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Quantum computational advantage attested by nonlocal games with the cyclic cluster state
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We propose a set of Bell-type nonlocal games that can be used to prove an unconditional quantum advantage
in an objective and hardware-agnostic manner. In these games, the circuit depth needed to prepare a cyclic
cluster state and measure a subset of its Pauli stabilizers on a quantum computer is compared to that of
classical Boolean circuits with the same, nearest-neighboring gate connectivity. Using a circuit-based trapped-ion
quantum computer, we prepare and measure a six-qubit cyclic cluster state with an overall fidelity of 60.6%
and 66.4%, before and after correcting for measurement-readout errors, respectively. Our experimental results
indicate that while this fidelity readily passes conventional (or depth-0) Bell bounds for local hidden-variable
models, it is on the cusp of demonstrating a higher probability of success than what is possible by depth-1
classical circuits. Our games offer a practical and scalable set of quantitative benchmarks for quantum computers
in the pre-fault-tolerant regime as the number of qubits available increases.
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I. INTRODUCTION

There are many metrics to characterize the quality of noisy
intermediate-scale quantum (NISQ) computers [1]. For ex-
ample, qubit count, gate count, gate fidelities, and quantum
volume [2] are common options. However, it is generally
agreed upon that a more comprehensive picture is given by
the device’s overall performance in executing a variety of
computational tasks. To this end, we look toward compu-
tational tasks with two desirable properties in this paper.
First, they should have objective targets, beyond which one
can prove that the NISQ computer has outperformed some
particular model of classical computation. This is different
from the task of demonstrating so-called quantum supremacy
via sampling random quantum circuits [3,4] or bosonic lin-
ear interferometers [5], which relies on assumptions of the
underlying problem’s computational hardness, making it a
moving target based on current state-of-the-art classical hard-
ware and algorithms. In contrast, we seek an unconditional
demonstration of quantum computational advantage. Second,
the computational task should be agnostic to the choice of
hardware implementation, so that it allows a fair comparison
of results among different architectures. In particular, as most
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of NISQ computers have only geometrically-local entangling
gates, here we consider a one-dimensional (1D) geometry
with a periodic boundary condition (i.e., a cyclic array of
qubits).

Natural candidates satisfying the first desideratum are Bell-
type nonlocal games [6–8], which have a long history of
experimental demonstrations (see Refs. [8, Sec. VII] and
[9–12]) and have found renewed interest in the context of
classically verifiable quantum advantage [13–15]. The vio-
lation of a Bell inequality sets an objective threshold that a
quantum device must surpass in order to evade description by
an analogous classical model. Extending these results to more
general causal scenarios has been a topic of recent interest
[16–18]. For example, Bell scenarios based on generalized
Greenberger-Horne-Zeiliinger (GHZ) states, an example of a
so-called graph state [19–23], have been shown to be capable
of computing arbitrary Boolean functions [24,25]. Yet, prepar-
ing such a state with nearest-neighboring entangling gates on
a 1D geometry requires linear-depth circuits. Thus we do not
expect any quantum advantage when comparing quantum and
classical circuit depths that accomplish this task.

On the other hand, cyclic cluster states are graph states that
require only nearest-neighbor entangling gates. This restricted
connectivity is inherent to a wide variety of quantum-
computing platforms, thus satisfying our second desideratum.
Cyclic cluster states also form the basis of Bell-type sce-
narios that go beyond the traditional locality assumptions of
Bell’s theorem, refuting even classical theories assisted by
a limited amount of communication [26]. By treating these
communication-assisted classical strategies as classical cir-
cuits of limited depth, Ref. [27] showed that shallow-depth
quantum circuits are more powerful than their classical coun-
terparts. In light of these results, the past few years have seen
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TABLE I. Summary of the nonlocal games studied in this work, along with our main experimental results using a trapped-ion quantum
computer. The notation and definition of the games are provided in their respective sections. For the optimal quantum strategy, each game
involves preparing the six-qubit cyclic cluster state |C6〉 and then evaluating a number of stabilizers from global Pauli measurement settings,
which may differ for the games. As the success probability PrC[win] of a classical strategy may depend on the circuit considered, we
report bounds for both depth-0 and depth-1 classical circuits. For the details of our quantum experiments, see Sec. V; the cubic Boolean
function (CBF) results were obtained by a tomography experiment measuring the relevant stabilizers (data presented in Fig. 3). The stabilizer
submeasurement (SS) results were obtained by a separate experiment (data presented in Table II). We report experimental success probabilities
P̂rQ[win] estimated from both the raw output of our quantum device, and after state-preparation-and-measurement (SPAM) error correction.
The experimental uncertainties, denoted by the values in parentheses, correspond to a 1σ standard error within the number of significant
figures reported. For each input of a game, we took N = 5000 shots.

Number of PrC[win] Experimental P̂rQ[win]

Game (stabilizers, settings) Depth-0 bound Depth-1 bound Raw value SPAM-corrected

CBF(C6, {0, 1}6) (Sec. III A) (63,63) 23/32 = 71.875% 100% 80.30(8)% 83.21(9)%

CBF(C6,I (55)
Mermin ) (Sec. III B) (55,55) 37/55 ≈ 67.3% 100% 79.51(9)% 82.56(10)%

SS(C6,I (8)
HLF ) (Sec. IV A) (5,8) 7/8 = 87.5% 87.5% 81.35(59)% 85.79(53)%

SS(C6,I (5)
HLF ) (Sec. IV B) (5,5) 4/5 = 80% 80% 79.42(25)% 84.68(23)%

a number of novel works laying the theoretical foundation
for unconditionally demonstrating a quantum advantage with
constant-depth quantum circuits of nearest-neighbor entan-
gling gates [28–34].

In this paper, we analyze two kinds of Bell-type nonlo-
cal games and demonstrate proof-of-principle experimental
implementations with a six-qubit trapped-ion quantum com-
puter [35]. Both games utilize the n-qubit cyclic cluster state
and are motivated as follows. The first game is based on
the so-called graph state Bell inequality [22], which we re-
cast as the computation of a particular nonlinear Boolean
function via the measurement of elements in the cyclic clus-
ter state’s stabilizer group. While this game has utility as
estimating the state fidelity of a cyclic cluster state and bench-
marking the noise of our experimental device, we also show
that for an arbitrary-size instance of this game, a depth-1
classical circuit with the same gate connectivity as our quan-
tum circuit can win the game with unit success probability.
This implies that we cannot use this first game to demon-
strate a quantum computational advantage in terms of circuit
depth.

This motivates the second game, which is based on the
smallest nontrivial instance of the so-called 2D hidden linear
function problem introduced in Ref. [27]. If played on a 2D
grid of qubits, this game is capable of demonstrating an un-
conditional separation between the power of a constant-depth
quantum circuits and sublogarithmic-depth classical circuits
[27]. Here we show that, on a 1D cycle, this family of games
is capable of demonstrating an unconditional separation be-
tween constant-depth quantum circuits and sublinear-depth
classical circuits with the same gate connectivity, which we
define precisely in Theorem 1. Furthermore, we improve upon
the original game of Ref. [27] by reducing the threshold of
success probability that a quantum computer must exceed
down to 80% from 87.5%. Our experimental implementation
of the smallest instance of this second game using a 6-qubit
cyclic cluster state demonstrates a success probability that
is on the cusp of exceeding the success probability bound
for depth-1 classical circuits. This 6-qubit game is the first
instance in a family of games that is capable of demonstrating

an unconditional quantum advantage as we asymptotically
scale the problem size. We summarize all of our results in
Table I.

The paper is organized as follows. In Sec. II we review
background material necessary to understand our key results
and establish notation. In Sec. III we introduce the first type
of nonlocal game, called cubic Boolean function games. In
Sec. IV we discuss the second type of nonlocal game, called
stabilizer submeasurement games. In Sec. V we present the
results of our experimental implementation of the quantum
strategies for these games. In Sec. VI we discuss the gen-
eralization of these two games to the n-qubit scenario and
formally state our claim to quantum advantage in Theorem
1. Finally, we conclude with a discussion and outlook in
Sec. VII.

II. BACKGROUND

A. Graph states

Stabilizer states are a particular class of many-body quan-
tum states that have a wide range of applications in quantum
computing (e.g., for error correction, measurement-based
quantum computing, and tests of Bell nonlocality). An n-qubit
stabilizer state is defined as the joint +1 eigenstate of 2n

commuting Pauli operators, called the stabilizer group. Let X ,
Y , and Z be the Pauli matrices. I denotes the 2 × 2 identity
matrix and 1 the identity operator acting on the whole system.
Let |0〉 and |1〉 be the +1 and −1 eigenstates of Z , respec-
tively. Denote by Xj an n-qubit Pauli operator that acts as X on
the jth qubit and as the identity elsewhere (similarly for Yj and
Zj). Any n-qubit Pauli operator can be written (up to an overall

phase) as E (a, b) = ∏n−1
j=0 ia j b j X

aj

j Z
bj

j , where a, b ∈ {0, 1}n.
Denote the jth term in the product for E (a, b) by Ej (a j, b j ).

