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Quantum state interrogation using a preshaped free electron wavefunction
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We present a comprehensive theory for interrogation of the quantum state of a two-level system (TLS) based
on a free-electron–bound-electron resonant interaction scheme. The scheme is based on free electrons, whose
quantum electron wavefunction is preshaped or optically modulated by lasers in an electron microscope setup
and then inelastically scattered by a quantum TLS target (e.g., atom, quantum dot, and crystal defect center)
upon traversing in proximity to the target. Measurement of the postinteraction energy spectrum of the electrons
probes and quantifies the full Bloch sphere parameters of a pre-excited TLS and enables coherent control of the
qubit states. The exceptional advantage of this scheme over laser-based ones is atomic-scale spatial resolution
of addressing individual TLS targets. Thus, this scheme opens horizons for electron microscopy in material
interrogation and quantum information technology.
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I. INTRODUCTION

Coherent control of a single quantum two-level system
(TLS) using lasers is a subject of great interest in quantum
optics. The subject is central to understanding fundamental
phenomena such as Rabi oscillation [1], Landau-Zener tran-
sition [2,3], and Ramsey interference [4]. It also relates to
coherent laser control of atoms [5]. Additionally, it is used
extensively in quantum information technologies [6,7] in con-
nection with control and reading of quantum bits (qubits). A
variety of TLS embodiments are considered in this context,
including trapped ions [8], quantum dots [9], and defects in
solids [10].

In this paper, we propose an alternative scheme for in-
terrogation and control of the quantum state (QS) of a TLS,
with preshaped quantum electron wavepackets (QEWs) rather
than with a coherent laser beam. This scheme, based on the
recently proposed concept of free-electron–bound-electron
resonant interaction (FEBERI) [11], differs from more con-
ventional approaches by being able to address individual TLS
targets with atomic-scale (nanometric) spatial resolution [12]
in contrast to the micrometric resolution of a laser beam. This

*randu11111@163.com
†gover@eng.tau.ac.il

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

advantage stems from the fact that the typical electron de
Broglie wavelength is six orders of magnitude shorter than
that of the optical wavelength of a laser beam. Recent techno-
logical developments in electron-quantum optics have paved
the way to implementing this alternative approach for coher-
ent control and interrogation of TLS targets using preshaped
and optically modulated QEWs. The diagnosis of the QS in
this scheme relies on extension of well-established techniques
in electron microscopy—electron energy loss spectroscopy
(EELS) and cathodoluminescence.

Recent technological advances have enabled the shaping
of single QEWs in the transverse [13–15] and longitudinal
[16–18] dimensions. Furthermore, it has been demonstrated
that the QEW density expectation value can be modulated at
optical frequencies by interaction with a laser beam [12,19–
29], utilizing the scheme of photoinduced near-field electron
microscopy (PINEM) [30]. This modulation is detectable by
interaction with a second phase-correlated laser beam, at-
testing to the reality of the QEW periodic spatiotemporal
sculpting (modulation) in the context of stimulated radiative
interaction [20,21,31–33].

In considering the free electron wavefunction as an alterna-
tive to a laser beam for probing and controlling the TLS, a key
question in the suggested concept is the physical interpretation
of the free electron wavefunction shape and the reality of
the QEW shape in its interaction with matter. The reality
of the QEW and the measurability of its shape and spatial
dimensions, as well as the transition from the quantum wave-
function presentation to the classical point-particle theory
(the wave-particle duality), have been considered previously
in the context of electron interaction with light [34–42]. It
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was shown that the transition of the QEW radiative inter-
action from the wavelike regime, exhibiting a characteristic
multisideband PINEM energy spectrum [19–31,43,44], to the
point-particle-like acceleration/deceleration regime [45,46],
takes place when

� = ωσt <
√

2. (1)

Namely, the transition takes place when the wavepacket
standard deviation duration σt (or its longitudinal breadth
σz = v0σt ) is short relative to the optical radiation period
2π/ω (or wavelength λ) [35–38,46]. The reality interpre-
tation of the QEW modulation features in the context of
radiative emission has been also extended to the all-important
case of multiple modulation-correlated electron wavepackets,
where coherent super-radiant emission [47], proportional to
the number of electrons squared N2, is expected [38,48–50],
analogous to the classical case of a prebunched point-particle
beam [51].

In analogy with the interaction of a QEW with radiation,
the reality of the QEW shaping and its modulation features
were claimed to be manifested also in interaction with matter
in a proposed effect of FEBERI [11]. Based on a simple
semiclassical model, it was proposed in Ref. [11] that a QEW,
passing in the vicinity of a TLS target (e.g., an atom, quan-
tum dot, crystal color center, or trapped ion), would induce
transitions in the TLS which depend on the QEW profile.
Specifically, it was suggested that an ensemble of optical-
frequency-modulated QEWs would resonantly excite TLS
transitions if their modulation frequency (produced by a laser
of frequency ωb in a PINEM setup [19]) is a subharmonic of
the TLS transition frequency:

nωb = ω2,1 = E2,1

h̄
, (2)

where E2,1 = E2 − E1 is the energy separation of the TLS
quantum levels. In addition, it was argued that, if all QEWs are
modulation correlated (i.e., modulated by the same coherent
laser), the transition rate should be enhanced in proportion
to N2 [52], in analogy with the superradiance effect of an
ensemble of atoms [47] or a bunched point-particle electron
beam [31,51]. Quadratic dependence of coherently modulated
electron beam scattering efficiency by bound electron QSs
has been recognized earlier also as pulsed beam scattering
[50,53,54]. In the case of a beam of multiple near-point-
particle QEWs, it was recently termed quantum klystron [55]
in connection to microwave frequency quantum transition.
When such near-point-particle QEWs are injected as a peri-
odic train of pulses, they would produce a FEBERI transition
rate enhanced in proportion to N2.

The semiclassical analysis of FEBERI, based on Born’s
probability interpretation of the wavefunction envelope mod-
ulation [11,56] and its proposed dependence on the QEW
dimensions, were questioned [57,58]. This led to a furry of
recent publications on the subject [23,24,48,55–62]. Never-
theless, recent, fully quantum-mechanical analyses (of both
the free and bound electrons) have substantiated the propo-
sition of shape and modulation dependence of multiple
correlated QEWs interactions with a TLS and with radiation
[48,56]. Moreover, technological and conceptual develop-
ments of schemes for optical control of the temporal shape

of the electron wavefunction show that attosecond-scale
preshaping and modulation of QEWs are experimentally re-
alizable [16,17] and can be used to realize the proposed
theoretical concept.

Based on these conceptual and technological develop-
ments, we propose here that the shape dependence of the
QEW interaction with a TLS can be utilized for interrogation
of the quantum excitation state of a TLS [48,56,59,61,63].
We present a comprehensive theory of QS interrogation by
FEBERI, showing that the initial QS (qubit) coordinates
on the Bloch sphere, which uniquely define a superposition
TLS-QS, can be fully extracted from the post-interaction
electron energy spectrum of the interacting QEWs and co-
herently controlled by their preshaping. This can be achieved
by controlling the size of the QEWs before interaction or
premodulating them at optical frequency by a PINEM pro-
cess. Interrogation of the TLS state has been analyzed in
Ref. [59] considering an energy-modulated plane-wave quan-
tum electron wavefunction. In Ref. [61], a particular energy
distribution (coherent superposition state) of the free electron
wavefunction was considered and shown to be useful for
evaluating the decoherence and relaxation parameters of an
excited TLS. In this paper, we depict a more comprehensive
quantum model in which the free electron wavefunction is
described in terms of a QEW of general distribution in the
momentum or spatial domains. The use of both presentations
reveals that the entanglement of the free and bound electrons
results in an energy spectrum of the postinteraction QEWs that
corresponds to (and thus interrogates) the initial TLS-QS and
depends on the spatiotemporal shape and size of the QEWs
(the wavepacket envelope size). We show in this paper that a
broad-sized QEW (nearly plane-wave quantum wavefunction)
carries the fingerprint of the polar angle of the qubit state of
a target TLS on the Bloch sphere, with little energy trans-
fer, and therefore can be useful for its interrogation. On the
other hand, interaction with narrow finite-sized QEWs (nearly
point-particle limit) or optical-frequency density-modulated
QEWs involves energy transfer between the free electron and
the TLS and enables its coherent control.

The analysis here refers to the probability of quantum
electron transitions of a single TLS and the corresponding
modification of the energy density spectrum of an interacting
single QEW. Obviously, measurement of the free electron en-
ergy probability distribution requires multiple QEWs and/or
multiple TLS targets. Fundamentally, inelastic scattering of
an electron that results in quantum transition of a TLS-QS
to the upper or lower quantum level destroys the state, and
therefore, interrogation of a single TLS-QS by measuring the
postinteraction EELS of multiple electrons is possible only if
the TLS-QS is reinstated after each interaction. We conjec-
ture that coherent control and interrogation of the TLS state
with the joint quantum wavefunction of multiple modulation-
correlated electrons can be used for control and interrogation
of the TLS state [63]. This conjecture is an extension of
the recent conceptual proposals of super radiance [38,48,49]
and Rabi-oscillation FEBERI [11,56] processes with multiple
optical-frequency modulation-correlated electrons. However,
the analysis here is confined to interaction of single pre-
shaped and premodulated QEWs with a single TLS target. The
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FIG. 1. Scheme of two-level system (TLS) interrogation with free-electron–bound-electron resonant interaction (FEBERI). The free-
electron quantum electron wavepacket (QEW) is emitted from an electron gun and, after acceleration, gets preshaped or energy modulated
through interaction with the laser-induced optical near field of a tip/grating/membrane/nanoresonator [a photoinduced near-field electron
microscopy (PINEM) process]. After traversing a free-drift length LD along the z axis, the shaped or density-modulated QEW interacts with
a bound electron at coordinate z = 0, r⊥0 + r′. The TLS is pre-excited into a quantum superposition state by a phase-locked harmonic of the
same laser source with a controlled delay. The FEBERI interaction can be measured through the energy spectrum of the free electron.

extension to multiple particles [11,48,63] and targets [61,64]
is commented upon in the discussion.

Based on this theory and formulation, we expect that
further development of the proposed concept would lead to
implementation of the FEBERI effect in numerous important
applications of electron microscopy in atomic-scale probing
of quantum excitations in matter, diagnostics, coherent control
of qubits [65], and efficient pumping of single quantum dot
quantum emitters [66].

II. THEORETICAL FRAMEWORK

We present analysis of a general experimental scheme for
interrogating bound-electron QSs by free electrons. The free
electron is modeled as a QEW propagating in proximity to
a hydrogenlike atom that models a general quantum TLS.
We assume an experimental setup, as shown in Fig. 1, in
which the TLS-QS is preset by a coherent laser beam that is
phase-locked to a laser beam that preshapes or premodulates
the QEW with controlled delay. We assert that the QS of
the TLS can be deduced from the postinteraction electron
energy spectrum of the free electrons which is accumulated
by repeated reinjection of identical QEWs and re-excitation
of the TLS.

We start by describing the TLS as an electric dipole [56]
and assuming that the interaction between the free electron
and the TLS is dominated by Coulomb potential. The joint
wavefunction of the free and bound electrons is governed by
the relativistically modified Schrödinger equation:

ih̄
∂

∂t
|�〉 = (Ĥ0 + ĤI )|�〉, (3)

where Ĥ0 = Ĥ0F + Ĥ0B, with Ĥ0F and Ĥ0B being the ki-
netic Hamiltonian of the free electron and the Hamiltonian
of the bound electron, respectively, and ĤI is the interaction
Hamiltonian. For the analysis to be valid also for relativistic

electrons, we use the relativistic one-dimensional (1D) kinetic
Hamiltonian for a free electron of energy E0 = γ mec2 and
momentum p0 = γ mev0, where me = 9.1 × 10−31 kg is the
electron mass, v0 is the velocity of the free electrons (β =
v0/c = 0.7 in this paper, c is the velocity of light):

Ĥ0F = E0 + v0 · ( p̂ − p0) + 1

2γ 3me
( p̂ − p0)2. (4)

This Hamiltonian was derived in Refs. [35,36] by a second-
order iterative approximation of the Klein-Gordon equa-
tion, neglecting the spin effects. The Hamiltonian satisfies
Ĥ0F |p〉 = Ep|p〉, where |p〉 is the eigenstate of momentum op-
erator p̂ which satisfies 〈p|p′〉 = δ(p−p′) and

∫
d p|p〉〈p| = I ,

and the energy dispersion relation is Ep = E0 + v0(p − p0) +
1

2γ 3me
(p − p0)2. The TLS Hamiltonian satisfies Ĥ0B|i〉 =

Ei|i〉 (i = 1, 2), where Ei = h̄ωi, and |i〉 is the eigenstate of
the TLS which satisfies 〈i| j〉 = δi j .

The neglect of exchange energy and the spin-orbit in-
teraction effects is valid in our simplified model under the
assumption that the free and bound electrons do not overlap
spatially. There is no interaction between the preshaped QEW
and the laser field used to excite the TLS, assuming that it
is vanished by the time the QEW meets the TLS. Thus, the
dominant interaction in the system is the Coulomb interaction
of the dipole and free electron, yielding an interaction Hamil-
tonian ĤI = −er̂

′ · E(ẑ, r⊥0), where r̂′ is the position vector
of the bound electron relative to the model Hydrogen nucleus,
and r̂ = (ẑ, r⊥0) is the position vector of the free electron
relative to the nucleus (see Fig. 1). In a 1D model, the free
electron is presented as a QEW of negligible narrow width
[r = (z, 0)]. Such a relativistic electron generates an electric
field E(z, r⊥0) at the TLS position [67]:

E(z, r⊥0) = − eγ

4πε0

zêz + r⊥0ê⊥(
γ 2z2 + r2

⊥0

)3/2 , (5)
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where êz and ê⊥ represent the directions along and perpendic-
ular to the free electron propagation, respectively.

