaling relations in critical
phenomena. Here b is the average tendency of buying, p is the
average tendency of selling, and λ0 is the susceptibility of price to
an excessive demand.

Observable Pareto exponent Predicted formula Scaling relation

price S(t ) α α = 2
σ 2 ( b

λ0+1 + p
λ0

) α

wealth W (t ) β β = 2
σ 2

0 (λ0+1)
( b

λ0+1 + p
λ0

) αγ

α+γ

volume V (t ) γ γ = 2
σ 2λ0

( b
λ0+1 + p

λ0
) α

α−β

The parameters b and p can also be related to measur-
able quantities. We define the total market capitalization μ :=
N
S and the total wealth of the society Wtot := N (M + 
S).
Close to a stationary state, the injection of money into the
economy must be equal to that leaving the market. We thus
have

bNM = pN
S → b = μ

Wtot − μ
p := κ p, (16)

which relates b to p through the measurable quantities μ and
Wtot, and the quantity κ may be called the market activity
index: The higher the κ , the more active the market. Data show
that [52], across different countries, κ is a peaked distribution,
centered around 0.25. It is now useful to consider the meaning
of the parameter p. Here p is defined as the amount of stock
sold through a unit time �t ; therefore, p is directly linked
to the stock’s liquidity. When �t is taken to be a day, p is
the stock’s daily turnover rate (or the daily equivalent of the
annual average turnover rate), a well-measured quantity. We
denote the daily turnover rate by p∗ from now on. The an-
nual turnover rate for most countries is centered around 1.30,
which translates to a daily rate of 0.0036. This means that one
may rewrite the factor as b/(λ0 + 1) + p/λ0 = [κ/(λ0 + 1) +
1/λ0]p∗, which is approximately equal to 0.0080 on average
in the world. One may obtain a different estimate of the market
depth value from this analysis to check the consistency of the
theory. Here

β = 2

σ 2(λ0 + 1)

(
κ

λ0 + 1
+ 1

λ0

)
p∗,

which implies

λ0 ≈
√

2(1 + κ )p∗

βσ 2
≈ 12 ∼ 101,

where we have approximated σ0 by the daily stock price
volatility, which is of order 0.01 for the U.S. stocks; this
estimation of λ0 agrees in the order of magnitude with the
independent estimate of the market depth in the preceding
paragraph. Therefore, every parameter of our proposed model
can be measured in a real market and economies in principle
and more importantly, the theory gives consistent predictions
regarding the market depth and the empirical power-law ex-
ponents.

Now it is interesting to compare with the result on the
distribution of wealth in [39,40]. In [39] the Pareto exponent
takes the form a0/σ

2, where a0 is proportional to the rate of
monetary exchange in the economy and σ 2 is the degree of
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randomness in the wealth acquisition process. In comparison,
this work predicts an exponent of b+2p

σ 2
0 (λ0+1)

. One can naturally

see that the σ 2 terms are analogous and the term b+2p
λ0+1 trans-

lates directly to the term a0 in the Cont-Bouchaud model; as
discussed, the term b+2p

λ0+1 is proportional to the market activity
weighted by the sensitivity of the market to external stimulus,
which may be called the rate of monetary exchange. In this
sense, this work gives the parameters in the Cont-Bouchaud
model a precise meaning. Reference [40] avoids interpreting
the a0/σ

2 term directly, but links this term to the average num-
ber of members in a household L and argues that the Pareto
exponent is equal to α = L

L−1 . Further, the Pareto index is a
monotonically decreasing function of L; therefore, the larger
the average number of family members is, the more inequality
exists in society. In our theory, we showed that α ∼ κ p, which
is a measure of market activity. One interpretation is that
the market activity is inversely proportional to the size of
a household, which corroborates the long observed fact that
child birth rate is inversely correlated with the average income
in society [53].

One might also discuss the effect of economic growth
or inflation on society within the framework. For example,
we can model the effect of economic growth or inflation by
adding a term f (S) to the right-hand side of Eq. (14). We
consider and compare two kinds of growth. One is constant
f (S) = k0, which only shifts the equilibrium value of the price
and does not affect the distribution’s power-law exponents.
Alternatively, we might consider a growth proportional to
price f (S) = k0S, which directly affects the exponents and
changes the term b

λ0+1 + p
λ0

to b
λ0+1 + p

λ0
− k0. Note that, in

economic growth (or inflation), k0 > 0 and thus growth in-
creases inequality by lowering the Pareto exponent; on the
other hand, economic decay reduces inequality. This impli-
cation agrees with the intuition that a growing market tends to
create extremely rich people either by chance or through their
better investment skills and rich people may become richer
through some self-reinforcing mechanism, for example, by
becoming more influential in society.

VI. CONCLUSION

In this work we have argued from basic principles what
the simplest form a financial market model should take: It

needs to connect the price dynamics to the wealth dynamics.
The dynamics we derived is based on fundamental symme-
try constraints; when analyzed in a mean-field regime, the
dynamics leads to interesting universal behaviors that mi-
mic the real market. One insight that this work provides is
that the universality of the empirically observed power laws
in the real market might emerge due to the relevant symme-
tries in the market. Furthermore, as in the standard physical
critical phenomena, the scaling exponents are dependent on
one another; this corroborates the success of dimensional
analysis in understanding economic and financial systems
[54].

However, the simple model and our analysis of it are min-
imal. For example, the analysis gives no sensible prediction
about the statistics related to the return, nor does it answer
what heterogeneous agents and their interaction may provide
to the financial system. Nevertheless, this work may pave the
way for further understanding of the cause and the nature
of the commonly observed stylized facts in economics and
it may also serve as a baseline model for modeling financial
processes in the industry. Possible future works include find-
ing more connections between more power-law indices and
possibly predicting the existence of yet unnoticed power laws.
One might also investigate the influence of various economic
policies on the financial system. The price dynamics may also
be investigated under the assumption of the existence of a
fundamental price. As mentioned in this work, the thermo-
dynamics of the proposed microscopic model should also be
interesting to investigate, for example, how to define entropy,
whether fundamental relations exist such as the second law of
thermodynamics, how to define work and heat, and how work
and heat interact in financial systems? These are beyond the
scope of this work but will be important problems to explore
in the future.
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