It is convenient to study stabilizer states in the so-called
graph-state formalism [20]. For each graph G = (V, E ), with
vertex set V and edge set E , the corresponding graph state
|G〉 is prepared by initializing a qubit at each vertex v ∈
V in the state |+〉 = (|0〉 + |1〉)/

√
2 and applying a two-

qubit controlled-Z gate, CZv,w = (1 + Zv + Zw − ZvZw )/2,
between each pair of vertices (v,w) ∈ E that share an edge.
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FIG. 1. (Top) The quantum circuit that prepares the six-qubit cyclic cluster state |C6〉 using CZ gates, followed by the measurement of the
Pauli operator E (a, b) for some a, b ∈ {0, 1}6. Namely, the final conditional rotation changes the measurement basis of the jth qubit to Z , X ,
or Y whenever the classical input (aj, bj ) ∈ {0, 1}2 is (0,1), (1,0), or (1,1), respectively. Input (0,0) denotes the presence of an identity in the
Pauli operator, in which case the qubit is measured in the Z basis. (Bottom) The same circuit, recompiled using RX X (θ ) gates, which are native
to our trapped-ion device, and optimized to reduce the number of single-qubit gates.

That is, the graph state is defined as

|G〉 =
∏

( j,k)∈E

CZj,k|+〉⊗|V |. (1)

Any stabilizer state is equivalent to a graph state up to single-
qubit Clifford gates [the set of gates generated by H = (X +
Z )/

√
2 and S = √

Z] [36–38].
Conversely, any graph state is uniquely defined in terms of

its stabilizer group. From Eq. (1) it follows that |G〉 is the +1
eigenstate of all the elements of

SG =
〈

Xv

∏
l∈N (v)

Zl

∣∣∣∣∣ ∀v ∈ V

〉
, (2)

where l ∈ N (v) if and only if (l, v) ∈ E . The notation 〈 · 〉
indicates the set of all possible products generated by the op-
erators contained in the brackets. The operators in the brackets
are referred to as stabilizer generators. We may associate the
generator Sv = Xv

∏
l∈N (v) Zl with the vertex v.

In this paper we focus on the six-qubit graph state on the
cycle graph |C6〉, also known as the six-qubit cyclic cluster
state, where C6 denotes the six-vertex cycle graph. Following
Eq. (1), the preparation of |C6〉, followed by a measurement
of an arbitrary Pauli operator E (a, b), is implemented by the
quantum circuit in Fig. 1 (top). For the experimental imple-
mentation using trapped ions, we recompile this circuit in
terms of the native two-qubit Mølmer–Sørensen gates, defined
as RXX (θ ) = exp(−iθX ⊗ X ), yielding the circuit in Fig. 1
(bottom). (Further details of the experimental setup are dis-
cussed in Sec. V A.)

B. State fidelity and detection of entanglement

The fidelity between a target pure state |ψ〉 and a prepared
(possibly mixed) state ρ is given by

F (ρ, |ψ〉) = 〈ψ |ρ|ψ〉 = tr(|ψ〉〈ψ |ρ). (3)

Accordingly, the fidelity between |ψ〉 and ρ can be thought of
as the expectation value of the projector onto |ψ〉 with respect
to ρ. In particular, the projector onto any n-qubit stabilizer
state, such as a graph state |G〉, can be expressed in terms of
the 2n elements of its stabilizer group SG,

|G〉〈G| = 1

2n

∑
S∈SG

S. (4)

The fidelity between a graph state |G〉 and a state ρ is therefore
determined by the expectation values of the 2n elements of the
stabilizer group,

F (ρ, |G〉) = 1

2n

∑
S∈SG

tr(ρS). (5)

Another important property of the prepared state is whether
or not it possesses genuine multipartite entanglement. A quan-
tum state is said to have genuine n-partite entanglement if it
cannot be expressed as a convex sum of biseparable states
(i.e., states that are separable with respect to some bipartition
of the n-qubit system). Since the maximum fidelity any bisep-
arable state can have with a connected graph state is 1/2, the
operator

W = 1

2
− |G〉〈G| (6)
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acts as a witness for genuine n-qubit entanglement [39].
Namely, tr(ρW ) < 0 implies the ρ has genuine multipartite
entanglement. Thus the presence of multipartite entanglement
may be detected directly from the fidelity as

tr(ρW ) = 1
2 − F (ρ, |G〉). (7)

C. Bell-type nonlocal games

In this section we review the concept of nonlocal games
and translate classical strategies with communication into
classical circuits. A nonlocal game [7,8] is a computational
scenario that takes place over several rounds. In each round,
multiple parties are each provided a piece of information
about a global input string x ∈ Input ⊂ {0, 1}∗ (the notation
{0, 1}∗ denotes the set of arbitrary length binary strings, i.e.,
{0, 1}∗ = {0, 1, 00, 01, . . .}). The parties must then respond
to a referee, each with one bit, to produce an output string
y ∈ {0, 1}∗ that has certain properties depending on the input.
The referee then checks that the output possesses the desired
properties and accordingly tallies the round as a win or loss.
For a particular game, denote the set of valid outputs y for
a given input x as Win(x). Each such game defines a rela-
tion problem: Find a valid input–output pair (x, y) satisfying
some binary relation R, whereby (x, y) ∈ R if and only if
y ∈ Win(x).

A strategy for a nonlocal game is a scheme by which the
parties produce their outputs. Suppose each party receives l
bits of information about the input x. In a quantum strategy,
each party holds one qubit from a multipartite quantum state
ρ, measures their qubit in some basis depending on their
received bits, and then outputs the measurement outcome. We
compare the quantum strategies implemented on our device
(represented as quantum circuits) to classical strategies (rep-
resented as classical circuits with the same gate connectivity)
in terms of their circuit depths. We remark that for each game
studied in this work, a perfect quantum strategy with unit suc-
cess probability can be implemented with the constant-depth
circuit depicted in Fig. 1.

In a classical strategy, each party may communicate with
neighboring parties to obtain a total of k � K bits of in-
formation about the input for some integer K . Each party
then manipulates their information via some Boolean func-
tion f : {0, 1}k → {0, 1}∗ and repeats this process for a total
of D rounds of communication; in the last round, each out-
put is produced via some y : {0, 1}k → {0, 1}. Each classical
strategy can therefore be associated to a particular depth-D
classical circuit, consisting of gates drawn from an arbitrary
gate set depending on no more than K outputs of its neighbor-
ing gates in the previous layer (i.e., each gate is geometrically
restricted with respect to some graph and has fan-in � K),
which compute the corresponding Boolean functions. Here
the depth of the classical circuit indicates the of the number
of layers of parallelized multi-bit gates applied. Each such
circuit can be defined as a directed acyclic graph where each
vertex is labeled by the corresponding gate it implements [40].
For example, in Fig. 2 the set of possible classical circuits
with D = 1 and K = 3 that are geometrically restricted with
respect to the cycle graph are visualized as a directed acyclic
graph.

FIG. 2. Representation of a generic depth-1, fan-in � 3 classical
circuit that is geometrically restricted with respect to the graph C6,
as a directed acyclic graph. Periodic boundary conditions are im-
posed on the top and bottom edges on the directed acyclic graph.
This particular circuit is constructed for problems where each party
receives l = 1 bit of information about the input. Each node labeled
y j denotes an output of an arbitrary Boolean function of the three
adjacent bits (i.e., it corresponds to an arbitrary three-bit gate). For
a general depth-D circuit each output can depend on the 2D + 1
nearest inputs.

To both quantum and classical strategies, one can assign
an average success probability, denoted Pr[win], which is the
probability that the strategy will win a round of the game,
given an input chosen uniformly at random. The average suc-
cess probability is computed from the conditional probability,
Pr[y|x], for a strategy to produce output y given input x, as

Pr[win] = 1

|Input|
∑

x∈Input

∑
y∈Win(x)

Pr[y|x]. (8)

Strategies with Pr[win] = 1 are said to be perfect. For each
nonlocal game we study there exists a perfect quantum strat-
egy. On the other hand, classical strategies for these games
will produce a hierarchy of bounds depending on the depth of
classical circuits. For brevity, we express these bounds as

PrC[win] �Depth-0 β0 �Depth-1 β1 �Depth-2 β2 � · · · . (9)

“Depth-1” and “Depth-2” denote that β1 and β2 are the
maximal values of PrC[win] for any geometrically restricted
classical circuit with D = 1, 2, respectively, and K = 3l . With
slight abuse of notation, “Depth-0” denotes that β0 is the
maximum value for any classical circuit consisting of a single
layer of local gates. We say that their depth is “zero” since
these circuits correspond to classical strategies without com-
munication, where each output y j can depend on at most l bits
received by the jth party. Surpassing any of these bounds with
a quantum device is interpreted as a violation of a Bell-type
inequality, which in turn demonstrates the achievement of a
computational task that cannot be done with a classical circuit
of that particular depth and geometry.
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III. C6 CUBIC BOOLEAN FUNCTION GAMES

Here we describe a nonlocal game adapted from the graph-
state Bell inequalities presented in Ref. [22]. In this game,
parties are given partial information about an input string
x ∈ {0, 1}n and are tasked to produce outputs such that the
joint parity is equal to a particular cubic Boolean function
associated to a graph G = (V, E ) evaluated on the input. For
a particular graph G = (V, E ) and input set I ⊆ {0, 1}n we
denote the game as CBF(G, I ).