We take the initial state of the free electron to be a
general QS: |ψF (p, t )〉 = ∑

p c(0)
p exp(−iEpt/h̄)|p〉, where c(0)

p
is the quantum electron wavefunction in momentum space.
The general time-dependent preinteraction state of the bound
electron is represented as |ψB(t )〉 = sin( θ

2 )exp(−iω1t )|1〉 +
exp(iφ) cos( θ

2 )exp(−iω2t )|2〉, where θ ∈ [0, π ] is the polar
angle and φ ∈ [0, 2π ] is the azimuth angle of the Bloch sphere
[68]. The combined wavefunction of the free and bound elec-
trons |�〉 is the solution of Eq. (1) in the presence of the
electric dipole interaction which entangles the free and bound
electron states.

It is convenient to transform to the interaction picture by
using the unitary evolution operator Û (t ) = exp(−iĤ0t/h̄)
such that Eq. (3) becomes

ih̄
∂

∂t
|�̃(p, t )〉 = ĤI (t )|�̃(p, t )〉, (6)

where |�̃(p, t )〉 = Û †(t )|�(p, t )〉, and the Hamiltonian
ĤI (t )= Û †(t )ĤIÛ (t ) = μ2,1 · E(ẑ+ v0t, r⊥)exp(−iω2,1t )σ̂+

+ H.c. with μ2,1 = −e〈2|r̂′ |1〉 being the dipole moment
of the TLS, and σ̂+ = |2〉〈1| (σ̂− = |1〉〈2|) being the TLS
raising (lowering) operator, see Appendix A for the detailed
derivation. Thus, the wavefunction after interaction is
obtained by multiplying the initial wavefunction with the
scattering operator Ŝ(t f , ti ) = T exp[− i

h̄

∫ t f

ti
ĤI (t )dt], where

T is the time-ordering operator, and ti and t f are the initial
time and final times of the interaction (see Appendix B):

|�̃ f (p, t f )〉 = Ŝ(t f , ti )|�̃i(p, ti )〉. (7)

Since the coupling strength between free and bound elec-
trons is relatively weak, it is reasonable to consider only
the first-order expansion of the scattering matrix, which is
equivalent to first-order perturbation theory. Then (derived in
Appendix B)

Ŝ(t f , ti ) = cos |g| − i sin |g|
×

[
exp(iφg)σ̂+exp

(
−i

ω2,1

v0
ẑ
)

+ H.c.
]
, (8)

where g = μ2,1

h̄v0
· ∫ ∞

−∞ du E(u, r⊥0)exp(−iω2,1u/v0) is the cou-
pling coefficient between the free electron and the TLS in the
limit ti → −∞, t f → ∞ [56]:

g = − e

2πε0γ h̄

ω2,1

v2
0

μ2,1 ·
[

i

γ
K0

(
ω2,1r⊥
v0γ

)
êz

+K1

(
ω2,1r⊥
v0γ

)
ê⊥

]
= |g|exp(iφg). (9)

For any input state |�̃i〉 = |ψ̃ i
F 〉⊗|ψ̃ i

B〉, we can get a gen-
eral form of the final state |�̃ f 〉 by using the scattering
operator [Eq. (8)] in Eq. (7), where the general form of the
initial TLS state and QEW in the interaction picture is repre-
sented by |ψ̃ i

B〉 = sin θ
2 |1〉 + exp(iφ) cos θ

2 |2〉 and |ψ̃ i
F (p)〉 =∑

p c(0)
p |p〉, respectively. The following derivation step (see

Appendix C) is a calculation of the postinteraction density ma-
trix ρ̂ f = |�̃ f 〉〈�̃ f | of the quantum-entangled free and bound
electron systems. Finally, the density matrices of the bound
and free electrons are derived by partial tracing: ρ̂

f
F = TrB[ρ̂ f ]

and ρ̂
f
B = TrF [ρ̂ f ], respectively. This results in the explicit

expressions for the free electron postinteraction momentum
density distribution for any initial electron wavefunction c(0)

p :

ρ f (p) = diag
(
ρ̂

f
F

)
= cos2|g|∣∣c(0)

p

∣∣2 + sin2|g|
[

cos2

(
θ

2

)∣∣c(0)
p+δp2,1

∣∣2

+ sin2

(
θ

2

)∣∣c(0)
p−δp2,1

∣∣2
]

− 1

2
sin (2|g|) sin θRe{iexp[−i(φ − φg)]Co(p, δp2,1)

+ iexp[i(φ − φg)]Co(p,−δp2,1)}, (10)

where δp2,1 = h̄ω2,1/v0 is the electron recoil parameter and
Co(p, δp) ≡ c∗(0)

p+δpc(0)
p .

Complementary to the derivation of the QEW momentum
distribution, the corresponding final occupation probabilities
of the upper and lower levels of the bound electron are (see
Appendix C)

P f
1 = 〈1|ρ̂ f

B |1 〉 = Pi
1 + sin2|g| cos θ − 1

2
sin (2|g|) sin θ

× Re
{

I (−δp2,1) exp
[
−i(φg − φ) + i

π

2

]}
,

P f
2 = 〈2|ρ̂ f

B |2 〉 = Pi
2 − sin2|g| cos θ − 1

2
sin (2|g|) sin θ

× Re
{

I (δp2,1) exp
[
i(φg − φ) + i

π

2

]}
,

(11)

where I (δp2,1) = ∫
p d p Co(p, δp2,1) = ∫

p d p 〈c(0)
p+δp2,1

|c(0)
p 〉 is

an autocorrelation function [56,59].
Equation (11) satisfies P f

1 + P f
2 = 1. Furthermore,

Eqs. (10) and (11) together result in a conservation of energy
relation between the free and bound electron subsystems:

E2,1 · �P2 =
∫

Epρ
f (p)d p − E0, (12)

where �P2 = P f
2 −Pi

2 = −�P1. This manifests the self-
consistence of the presented formulation.

III. INTERROGATION OF A TLS WITH
SHAPE-CONTROLLED QEWS

In this section, we analyze the interaction between a TLS
and a finite-sized QEW and present the dependence of the
postinteraction incremental spectrum of the free electron on
the QEW size. We demonstrate the wave-particle duality
of the QEW in interaction with matter and its transition
from quantum plane-wave to near-point-particle characteris-
tics. This transition is analogous to the wave-particle duality
and the transition from the multiphoton emission/absorption
(PINEM) process to the acceleration/deceleration process in
interaction of QEWs with light that we have analyzed earlier
[36–38].

We model the free electron as a general Gaussian
wavepacket including broadening and momentum chirp due to
energy-dispersive drift from a controlled waist point located a
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distance LD = v0tD before the interaction point z = 0 [36] (see
Appendix D). In momentum representation:

cp(tD) = 1(
2πσ 2

p

)1/4 exp
(
− iEptD

h̄

)
exp

[
− (p − p0)2

4σ 2
p

]

= exp
{− i[E0+v0(p−p0 )]tD

h̄

}(
2πσ 2

p

)1/4 exp

[
− (p − p0)2

4σ̃ 2
p (LD)

]
, (13)

where σp is the wavepacket momentum spread. We lumped
the quadratic term of Eq. (4) into the definition of a complex

momentum spread parameter σ̃p(LD) =
√

σ 2
p

1+i 2LD
γ 3mv0 h̄

σ 2
p

. Corre-

spondingly, the QEW in space-time coordinates is

ψz(LD) = 1

[2πσ̃ 2
z (LD)]1/4 exp

[
− (z − v0tD)2

4σ̃ 2
z (LD)

]
, (14)

where σ̃z(LD) = σz0

√
1 + i h̄LD

2γ 3mev0σ
2
z0

, and σz0 = h̄
2σp

is the

QEW longitudinal waist size. The Gaussian wavepacket in
real space and time coordinates σt (tD) = |σ̃z(LD)|/v0 broad-
ens upon propagation from the location of its waist to the
interaction point z = 0 after a drift time tD = LD/v0. This
history-dependent size of the QEW can be written as [36]

σt (LD) = σt0

√
1 + L2

D/z2
R‖, (15)

where σt0 = σt (LD = 0), and we define a longitudinal
Rayleigh length parameter zR‖ = 4πγ 3βσ 2

z0/λc, analogous to
the transverse expansion Rayleigh length of a laser beam, cor-
responding to the distance where the QEW envelope broadens
by a factor of

√
2, and λc = h/mec is the Compton wave-

length.
Using Eq. (13) as the initial state c(0)

p in Eq. (10), we
get the postinteraction momentum density distribution of the
Gaussian QEW (details shown in Appendix E):

ρ f
p = ρ i

p + �ρ = ρ i
p + �ρ (0)

p + �ρ (1)
p + �ρ (2)

p , (16)

where ρ i
p = |cp(tD)|2 = 1√

2πσ 2
p

exp[− (p−p0 )2

2σ 2
p

],

�ρ (0)
p = −sin2|g| 1√

2πσ 2
p

exp

[
− (p − p0)2

2σ 2
p

]
, (17)

�ρ (1)
p = sin (2|g|)

2
sin θ exp

(
−�2

2

)

× sin (ζ + φg)
1√

2πσ 2
p

{
exp

[
−

(
p − p0 + δp2,1

2

)2

2σ 2
p

]

− exp

[
−

(
p − p0 − δp2,1

2

)2

2σ 2
p

]}
, (18)

�ρ (2)
p = sin2|g| 1√

2πσ 2
p

{
cos2

(
θ

2

)
exp

[
− (p− p0+ δp2,1)2

2σ 2
p

]

+ sin2

(
θ

2

)
exp

[
− (p − p0 − δp2,1)2

2σ 2
p

]}
. (19)

The corresponding increments of the occupation proba-
bilities of the TLS quantum levels that are probed by this
incremental energy spectrum are [from Eq. (11)]

�P2 = −�P1 = −sin2|g| cos θ

+ 1

2
sin (2|g|) sin θ sin (ζ + φg)

× exp

[
−

(
�2 + �2

D

)
2

]
, (20)

where � = ω2,1σt (LD) and �D = 1
2ω2,1σt0

LD
zG

= σE
E2,1

LD
zG

, with
[36]

zG = 2γ 3β3 mec3

h̄ω2
2,1

. (21)

Note that the decay constant � is the same as the de-
cay constant [Eq. (1)] of radiative interaction of a QEW in
transition from wave to point-particle limit [36,69] with the
substitution ω = ω2,1. Thus, to avoid diminishing of the first-
order FEBERI interaction, one should keep � = ω2,1σt (LD) <

1 and LD < zG (see Appendix D).
The phase φ is the phase of the superposition QS of the

TLS (azimuthal angle of the qubit) at the time of the TLS
excitation (see Fig. 1), and ζ = ω2,1�t−φ is the phase at the
arrival time of the QEW centroid to the TLS location z = 0.
Here, �t is the time elapsed from the TLS excitation to the
arrival of the QEW. It is the difference between the electron
drift time tD and the optical path delay time between the TLS
excitation and the QEW formation by the phase-locked laser
beams (see Fig. 1).

Figure 2 demonstrates the dependence of the free elec-
tron postinteraction energy spectrum on the parameters of
the TLS-QS on the Bloch sphere (θ, φ). For simplicity, we
consider here the case when the QEW arrives at the in-
teraction point at its minimal waist without chirp, namely,
σt (LD = 0) = σt0 = h̄/2σE . Figures 2(a), 2(d), and 2(e) dis-
play the incremental energy density distribution �ρEp of the
free electron after interaction that was calculated numerically
(see Appendix H) for different wavepacket sizes σt . For com-
parison, we overlay in Fig. 2(e) the analytically calculated
curves of Eqs. (16)–(19), showing excellent agreement. The
curves were calculated for parameters g = 1.1 × 10−3, r⊥0 =
2 nm, β = 0.7 (γ = 1.4) corresponds to the free electron
energy 205 keV, the TLS transition energy E2,1 = 1.97 eV,
ω2,1 = 3 fs−1, and period T2,1 = 2π/ω2,1 = 2.1 fs. Animated
display of these dependences in the continuous parameters
range (0 � θ � π, 0 � φ � 2π ) is given in Movies S1–S3
in the Supplemental Material [70].

Figure 2(d) displays the dependence of the incremental
energy spectrum on the polar parameter θ of the TLS state
under the condition of large quantum recoil (narrow energy
spread):

δp2,1 = h̄ω2,1

v0
> 2σp (E2,1 > 2σE ). (22)

In this limit, the spectrum displays a PINEM-like spectrum
of two well-distinguished sidebands peaked at EP − E0 =
±E2,1. The asymmetry between the negative and positive re-
coil sidebands reflects the different dependencies on the polar
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FIG. 2. Incremental energy spectra for different sizes of quantum electron wavepackets (QEWs). (a) For a short QEW (σt0 = 0.3T2,1),
�ρp is dominated by the first-order term [Eq. (18)] and exhibits an acceleration/deceleration spectrum dependent on the azimuthal phase φ

(shown for the latitude angle θ = π/4). (b) and (c) Incremental energies of the QEW (left-side axis) and the two-level system (TLS; right-side
axis) as a function of θ and φ, respectively, demonstrating the energy conservation relation [Eq. (12)]. (d) For a long QEW (σt0 = T2,1), the
magnitude of sidebands is determined by the polar angle θ independently of φ. (e) For an intermediate case QEW (σt0 = 0.6T2,1), the spectrum
provides information on both polar (θ ) and azimuth (φ) angles (see video displays of continuous angle dependencies in Supplemental Material
Movies S1–S3 [70]). The dashed curves in (e) display the results of the analytical formulae [Eqs. (16)–(19)] and match the numerical results
(continuous curves) very well.

angle θ of the two sideband terms in the second-order incre-
ment term �ρ (2)

p [Eq. (19)], which is dominant in this limit. In
general, the first-order term �ρ (1)

p [Eq. (18)] would add to the
spectrum two more azimuthal angle-dependent antisymmetric
sidebands peaked at ±E2,1/2, but these do not show up in the
case depicted in Fig. 2(d) since it is diminished by the factor
exp(−�2/2). This decay factor is dominant in the case of long
QEW shown in Fig. 2(d) because, under condition [Eq. (22)]
� = ω2,1σt = E2,1/σE > 1, and the first-order term decays
then exponentially below the second-order term. However,
this is not necessarily the case when σt is not very large.
Since the first- and second-order terms are proportional, re-
spectively, to |g| and |g|2, the rigorous condition for neglecting
the contribution of the first-order term depends on |g|, namely,
for |g| � 1, it is � = ω2,1σt >

√−2 ln |g|. It is instructive to
note that, unlike the PINEM spectrum [19], the postinteraction
spectrum in Fig. 2(d) displays only two first-order sidebands,
which implies that only one quantum of energy is exchanged
between the free electron and the TLS in the FEBREI process
for a single electron interaction.