For the sake of our six-qubit experimental demonstration,
we define the game over the six-vertex cycle graph. We remark
that this six-player instance of the game contains the same
qualitative features of the n-party scenario. Namely, it has a
nontrivial depth-0 bound, trivial depth-1 bound, and perfect
quantum strategy. For a discussion of a general size n instance
of the game we point the reader to Sec. VI.

Definition. C6 cubic Boolean function games
(CBF(C6, I )). Consider a game where six parties
corresponding to the vertices of the cycle graph C6 are each
given a two-bit input s j = (a j, b j ) ∈ {0, 1}2, j = 0, . . . , 5.
The inputs s j are drawn as follows: From a global input
x = (x0, . . . , x5) ∈ I ⊆ {0, 1}6, each party j is given
the bit a j = x j and the parity of their neighbors’ bits,
b j = x j+1 + x j−1 mod 2. Each party j then produces a
one-bit output y j . The parties win the game whenever

∑
j∈supp(s)

y j =
5∑

j=0

x j−1x jx j+1 mod 2, (10)

where supp(s) = {0 � j � 5 | s j 
= (0, 0)} and all subscripts
are taken mod 6.

In a perfect quantum strategy for this game, each party
holds one qubit from the state |C6〉 and measures the Pauli
operator Ej (a j, b j ) = ia j b j X

aj

j Z
bj

j . This strategy is perfect be-
cause, collectively, the parties measure the Pauli part of the
stabilizer Sx = ∏5

j=0 S
xj

j , where S j denotes the stabilizer gen-
erator corresponding to vertex j of C6. The parity of the
measurement outcomes for qubits j ∈ supp(s) is then de-
terministically equal to the phase in front of Sx, which is
exp(iπ

∑5
j=0 x j−1x jx j+1). See Fig. 1 and Appendix C for

more details. On the other hand, classical strategies perform
with varying success depending on the particular input set
I. We now consider two particular input sets that give two
different classical bounds on the depth-0 success probability.

A. Full-input cubic Boolean function game (fidelity game)

Setting the input set I to be all possible six-bit strings,
we have the game CBF(C6, {0, 1}6). In the perfect quantum
strategy presented above, each of the 26 inputs corresponds to
a measurement of one element of the stabilizer group for the
graph state |C6〉. Playing many rounds of the game can be in-
terpreted as a partial-tomography experiment to determine the
fidelity of the prepared state by measuring randomly chosen
stabilizer elements [41,42]. The success probability PrQ[win]
for the quantum strategy using ρ is related to the fidelity of ρ

with respect to |C6〉, via

F (ρ, |C6〉) = 2 PrQ[win] − 1. (11)

For this specific input set, the depth-0 classical circuits can-
not win this game with probability greater than PrC[win] �
23/32. This comes from the local hidden-variable theory
upper bound presented in Ref. [22] for the correspond-
ing graph-state Bell inequality. However, depth-1 circuits
can implement perfect strategies. This is achieved by each
party individually computing one cubic term in the function
of Eq. (10) as y j = a j−1a j (b j + a j−1) = x j−1x jx j+1 mod 2,
which satisfies the win conditions of the game. Hence,

PrC[win] �Depth-0
23

32
�Depth-1 1 �Depth-2 1. (12)

We remark that because depth-1 classical circuits can give a
perfect strategy, this Bell-type nonlocal game is not sufficient
to demonstrate quantum advantage in terms of a separation in
circuit depth. Nevertheless, we use this game to estimate the
fidelity of our experimentally prepared state in Sec. V.

B. Restricted-input cubic Boolean function game

Following the seminal work of Mermin [43], in Ref. [44] it
was shown that by restricting to a 55-element subset of {0, 1}6

gives the largest possible violation for any Bell inequality
based on the perfect correlations present in |C6〉. Consider the
the 55-element set

I (55)
Mermin =

{
x ∈ {0, 1}6

∣∣∣∣|x| 
= 0, 1,

x 
= 010101, 101010

}
, (13)

where |x| = ∑5
j=0 x j denotes the Hamming weight of x (i.e.,

the number of ones in the binary string). This input set yields
the game CBF(C6, I (55)

Mermin ).
The same quantum strategy presented for CBF(C6, {0, 1}6)

is also perfect for this game. For the classical bounds,
depth-0 classical circuits cannot win with probability greater
than 37/55, although the same depth-1 circuit presented in
Sec. III A remains perfect. Hence,

PrC[win] �Depth-0
37

55
�Depth-1 1 �Depth-2 1. (14)

Again, the trivial depth-1 bound indicates that this Bell-type
nonlocal game is not sufficient to demonstrate quantum ad-
vantage in terms of a separation in circuit depth.

IV. C6 STABILIZER SUBMEASUREMENT GAMES

We now move on to another class of games called stabilizer
submeasurement games. For the sake of our experimental
demonstration, we first discuss this game for a fixed-sized
input of six bits. Unlike the CBF games, no depth-1 classi-
cal strategy is perfect for this six-bit instance. This property
begins to reveal an important feature of this game for gen-
eral n-bit instances. Namely, no strategy produced by a
geometrically-restricted classical circuits with depth growing
sublinearly in n is perfect. We make this statement precise in
Theorem 1.

Let us first see how this property manifests for the six-bit
input. These games are defined as follows.

Definition. C6 stabilizer submeasurement games
(SS(C6, I )). Consider a game where six parties corresponding
to the vertices of the cycle graph C6 are each given
a one-bit input x j , j = 0, . . . , 5, from a global input
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x = (x0, . . . , x5) ∈ I ⊆ {0, 1}6, drawn at random from a
uniform distribution. With each input we can associate
a global Pauli operator E (1, x) = ∏5

j=0 ix j XjZ
xj

j , where
1 denotes the all-ones string. Each party then produces
an output y j ∈ {0, 1}, which collectively forms a string
y ∈ {0, 1}6. The parties are said to win the game whenever

∀P ⊆ E (1, x) s.t. P ∈ SC6

∑
j∈supp(P)

y j = 0, (15a)

∀P ⊆ E (1, x) s.t. P ∈ −SC6

∑
j∈supp(P)

y j = 1, (15b)

where P ⊆ E (1, x) means that P is a Pauli operator obtained
by replacing some nonidentity tensor factors in E (1, x) with
the identity. Furthermore, supp(P) = supp(a, b) where P =
E (a, b) [i.e., supp(P) indexes the qubits where P acts nontriv-
ially] and all arithmetic is performed modulo 2.

The SS(C6, I ) games always have a perfect quantum strat-
egy wherein each party j holds one qubit from the state
|C6〉, measures it in the basis of Xj or Yj if x j = 0 or 1, re-
spectively, and then outputs the measurement outcome. For
more details on the measurement outcomes expected when
a stabilizer element exists as a submeasurement of a global
Pauli measurement, see Appendix A. On the other hand, clas-
sical strategies perform with varying success depending on the
particular input set I.

A. 2D hidden linear function (HLF) game

Fixing the input set to be

I (8)
HLF =

{
x ∈ {0, 1}6

∣∣∣∣(x0, x2, x4) ∈ {0, 1}3,

x j = 0 for all other j

}
, (16)

we have the game SS(C6, I (8)
HLF). This game is equivalent to

the smallest instance of the 2D hidden linear function game
introduced in Ref. [27] that was used to demonstrate an uncon-
ditional exponential separation between the power of classical
and quantum circuits.

As shown in Appendix D 2, all geometrically restricted
depth-0 and depth-1 fan-in � 3 circuits cannot win this game
on more than 7/8 inputs; however, there is a depth-2 circuit
that wins on all inputs. Hence,

PrC[win] �Depth-0
7
8 �Depth-1

7
8 �Depth-2 1. (17)

Thus, for the current 6-qubit example, the constant-depth
quantum circuit in Fig. 1 can in principle achieve the higher
success probability in comparison to any geometrically re-
stricted classical circuit of depth 1. This nontrivial classical
depth-1 bound is the first of many nontrivial bounds we can
put on classical circuits with increasing depth as we scale
the size of the input. This fact makes this game lucrative for
demonstrating quantum advantage in terms of a separation in
circuit depth as we modestly scale the system size. We will
further explore this point in Sec. VI.

B. Restricted-input 2D hidden linear function (HLF) game

Analogous to the case for the CBF game, we ask whether
the quantum violation of the classical success probability
bound can be increased by further restricting the input set.

Defining the input set

I (5)
HLF =

{
x ∈ {0, 1}6

∣∣∣∣(x0, x2, x4) ∈ V,

x j = 0 for all other j

}
, (18)

where V ⊂ {0, 1}3 is defined as

V = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}, (19)

we obtain the game SS(C6, I (5)
HLF). Analogous to how a re-

stricted input set makes the game CBF(C6, I (55)
Mermin ) classically

harder than CBF(C6, {0, 1}6) (i.e., the depth-0 lower bound on
PrC[win] decreases), the same behavior occurs when restrict-
ing from I (8)

HLF to I (5)
HLF. As shown in Appendix D 2, the depth-0

and depth-1 classical bounds are reduced to

PrC[win] �Depth-0
4
5 �Depth-1

4
5 �Depth-2 1. (20)

We remark that this game improves on the previously known
bound on the success probability [27], leaving more room for
noise in the quantum strategy.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The experiments presented here were performed on a fully
programmable trapped-ion quantum computer [35]. The ap-
paratus is based on a linear chain of 171Yb+ ions confined in
a Paul trap, with each qubit encoded in two hyperfine states
of the 2S1/2 ground-state manifold. Prior to implementing a
quantum circuit, the ions are ground-state cooled and initial-
ized to the |0〉 state with optical pumping [45].

Our device has a universal gate set consisting of two classes
of quantum operations: single-qubit rotations and two-qubit
entangling interactions (RXX gates). These operations are
achieved by applying two counter-propagating optical Raman
beams derived from a pulsed 355-nm mode-locked laser [46].
One Raman beam is a global beam applied to the entire chain,
while the other is split into an array of individual addressing
beams, each of which can be controlled independently and tar-
gets a single qubit. Single-qubit rotations around the z axis are
achieved by phase advances on the classical control signals,
while single-qubit rotations around axes in the xy plane are
realized by driving resonant Rabi rotations of defined phase,
amplitude, and duration. Two-qubit gates are implemented
by illuminating two selected ions with frequencies near the
motional sidebands, creating an effective Ising spin–spin in-
teraction via transient entanglement between the two qubits
and the motion in the trap [47,48]. We use multi-frequency
pulses to ensure the qubit states are disentangled from the
motional modes at the end of the gate [49]. The angle of
rotation for both the single-qubit gates and RXX gates can be
varied continuously.

Typical single- and two-qubit gate fidelities are 99.0(5)%
and 98.5(5)%, respectively. The latter is limited by residual
entanglement of the qubit states and the motional state of the
ions due to intensity noise and motional heating. Immediately
before running one of the experiments, a lower bound A on
the infidelity of every two-qubit gate is estimated to ensure
successful calibration. For each pair of qubits, this quantity
is determined by applying a (noisy) RXX gate to the compu-
tational basis state |00〉 and measuring the odd-parity-state
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FIG. 3. Estimated |C6〉 stabilizer expectation values from our ion-trap experiment. This data allows us to evaluate the fidelity of our
prepared state [Eq. (21)] and win probabilities for the cubic Boolean function games CBF(C6, {0, 1}6) and CBF(C6,I (55)

Mermin ) [Eqs. (23) and
(24), respectively]. The identity stabilizer is not included, as it trivially satisfies tr(ρ1) = 1. Each expectation value was estimated from
N = 5000 shots, from which error bars of 1σ statistical uncertainties are reported. For explicit numerical values, as well as the grouping of
simultaneously measured stabilizers that we employed, see Table III in Appendix F.

population A = 〈01|ρ|01〉 + 〈10|ρ|10〉 of the resulting two-
qubit state ρ [50].

The implementation of a circuit consists of sequences
of gate operations between qubits, compiled into the na-
tive single- and two-qubit gate operations. After executing
the quantum circuit, the state of each ion is read out in
parallel using state-dependent fluorescence detection [45].
State-preparation-and-measurement (SPAM) errors are char-
acterized and corrected by applying the inverse of an inde-
pendently measured state-to-state error matrix [51]. Detailed
performance of the system has been described elsewhere
[35,52].

B. Full-input cubic Boolean function game (fidelity game)

As discussed in Sec. III A, the fidelity F (ρ, |C6〉) indicates
the probability of winning the game CBF(C6, {0, 1}6), using
ρ as the quantum resource. We therefore directly estimate
this fidelity by performing tomography over all 26 − 1 = 63
nontrivial stabilizers. A straightforward implementation is to
measure the 63 stabilizers one-by-one, with an equal number
of samples each. Indeed, this would be essentially equiv-
alent to known probabilistic protocols for estimating state
fidelities [41,42], which in this context use uniformly ran-
domized measurement settings over all stabilizers. In order
to obtain an estimate of the fidelity within precision ±ε,
with success probability � 1 − δ, such methods require up to
�8 ln(4/δ)/ε2� measurements. This is notably independent of
system size, despite the fact that the total number of stabiliz-
ers grows exponentially with n. However, since our six-qubit
system is fairly small, this randomization turns out to incur a
larger constant overhead compared to a more direct approach.

Therefore we instead use a greedy graph-coloring heuristic
to find locally commuting subsets of the stabilizers [53,54].

Two Pauli operators
⊗n−1

j=0 Pj,
⊗n−1

j=0 Qj ∈ {I, X,Y, Z}⊗n are
said to locally commute if [Pj, Qj] = 0 for all j. This al-
lows us to parallelize the stabilizer measurements into fewer
measurement settings, reducing the overall sampling runtime.
For this experiment, we used a total of 37 global Pauli
measurement settings to estimate all 63 nontrivial stabilizer
expectation values (see Table III in Appendix F for details
of this partitioning). Each measurement setting was sampled
5000 times to obtain adequate statistics.

The stabilizer expectation values are visualized in Fig. 3,
with 1σ uncertainty bars associated with the sampling statis-
tics. Explicit numerical values are provided in Table F in the
Appendix. We include the values from both the raw exper-
imental data, as well as after applying SPAM correction to
the outcome distributions. From these results we estimate the
fidelity of our prepared state ρ to be

F̂ (ρ, |C6〉) =
{

0.6061(17) from raw data
0.6639(19) SPAM-corrected.

(21)

The statistical uncertainty is computed by propagating uncer-
tainties from the stabilizer expectation values, paying special
care to handle the covariances between stabilizers that are
simultaneously evaluated within the same Pauli measurement
setting. Details of this error analysis are provided in Ap-
pendix E.

To put this result in context, we briefly review prior ex-
perimental work on graph states over six qubits. In Ref. [55],
an H-graph state was prepared with fidelity 0.593(25) on a
photonic device. More recently, Ref. [56] prepared a six-qubit
path-graph state with fidelity just under 0.6 on a superconduct-
ing architecture; using the error-mitigation techniques also
developed in that work, they then demonstrated an error-
mitigated fidelity above 0.8. In both papers, the underlying
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graphs required only five two-qubit entangling gates, whereas
our |C6〉 state requires six such gates.

As discussed in Sec. II B, we can also use the fidelity
of ρ to compute an estimate for the genuine-multipartite-
entanglement witness W via Eq. (7). From the data, we obtain
the estimate

̂tr(ρW ) =
{−0.1061(17) from raw data
−0.1639(19) SPAM-corrected . (22)

The value of the witness is negative, which indicates the
presence of genuine multipartite entanglement in our exper-
imentally prepared state. In other words, we guarantee that ρ

is entangled across all possible bipartitions of our six-qubit
system.

Finally, using the relation F (ρ, |C6〉) = 2 PrQ[win] − 1 for
the CBF games, we obtain a raw success probability for win-
ning this full-input game with our experimentally prepared
state ρ as

P̂rQ[win] = 80.30(8)%. [CBF(C6, {0, 1}6) game]. (23)

This value significantly surpasses the classical bound of
23/32 ≈ 72%.

Note that for our experimental win probabilities, we report
only the values obtained from the raw data. We argue that any
conclusions drawn from SPAM-corrected data in this context
may be controversial. This is because nonlocal games are eval-
uated on a shot-to-shot basis: a given input–output pair either
does or does not satisfy the requisite win conditions. Equiva-
lently, from a computational perspective we require that the
quantum computer evaluate the correct value of the cubic
Boolean function given a single input string. The final success
rate that we quote is merely an average over many individual
instances. On the other hand, SPAM-error correction is a post-
processing technique that is necessarily applied to the global
distribution observed over many shots. This technique allows
us to separate the fidelity of our cluster-state preparation
from extraneous device errors such as detector readout noise.
For this reason we have included SPAM-corrected estimates
for the fidelity and entanglement witness, as they illustrate
the quality of the entangling circuit by itself before further
corruption by measurement noise. However, when playing a
nonlocal game, players are ultimately restricted to claiming
either a win or loss at each shot, so measurement errors are
inevitable in this context.

C. Restricted-input cubic Boolean function game

Using the same experimental data, we can also esti-
mate our device’s average success probability for the game
CBF(C6, I (55)

Mermin ) discussed in Sec. III B. This game was
also recently implemented in Ref. [57] using IonQ’s cloud-
accessible quantum computer, where a winning probability of
87(1)% was reported. Using the data, we estimate

P̂rQ[win] = 79.51(9)%,
[
CBF

(
C6, I (55)

Mermin

)
game

]
(24)

far surpassing the classical bound of 37/55 ≈ 67%. We re-
mind the reader that this result corresponds to the raw output
of our quantum device.

TABLE II. Experimental results for the stabilizer submeasure-
ment games, SS(C6,I (8)

HLF ) and SS(C6,I (5)
HLF ). The rules and winning

conditions of the game are described in Sec. IV. For each input, 5000
rounds of the game were played, from which we estimate a win
rate and a 1σ statistical uncertainty. For completeness we include
the SPAM-corrected probabilities, although as argued in the main
text, the proper figure of merit for claiming quantum computational
advantage here (or lack thereof) is the raw value.