Figure 2(a) displays the dependence of the incremental
energy spectrum on the azimuthal parameter φ of the TLS
state under the condition of short (near-point particle) QEW:

2σt (LD) < T2,1. (23)

In this limit, the curves display an acceleration/deceleration
spectrum that depends according to Eq. (18) sinusoidally on
the polar θ and azimuthal φ angles of the TLS-QS [shown
in Fig. 2(a) for θ = π/2]. In this case, � = ω2,1σt < 1, and

the decay factor is exp(−�2/2) ≈ 1; thus, the linear term
�ρ (1) is dominant. The opposite polarity positive and neg-
ative recoil terms in Eq. (18) (peaked at ±E2,1/2) do not
show up in Fig. 2(a) because, in this case, 2σE > E2,1. Con-
sequently, these terms overlap, and the incremental energy
distribution function displays an S-shaped curve, reflecting
through ζ the phase φ of the TLS-QS at the arrival time
of the QEW centroid. Figures 2(b) and 2(c) display the to-
tal energy expectation value increment of the postinteraction
QEW as a function of the polar (θ ) and azimuth (φ) angles
of the TLS-QS. They also show the corresponding change of
the TLS excitation incremental energy expectation value, in
confirmation of the conservation of energy relation [Eq. (12)].
Figure 2(e) displays an intermediate parameter case 2σt �
T2,1 in which the first-order [Eq. (18)] and second-order
[Eq. (19)] terms have similar weight, and the incremental
energy spectrum reflects at the same time both the polar and
azimuthal angles of the TLS state.

A. Quantum wave-particle duality and anomalous FEBERI

The interpretation of the quantum electron wavefunction
�(r, t ) has been a matter of debate since the inception of
quantum theory [71,72]. The accepted Born interpretation
is that the expectation value of the electron wavefunction
modulus in space-time |�(r, t )|2 represents the probability
density of finding the electron at point r at time t . While
we use both momentum and space-time representations of the
electron wavefunction, the latter is most conducive to phys-
ical understanding of the electron particlelike and wavelike
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regimes of interaction with light and matter in view of Born’s
interpretation of the wavefunction. As shown in Eq. (22), a
narrow QEW in momentum (or energy) presentation interacts
with a TLS as a quantum wave, exhibiting positive and nega-
tive recoils. On the other hand, the QEW interacts as a particle
in the limit of a short wavepacket in space-time presentation
[Eq. (23)]. In this case, consistently with Born’s picture, the
QEW is a near-point particle, experiencing acceleration or
deceleration depending on its arrival time relative to the dipole
moment oscillation phase of the TLS.

From the analysis of the previous section, we conclude that
the interrogation of the QS of a preset TLS superposition state
is possible by measuring the postinteraction energy spectrum
of a passing-by QEW, as shown in Fig. 1. For probing the
qubit polar angle θ of the TLS-QS, it is necessary to employ
a narrow energy spread QEW that satisfies the large recoil
condition [Eq. (22)]. In this case, the QEW is broad in real
space, and its postinteraction spectrum exhibits a wavelike
PINEM sideband spectrum corresponding to positive and neg-
ative electron quantum recoils [Fig. 2(d)]. The asymmetry
of the sideband pattern measures the polar angle θ of the
TLS state. To probe the azimuth angle φ of the TLS-QS, it
is necessary to employ a short wavepacket that satisfies the
near-point-particle condition [Eq. (23)], exhibiting an acceler-
ation/deceleration postinteraction energy spectrum [Fig. 2(a)].
However, the two conditions of large recoil [Eq. (22)] and
short wavepacket [Eq. (23)] are complementary only in the
case of a QEW at its waist [tD = 0 in Eq. (14)]. In the gen-
eral case tD �= 0, one must consider that the general QEW
[Eq. (14)] describes a chirped Gaussian with a longitudinal
waist size σt (tD) broadened relative to the waist size σt0. The
waist is located at an arbitrary waist location that can be
controlled in principle at the QEW preshaping section of the
experimental setup (Fig. 1) by optical shaping and chirping
techniques [16,17].

In the general case, the QEW may be chirped. The best
way to describe this case is in phase space. Figure 3 de-
picts the different regimes of QEW interaction with a TLS in
energy-time (or momentum-space) phase-space. The Wigner
distribution of a general chirped QEW [Eqs. (13) or (14)] after
drift can be calculated numerically from the postinteraction
density matrix of the free electron [Eq. (C5) in Appendix
C]. The preinteraction distribution of the QEW upon entrance
to the FEBERI interaction point is shown in color code in
the left column of Fig. 3 for three cases. Cases A and B
correspond to injection of the QEW at its waist (no chirp) at
the large recoil [Eq. (22)] and narrow wavepacket [Eq. (23)]
conditions, respectively. Like the representation of anoma-
lous PINEM in Ref. [37], we overlay the Wigner distribution
of the preinteraction QEW on a phase-space square of area
E2,1 × T2,1 representing the TLS; both have the area h, the
Planck constant. The second column in Fig. 3 depicts the
incremental Wigner distribution after interaction, and the third
column presents the incremental energy distribution density
�ρp, which is the difference of the horizontal projections
of the Wigner distributions before and after interaction. We
observe that the topology of the phase-space diagrams re-
veals a QEW parameter regime where neither the large recoil
[Eq. (22)] nor the narrow wavepacket [Eq. (23)] conditions
are satisfied. This regime is depicted in row C of Fig. 3. This

FIG. 3. Energy-time phase-space presentation and postinter-
action incremental energy spectrum of the quantum electron
wavepacket (QEW). The first column displays the Wigner distribu-
tion of the QEW before interaction, and the second column displays
the incremental Wigner distribution after interaction. The area of the
pre-interaction Wigner distributions in the first column is the Planck
constant h, the same as the square that represents the phase space area
of the two-level system (TLS) E2,1 × T2,1. Consequently, the phase-
space topography of the initial phase-space distribution of the QEW
(left column) delineates only three possible cases, corresponding to:
(a) long QEW with large recoil, (b) short QEW, and (c) chirped QEW.
The second column depicts the incremental Wigner distribution of
the QEW after interaction for TLS quantum state (QS) parameters
θ = π/2 and φ = π/2. The third column presents the incremental
energy density distribution before and after interaction, i.e., the dif-
ference of the horizontal projections of the Wigner distributions in
the second and first columns.

regime is analogous to anomalous PINEM in the general case
of PINEM interaction [37]. Evidently, one should avoid this
chirp-dominated topological no-man’s land in phase-space,
which does not reflect the TLS-QS qubit coordinates. This can
be done by optical control of the wavepacket size and chirp,
as shown in Refs. [16,17].

The control of the size and chirp of the QEW requires ad-
vanced optical techniques. The azimuthal phase interrogation
scheme requires suboptical-cycle shape control. Substantial
progress has been achieved in QEW shape control by terahertz
and infrared (IR) chirp techniques [16,17] and other schemes
[18]. Assuming such control is available, the QEW breadth,
chirp, and waist-location parameters can be controlled at the
QEW preshaping box (Fig. 1). This control is necessary if
one wants to operate at the short wavepacket regime to make
sure that the history-dependent QEW duration [Eq. (15)] still
satisfies the short wavepacket condition [Eq. (23)] at the inter-
action point z = 0 after drift and to avoid slipping into the
undesirable regime of anomalous FEBERI depicted in row
C of Fig. 3. Then the natural dispersive broadening of the
QEW [Eq. (15)] sets a practical limit on the drift length LD
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before interaction. The minimum of the broadened QEW size
σt (LD) with respect to σt0 is [σt (LD)]min =

√
LDλc/2πγ 3β3

(see Appendix D). Therefore, to satisfy the condition of a nar-
row Gaussian QEW � = ω2,1σt (LD) <

√
2, one needs to limit

the drift length before interaction to LD < zG [36], where zG

[Eq. (21)] is a universal limit parameter of dispersive free-drift
length, dependent only on the beam energy and the TLS tran-
sition frequency. In this paper, we use β = 0.7, ω2,1 = 3 ×
1015 Hz for all the presented results, for which zG = 4.9 cm,
an unprohibitive practical range for an electron microscope
experimental setup.

IV. INTERROGATION OF TLS WITH
OPTICAL-FREQUENCY DENSITY-MODULATED QEWS

In this section, we focus on the interaction between a TLS
and an optical-frequency-modulated QEW (both momentum
and density modulations). In Sec. IV A, we derive the de-
velopment of density modulation in a finite-sized QEW after
being momentum (energy) modulated in a PINEM process
followed by free-space drift. In Sec. IV B, we derive the
FEBERI postinteraction spectrum of such a modulated QEW.
We find good agreement between our numerical and analytical
results and demonstrate the possibility of coherent control of
the TLS-QS through density-modulated QEWs.

A. Density modulation of a QEW

Shaping of QEWs to suboptical-cycle size can be done by
a wavefunction chirping and drift process using terahertz or
IR beams [16,17]. An alternative way of shaping the QEW
is by applying the PINEM process. In this process, a broad
QEW interacts with the near field of a laser-beam-illuminated
structure and gets energy modulated at the laser frequency ωb

by a process of multiple emission and absorption of photon
quanta h̄ωb [19–23]. This optical frequency modulation of
QEWs has been demonstrated experimentally also by other
laser-electron interaction schemes using dielectric structures,
foils, and the ponderomotive potential of laser beam beats
[22,25,26,44,73]. It has been demonstrated experimentally
that such an energy-modulated QEW becomes density mod-
ulated after drift at the laser modulation frequency and its
harmonics and produces an array of attosecond-scale current
bunches [29,33,38]. Such short subbunches can play the same
role as a near-point-particle single QEW [11]. Thus, in the
case of FEBERI interaction with premodulated QEWs, the
preshaping box in Fig. 1 represents a PINEM interaction
setup, and LD is a drift distance at which the QEW develops
density modulation of short (attosecond scale) subbunches.

The PINEM and the attosecond density modulation process
have been analyzed in detail in several previous publica-
tions [19,21,30,43,74]. We iterate the exact derivation in
Appendix D and present here a simple useful approximation
for the bunching coefficient in the practical case of a long
QEW (relative to the optical modulation period). Though the
physics of the FEBERI process is best comprehended intu-
itively in space-time coordinates, it is most straightforward to
present the PINEM process in momentum space. Therefore,
we start with the expression for the spectral sideband structure
of a PINEM-modulated Gaussian QEW in momentum presen-

tation [19,43]:

|ψp〉 = 1(
2πσ 2

p

)1/4

∑
m

Jm(2|gL|)

× exp

[
− (p − mδpL )2

4σ 2
p

− imφ0

]
|p〉, (24)

where δpL = h̄ωb/v0 is the electron recoil momentum, n is
the order of an absorption or emission sideband, φ0 is the
phase of the centroid of the QEW envelope relative to the
near field generated by the laser at the PINEM modulation
point [63] (see Appendix F), gL is the coupling parameter
of the interaction between the laser field and the electron
(gL = e

2h̄ωL

∫
E (z)exp(−i�kz)dz) [19], and it is assumed that

the initial momentum (energy) spread of the QEW is small,
σp � δpL.

After drifting freely a distance LD, the QEW in momentum
representation is found by applying the evolution operator
exp(−iH0FtD/h̄) with H0F being the second-order expansion
of the free space Hamiltonian [Eq. (4)] and where tD = LD/v0

is the free-drift traversal time of the electron:

cp(tD) = exp(−iEptD)(
2πσ 2

p

)1/4

∑
m

Jm(2|gL|)

× exp

[
− (p − p0 − mδpL )2

4σ 2
p

− imφ0

]
, (25)

where Ep = E0 + v0(p − p0) + 1
2γ 3me

(p − p0)2. Thus, we can
derive the wavefunction in the spatial domain by Fourier
transformation ψz(z, t ) = ∫

d p cp(t )exp(ipz/h̄), and the den-
sity probability distribution of the QEW is ρz = |ψz(z, t )|2.
This space-time density modulation of the QEW was com-
puted in Appendix F as a function of the drift length and
the moving coordinate z − v0t of the wavepacket envelope
centroid, for the parameters presented in Fig. 4. The density
distribution is composed of a train of attosecond-scale short
subbunches with periodicity (nearly) equal to the laser bunch-
ing period Tb = 2π/ωb, with a small frequency chirp due to
the quadratic electron momentum (energy) dispersion. The
modulation amplitude varies with LD in macroscopic scale
(centimeters). It attains maximum modulation at LD = 1.5 cm
[Fig. 4(b)]. The pattern repeats itself periodically (the tempo-
ral Talbot effect [75–77]).

An important figure of merit of the QEW density distribu-
tion in its interaction with radiation or other harmonic fields
is the spectral bunching parameter:

�

ρz(ω) =
∫ ∞

−∞
exp (iωt )ρzdt . (26)

This parameter, also termed the coherence coefficient
[59,78], is consistent with the corresponding definition of a
point-particle beam spectral bunching parameter in acceler-
ator and FEL physics terminology [51,79]. In the practical
case of a long QEW envelope, the frequency chirp is small,
and the density distribution may be written as a product of
the envelope and density modulation functions [38] analogous
to presentation in the classical bunched point-particle beam
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FIG. 4. Bunching of a modulated quantum electron wavepacket
(QEW). (a) Spatiotemporal evolution of the density distribution of
a modulated QEW as a function of drift length; the blue vertical
line at LD = 0 cm marks the QEW energy modulation [photoinduced
near-field electron microscopy (PINEM) interaction] point, the red
line at LD = 1.5 cm corresponds to maximum bunching [Eq. (31)],
and the green line at LD = 4.6 cm corresponds to an overbunching
position. The beam energy is E0 = 205 keV, the (laser) bunching
frequency is ωb = 3 × 1015 rad/s, the envelope size of the QEW at
z = 0 is σt0 = 2Tb = 4.2 fs, and the phase φ0 = 0. (b) The density
distribution at different drift lengths. Continuous dependence of the
density distribution on the drift length is shown in Supplemental
Material Movie S4 [70].

regime [80]:

ρz = fet

(
t − z

v0
− t0

)
fmod

(
t − z

v0
− tL

)
, (27)

where the envelope function is the absolute value square of
the history-dependent broadened Gaussian QEW [Eq. (14)]
fet (t ) = exp[−t2/2σ 2

t (LD)]/[2πσ 2
t (LD)]1/2, ωbtL is the car-

rier envelope phase, and the modulation function is periodic
and composed of harmonics of the bunching frequency:

fmod

(
t − z

v0
− tL

)
=

∞∑
m=−∞

bmexp
[
mωb

(
t − z

v0
− tL

)]
.