Win rate (%) Classical

Input Raw value SPAM-corrected bound (%)

000000 80.42(56) 86.45(48)
000010 84.76(51) 87.85(46)
001000 83.92(52) 86.94(48)
001010 75.58(61) 81.12(55)
100000 85.04(50) 88.11(46)
100010 78.12(58) 83.98(52)
101000 78.46(58) 84.28(51)
101010 84.52(51) 87.56(47)

I (8)
HLF 81.35(59) 85.79(53) 87.5

I (5)
HLF 79.42(25) 84.68(23) 80

D. 2D hidden linear function game

As another benchmark of our device, we performed the
game SS(C6, I (8)

HLF), described in Sec. IV A, which is the
smallest example of the so-called 2D hidden linear function
game of Ref. [27]. This game was also recently implemented
in Ref. [57] on IBM, IonQ, and Honeywell’s cloud-accessible
quantum computers. Their highest reported success probabil-
ity was 85(1)%, using Honeywell’s H0 trapped-ion device,
which does not surpass the depth-1 classical bound of 87.5%.

In this experiment, we played 5000 rounds of the game
per input to determine the average success probability for our
device. The results for each input are presented in Table II.
The estimated average success probability is

P̂rQ[win] = 81.35(59)%,
[
SS

(
C6, I (8)

HLF

)
game

]
, (25)

which is below the depth-1 classical bound.

E. Restricted-input 2D hidden linear function game

Using the same experimental data from Table II, we also
estimate our device’s average success probability for the game
SS(C6, I (5)

HLF), described in Sec. IV B. The estimated average
success probability in this case is

P̂rQ[win] = 79.42(25)%.
[
SS

(
C6, I (5)

HLF

)
game

]
, (26)

which is very close to meeting the depth-1 classical bound of
80%.

F. Characterization of device noise

In this section we present a method for characterizing the
various types of noise in our trapped-ion device based on
the SPAM-corrected stabilizer information (cf. Fig. 3) and
classical simulations. Since the experiments we implemented
involved only six qubits, a single instance of the experiment
with a particular set of parameters can be simulated on a lap-
top in a few minutes, making the following method tractable
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for small system sizes. We simulate noisy quantum circuits
with a physically motivated error model over many different
noise rates and determine the values, which best fit the exper-
imental data.

1. Error model

The error model we chose consists of three noise channels
with variable error rates, and two channels with fixed error
rates that were determined from device calibration before-
hand. The variable noise channels consist of a single-qubit
depolarizing error after every single-qubit gate, and both a
two-qubit depolarizing error and a stochastic joint bit-flip
error after every two-qubit RXX gate. The corresponding error
channels (acting on qubits j, k) are defined as

E ( j)
1d (ρ) = (

1 − pd
1

)
ρ + pd

1

3
(XjρXj + YjρYj + ZjρZj ),

(27)

E ( j,k)
2d (ρ) = (

1 − pd
2

)
ρ + pd

2

15

∑
(P,Q)∈Kdep

2

PjQkρQkPj, (28)

E ( j,k)
XX (ρ) = (

1 − pXX
2

)
ρ + pXX

2 XjXkρXkXj, (29)

where Kdep
2 = {I, X,Y, Z}2 \ {(I, I )} and pd

1, pd
2, and pXX

2
are the characteristic noise parameters, respectively. The use
of two types of two-qubit gate errors is motivated by the
physics of the ion-trap device. The XX error channel can be
interpreted as the ensemble average of random, normally dis-
tributed overrotations of the RXX gate (with variance related to
pXX

2 ) [58]. However this type of error preserves two-qubit par-
ity, so we additionally include the depolarizing error channel
as an effective model of more general noise features.

For the fixed error channels, we assume that a single-qubit
dephasing error occurs whenever a qubit idles in the circuit,
and a two-qubit crosstalk error occurs between ion pairs that
are unintentionally coupled when we apply an RXX gate [58].
Idling errors are modeled by the channel

E ( j)
idle(ρ) = (1 − pidle )ρ + pidleZjρZj, (30)

where the error rate depends on the gate time t as pidle =
(1 − et/2T2 )/2. Based on prior calibration of our device, we
estimate T2 = 200 ms. The single- and two-qubit gate times
are t1 = 10 µs and t2 = 350 µs, respectively. Crosstalk errors
are modeled with XX errors [see Eq. (29)] between each
pair of unintentionally coupled ions with error rate pc =
0.06%, as determined by the crosstalk Rabi ratio 
c/
R =
3% of our device. Measurement noise is set to zero, as we
compare the outcome of the classical simulation to the SPAM-
corrected data, which ideally corrects for all measurement
errors. We use Qiskit [59] to simulate the noisy circuit using
the quantum-trajectories method, i.e., by stochastically apply-
ing Kraus operators with their corresponding probabilities at
the appropriate steps in the circuit. We take 104 shots per mea-
surement setting for each simulation point, so that sampling
errors are negligible.

2. Identifying noise parameters of best fit

Given the noise model, we classically simulate the noisy
circuit for a range of noise parameters (pd

1, pXX
2 , pd

2 ) and find

the values that most closely approximate the experiment by
analyzing two figures of merit. The first is the absolute differ-
ence between the fidelity value obtained from the experiment
F̂exp and the fidelity value obtained from classical simulation
Fsim,

�F = |F̂exp − Fsim| = 1

64

∣∣∣∣∣∣
∑

S∈SC6

〈S〉exp − 〈S〉sim

∣∣∣∣∣∣. (31)

Here, SC6 is the stabilizer group of |C6〉, and 〈S〉exp and 〈S〉sim

denote the expectation value of stabilizer S calculated from
the experimental and simulated data, respectively. The second
metric is the average absolute difference of stabilizer values,

�S = 1

64

∑
S∈SC6

|〈S〉exp − 〈S〉sim|. (32)

If our simulation exactly mirrors the experiment, then �F =
�S = 0.

For our task of fitting the noise parameters, we employ
both metrics. The weaker �F = 0 condition works at the
level of coarse-graining. We simulate the experiment over
a grid of physically reasonable (pd

1, pXX
2 , pd

2 ) values and in-
terpolate to create a 3D density plot for �F (pd

1, pXX
2 , pd

2 ).
From this, we find the surface corresponding to �F = 0,
shown in Fig. 4(a). We then employ �S for a more fine-
grained analysis. Simulating the experiment over a mesh of
(pd

1, pXX
2 , pd

2 ) values on the �F = 0 surface, we can identify
the region where �S is minimized. To better visualize the
behavior of �S , we interpolate the simulated data points and
project the surface onto one of the three planes formed by the
pd

1, pXX
2 , pd

2 axes, as shown in Figs. 4(b)–4(d). From these fig-
ures, we estimate the best-fit parameters to be (pd

1, pXX
2 , pd

2 ) =
(1.2%, 3.5%, 3.5%). It can be shown that the gate infidelities
[60, Sec. 9.3] of our three error channels [Eqs. (27)–(29)] are
pd

1, pXX
2 , and 4

5 pd
2 respectively, corresponding to an overall

two-qubit gate infidelity of pXX
2 + 4

5 pd
2 = 6.3%.

To put this result in context, consider the calibration pro-
cedure, which produces a lower bound A on the two-qubit
gate infidelity (described in Sec. V A). For this experiment,
we had measured an average value of A over the six RXX

gates to be 1.8%. This coincides well with our characteri-
zation, as a depolarizing channel with strength pd

2 = 3.5%
would result in A = 1.9%. Note that the XX errors of our
model cannot affect the value of A, as they cannot change
the parity of computational basis states. Hence, the two-qubit
depolarizing noise can account for the calibrated value of A
and the infidelity of a standalone RXX gate. However, our
results from implementing the full circuit of Fig. 1 indicate a
degradation of gate fidelities relative to the calibrated values.
The XX channel of our error model is included to account
for this additional effect, which one may interpret as random
overrotations due to laser-intensity fluctuations.

We also repeated this analysis using purely depolarizing
noise (i.e., fixing pXX

2 = 0), obtaining a best-fit value of �S =
0.05. This is larger than the value of �S = 0.04 obtained
in Fig. 4, indicating that, unsurprisingly, our device-specific
noise model works better than a device-agnostic depolarizing
model to reproduce the experimental data.
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FIG. 4. Characterization of noise parameters of the device, using the SPAM-corrected experimental data. The variational parameters of
our noise model, described in Sec. V F, control the strength of single-qubit depolarizing channels (noise rate pd

1), two-qubit depolarizing
channels (pd

2), and two-qubit joint bit-flip channels (pX X
2 ). (a) The surface of �F = 0, as defined in Eq. (31). [(b)–(d)] Contour plots of �S

over that surface, interpolated over a finer mesh. To visualize this surface, we project onto either the (b) (pd
1, pX X

2 ) plane, (c) (pd
1, pd

2 ) plane, or
(d) (pX X

2 , pd
2 ) plane. The minimum value for �S is obtained at (pd

1, pX X
2 , pd

2 ) = (1.2%, 3.5%, 3.5%), corresponding to the best-fit parameters
for this noise model of our device.

VI. n-QUBIT GENERALIZATION

While our experimental results were limited to a six-qubit
system, here we discuss quantum and classical strategies for
the two types of games with an arbitrary sized input. In
this case, the the cubic Boolean function games always have
a perfect depth-1 classical strategy, whereas geometrically-
restricted classical circuits of depth scaling sublinearly with
the input size fail to win the stabilizer submeasurement games
with probability greater than 80%. We make the latter state-
ment precise in Theorem 1.

A. Cn cubic Boolean function games

The premise and win conditions C6 cubic Boolean function
games introduced in Sec. III generalize to the n-qubit scenario
as follows.

Definition. Cn cubic Boolean function games
(CBF(Cn, I )). Consider a game where n parties corresponding
to the vertices of the cycle graph Cn are each given a
two-bit input s j = (a j, b j ) ∈ {0, 1}2, j = 0, . . . , n − 1.
The inputs s j are drawn as follows: from a global input
x = (x0, . . . , xn−1) ∈ I ⊆ {0, 1}n, each party j is given
the bit a j = x j and the parity of their neighbors’ bits,
b j = x j+1 + x j−1 mod 2. Each party j then produces a
one-bit output y j . The parties win the game whenever∑

j∈supp(s)

y j =
n−1∑
j=0

x j−1x jx j+1 mod 2, (33)

where supp(s) = {0 � j � n − 1 | s j 
= (0, 0)} and all sub-
scripts are taken mod n.

As shown in Appendix C, the structure of the signs ap-
pearing in the stabilizer group of the n-qubit cycle-graph state
|Cn〉 always has the form of a cubic Boolean function gn(x) =∑n−1

j=0 x j−1x jx j+1. Thus the quantum strategy where each party
j measures the Pauli observable Ej (a j, b j ) is always perfect.
As for classical strategies, the game CBF(Cn, {0, 1}n) for n
parties always exhibits a depth-0 bound β0 < 1 (cf. Theorem
1 of Ref. [22]). However, the exact value of β0 for n > 10 is
unknown and cannot be obtained efficiently numerically. A
general discussion of cubic Boolean function games defined
on arbitrary graphs will be presented in future work. On the

other hand, this game exhibits a trivial depth-1 bound β1 = 1,
as the strategy whereby each party outputs y j = a j−1a j (b j +
a j−1) = x j−1x jx j+1 mod 2 is perfect. Thus, the stabilizer sub-
measurement games cannot be used to demonstrate quantum
advantage in terms of circuit depth.

B. Cn stabilizer submeasurement games

The premise and win conditions of the C6 stabilizer sub-
measurement games introduced in Sec. IV generalize to the
n-qubit scenario as follows.

Definition. Cn stabilizer submeasurement games
(SS(Cn, I )). Consider a game where n parties corresponding
to the vertices of the cycle graph Cn are each given a
one-bit input x j , j = 0, . . . , n − 1, from a global input
x = (x0, . . . , xn−1) ∈ I ⊆ {0, 1}n drawn at random from the
uniform distribution. To each input we can associate a global
Pauli operator E (1, x) = ∏n−1

j=0 ix j XjZ
xj

j , where 1 denotes
the all-ones string. Each party then produces an output
y j ∈ {0, 1}, which collectively forms a string y ∈ {0, 1}n. The
parties are said to win the game whenever

∀P ⊆ E (1, x) s.t. P ∈ SCn ,
∑

j∈supp(P)

y j = 0, (34a)

∀P ⊆ E (1, x) s.t. P ∈ −SCn ,
∑

j∈supp(P)

y j = 1, (34b)

where P ⊆ E (1, x) means that P is a Pauli operator obtained
by replacing some nonidentity tensor factors in E (1, x) with
the identity. Furthermore, supp(P) = supp(a, b) where P =
E (a, b) [i.e., supp(P) indexes the qubits where P acts nontriv-
ially] and all arithmetic is performed modulo 2.

A perfect quantum strategy for this game can be performed
by preparing the state |Cn〉 with a constant-depth quantum
circuit and measuring each Pauli term in E (1, x). On the other
hand, geometrically restricted classical circuits require depth

(n) to attain perfect strategies. Let

I (5)
HLF,n =

{
x ∈ {0, 1}n

∣∣∣∣(x0, x2�n/6�, x2�n/3�) ∈ V,

x j = 0 for all other j

}
, (35)

where V ⊂ {0, 1}3 is defined as

V = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. (36)
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The following theorem then holds.
Theorem 1. Let D be odd and let n = 6D. No classical

Boolean circuit with depth D and fan-in � 3 that is geomet-
rically restricted with respect to the cycle graph Cn can win
SS(Cn, I (5)

HLF,n) with average success probability greater than
βD = 4/5. Meanwhile, a constant-depth quantum circuit with
the same geometry can achieve PrQ[win] = 1. �

We relegate the proof of this statement to Appendix D 3.
The difference in the asymptotic scaling in the classical and
quantum circuits depths required to achieve a perfect strategy
implies the existence of a quantum computational advantage.
Phrased differently, the above theorem demonstrates an un-
conditional separation between the power of constant-depth
quantum circuits and sublinear-depth classical circuits with
the same cyclic geometry.

Remark 2. For every even number 6(2m − 1) � n <

6(2m + 1) the game SS(Cn, I (5)
HLF,n) satisfies the bounds

β2m−1 = 4/5 and β2m = 1. Hence, for each odd D, n = 6D
is the smallest example giving the next nontrivial bound of
βD = 4/5. �

That is why the the next nontrivial sized instance of this
game is for n = 18. In this case, a constant-depth quantum
circuit can in principle exceed the success probability bound
on depth-3 classical circuits of the same cyclic geometry.

Finally, in order to demonstrate quantum advantage against
the more powerful class of constant-depth classical circuits
without geometric restriction (namely those in Nick’s class
NC0), it is imperative either to embed the stabilizer submea-
surement game into a 2D grid [27], or instead play a more
complex game such as the magic square game [32], which
is classically hard even on a 1D geometry. Note that small
instances of the 1D magic square game incur a constant over-
head in the number of qubits and entangling gates required,
and they have a higher classical bound of 8/9, in contrast to
the games proposed here.

VII. CONCLUSION

In this paper, we have proposed and implemented proof-
of-principle experimental demonstrations of two types of
nonlocal games using six qubits on a gate-based trapped-
ion quantum computer. The second family of games, called
the stabilizer submeasurement games, are computational
tasks that unconditionally prove quantum advantage against
sublinear-depth classical circuits with a geometric restriction
in their gate connectivity to the cycle graph. As summarized in
Table I, our NISQ device surpasses the conventional depth-0
bounds for the first family of games, called cubic Boolean
function games, by a significant margin. These games also
provide fine-grained details like state fidelity, which is useful
for the characterization of noise in a quantum device. On the
other hand, our results suggest that state-of-the-art devices
are now at the level of challenging the more difficult depth-1
bounds of the stabilizer submeasurement games.

As discussed in Sec. VI, both games generalize nicely
to the n-qubit scenario. Then, demonstration of an advanta-
geous quantum strategy for the Cn stabilizer submeasurement
games gives a particularly meaningful separation against
geometrically-restricted classical circuits of depth growing
sublinearly with the size of the input according to Theorem 1.

For example, the stabilizer submeasurement game on an 18-
qubit device provides a next target, in that surpassing the
corresponding bounds would demonstrate achievement of a
task that depth-3 classical circuits with a cyclic geometry
cannot. Furthermore, these nonlocal games are friendly to a
number of experimental platforms to implement quantum sim-
ulation of many-body physics, as these advantageous quantum
strategies on a cyclic cluster state could be generalized to
generic ground states of many-body Hamiltonians with 1D
symmetry-protected topological order [61].

Note added. Recently it is brought to our attention that a
new version of Ref. [57] reports, without detailed data, the
Honeywell H1 processor [62] achieves a success probabil-
ity of 96.9(3)% for the 2D hidden linear function game in
Sec. IV A, which surpasses the depth-1 classical bound.
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APPENDIX A: ADDITIONAL DETAILS ON STABILIZER
SUBMEASUREMENTS AND EXPECTED POPULATIONS

In this Appendix we elaborate on the notion of stabilizer
submeasurements used in the main text. We discuss the mea-
surement outcomes expected when a stabilizer exists as a
subset of the observables measured in a global Pauli string,
which is indicative of the quantum correlations between those
outcomes.

The following lemma regarding the stabilizer formalism is
well known [60, Sec. 10.5.3].

Lemma 3. The expectation value of any n-qubit Pauli op-
erator over an n-qubit stabilizer state |ψ〉 with stabilizer group
S is

〈ψ |P|ψ〉 = +1 iff P ∈ S, (A1a)

〈ψ |P|ψ〉 = −1 iff P ∈ −S, (A1b)

〈ψ |P|ψ〉 = 0 iff P 
∈ S. (A1c)

The following is an extension of this lemma for the case
when P contains stabilizers within it.

Lemma 4. Consider a global n-qubit Pauli operator P =∏n
j=1 Pj for some choice of Pj ∈ {Xj,Yj, Zj} (i.e., a Pauli

string P that has nontrivial support on every qubit). Let
P ∩ S ⊆ S denote stabilizer elements that are contained in P.
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Denote each such S ∈ P ∩ S with a binary string f (S) ∈ {0, 1}n

whereby S = (−1)λS
∏n

j=1 P
f (S)

j

j with λS ∈ {0, 1}. If a mea-
surement of P is performed by locally measuring each Pauli
operator in the string, then the outcomes y ∈ {0, 1}n occur
with probability

Pr[y] =
{|P ∩ S|/2n if f (S) · y = λS for all S ∈ P ∩ S

0 otherwise.
(A2)

Proof. Suppose that U is the local Clifford unitary that
diagonalizes P in the sense that UPU † = ∏n

j=1 Zj . Then for

each S ∈ P ∩ S , USU † = (−1)λS
∏n

j=1 Z
f (S)

j

j . First note that

〈y|U |ψ〉 = 〈y|US|ψ〉
= 〈y|USU †U |ψ〉

= 〈y|(−1)λS

n∏
j=1

Z
f (S)

j

j U |ψ〉

= (−1)f (S)·y+λS 〈y|U |ψ〉, (A3)

which implies that either λS = f (S) · y or |〈y|U |ψ〉|2 =
Pr[y] = 0.