(28)
Thus, the spectral bunching parameter is

�

ρz(ω) =
∞∑

m=−∞
bm exp

[
− (ω − mωb)2σ 2

t (LD)

2

]
, (29)

where for the Gaussian-modulated QEW [Eq. (25)], the
bunching parameter bm of harmonic frequency m can be ex-
pressed in absolute value by the simple expression (Appendix
F) [59,78]:

|bm| =
∣∣∣∣Jm

[
4|gL|sin

(
2πmLD

zT

)]∣∣∣∣. (30)

This parameter attains its maximal value for the mth har-
monic |bm|max = |Jm(um), where um = 4|gL|sin(2πmLm

D/zT )
is the argument that makes the mth-order Bessel function
maximal. The maximum bunching point is at a drift length
location: (

Lm
D

zT

)
max

= 1

2π
sin−1

(
um

4|gL|
)

, (31)

where zT = 4πβ3γ 3mec3/h̄ω2
b is the temporal Talbot distance

[59,78]. Interestingly enough, zT = 2πn2zG for the resonant

case ω2,1 = nωb, where zG was defined in Eq. (21) in con-
nection to broadening of a finite Gaussian QEW in free
space; both phenomena originate from the quadratic term
in the energy dispersion relation [E p = E0 + v0p−p0 +
12γ 3mep−p02], analogous to the Fresnel diffraction effect in
optics. Also interesting to observe, in the strong coupling limit
|gL| � 1, Eq. (31) reduces to ( LD

zT
)
max

= 1
4π |gL | for m = 1,

which is the classical limit expression of maximal bunching
[59,78] and is consistent with corresponding expressions for
maximum point-particle beam bunching in accelerator and
FEL theory [51,79].

B. FEBERI with a modulated QEW

The analysis of the FEBERI interaction with a mod-
ulated QEW [Eq. (25)] is like the analysis for a single
finite-sized QEW, except that, instead of [Eq. (13)], one
should substitute the modulated wavefunction expression
[Eq. (25)] in the generic expressions for the postinteraction
free electron energy density distribution [Eq. (10)]. The ini-
tial momentum distribution in this case is ρ i

p = |cp(tD)|2 =
1√

2πσ 2
p

∑
m

|Jm(2|gL|)|2exp[− (p−p0−mδpL )2

2σ 2
p

]. The zeroth-, first-

, and second-order terms in the postinteraction incremental
density distribution [Eq. (16)] are derived in Appendix G
under the assumption of near resonance condition of a har-
monic order n of the modulated QEW with the TLS transition
nωb ≈ ω2,1:

�ρ (0)
p = −sin2|g|

∑
m

|Jm(2|gL|)|2 1√
2πσ 2

p

× exp

[
− (p − p0 − mδpL )2

2σ 2
p

]
, (32)

�ρ (1)
p = sin (2|g|)

2
sin θexp

[
− (ω2,1 − nωb)2σ 2

t0

2

]
×

∑
m

An,m(φ)
1√

2πσ 2
p

exp

[
− (p − p0 − mδpL )2

2σ 2
p

]
,

(33)

�ρ (2)
p = sin2|g|

∑
m

Bn,m(θ )
1√

2πσ 2
p

× exp

[
− (p − p0 − mδpL )2

2σ 2
p

]
, (34)

where An,m(φ) = [− sin(ζ + φg + φm
δpL

)Jm+n(2|gL|) + sin
(ζ + φg + φm

−δpL
)Jm−n(2|gL|)]Jm(2|gL|) is the first-order

incremental amplitude of the sideband order m in
nth-order resonant interaction with the TLS [Eq. (2)],
Bn,m(θ ) = |Jm−n(2|gL|)|2cos2( θ

2 ) + |Jm+n(2|gL|)|2sin2( θ
2 ) is

the second-order incremental amplitude of the sideband order
m, and ζ = ω2,1tD−φ + nφ0 is the relative phase between
the modulated QEW and the TLS excitation phase. The
additional phase φm

±δpL
= ω2,1tD

(m±n/2)δpL

2γ 3mv0
is the consequence

of the difference in electron recoil due to positive or negative
transfer of m quanta in the quantum transition of the TLS.

Equations (32)–(34) and Figs. 5(a) and 5(b) show that, after
interaction, the multiple-sideband structure of the PINEM-
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FIG. 5. Incremental energy spectra and acceleration/deceleration of a modulated quantum electron wavepacket (QEW). The incremental
postinteraction spectrum of an energy modulated QEW without bunching (LD = 0) depends on (a) the azimuth angle φ and (b) the polar angle
θ . The corresponding dependences on φ and θ of the incremental spectral density distributions of a density bunched modulated QEW (LD �= 0)
are shown in (c) and (d), respectively. The acceleration/deceleration curves of the bunched QEW vary with (e) the polar angle θ and (f) the
azimuth angle φ. The corresponding energy change E2,1 · �P2 of the two-level system (TLS) is also shown in (e) and (f) and satisfies the energy
conservation relation [Eq. (12)]. There is a full agreement between the analytical and numerical results, which were computed for wavepacket
size σt0 = T2,1, phase φ0 = 0, and photoinduced near-field electron microscopy (PINEM) modulation intensity 2|gL| = 1.5.

modulated QEW remains peaked at p = p0 + mδpL, but
the momentum density distribution is redistributed due to
FEBERI induced recoils between the sideband orders. Like
the case of unmodulated QEW, the zeroth-order modification
of the density distribution is negative and independent of the
TLS-QS qubit parameters, the second-order term depends on
θ only, and the first-order term depends on both θ and φ

(through ζ ). Evidently, with |g � 1|, the zeroth- and second-
order terms (proportional to |g|2) are much smaller than the
first-order term (proportional to |g|), so �ρ (1) is the dominant
term for the incremental spectrum, except near the poles of
the Bloch sphere.

We first consider the case without drift, LD = 0 or short
drift, such that the recoil phase shift is φm

±δpL
� 1. In this case,

we set φm
±δp = 0 and

An,m = [−Jn+m(2|gL|) + Jm−n(2|gL|)]Jm(2|gL|) sin (ζ + φg)

= (−1)n+1An,−m.

Therefore, the sidebands of the incremental distribution
�ρ (1)

p are distributed symmetrically around p = p0 for n =
odd and antisymmetrically for n = even. The dependence on
θ and φ (through ζ ) is simply sinusoidal, in proportion to
sin θ sin(ζ + φg), as shown for the case n = 1 in Figs. 5(a)
and 5(b), respectively, with good agreement between the ana-
lytical and numerical computation.

The case of finite drift LD �= 0 and specifically LD =
(LD)max = 3.3 cm is displayed in Figs. 5(c)–5(f). Figures 5(c)
and 5(d) depict the dependence of the postinteraction QEW
energy density spectrum as a function of the azimuthal φ

and polar θ qubit parameters. The sidebands are redistributed
asymmetrically in this case. Consequently, the electron en-
ergy increment—the integral of the energy density distribution
increment—presents net acceleration dependence on θ and

acceleration/deceleration dependence on φ, as depicted in
Figs. 5(e) and 5(f), respectively, showing full agreement be-
tween the analytical and numerical results.

Complementary to the explicit expressions for the incre-
mental free electron energy spectrum [Eqs. (32)–(34)], the
comprehensive model solution of the Schrödinger equation
for the entangled free and bound electrons also provides the
corresponding expression for the incremental TLS transition
probability (see Appendix G):

�P2 = −�P1 = −sin2|g| cos θ

− 1

2
sin (2|g|) sin θ sin

(
ζ + φg + 2πn

LD

zT

)
× Jn

[
4|gL| sin

(
2πn

LD

zT

)]
× exp

[
− (ω2,1 − nωb)2σ 2

t0

2

]
exp

(
−�2

D

2

)
.

(35)

The energy change of the TLS, E2,1 · �P2, is depicted in
Figs. 5(e) and 5(f) together with the change of the free electron
energy, showing full agreement with the conservation-of-
energy relation [Eq. (12)], thus affirming the self-consistence
of the formulation and the validity of using the postinteraction
energy spectrum of modulated QEWs for diagnosis of the
TLS-QW qubit parameters.

Equation (35) is fully consistent with Eq. (30) for the
bunching parameter of a density-modulated QEW, showing
that the first-order energy transfer between the electron and
the TLS is proportional to the bunching coefficient bn. This
fundamental relation between free electron bunching and en-
ergy transfer is analogous to similar relations in classical
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electron interaction with light (such as in accelerators and FEL
[51,80]).

It is instructive to note that substitution of LD = 0 (or
|gL| = 0) diminishes all the harmonics except n = 0 and re-
duces Eq. (35) to the expression for an unmodulated Gaussian
QEW [Eq. (20)]. When LD = 0, there is significant first-order
incremental change in all sidebands of the energy spectrum
[Eq. (33), Figs. 5(a) and 5(b)]; however, there are no first-
order incremental transitions of the TLS [the second term
in Eq. (35) vanishes]. Finite first-order transition probability
of the TLS and corresponding acceleration/deceleration of
the QEW are possible only when LD �= 0. Their dependence
on (φ, θ ) is depicted in Figs. 5(e) and 5(f). The physical
explanation is that, only then, density modulation takes place,
and in the time-space domain, the QEW subbunches acquire
phase and can interact with the TLS like near-point particles
in correspondence to the Born interpretation of the probability
density of the QEW. Note that, in the case of a modulated
QEW [Figs. 5(a)–5(d)], the spectral peaks of the energy spec-
trum are three orders of magnitude larger than with a long
unmodulated QEW [Fig. 2(d)]. This is true for both cases of
LD = 0 and LD �= 0. However, in the first case, no first-order
quantum transitions take place, and the TLS-QS stays nearly
intact, and in the second case, there is first-order change of
the occupation probabilities of the TLS and the polar angle of
the qubit in the Bloch sphere. For this reason, it is preferable
to use the short drift case for nondestructive probing of the
TLS-QS and the maximum bunching finite drift length case
for coherent quantum control.

V. OFF-RESONANCE FEBERI AND TEMPORAL
EVOLUTION OF TLS TRANSITIONS

Except for the small second-order term, the dominant first-
order term in Eq. (35) indicates that the FEBERI process of
a modulated QEW requires satisfaction of a resonance con-
dition [Eq. (2)] to attain controlled TLS quantum transitions.
However, this resonance requirement is not sharp when the
size of the envelope of the QEW σz0 is finite. This is also
depicted by the numerically computed curves in Fig. 6 that are
in full agreement with the analytical expression. The shorter
the size of the QEW envelope, the wider the tolerance of
transition probability to off-resonance interaction; however,
the envelope size must be kept short enough to keep �D < 1
to avoid the exponential decay in Eq. (35).

It is intriguing to get deeper insight into the off-resonance
decay of the transition probability by examining the temporal
evolution of the transition probability during the interaction
period of the modulated QEW with the TLS. The numerically
computed incremental occupation probability of the upper
TLS level is shown in Fig. 7 as a function of interaction
time comparatively for the case of resonant and off-resonant
interactions. Comparing the curves of temporal dependence
of TLS quantum transition probability [Fig. 7(b)] with the
density probability curves of the modulated QEW [Fig. 7(a)],
we see that the quantum jumps of the TLS take place at
times commensurate with the period of the quantum transition
frequency T2,1 = 2π/ω2,1 whether the modulated QEW is at
resonance or not. When the bunching is out of resonance, the
increments of quantum jump probability diminish toward the

FIG. 6. Resonance of the free-electron–bound-electron resonant
interaction (FEBERI)-induced quantum two-level system (TLS)
transition probability. The postinteraction incremental transition
probability �P2 dependence on the ratio of the bunching (laser) fre-
quency and TLS transition frequency ωb/ω2,1 is depicted for different
wavepacket envelope sizes. The curves were computed for pre-
interaction photoinduced near-field electron microscopy (PINEM)
modulation intensity 2|gL| = 1.5.

end of the interaction time, and consequently, the measurable
postinteraction incremental transition probability is smaller
than in the resonance setting. Evidently, this happens because
the QEW bunching gets out of phase with the natural dipole
oscillation of the TLS.

It is instructive to examine the quantum transition process
from the point of view of Born’s interpretation of the electron
wavefunction [72]. This is possible in the present theory since

FIG. 7. Evolution of transition probability induced by a density-
modulated quantum electron wavepacket (QEW). (a) Spatiotemporal
density distribution of the QEW, and (b) the corresponding incre-
mental transition probability of the two-level system (TLS), both for
resonant and off-resonant modulation cases. The time-dependent up-
per state incremental probability is �P2(t ) = P2(t ) − Pi

2, where P2(t )
is the numerical solution of Eq. (H5), derived from the combined
free-bound electrons Schrödinger equation [Eq. (6)]. The curves
were computed for modulation intensity 2|gL| = 1.5 and wavepacket
size σt0 = 1.5T2,1.
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the quantum wavepacket formulation encompasses both limits
of the particle-wave duality in spatiotemporal presentation.
First consider a finite-sized (unmodulated) QEW [Eq. (20)].
In the wavelike limit of a long QEW and small energy
spread [Eq. (22)], the first-order transition probability decays
exponentially, and what is left in the transition probability
[Eq. (20)] is only the second-order term, which is independent
of the azimuth angle φ of the qubit. On the other hand, in the
near-point-particle limit of the QEW [Eq. (23)], the dominant
term in the transition probability [Eq. (22)] is the azimuth-
phase-dependent first-order term. This is consistent with the
probabilistic Born interpretation since, in the latter case, there
is high probability for arrival of the QEW at the FEBERI
point with well-defined phase relative to the oscillating dipole
moment of the TLS.

The case of a density-modulated QEW is more ambiguous.
On one hand, the envelope of the modulated QEW is long
relative to the modulation period, but on the other hand, the
duration of the density modulation subbunches (attosecond
scale, see Fig. 4) satisfies the short wavepacket condition
[Eq. (23)]. Since we deal here with a single electron, the
subbunches do not represent individual electrons as in the
case of the semiclassical optical klystron [55]. Instead, all the
subbunches in the time-space distribution shown in Fig. (4b)
represent a single electron. According to the Born interpre-
tation, the electron has the highest probability to arrive to
the FEBERI point at a time corresponding to one of the
peaks of the subbunches and appear as a near-point-particle
QEW. The analytical expression [Eq. (35)] and Fig. 7 affirm
the intuitive interpretation of the subbunches as near-point-
particle wavepackets. Evidently, the quantum jump temporal
evolution curves of Fig. 7 do not represent the evolution of
the TLS due to passage of a single electron but only the
expectation value of P2 over multiple modulation-phase cor-
related QEWs, whereas in each individual FEBERI event,
only one of the subbunches of the QEW is responsible for
the quantum jump. With multiple correlated electrons, these
increment jumps of the transition probability would take
place in synchronization with the TLS dipole oscillation fre-
quency ω2,1. This happens around the random times of the
centroid arrival of the QEWs within the QEW envelope dura-
tion. This observation is crucial for the generalization of the
FEBERI effect to the case of multiple modulation-correlated
QEWs, where coherent buildup of TLS transitions propor-
tional to N2 is expected [11,48,56,57]. It gives a lead to a
Born-interpretation-inspired concept, in which the joint wave-
function of a pulse of modulation-correlated QEWs (e.g., as
proposed in Ref. [58]) can interrogate and coherently control
the TLS-QS collectively.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we present a scheme for diagnostics and
coherent control of the superposition QS of a TLS in a variety
of possible targets of interest, including but not limited to
atoms, quantum dots, and crystal electron defect centers. Such
targets can be addressed by an electron beam with atomic-
scale spatial resolution. Hence, this scheme may be useful for
such applications as full characterization of the TLS state as
a multiqubit on a single Bloch sphere in quantum information

technology [6,7], measurement of decoherence time [61], and
selective coherent excitation of quantum emitters [66].

The interrogation scheme is based on the recently proposed
FEBERI process [11]. The electron quantum wavefunction
is preshaped after its emission from the cathode by coher-
ent processes of optical chirping and streaking at terahertz
or IR frequencies, followed by drift [16,17]. This causes it
to arrive at the TLS location in a controlled shape—longer
or shorter than the TLS transition cycle T2,1 = 2π/ω2,1 (of
the order of femtoseconds). Alternatively, the QEW may be
energy modulated before the FEBERI by a laser beam in
a PINEM interaction process at a subharmonic frequency
of the TLS transition frequency ω2,1. After free drift, the
energy-modulated QEW becomes periodically density mod-
ulated (bunched) at the PINEM modulation frequency with
tight (attosecond) subbunches and contains high-frequency
spatiotemporal harmonics of the modulation frequency. In
either case, the FEBERI interaction with an excited TLS-QS
results in a postinteraction spectrum of multiple repeated mea-
surements that reflects the QS of the TLS. This can be used
for diagnostics of the TLS-QS qubit parameters on the Bloch
sphere and for coherent control of the TLS-QS.

Determination of the polar angle θ of the TLS-QS can be
carried out by using narrow-energy-spread QEWs that satisfy
the large recoil condition E2,1 > 2σE [Eq. (22), Fig. 3(a)].
This requires subelectonvolt electron energy spread, which is
readily available in electron microscopy. The postinteraction
incremental energy density distribution of such an electron
beam depicts a PINEM-like spectrum of two asymmetric
sidebands (Fig. 2(d), Movie S2 in the Supplemental Material
[70]). The degree of asymmetry indicates the polar angle
θ of the preset interrogated TLS-QS. The determination of

the TLS-QS azimuthal angle φ is less straightforward. It
necessitates forming narrow QEWs that satisfy the near-point-
particle limit condition 2σt (LD) < T2,1 [Eq. (23), Fig. 3(b)]
at the FEBERI location. The resulting postinteraction incre-
mental energy density distribution depicts in this limit an
acceleration/deceleration spectrum that depends on the phase
increment of the TLS-QS, accumulated from the time of TLS
pre-excitation up to the arrival time of the QEW centroid:
ζ = ω2,1tD−φ − ϕL. For this measurement, the TLS excita-
tion and the timing of the QEW beam must be phase locked,
and the TLS-QS azimuth angle φ can be then determined by
judicial adjustment of the optical path difference between the
two laser beams that determines the reference phase ϕL (see
Fig. 1).

The alternative proposed method for interrogating the TLS-
QS using optical-frequency-modulated QEWs is expected to
be more accessible in the lab. It requires energy modulation
of the QEWs before the FEBERI point by means of the well-
established PINEM process. We have demonstrated that such
modulated QEWs may be used for interrogating the TLS-QS
qubit parameters (θ, φ) in two different modes: without drift
after PINEM (LD = 0) and with finite drift (LD �= 0). In the
first case, the QEW is only energy modulated (PINEM side-
bands), and there is no density modulation; the postinteraction
incremental spectrum is either symmetric (for n = odd) or
antisymmetric n = even and is dependent on both θ and φ

[see Figs. 5(a) and 5(b)]. There is no net energy transfer
between the TLS and the QEW in this case. In the second case,
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density bunching of the modulated QEW is formed due to the
pre-interaction free drift, and the postinteraction incremental
spectrum is asymmetric and dependent on (θ, φ) [Figs. 5(c)
and 5(d)]. There is then net energy transfer between the QEW
[that is accelerated or decelerated, see Figs. 5(e) and 5(f)] and
the TLS. Consequently, the TLS changes its quantum level
occupation ratio (measured by the qubit parameter θ ).

In both cases of modulated QEW, with and without drift,
the incremental spectrum signal is significantly larger than
in the case of an unmodulated long QEW [for the param-
eters used—three orders of magnitude more in comparing
Figs. 5(a)–5(d) with Figs. 2(d) and 2(e)]. It is however of
the same order of magnitude as in the case of a short QEW
[Fig. 2(a)]. The reason is that the azimuthal phase-dependent
first-order term [�ρ (1) ∝ |g|] dominates in both cases over
the second-order term [�ρ (1) ∝ |g|2] for |g| � 1. Further,
we draw attention to the fact that there is energy transfer
only in the case of a short subcycle QEW [Figs. 2(b) and
2(c)] and the case of a modulated QEW after drift LD �= 0
[Figs. 5(e) and 5(f)]. This should be related to the development
of bunching with attosecond-scale subbunches after drift, as
shown in Fig. 4. In the spatiotemporal presentation, we are
led by Born’s interpretation of the quantum electron wave-
function to conclude that these subbunches can be considered
multiple near-point particles at the FEBERI point. Therefore,
like subcycle QEWs in the near-point-particle limit, they have
a well-defined phase relative to the phase φ of the TLS
dipole oscillation, and in both cases, the phase-dependent
first-order term [�ρ (1) ∝ |g|] in [Eqs. (20) and (35)] facilitates
the transfer of energy between the QEW and the TLS. This ob-
servation and the analysis of the temporal development of TLS
transitions in Fig. 7 of the previous section have important
ramifications to the extension of the single modulated QEW
FEBERI concept to multiple modulation-correlated QEWs
[11,48].

The laboratory realization of the proposed concept of TLS-
QS interrogation and coherent control using free electrons
faces substantial theoretical and conceptual challenges as well
as technological implementation challenges that we address
below. In the first place, any projective measurement of a TLS-
QS by the EELS technique is destructive upon every EELS
data measurement event. Therefore, as we indicated in Sec. II,
the measurement of our predicted postinteraction energy den-
sity distribution by EELS requires reinstating the TLS-QS
after each EELS measurement data collection event in a way
like experimental practice in super-elastic scattering research
[81]. This limits the application of the proposed scheme to
cases where the TLS-QS targets are reconstructable and the
multiple QEWs are identical. For example, we conceive an
application of monitoring the Bloch sphere time-evolution
trajectory of laser beam coherent control of a TLS [82] with
an electron beam. Realization of such an application requires
that the laser coherent control process is reinstated identically
after every destructive EELS data collection by the interro-
gating QEWs. We exclude consideration of nondestructive
measurements. These have been demonstrated and proposed
with photons [83,84] and electrons [85].

On top of this fundamental limitation on EELS mea-
surement, there are also technical impediments on realizing
a true energy spectral distribution by means of multiple

single-electron EELS measurements. In the first place, the
cross-section for an inelastic scattering event is very small (in
our examples, ∼10−6 per electron for a broad unmodulated
QEW and ∼10−3 per electron for a modulated QEW). An-
other limitation is that any single event measurement of the
qubit parameters (φ, θ ) must take place within the decoher-
ence time T2 and the relaxation time T1. One can conceive
a scheme of accumulating EELS data with a pulse of multi-
ple QEWs interacting with multiple TLS centers, all excited
with a laser pulse to the same state (for example, employing
multiple crystal defect centers implanted on a crystal surface).
However, the single atom resolution advantage of the FEBERI
scheme is then lost, and for the same reason, there is no pos-
sibility then of interrogating the azimuthal phase φ; only the
average polar angle of the TLS ensemble can be interrogated.

Further investigations are needed for identifying TLS tar-
gets of bigger dipole moment and coupling coefficient g,
e.g., perovskites [86]. We point out here another potential
scheme for enhancing the FEBERI process and amplifying
the spectral energy distribution signal in the interrogation of a
TLS-QS. In this scheme, one would place multiple (NB) TLS
targets within a volume smaller than v0/ω2,1, such that they
can all be excited in phase to the same QS by the exciting laser.
In this case, a pulse of uncorrelated QEWs each interacting
with a single TLS in the lump of TLSs can produce multiple
EELS data points without destruction of the qubit state of
other TLS targets in the lump. Furthermore, if the TLSs are
lumped within the range of the QEW field, they may act as
a superqubit with dipole moment and interaction coupling
parameter g that are NB times bigger, and then the EELS
probing signal, as well as the transition probability, would be
enhanced correspondingly. This situation is like the concept
of super-radiant emission, induced by free electrons [64]. In
fact, in addition to enhancing the EELS measurement, such
an excited multiple-TLS superqubit is expected to emit super-
radiant luminescence proportional to N2

B after the radiative
relaxation lifetime of the TLS [61].

With a superqubit of many TLS targets, it is possible to
keep the high spatial resolution addressing the advantage of a
focused electron beam. However, if the electrons of the beam
are uncorrelated, it is still necessary to reinstate the TLS-QS
after each measurement event to collect enough data for con-
structing the EELS. The Holy Grail of TLS-QS interrogation
by FEBERI would be achieved if a pulse of optical-frequency
modulation-correlated QEWs can be produced within the du-
ration of the decoherence or relaxation time. In this case,
one may conceive that the joint wavefunction of a pulse of
modulation-correlated QEWs (e.g., as proposed in Ref. [48])
can interrogate and coherently control the TLS-QS collec-
tively, like a laser beam, but with high spatial resolution. This
concept requires further intended theoretical considerations
beyond the scope of this paper (for example, of the entangle-
ment between the interacting electrons) and certainly further
technological development.

Finally, we draw attention to the rapid development of the
field of quantum electron optics and the marriage of integrated
photonics with electron microscope technology, such as en-
hanced coupling of light through microresonators [87–89] and
embedding single ions in a nanophotonic cavity [7]. These
have the potential of bringing about development directions
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of the FEBERI concept, providing more degrees of freedom
in control and measurement of electron-light-TLS interaction.
For example, we may envision schemes for extension of TLS
decoherence time by suppression of spontaneous emission
in a microcavity and electron-light interaction schemes with
multicavity, multi-TLS integrated photonics circuits.
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APPENDIX A: DERIVATION OF THE INTERACTION HAMILTONIAN ĤI (t ) IN THE INTERACTION PICTURE

In this section, we elaborate the derivation of the interaction Hamiltonian in the interaction picture. For the model of
free-electron–bound-electron interaction, the dominant interaction is the Coulomb interaction. Within the dipole approximation,
the interaction Hamiltonian is ĤI = er̂

′ · E(ẑ, r⊥0), where r̂
′

is the position vector of the bound electron, and E(ẑ, r⊥0) =
eγ

4πε0

zêz+r⊥0 ê⊥
(γ 2z2+r2

⊥0 )3/2 is the electric field generated by the free electron at the position r̂
′
.

The interaction Hamiltonian in the interaction picture is defined as

ĤI (t ) = Û †(t )ĤIÛ (t )

= exp

(
iĤ0Bt

h̄

)
(er̂′) exp

(
− iĤ0Bt

h̄

)
exp

(
iĤ0Ft

h̄

)
E(z, r⊥0) exp

(
− iĤ0Ft

h̄

)

=
[∑

ij

|i〉〈i| exp

(
iĤ0Bt

h̄

)
(er̂′) exp

(
− iĤ0Bt

h̄

)
| j〉〈 j|

]
exp

(
iĤ0Ft

h̄

)
E(z, r⊥0) exp

(
− iĤ0Ft

h̄

)
, (A1)

where Ĥ0B is the Hamiltonian of the bound electron, and |i〉, |j〉 are the eigenstates of Ĥ0B. Here, Ĥ0F = E0 + v0 · ( p̂ − p0) +
1

2γ 3m ( p̂ − p0)2 is the kinetic Hamiltonian of a free electron, which is valid in the relativistic case. Equation (A1) can be rewritten
in a matrix form:

ĤI (t ) =
[

0 μ∗
2,1exp(iω2,1t )

μ2,1exp(−iω2,1t ) 0

]
exp

(
iĤ0Ft

h̄

)
E(z, r⊥0)exp

(
− iĤ0Ft

h̄

)
, (A2)

where μ2,1 = e〈2|r̂′ |1〉 is the dipole moment of the TLS, and ω2,1 = ω2 − ω1 is the energy difference between the two levels.
Since the interaction time is short, the quadratic term in Ĥ0F is negligible, leading to

ĤI (t ) =
[

0 μ∗
2,1 exp (iω2,1t )

μ2,1 exp (−iω2,1t ) 0

]
exp

(
iv0 p̂t

h̄

)
E(z, r⊥0) exp

(
− iv0 p̂t

h̄

)
=

[
0 μ∗

2,1 exp (iω2,1t )
μ2,1 exp (−iω2,1t ) 0

]
E(z + v0t, r⊥0)

= μ2,1 · E(z + v0t, r⊥0) exp (−iω2,1t )σ− + H.c, (A3)

where the operator exp(iv0 p̂t/h̄) is the translation operator in the coordinate domain, and σ̂+ = |2〉〈1| (σ̂− = |1〉〈2|) is the TLS
raising (lowering) operator.