On the other hand, we have that

|〈y|U |ψ〉|2 = 〈y| 1

2n

∑
S∈S

USU †|y〉

= 1

2n

∑
S∈P∩S

(−1)λS 〈y|
n∏

j=1

Z
f (S)

j

j |y〉

= 1

2n

∑
S∈P∩S

(−1)λS (−1)f (S)·y

= 1

2n

∑
S∈P∩S

(+1)

= |P ∩ S|
2n

. (A4)

Therefore, the measurement outcomes y ∈ {0, 1}n that oc-
cur with nonzero probability are those satisfying f (S) · y =
λS ∀S ∈ P ∩ S . Furthermore, each such outcome occurs with
uniform probability |P ∩ S|/2n. �

APPENDIX B: BELL OPERATORS FOR STABILIZER
SUBMEASUREMENT GAMES

Here we prove a useful expression for computing the av-
erage success probability for the stabilizer submeasurement
games in terms of the average output parities for each sta-
bilizer submeasurement P ⊆ E (1, x), which we shall denote
by 〈P〉. This result applies for both quantum and classical
strategies: for a quantum strategy using the state ρ,

〈P〉 = tr(ρP), (B1)

while for a classical deterministic strategy assigning outputs
y ∈ {0, 1}n to each observable in P depending on the input,

〈P〉 = (−1)
∑

j∈supp(P) y j . (B2)
Lemma 5. Consider a strategy for any stabilizer submea-

surement game SS(Cn, I ). The average success probability
can be written in terms of expectation values of the stabilizing
operators,

Pr[win] = 1

|I|
∑
x∈I

1

|Px|
∑
P∈Px

sgn(P)〈P〉, (B3)

where Px = {P ⊆ E (1, x) | P ∈ ±SCn} and sgn(P) = ±1
whenever P ∈ ±SCn

Proof. Recall from Eq. (8) that the average success proba-
bility can be computed as

Pr[win] = 1

|I|
∑
x∈I

∑
y∈Win(x)

Pr[y|x], (B4)

where for the game SS(Cn, I ) we have

Win(x) = {y ∈ {0, 1}n | ∀P ∈ Px, (−1)
∑

j∈supp(P) y j = sgn(P)}. (B5)

Define the single-qubit Weyl operators as E (a, b) = iabX aZb

for a, b ∈ {0, 1}. The quantity Pr[y|x] can be computed as

Pr[y|x] =
〈

n−1⊗
j=0



(E (1,x j ))
y j

〉
, (B6)

where 

(E (1,x j ))
y j denotes the projector onto the eigenspace

corresponding to eigenvalue (−1)y j of the operator E (1, x j ).
Since E (1, x j ) is a single-qubit Pauli observable, we can write



(E (1,x j ))
y j = I + (−1)y j E (1, x j )

2
, (B7)

hence,

Pr[win] = 1

|I|
∑
x∈I

∑
y∈Win(x)

〈
n−1⊗
j=0

I + (−1)y j E (1, x j )

2

〉
. (B8)

Upon binomial-expanding the product in the expectation
value, we get

Pr[win] = 1

2n|I|
∑
x∈I

∑
y∈Win(x)

∑
q∈{0,1}n

〈
n−1⊗
j=0

(−1)q j y j E (1, x j )
q j

〉
(B9)

= 1

2n|I|
∑
x∈I

∑
y∈Win(x)

∑
q∈{0,1}n

(−1)q·y〈E (q, q � x)〉,

(B10)

where q � x = (q0x0, . . . , qn−1xn−1) denotes elementwise
multiplication of vectors. Notice that the jth term in the n-
qubit Pauli operator E (q, q � x) is I if qj = 0, and E (1, x j ) if
q j = 1. Therefore, the sum over q is the same as a sum over
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all Pauli operators P such that P ⊆ E (1, x). Hence,

Pr[win] = 1

2n|I|
∑
x∈I

∑
y∈Win(x)

∑
P⊆E (1,x)

(−1)
∑

j∈supp(P) y j 〈P〉

(B11)

= 1

2n|I|
∑
x∈I

∑
P⊆E (1,x)

∑
y∈Win(x)

(−1)
∑

j∈supp(P) y j 〈P〉.

(B12)

If P ∈ Px, then
∑

y∈Win(x)(−1)
∑

j∈supp(P) y j = |Win(x)|sgn(P) by
definition of Win(x). On the other hand, if P 
∈ Px, then∑

y∈Win(x)(−1)
∑

j∈supp(P) y j = 0. Intuitively, this can be under-
stood from the fact that if P 
∈ ±S , then

∑
j∈supp(P) y j is not

constrained by a win condition. Hence, this quantity will be
unconstrained and the corresponding sum over y ∈ Win(x)
will vanish.

More rigorously, this occurs because for each x ∈ I,
Win(x) corresponds to the solution set of an inhomogeneous
system of linear equations Ay = b over F2, where A is a matrix
where each row μ corresponds to a binary vector aμ such
that E (aμ, aμ � x) ∈ ±S and (−1)bμ = sgn(E (aμ, aμ � x)).
Denote the row space of this matrix as Row(A). It is then
clear that rank(A) = log2 |Px|, hence |Win(x)| = 2n/|Px| by
the rank–nullity theorem. Furthermore, each y ∈ Win(x) can
be written as y = y0 + ∑n−rank(A)

ν=1 zνην , where Ay0 = b, zν ∈
F2, and {ην}n−rank(A)

ν=1 spans the null space of A. It then follows
that for any P = E (q, q � x) 
∈ ±S ,

∑
y∈Win(x)

(−1)
∑

j∈supp(P) y j = (−1)q·y0

n−rank(A)∏
ν=1

1∑
zν=0

(−1)zνq·ην .

(B13)

The only way for the right-hand side to be nonzero is for
q · ην = 0 for each ν = 1, . . . , n − rank(A); however, this can
only be true if q ∈ Row(A), which does not hold by virtue of
the fact that P 
∈ ±S . Therefore,

Pr[win] = 1

|I|
∑
x∈I

1

|Px|
∑
P∈Px

sgn(P)〈P〉, (B14)

which completes the proof.
Using the above expression, for the game SS(C6, I (8)

HLF) we
obtain

Pr[win] = 1
32 (12 +12〈X1X3X5〉+〈X0X2X4〉+〈X0X1X2X3X4X5〉
− 〈X0Y2X3Y4〉 − 〈X0X1Y2Y4X5〉 − 〈Y0X2Y4X5〉
− 〈Y0X1X2X3Y4〉 − 〈Y0X1Y2X4〉 − 〈Y0Y2X3X4X5〉).

(B15)

Similarly, for the game SS(C6, I (5)
HLF) we obtain

Pr[win] = 1
20 (6 + 6〈X1X3X5〉 + 〈X0X2X4〉 + 〈X0X1X2X3X4X5〉
− 〈X0Y2X3Y4〉 − 〈X0X1Y2Y4X5〉 − 〈Y0X2Y4X5〉
− 〈Y0X1X2X3Y4〉 − 〈Y0X1Y2X4〉 − 〈Y0Y2X3X4X5〉).

(B16)

APPENDIX C: QUANTUM STRATEGY FOR THE C6 CUBIC
BOOLEAN FUNCTION GAME

To demonstrate that the quantum strategy for the C6 cubic
Boolean function game is perfect, we prove a lemma regard-
ing the structure of the signs appearing in the stabilizer group
of the n-qubit cyclic cluster state. First, define the single-qubit
Weyl operators as E (a, b) = iabX aZb for a, b ∈ {0, 1}. Fur-
thermore, denote the generators of the n-qubit cyclic cluster
state stabilizer group as Sj = Zj−1XjZ j+1 where the subscripts
are taken mod n. We then have the following lemma.

Lemma 6. Every element of the stabilizer group of the
n-qubit cyclic cluster state |Cn〉, when denoted as a product
of generators Sx = ∏n−1

j=0 S
xj

j for some x ∈ {0, 1}n, can be ex-
pressed as a Pauli string times a phase via

Sx = (−1)gn(x)
n−1⊗
j=0

E (x j, x j−1 + x j+1), (C1)

where gn(x) = ∑n−1
j=0 x j−1x jx j+1 and all arithmetic is per-

formed mod 2.
Proof. For the n-qubit cycle graph state,

Sx =
n−1∏
j=0

(Zj−1XjZ j+1)x j =
n−1⊗
j=0

Zxj−1 X xj Zxj+1 . (C2)

Each local Pauli operator can be expressed as a Weyl operator
times a phase. In terms of the Weyl operators, this expression
becomes

Sx =
n−1⊗
j=0

(−1)x j−1x j X xj Zx j−1+x j+1

=
n−1⊗
j=0

(−1)x j x j+1 ix j (x j−1⊕x j+1 )E (x j, x j−1 + x j+1)

= (−1)
∑n−1

j=0 x j x j+1

n−1∏
j=0

ix j (x j−1⊕x j+1 )
n−1⊗
k=0

E (xk, xk−1 + xk+1).