APPENDIX B: DERIVATION OF THE SCATTERING OPERATOR Ŝ(t f , t i )

With the explicit form of the interaction Hamiltonian, we can calculate the wavefuction after the interaction by multiplying
the initial wavefunction with the scattering operator:

|�̃ f (p, t f )〉 = Ŝ(t f , ti )
∣∣�̃i(p, ti )

〉
, Ŝ(t f , ti ) = T exp

[
− i

h̄

∫ t f

ti

ĤI (t )dt

]
, (B1)

where T is the time-ordering operator. The scattering operator can be expanded to a Dyson series:

Ŝ(t f , ti ) =
+∞∑
n=0

Ŝn(t f , ti ), (B2)
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where

Ŝn(t f , ti ) = exp

[
(−i/h̄)n

n!

∫ t f

ti

dt1

∫ t f

ti

dt2 . . .

∫ t f

ti

dtnT ĤI (t1)ĤI (t2) . . . ĤI (tn)

]
. (B3)

The first-order term in this series is easily obtained:

Ŝ1(t f , ti ) = exp

[
− i

h̄

∫ t f

ti

ĤI (t )dt

]
= exp

{
− i

h̄

∫ +∞

−∞
dt[μ2,1 · E(z + v0t, r⊥0) exp (−iω2,1t )σ− + H.c.]

}
. (B4)

Replacing the integral variable t by u = z + v0t yields

Ŝ1(t f , ti ) = exp

{
− i

h̄v0

∫ +∞

−∞
du

[
μ2,1 · E(u, r⊥0)exp

(
− iω2,1u

v0

)
σ−exp

( iω2,1z

v0

)
+ H.c.

]}
. (B5)

The integration on the field presents the coupling coefficient between the free electron and the TLS: g = 1
h̄v0

μ2,1 ·∫ ∞
−∞ duE(u, r⊥0)exp(−iω2,1u/v0), and substituting the field E(ẑ, r⊥0) into it yields

g = e

2πε0γ h̄

ω2,1

v2
0

μ2,1 ·
[

i

γ
K0

(
ω2,1r⊥0

v0γ

)
êz + K1

(
ω2,1r⊥0

v0γ

)
ê⊥

]
= |g|exp(iφg). (B6)

Considering laboratory-available parameter values—TLS energy gap of E2,1 = h̄ω2,1 = 1.97 eV, free electron velocity of
v0 = 2.1 × 108 m/s (β = 0.7), and impact parameter r⊥0 = 2.0 nm—we find the coupling coefficient g to be of the order of
10−3. Thus, it is reasonable to neglect the higher-order terms in the Dyson series. Hence, the scattering matrix can be written as

Ŝ(t f , ti ) = cos |g| − i sin |g|
[
σ̂+exp

(
− iω2,1ẑ

v0

)
exp(iφg) + H.c.

]
. (B7)

APPENDIX C: DENSITY DISTRIBUTION AND TRANSITION PROBABILITY AFTER INTERACTION

For any input state |ψ̃i〉 = |ψ̃F 〉 ⊗ |ψ̃B〉, the general form of the final state is obtainted by applying the scattering operator:

|ψ̃ f 〉 = Ŝ(t f , ti )|ψ̃i〉 =
{

cos |g| − i sin |g|
[
σ̂+ exp

(
− iω2,1ẑ

v0

)
exp (iφg) + σ̂− exp

(
iω2,1ẑ

v0

)
exp (−iφg)

]}
|ψ̃i〉

=
{

cos |g| − i sin |g|
[
σ̂+ exp

(
− iω2,1ẑ

v0

)
exp (iφg) + σ̂− exp

(
iω2,1ẑ

v0

)
exp (−iφg)

]}
|ψ̃F (p)〉

× ⊗
[

sin

(
θ

2

)
|1〉 + exp (iφ) cos

(
θ

2

)
|2〉

]
= cos |g||ψ̃i〉 − i sin |g| exp (iφg)

[
exp

(
− iω2,1ẑ

v0

)
|ψ̃F (p)〉

]
⊗

[
σ̂+ sin

(
θ

2

)
|1〉

]
− i sin |g| exp (iφg)

[
exp

(
iω2,1ẑ

v0

)
|ψ̃F (p)〉

]
⊗

[
σ̂− exp (iφ) cos

(
θ

2

)
|2〉

]
= cos |g||ψ̃i〉 + |δψ̃i〉, (C1)

where |δψ̃i〉 = −i sin |g|exp(iφg)|ψ̃F (p−δp2,1)〉 ⊗ [sin( θ
2 )|2〉]−i sin |g|exp(−iφg)|ψ̃F (p + δp2,1)〉 ⊗ [exp(iφ) cos( θ

2 )|1〉],
δp2,1 = h̄ω2,1/v0. Since the free and bound electrons are entangled after the interaction, it is convenient to represent the
final state by the density matrix:

ρ̂ f = |� f 〉〈� f | = cos2|g||�i〉〈�i| + cos |g|(|�i〉〈δ�i| + |δ�i〉〈�i|) + |δ�i〉〈δ�i|, (C2)

where

|�i〉〈δ�i| = i sin |g| exp (iφg)|ψp〉〈ψp+δp2,1 | ⊗
[
−exp (−iφ) sin θ

2
|1〉〈1| + cos2

(
θ

2

)
|2〉〈1|

]
+ i sin |g| exp (−iφg)|ψp〉〈ψp−δp2,1 | ⊗

[
sin2

(
θ

2

)
|1〉〈2| − exp (iφ) sin θ

2
|2〉〈2|

]

= i sin |g|
{

− exp [i(φg−φ)] sin θ

2 |ψp〉〈ψp+δp2,1 | exp (−iφg)sin2
(

θ
2

)|ψp〉〈ψp+δp2,1 |
exp (iφg)cos2

(
θ
2

)|ψp〉〈ψp+δp2,1 | − exp [−i(φg−φ)] sin θ

2 |ψp〉〈ψp+δp2,1 |

}
, (C3)
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and

|δ�i〉〈δ�i| = sin2|g|
{

cos2
(

θ
2

)|ψp+δp2,1〉〈ψp+δp2,1 | − exp [i(φ−2φg)] sin θ

2 |ψp+δp2,1〉〈ψp−δp2,1 |
− exp [i(2φg−φ)] sin θ

2 |ψp−δp2,1〉〈ψp+δp2,1 | sin2
(

θ
2

)|ψp−δp2,1〉〈ψp−δp2,1 |

}
. (C4)

To obtain the density distribution of the free electron and the transition probability of the TLS, we partially trace the density
matrix of the final state, setting ρ̂

f
F = TrB[ρ̂ f ], ρ̂

f
B = TrF [ρ̂ f ]. Consequently, the momentum density distribution of the free

electron is given by

ρ f
p = diag

[
ρ̂

f
F

] = cos2|g|∣∣c(0)
p

∣∣2 − 1

2
sin (2|g|) sin θ Re{i exp [i(φg − φ)]Co(p, δp2,1) + i exp [−i(φg − φ)]Co(p,−δp2,1)}

× sin2|g|
[

cos2

(
θ

2

)∣∣c(0)
p+δp2,1

∣∣2 + sin2

(
θ

2

)∣∣c(0)
p−δp2,1

∣∣2
]
, (C5)

where c(0)
p = 〈p|ψp〉, Co(p,±δp2,1) = c∗(0)

p±δp2,1
c(0)

p , and I (δp2,1) = ∫
p d p Co(p, δp2,1) is the autocorrelation function [42]. Then

the final density matrix of the TLS is

ρ
f
B = cos2|g|

[
sin2

(
θ
2

) − exp (iφ) sin θ

2

− exp (−iφ) sin θ

2 cos2
(

θ
2

) ]
+ sin (2|g|)Re

(
i

{
− exp [i(φg−φ)] sin θ

2 I (δp2,1) exp (−iφg)sin2
(

θ
2

)
I (−δp2,1)

exp (iφg)cos2
(

θ
2

)
I (δp2,1) − exp [−i(φg−φ)] sin θ

2 I (−δp2,1)

})

+ sin2|g|
{

cos2
(

θ
2

) − exp [i(φ−2φg)] sin θ

2 I (−2δp2,1)

− exp [−i(φ−2φg)] sin θ

2 I (2δp2,1) sin2
(

θ
2

) }
, (C6)

and the transition probabilities of the TLS are

P f
1 = cos2|g|cos2

(
θ

2

)
− 1

2
sin (2|g|) sin θRe{iI (−δp2,1) exp [−i(φg − φ)]} + sin2|g|sin2

(
θ

2

)
= Pi

1 + sin2|g| cos θ − 1

2
sin (2|g|) sin θRe

{
I (−δp2,1) exp

[
−i(φg − φ) + i

π

2

]}
,

P f
2 = cos2|g|sin2

(
θ

2

)
− 1

2
sin (2|g|) sin θRe{iI (δp2,1) exp [i(φg − φ)]} + sin2|g|cos2

(
θ

2

)
= Pi

2 − sin2|g| cos θ − 1

2
sin (2|g|) sin θRe

{
I (δp2,1) exp

[
i(φg − φ) + i

π

2

]}
. (C7)

APPENDIX D: GAUSSIAN QEW BROADENING AND CHIRP

In momentum space, we model the free electron as a Gaussian wavepacket |ψ̃F (p)〉 = ∑
p cp|p〉, where cp =

1
(2πσ 2

p )1/4 exp[− (p−p0 )2

4σ 2
p

]. The free propagation of a Gaussian-shaped QEW can be described in momentum space as: |ψ̃F(p, t )〉 =
exp(− iĤ0F t

h̄ )|ψF (p)〉, which means that the electron wavefunction becomes

cp → cp(t ) = 1(
2πσ 2

p

)1/4 exp
(
− iEpt

h̄

)
exp

[
− (p − p0)2

4σ 2
p

]
. (D1)

The additional phase term is determined by the electron energy dispersion relation Ep = E0 + v0(p − p0) + 1
2γ 3m (p − p0)2.

Combining the quadratic term of (p − p0) yields

cp(t ) = 1(
2πσ 2

p

)1/4 exp

{
− i[E0 + v0(p − p0)]t

h̄

}
exp

[
− (p − p0)2

4σ̃ 2
p (t )

]
. (D2)

We define the momentum spread after propagation as

σ̃p(t ) =
√√√√ σ 2

p

1 + i 2t
γ 3mh̄σ 2

p

. (D3)
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Consequently, the wavefunction in the coordinate domain is given by

ψz(t ) =
∫

d p√
2π h̄

cp(t ) exp
( ipz

h̄

)
= 1(

2πσ 2
p

)1/4 exp

[
i(p0z − E0t )

h̄

] ∫
d p exp

[
− (p − p0)2

4σ̃ 2
p (t )

]
exp

[
i(p − p0)(z − v0t )

h̄

]

= 1

[2πσ 2
z (t )]1/4 exp

[
− (z − v0t )2

4σ̃ 2
z (t )

]
, (D4)

where the chirped wavepacket size is

σ̃z(t ) = σz0

√
1 + i

h̄t

2γ 3mσ 2
z0

, (D5)

and σz0 = h̄/2σp. When considering the density distribution |ψz(t )|2, the wavepacket size (standard deviation of the density

function envelope) is σz(t ) = |σ̃z(t )| = σz0

√
1 + ( h̄t

2γ 3mσ 2
z0

)
2
. Thus, even if the initial wavepacket σt0 approaches 0, the real

wavepakcet is always finite. According to the inequality of arithmetic and geometric means |a| + |b| � 2
√|ab|, we can derive

the lower limit of the wavepacket size for any given free drift time tD:

σz(tD) � σz(tD)|min =
√

h̄tD
γ 3me

. (D6)

We find that to mitigate the QEW envelop broadening effect and satisfy the near-point-particle condition at the FEBERI point
� = ω2,1σt (LD) < 1, the QEW free drift length must be kept within the limitation LD < zG, where

zG = vtD|�=√
2 = γ 3mev

3
0

h̄ω2
2,1

. (D7)

APPENDIX E: DERIVATION OF POST-INTERACTION ELECTRON MOMENTUM DISTRIBUTION AND TLS TRANSITION
PROBABILTY FOR THE CESE OF A GAUSSIAN QEW

The general form of the first-order free electron postinteraction density distribution [Eq. (C5)] is

�ρ (1) = 1
2 sin (2|g|) sin θRe{iexp(iφg − iφ)Co(p, δp2,1) + iexp(−iφg + iφ)Co(p,−δp2,1)}. (E1)

With the initial electron wavefunction:

c(0)
p = cp(tD) = 1(

2πσ 2
p

)1/4 exp

{
− i[E0 + v0(p − p0)]tD

h̄

}
exp

[
− (p − p0)2

4σ̃ 2
p (tD)

]
, (E2)

where σ̃p(tD) =
√

σ 2
p

1+i 2tD
γ 3mh̄

σ 2
p

, and Co(p,±δp2,1) = c∗(0)
p±δp2,1

c(0)
p , we obtain

Co(p, δp2,1) = 1√
2πσ 2

p

exp

(
iδp2,1tD

h̄

)
exp

[
− (p − p0+ δp2,1)2

4σ 2
p

+ i
(p − p0+ δp2,1)2tD

2γ 3mh̄

]
exp

[
− (p − p0)2

4σ 2
p

− i
(p − p0)2tD

2γ 3mh̄

]

= exp
( iδp2,1tD

h̄

)√
2πσ 2

p

exp

[
−

(
p − p0 + δp2,1

2

)2

2σ 2
p

− δp2
2,1

8σ 2
p

+ iδp2,1tD
γ 3mh̄

(
p − p0 + δp2,1

2

)]

= exp
( iδp2,1tD

h̄

)√
2πσ 2

p

exp

(
−�2

2

)
exp

[
−

(
p − p0 + δp2,1

2

)2

2σ 2
p

+ iδp2,1tD
γ 3mh̄

(
p − p0 + δp2,1

2

)]
, (E3)

and correspondingly have

Co(p,−δp2,1) = exp
(−�2

2

)√
2πσ 2

p

exp

(
− iδp2,1tD

h̄

)
exp

[
−

(
p − p0 − δp2,1

2

)2

2σ 2
p

− iδp2,1tD
γ 3mh̄

(
p − p0 − δp2,1

2

)]
. (E4)
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Substituting Eqs. (E3) and (E4) into the expression for the first-order incremental momentum distribution, Eq. (E1), yields

�ρ (1)
p = 1

2
√

2πσ 2
p

sin (2|g|) sin θ exp

(
−�2

2

){
− sin

[
ω2,1tD

(
1 + p − p0 + δp2,1

2

γ 3mv0

)
+ φg − φ

]
exp

[
−

(
p − p0 + δp2,1

2

)2

2σ 2
p

]

+ sin

[
ω2,1tD

(
1 + p − p0 − δp2,1

2

γ 3mv0

)
+ φg − φ

]
exp

[
−

(
p − p0 − δp2,1

2

)2

2σ 2
p

]}

� 1

2
√

2πσ 2
p

sin (2|g|) sin θ exp

(
−�2

2

)
sin (ξ + φg)

{
exp

[
−

(
p − p0 − δp2,1

2

)2

2σ 2
p

]
− exp

[
−

(
p − p0 + δp2,1

2

)2

2σ 2
p

]}
, (E5)

where ζ = ω2,1tD−φ.
For derivation of the FEBERI-induced incremental occupation probability of the upper and lower levels of the TLS (�P2 =

−�P1), we need to evaluate first the autocorrelation function I (δp2,1) = ∫
p d p Co(p, δp2,1). Inserting Eq. (E4) into I (δp) results

in

I (δp2,1) = 1√
2πσ 2

p

∫
d p exp

[
i(Ep+δp2,1 − Ep)tD

h̄

]
exp

[
− (p − p0 + δp2,1)2

4σp
− (p − p0)2

4σp

]

= exp (iω2,1tD) exp
(−�2

2

)√
2πσ 2

p

∫
d p exp

[
iω2,1tD

(
p − p0 + δp2,1

2

)
γ 3mv0

]
exp

[
−

(
p − p0 + δp2,1

2

)2

2σ 2
p

]

= exp (iω2,1tD) exp

(
−�2 + �2

D

2

)
, (E6)

where the envelop decay factor due to energy dispersion and drift is defined as

�D = ω2,1LD
σE

γ 3mev
3
0

= 1

2ω2,1σt0

LD

zG
= σE

E2,1

LD

zG
. (E7)

We finally get

�P2 = −sin2|g| cos θ − 1

2
sin (2|g|) sin θ sin (ω2,1tD − φ + φg)exp

(
−�2 + �2

D

2

)
. (E8)

The numerically computed incremental electron energy distribution �ρEp is depicted in Fig. 2 of the main text. The
continuous-parameter-dependence version of the cases shown in Fig. 2 are presented in Movie S1 in the Supplemental Material
[70]: the dependence on φ in the case of a short QEW; Movie S2 in the Supplemental Material [70]: the dependence on θ in the
case of a long QEW; and Movie S3 in the Supplemental Material [70]: the dependence on both φ and θ in an intermediate case:

APPENDIX F: DETAILED ANALYSIS OF DENSITY BUNCHING

In this section, we derive the bunched density distribution ρ(z, t ) of the QEW after energy modulation and drift. We start with
the energy modulation of the QEW modeled by a Gaussian distribution in the momentum domain, as given in Appendix D. The
QEW can be written as |ψi(p)〉 = ∑

p cp|p〉, where c(0)
p = 1

(2πσ 2
p )1/4 exp[− (p−p0 )2

4σ 2
p

]. The energy modulation can be described by

the scattering operator

Ŝ = exp

[
− i

h̄

∫ t0+ tI
2

t0− tI
2

dt Ĥint (t )

]
, (F1)

where Ĥint (t ) = e
γ m Â(z, t ) · p̂ describes the coupling between the free electron and the laser-induced optical near field, t0

represents the the arrival time of the QEW centroid to the center of the interaction region, and tI is the interaction time. For
simplicity, we consider here the case of PINEM modulation in a case of a transition radiative interaction, namely, the case
where the spatial extent of the near field of a laser-illuminated nanostructure (e.g., a tip) is shorter than the optical wavelength
of the laser [19]. In this case, the QEW hardly senses the spatial variation of the time-varying near field during the interaction,
and the vector potential can be generally written as Â(z, t ) = A0 sin[ωL( ẑ

v0
− t ) + φi], where φi is the initial phase of the near

field at the interaction time t0. Since the initial momentum distribution of the QEW [Eq. (D1)] is narrow, σp � h̄ ωL
v0

, it is valid to
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assume p̂|p〉 ≈ p0|p〉. Thus, the explicit form of scattering operator is

Ŝ = exp

[
− i

h̄

∫ t0+ tI
2

t0− tI
2

dtĤint (t )

]
= exp

{
− ieA0 p0

γ mh̄

∫ t0+ tI
2

t0− tI
2

dt sin

[
ωL

(
ẑ

v0
− t

)
+ φi

]}

= exp

[
−i

2eA0 p0

γ mh̄
sin (ωLtI ) sin

(ωL

v0
ẑ + φi − ωLt0

) ]
= exp

[
−i2gL sin

(ωL

v0
ẑ + φi − ωLt0

) ]
, (F2)

where φ0 = ωLt0 − φi, and the coupling constant gL = eA0 p0

γ mh̄ sin(ωLtI ).
According to the Jacobi-Anger expansion, the scattering matrix can be presented in terms of a serries:

Ŝ =
+∞∑

n=−∞
Jn(2|g|) exp [−in(δkLẑ − φ0)]. (F3)

Thus, the energy-modulated QEW has the form

|ψ (p)〉 = Ŝ|ψi(p)〉

=
+∞∑

m=−∞
Jm(2|g|) exp [im(δkLẑ − φ0)]

∑
p

c(0)
p |p〉

=
∑

p

c(0)
p

+∞∑
m=−∞

Jm(2|g|) exp [im(δkLẑ − φ0)]|p〉

=
∑

p

c(0)
p

+∞∑
m=−∞

Jm(2|g|) exp (−imφ0)|p + mh̄δkL〉

=
∑

p

c(0)
p−mh̄δkL

+∞∑
m=−∞

Jm(2|g|) exp (−imφ0)|p〉

=
∑

p

cp|p〉, (F4)

where the new coefficient cp of the energy-modulated QEW has the form

cp = 1(
2πσ 2

p

)1/4

+∞∑
m=−∞

Jm(2|g|) exp

[
− (p − p0 − mδpL )2

4σ 2
p

]
exp (−imφ0), (F5)

where δpL = h̄ωL/v0. Thus, the momentum presentation of the wavefunction after drift:

cp(tD) = exp(−iEptD)(
2πσ 2

p

) 1
4

∑
m

Jm(2|gL|)exp

[
− (p − p0 − mδpL )2

4σ 2
p

− imφ0

]
= exp (−iEptD)

∑
m

cm
p , (F6)

where cm
p = 1

(2πσ 2
p )1/4 Jm(2|gL|)exp[− (p−p0−mδpL )2

4σ 2
p

− imφ0]. The wavefunction in coordinate space is derived by Fourier transfor-

mation ψ (z, tD) = 1√
2π h̄

∫
d p cpexp(ipz/h̄). Because this is a linear operation, the coordinate presentation of the wavefunction

is also a sum of satellite wavepackets ψ (z, tD) = ∑
m ψm(z, tD) = ∑

m
1√
2π h̄

∫
d p cm

p exp[i(pz − EptD)/h̄], where

ψm(z, tD) = 1√
2π h̄

Jm(2|gL|) exp (−imφ0)
1(

2πσ 2
p

)1/4

∫
d p exp

[
− (p − p0 − mδpL )2

4σ 2
p

]
exp

[
i(pz − EptD)

h̄

]

= Jm(2|gL|)√
2π h̄

exp (−imφ0)
exp

[ i(p0z−E0tD )
h̄

](
2πσ 2

p

)1/4

∫
d p exp

[
− (p − mδpL )2

4σ 2
p

]
exp

[
−i

tD
2γ 3meh̄

p2

]
exp

[
ip(z − v0tD)

h̄

]

= Jm(2|gL|)√
2π h̄

exp (−imφ0)
exp

[ i(p0z−E0tD )
h̄

](
2πσ 2

p

)1/4

∫
d p
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× exp

[
−
(

1

4σ 2
p

+ itD
2γ 3meh̄

)
p2 + mδpL

2σ 2
p

p − m2δp2
L

4σ 2
p

]
exp

[
ip(z − v0tD)

h̄

]

= Jm(2|gL|)√
2π h̄

exp (−imφ0)
exp

[ i(p0z−E0tD )
h̄

](
2πσ 2

p

)1/4 exp

{
m2δp2

L

4σ 2
p

[
σ̃ 2

p (tD)

σ 2
p

− 1

]} ∫
d p

× exp

{
− 1

4σ̃ 2
p

[
p − σ̃ 2

p (tD)

σ 2
p

mδpL

]2}
exp

[
ip(z − v0tD)

h̄

]
, (F7)

where σ̃ 2
p (tD) = σ 2

p /(1 + 2itD
γ 3meh̄σ 2

p ) is the same as Eq. (D3), which using the standard Gaussian integral results in

ψm(z, tD) = exp
[ i(p0z−E0tD )

h̄

][
2πσ 2

z (tD)
]1/4 Jm(2|gL|) exp (−imφ0) exp

[
− (z − v0tD)2

σ 2
z (tD)

]

× exp

{
m2δp2

L

4σ 2
p

[
σ̃ 2

p (tD)

σ 2
p

− 1

]}
exp

[
im

σ̃ 2
p (tD)

σ 2
p

δpL(z − v0tD)

h̄

]
, (F8)

where σ̃z(tD) = σz

√
1 + ih̄tD

2γ 3meσ
2
z0

. Since in the case of a modulated QEW the envelop must be broad, necessarily σp = h̄/2σz0 →
0, so the chirp effect is ignorable, and σ̃z(tD) � σz0 . We get

σ̃ 2
p (tD)

σ 2
p

= 1

1 + 2itD
γ 3meh̄σ 2

p

=
1 − 2itD

γ 3meh̄σ 2
p

1 +
(

2tDσ 2
p

γ 3meh̄

)2 � 1 − 2itD
γ 3meh̄

σ 2
p .

After neglecting high orders of σp, we find that the spatial wavefunction ψ (z, tD) = ∑
m ψm(z, tD) can be written as

ψ (z, tD) = exp
[ i(p0z−E0tD )

h̄

](
2πσ 2

z0

)1/4 exp

[
− z(t )2

4σ 2
z0

]∑
m

Jm(2|gL|)exp(−imφ0)exp

{
imδpL

[
z(t )

h̄
− tDmδpL

2γ 3meh̄

]}
, (F9)

where z(t ) = z − v0tD. Thus, the density distribution of the modulated electron is

ρ(z, tD) = |ψ (z, tD)|2

=
exp

[
− z(t )2

2σ 2
z0

]
√

2πσ 2
z0

∑
m,n

J∗
m(2|gL|)Jn(2|gL|) exp [i(m − n)φ0] exp

[
i(n − m)

δpLz(t )

h̄

]
exp

[
i(m2 − n2)

δp2
LχtD

4σ 2
p

]

=
∑

l

exp

[
ilφ0 − ilδpLz(t )

h̄

]
exp

(
2π i

l2LD

zT

)∑
n

Jn+l (2|gL|)Jn(2|gL|) exp

(
4π in

lLD

zT

)
, (F10)

where zT = 4πγ 3mev
3
0

h̄ω2
b

is the Talbot length, and LD = v0tD is the free drift propagation length. According to Graf’s addition

theorem, the density distribution is

ρz =
exp

[
− z(t )2

2σ 2
z (tD )

]
√

2πσ 2
z (tD)

∑
m

exp

[
imφ0 − imδpLz(t )

h̄

]
exp

(
2π i

m2LD

zT

)
Jm

[
4|gL| sin

(
2πm

LD

zT

)]
. (F11)

The evolution of the density distribution of a modulated QEW, corresponding to Fig. 4, is shown in Movie S4 in the
Supplemental Material [70].

APPENDIX G: DERIVATION OF POST-INTERACTION MOMENTUM DISTRIBUTION AND TLS TRANSITIOIN
PROBABILITY FOR A MODULATED QEW

In Appendix C, we derived a generic expression [Eq. (C5)] for the postinteraction density distribution of the free electron ρ
f
p .

For the case of a Gaussian QEW that is momentum modulated by a PINEM process and then traverses a drift time tD, we plug in
the initial state in momentum presentation c(0)

p = cp(tD) = 1
(2πσ 2

p )1/4 exp(−iEptD/h̄)
∑

m Jm(2|gL|) exp[− (p−p0−mδpL )2

4σ 2
p

+ imφ0],

where φ0 is the initial phase of the modulation laser, δpL = h̄ωb/v0, and ωb is the frequency of the modulating laser. With this
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wavefunction, Eq. (C5) results in the following expression for the postinteraction density distribution of the free electron:

ρ f (p) = cos2|g||cp(tD)|2 + sin2|g|
[

cos2

(
θ

2

)
|cp+δp2,1 (tD)|2 + sin2

(
θ

2

)
|cp−δp2,1 (tD)|2

]
− 1

2
sin (2|g|) sin θRe{i exp (iφg − iφ)Co(p, δp2,1) + i exp (−iφg + iφ)Co(p,−δp2,1)}

= ρ (i)(p) + �ρ(p) = ρ (i)(p) + �ρ (0)(p) + �ρ (1)(p) + �ρ (2)(p), (G1)

where δp2,1 = h̄ω2,1/v0.
We first calculate the zeroth- and second-order incremental density distribution terms in Eq. (G1). Since the quantum

recoil induced by the modulating laser is much larger than the momentum spread of the QEW h̄ωL
v0

� σp, the overlap

between the sidebands is negligible, and we can make the approximation: |∑m Jm(2|gL|) exp[− (p−p0−mδpL )2

4σ 2
p

+ inφ0]|2 �∑
m |Jm(2|gL|)|2 exp[− (p−p0−mδpL )2

2σ 2
p

], and we get

�ρ (0)
p = − sin2|g|√

2πσ 2
p

∑
m

|Jm(2|gL|)|2 exp

[
− (p − p0 − mδpL )2

2σ 2
p

]
, (G2)

�ρ (2)
p = sin2|g|√

2πσ 2
p

∑
m

{
|Jm(2|gL|)|2cos2

(
θ

2

)
exp

[
− (p − p0 − mδpL + δp2,1)2

2σ 2
p

]

+|Jm(2|gL|)|2sin2

(
θ

2

)
exp

[
− (p − p0 − mδpL − δp2,1)2

2σ 2
p

]}

� sin2|g|√
2πσ 2

p

∑
m

Bn,m(θ ) exp

[
− (p − p0 − mδpL )2

2σ 2
p

]
, (G3)

where Bn,m(θ ) = |Jm−n(2|gL|)|2cos2( θ
2 ) + |Jm+n(2|gL|)|2sin2( θ

2 ).
To evaluate the first-order term in Eq. (G1), we need first to evaluate the function Co(p, δp2,1):

Co(p, δp2,1) = 1√
2πσ 2

p

exp

[
i(Ep+δp2,1 − Ep)tD

h̄

]∑
n,m

Jn(2|gL|)Jm(2|gL|)

× exp

[
− (p − p0 + δp2,1 − nδpL )2

4σ 2
p

− (p − p0 − mδpL )2

4σ 2
p

− i(n − m)φ0

]

=
exp

[
iω2,1tD

(
1 + p−p0+ δp2,1

2
γ 3mev0

)]√
2πσ 2

p

∑
n,m

Jn(2|gL|)Jm(2|gL|) exp [−i(n − m)φ0]

× exp

[
−

(
p − p0 + δp2,1

2 − m+n
2 δpL

)2

2σ 2
p

]
exp

{
− [δp2,1 − (n − m)δpL]2

8σ 2
p

}

=
exp

[
iω2,1tD

(
1 + p−p0+ δp2,1

2
γ 3mev0

)]√
2πσ 2

p

∑
m,l

Jm+l (2|gL|)Jm(2|gL|) exp

[
ilφ0 − (ω2,1 − lωb)2σ 2

t0

2

]

× exp

[
−

(
p − p0 − mδpL + δp2,1−lδpL

2

)2

2σ 2
p

]
. (G4)

Considering the nearly resonant case,

ω2,1 ≈ nωb (δp2,1 ≈ nδpL ), (G5)
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we neglect all terms except l = n:

Co(p, δp2,1) � 1√
2πσ 2

p

exp

[
iω2,1tD

(
1 + p − p0 + δp2,1

2

γ 3mev0

)
+ inφ0

]
exp

[
− (ω2,1 − nωb)2σ 2

t0

2

]

×
∑

m

Jm+n(2|gL|)Jm(2|gL|) exp

[
− (p − p0 − mδpL )2

2σ 2
p

]
. (G6)

Similarly,

Co(p,−δp2,1) � 1√
2πσ 2

p

exp

[
−iω2,1tD

(
1 + p − p0 − δp2,1

2

γ 3mev0

)
− inφ0

]
exp

[
− (ω2,1 − nωb)2σ 2

t0

2

]

×
∑

m

Jm−n(2|gL|)Jm(2|gL|) exp

[
− (p − p0 − mδpL )2

2σ 2
p

]
. (G7)

Therefore, we can write the first-order term of the spectrum of the incremental final sideband [Eq. (G1)] for a modulated
Gaussian QEW in a compact form:

�ρ (1)
p = 1

2
sin (2|g|) sin θRe{i exp (iφg − iφ)Co(p, δp2,1) + i exp (−iφg + iφ)Co(p,−δ2,1)}

= 1

2
sin (2|g|) sin θ exp

[
− (ω2,1 − nωb)2σ 2

t0

2

]∑
m

An,m(φ)
1√

2πσ 2
p

exp

[
− (p − p0 − mδpL )2

2σ 2
p

]
, (G8)

where the amplitude function An,m(φ) is

An,m(φ) = [− sin
(
ζ + φg + φm

δpL

)
Jm+n(2|gL|) + sin

(
ζ + φg + φm

−δpL

)
Jm−n(2|gL|)] Jm(2|gL|), (G9)

where ζ = ω2,1tD−φ + nφ0 represents the phase of the TLS relative to the laser-modulated QEW and its arrival phase at

the interaction point. The additional phase φ±δpL = ω2,1tD
p−p0± δp2,1

2
γ 3mev0

is a recoil-dependent (positive or negative) phase shift
accumulated in drift. Under the near resonance condition Eq. (G5) and with narrow sideband width relative to the recoil
momentum σp � δpL, we can set δp2,1 ≈ nδpL, p − p0 = mδpL, and define the phase shift φm

δp2,1
of the mth order sideband:

φm
±δpL

= ω2,1tD
mδpL ± δp2,1

2

γ 3mev0
� ω2,1tD

(m ± n/2)δpL

γ 3mev0
. (G10)

We examine the case of no drift tD = 0 (that corresponds to no density bunching of the QEW). In this case, φm
±δpL

= 0,
and the coefficient [Eq. (G9)] reduces to An,m = sin(ζ + φg)[−Jm+n(2|gL|) + Jm−n(2|gL|)]Jm(2|gL|). This coefficient satisfies a
symmetry relation:

An,−m = sin (ζ + φg)[J−m−n(2|gL|)J−m(2|gL|) − J−m+n(2|gL|)J−m(2|gL|)]
= sin (ζ + φg)[(−1)m+n(−1)mJm+n(2|gL|)Jm(2|gL|) − (−1)m−n(−1)mJm−n(2|gL|)Jm(2|gL|)]
= sin (ζ + φg)[(−1)nJm+n(2|gL|)Jm(2|gL|) − (−1)nJm−n(2|gL|)Jm(2|gL|)]
= (−1)n+1An,m.

Thus, for n being odd, the final incremental spectrum would be symmetric, while for n being even, it is antisymmetric.
We proceed now to calculate the incremental transition probability of the TLS that corresponds to the incremental distribution

of the modulated QEW. For this, we need first to evaluate the autocorrelation function for the modulated Gaussian case:

I (δp2,1 ) =
∫

d pCo(p, δp2,1)

= 1√
2πσ 2

p

exp (iω2,1tD)
∫

d p exp

[
iω2,1tD

(
p − p0 + δp2,1

2

)
γ 3mev0

]∑
n,m

Jn(2|gL|)Jm(2|gL|)

× exp [−i(n − m)φ0] exp

[
−

(
p − p0 + δp2,1

2 − m+n
2 δpL

)2

2σ 2
p

]
exp

[
− (δp2,1 − (n − m)δpL )2

8σ 2
p

]
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= exp (iω2,1tD)√
2πσ 2

p

∑
n,m

Jn(2|gL|)Jm(2|gL|) exp [−i(n − m)φ0]

× exp

{
− [δp2,1 − (n − m)δpL]2

8σ 2
p

}∫
d p exp

[
iω2,1tD

(
p − p0 + δp2,1

2

)
γ 3mev0

]
exp

[
−

(
p − p0 + δp2,1

2 − m+n
2 δpL

)2

2σ 2
p

]

= exp (iω2,1tD) exp

(
−�2

D

2

)∑
l,m

Jm+l (2|gL|)Jm(2|gL|) exp (−ilφ0)

× exp

[
− (ω2,1 − lωb)2σ 2

t0

2

]
exp

[
i

ω2,1tD
2γ 3mev0

(2m + l )δpL

]
= exp (iω2,1tD) exp

(
−�2

D

2

)∑
l

exp (−ilφ0) exp

[
− (ω2,1 − lωb)2σ 2

t0

2

]
exp

(
i

ω2,1tD
2γ 3mev0

lδpL

)

×
∑

m

Jm+l (2|gL|)Jm(2|gL|) exp

(
i

ω2,1tD
γ 3mev0

mδpL

)
.

With Graf’s addition theorem, one gets

I (δp) = exp (iω2,1tD) exp

(
−�2

D

2

)∑
l

Jl

[
4|gL| sin

(
2πn

LD

zT

)]
exp (−ilφ0) exp

[
− (ω2,1 − lωb)2σ 2

t0

2

]
exp

(
i

ω2,1tD
2γ 3mev0

lδpL

)
,

(G11)

which yields the explicit expression for the incremental postinteraction occupation probability of the TLS quantum levels:

�P2 = −�P1 = −sin2|g| cos θ − 1

2
sin (2|g|) sin θ exp

(
−�2

D

2

)∑
l

Jl

[
4|gL| sin

(
2πn

LD

zT

)]
× exp

[
− (ω2,1 − lωb)2σ 2

t0

2

]
sin

(
ζ + ω2,1tD

2γ 3mev0
lδpL + φg

)
. (G12)

Assuming ω2,1 ≈ nωb {resonance with harmonic n [Eq. (2)]}, this can be written

�P2 = −�P1 = −sin2|g| cos θ − 1

2
sin (2|g|) sin θ sin

(
ζ + φg + 2πn

LD

zT

)
× Jn

[
4|gL| sin

(
2πn

LD

zT

)]
exp

[
− (ω2,1 − nωb)2σ 2

t0

2

]
exp

(
−�2

D

2

)
. (G13)

APPENDIX H: DERIVATION OF THE INTEGRODIFFERENTIAL EQUATION FOR NUMERICAL SIMULATION

In this section, we present the algorithm used for the numerical solution of an integrodifferential equation that we derive
from the interaction picture Schrödinger equation [Eq. (7)]. The pre-interaction joint wavefunction |�̃(p, t )〉 = |ψ̃F (t )〉 ⊗ |ψ̃B〉
is described using the base vector set {|p〉 ⊗ |i〉} which is annotated {|p, i〉}, where we used the definition |�̃(p, t )〉 = |ψ̃F (t )〉 ⊗
|ψ̃B〉 = ∑

p c(0)
p (t )|p〉 ⊗ ∑

i Ci|i〉 [in the previous sections, we set C1 = sin θ
2 , C2 = exp(iφ) cos θ

2 ].
Multiplying Eq. (7) by 〈p, i| yields

ih̄
∂

∂t
〈p, i|�̃(p, t )〉 = 〈p, i

∣∣ĤI (t )
∣∣�̃(p, t )〉. (H1)

Next, the unity operator is inserted into the right-hand side of Eq. (H1):

ih̄
∂

∂t
〈p, i|�̃(p, t )〉 =

∫
d p′ ∑

j

〈p, i|ĤI (t )|p′, j〉〈p′, j|�̃(p, t )〉, (H2)

where the kernel is

〈p, i|ĤI (t )|p′, j〉 = 〈p, i| exp

(
iĤ0t

h̄

)
ĤI exp

(
− iĤ0t

h̄

)
|p′, j〉 = 〈p, i|ĤI |p′, j〉 exp

[
i(Ep − Ep′ )t

h̄

]
exp

[
i(Ei − Ej )t

h̄

]
. (H3)
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With the explicit form of the interaction Hamiltonian ĤI = er̂
′ · E(ẑ, r⊥0), one obtains

〈p, i|ĤI |p′, j〉 = 〈i|er̂′| j〉 · 〈p|E(ẑ, r⊥0)|p′〉
= 〈p|μi, j · E(ẑ, r⊥0)|p′〉

=
∫

dz
∫

dz′〈p|z〉〈z|μi, j · E(ẑ, r⊥0)|z′〉〈z′|p′〉

= 1

2π h̄

∫
dzμi, j · E(z, r⊥0) exp

[
− i(p − p′)z

h̄

]
. (H4)

We denote the result of Eq. (H4) as M̃i, j (p−p′) and define 〈p, i|�̃(p, t )〉 ≡ Ci,p(t ), where Ci,p(t ) is the probability amplitude
of the entangled state |i, p〉. Since M̃i, j (p−p′) = 0 for i = j, Eq. (H4) can be expressed as

Ċi,p(t ) = 1

2π ih̄2

∫
d pM̃i, j (p − p′)Cj,p′ (t ) exp

[
− i(Ep′ − Ep + Ei, j )t

h̄

]
, (H5)

where Ei, j = Ei − Ej , and i �= j. Equation (H5) can be solved numerically using the Euler method by discretizing it over a finite
momentum range (−Pcutoff , Pcutoff ) with N points sampling. The cutoff of the momentum must satisfy Pcutoff > h̄ω2,1/v0. The
discrete version of [Eq. (H5)] is

Ċi,pm = 1

2π ih̄2

N∑
n=1

�pM̃i, j (pm − pn)Cj,pn (t ) exp

[
− i(Epn − Epm + Ei, j )t

h̄

]
,

Where pn = (1− 2n
N )Pcutoff , and Epn = ε0 + v0(pn − p0) + (pn−p0 )2

2γ 3m . Thus, the probability amplitude can be written as a discrete
vector:

vi(t ) = [
Ci,p1 (t ),Ci,p2 (t ), . . . . . . ,Ci,pN (t )

]T
.

For the cases of modulated and unmodulated QEW, we get different c(0)
pn

, as discussed in previous sections, which forms the
initial vector elements with Ci,pn (t0) = Ci(t0)c(0)

pn
at t0 = −∞. Summing all the scattering processes from pn to pm, the differential

equation can be expressed in a tensor form as

d

dt
vi(t ) = U i j (t )v j (t ),

where U i j (t ) determines the evolution of vi, based on the state v j , and its elements are

U i j
nm(t ) = �p

2π ih̄2 M̃i j (pm − pn)exp

[
− i(Epn − Epm − Eij )t

h̄

]
.

With discretization of the time domain, the evolution of entangled free and bound electron system is expressed as[
v1(ti+1)
v2(ti+1)

]
=

[
1 U 12(ti )�t

U 21(ti )�t 1

][
v1(ti )
v2(ti )

]
,

with �t = ti+1 − ti. Finally, we get

ρ̂(t f ) =
[
v1(t f )
v2(t f )

]
[v∗

1 (t f ) v∗
2 (t f )].
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