(C3)

Here we have used ⊕ to denote the XOR operation (i.e., sum
mod 2) in the exponent of i to remind the reader that the expo-
nent must be computed mod 2. The phase appearing in the last
line then has the rather unnatural form of i raised to the power
of a Boolean function. A simple analysis shows that the total
number of factors of i accumulated is

∑n−1
j=0 x j (x j−1 ⊕ x j+1),

which is simply twice the number of connected strings of 1’s
in x with length greater than one. We thus obtain an overall
phase of ±1 whenever this number of connected strings equals
0 or 2 mod 4, respectively. This phase is also expressed by
the function

∑n−1
j=0(x j−1 + 1)x jx j+1, but using a base of −1

instead of i. Thus we have

Sx = (−1)gn (x)
n−1⊗
k=0

E (xk, xk−1 + xk+1), (C4)

which is what we sought to prove.
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It is clear that since Sx|Cn〉 = |Cn〉 we have that

〈Cn|
n−1⊗
j=0

E (x j, x j−1 + x j+1)|Cn〉 = (−1)gn(x). (C5)

Therefore, locally measuring each Pauli observable in the
string

⊗n−1
j=0 E (x j, x j−1 + x j+1) gives measurement outcomes

whose parity is equal to gn(x) mod 2. Hence the strategy pre-
sented in the text for the C6 cubic Boolean function game is
perfect.

APPENDIX D: CLASSICAL STRATEGIES FOR
STABILIZER SUBMEASUREMENT GAMES

Here we derive the classical bounds for the stabilizer
submeasurement games, assuming the classical strategy is re-
stricted to depth-0, depth-1, or depth-D circuits. In particular,
we show that for the particular input set I (5)

HLF,n [defined in
Eq. (35) in the main text], the classical bounds are 4/5 in all
cases considered. This improves upon the previously known
bound of 7/8, which corresponds to the input set I (8)

HLF,n
[27].

1. Depth-0 bounds for stabilizer submeasurement games

Lemma 7. The depth-0 bound for any of the SS(Cn, I )
games can be calculated using the expression in Lemma 5. It
follows that no depth-0 circuit can win the game SS(C6, I (8)

HLF)
with probability greater than 7/8, nor can they win the game
SS(C6, I (5)

HLF) with probability greater than 4/5.
Proof. Our proof gives a general technique to calculate this

bound for any of the SS(Cn, I ) games. As a classical circuit,
depth-0 strategies for these games correspond to circuits with
one layer of single-input, single-output gates each computing
an affine Boolean function y j (x j ). The average success prob-
ability can then be calculated from the Bell expression given
in Lemma 5 as

2 Pr[win] −1

= 1

|I|
∑
x∈I

⌊
1

|Px|
∑
P∈Px

(−1)
∑

j∈supp(P) y j (x j )sgn(P)

⌋
. (D1)

The floor function takes care of the fact that if one or more
on the parity constraints imposed by the win conditions is
not met, then the round is counted as a failure [cf. Eq. (34)].
By maximizing over all possible local functions y j : {0, 1} →
{0, 1} we can numerically find these bounds for SS(C6, I (8)

HLF)
and SS(C6, I (5)

HLF) via brute-force search. �
Note that Lemma 7 could also be proven by the proof

technique in the following Lemma 8.

2. Depth-1 bounds for SS(C6,I (8)
HLF) and SS(C6,I (5)

HLF)

Lemma 8. Depth-1, fan-in � 3 classical circuits that are
geometrically restricted with respect to the geometry of C6

cannot win the game SS(C6, I (8)
HLF) on more than 7/8 of the

inputs, nor can they win the game SS(C6, I (5)
HLF) on more than

4/5 of the inputs.

FIG. 5. A general depth-1 classical circuit with 3-local condi-
tional gates, conditioned on their nearest-neighboring inputs. Note
that the action of such a gate on one of the even bits is equivalent to
a local computation (i.e., their neighboring inputs are fixed as 0).

Proof. In the following proof all arithmetic is performed
modulo 2. Consider a classical circuit of depth-1 and fan-in �
3 that is geometrically restricted with respect to the geometry
of C6. When given an input from I (8)

HLF or I (5)
HLF, as depicted in

Fig. 5, the circuit produces outputs that can be parameterized
as follows:

y0 = α0 + β0x0, (D2a)

y1 = α1 + β1x0 + γ1x2 + δ1x0x2, (D2b)

y2 = α2 + β2x2, (D2c)

y3 = α3 + β3x2 + γ3x4 + δ3x2x4, (D2d)

y4 = α4 + β4x4, (D2e)

y5 = α5 + β5x4 + γ5x0 + δ5x0x4, (D2f)

where α j, β j, γ j, δ j ∈ {0, 1} for j = 0, . . . , 5.
If this strategy is to win the game SS(C6, I (8)

HLF), it must
hold that y1 + y3 + y5 = 0 for every input. In particular, for
the game SS(C6, I (5)

HLF) this must hold for the input x =
101010. By inserting Eqs. (D2b), (D2d), and (D2f) into this
expression for x = 101010, we obtain a constraint on α j , β j ,
γ j , and δ j for each j ∈ {1, 3, 5}. Namely,∑

j∈{1,3,5}
α j + β j + γ j + δ j = 0. (D3)

Let e(x) = y0 + y2 + y4 = α + β0x0 + β2x2 + β4x4. Here
we have defined α = α0 + α2 + α4. The win conditions for
inputs x ∈ I (5)

HLF \ {101010} imply that the following linear
constraints must hold:

e(000000) = 0, (D4a)

e(101000) + y1(101000) = 1, (D4b)

e(001010) + y3(001010) = 1, (D4c)

e(100010) + y5(100010) = 1. (D4d)
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Inserting the aforementioned Boolean functions into these
expressions gives

α = 0, (D5a)

α + β0 + β2 + α1 + β1 + γ1 + δ1 = 1, (D5b)

α + β2 + β4 + α3 + β3 + γ3 + δ3 = 1, (D5c)

α + β0 + β4 + α5 + β5 + γ5 + δ5 = 1. (D5d)

Summing Eq. (D3) and Eqs. (D5a)–(D5d) modulo 2 gives
the contradictory statement that 0 = 1. Therefore, this class of
circuits wins the game SS(C6, I (8)

HLF) on no more than 7/8 of
the inputs, and the game SS(C6, I (5)

HLF) on no more than 4/5 of
the inputs.

3. Depth-D bounds for SS(C6D,I (5)
HLF,6D)

Theorem 1 (Restated from main text.). Let D be odd and
let n = 6D. No classical circuit with depth-D and fan-in � 3
that is geometrically restricted with respect to the cycle graph
Cn can win SS(Cn, I (5)

HLF,n) with average success probability
greater than βD = 4/5. Meanwhile, a constant-depth quantum
circuit with the same geometry can achieve PrQ[win] = 1.

Proof. The proof follows similarly to the six-qubit case.
All arithmetic here is performed modulo 2. Let D be an
odd positive integer. Let I (5)

HLF,6D = {x ∈ {0, 1}6D | x0x2Dx4D ∈
{000, 011, 101, 110, 111} and x j = 0 otherwise}. A general
circuit with depth-D and fan-in � 3 that is geometrically
restricted with respect to the cycle graph Cn allows each
output y j to depend on the input bits {x j±k | k = 1, . . . , D}.
Thus, upon feeding an input from I (5)

HLF,6D to such a circuit,
the only outputs that depend on more than one of the bits
x0, x2D, or x4D are yD = yD(x0, x2D), y3D = y3D(x2D, x4D), and
y5D = y5D(x0, x4D). Now let

y(odd)
[0,2D] =

D∑
j=1

y2 j−1, (D6a)

y(odd)
[2D,4D] =

2D∑
j=D+1

y2 j−1, (D6b)

y(odd)
[4D,0] =

3D∑
j=2D+1

y2 j−1, (D6c)

y(even) =
3D−1∑

j=0

y2 j . (D6d)

Then we can parametrize each such function as

y(odd)
[0,2D] = αD + βDx0 + γDx2D + δDx0x2D, (D7a)

y(odd)
[2D,4D] = α3D + β3Dx2D + γ3Dx4D + δ3Dx2Dx4D, (D7b)

y(odd)
[4D,0] = α5D + β5Dx4D + γ5Dx0 + δ5Dx0x4D, (D7c)

y(even) = α0 + β0x0 + β2Dx2D + β4Dx4D. (D7d)

The win conditions for SS(C6D, I (5)
HLF,6D) state that

y(even)(0, 0, 0) = 0, (D8a)

y(even)(1, 1, 0) + y(odd)
[0,2D](1, 1) = 1, (D8b)

y(even)(0, 1, 1) + y(odd)
[2D,4D](1, 1) = 1, (D8c)

y(even)(1, 0, 1) + y(odd)
[4D,0](1, 1) = 1, (D8d)

y(odd)
[0,2D](1, 1) + y(odd)

[2D,4D](1, 1) + y(odd)
[4D,0](1, 1) = 0. (D8e)

However, substituting in the parametrization above and
summing all the equations returns 0 = 1. Therefore, no
circuit with depth-D and fan-in � 3 that is geometrically
restricted with respect to the cycle graph Cn can win the game
SS(C6D, I (5)

HLF,6D) with probability greater than 4/5.
On the other hand, a perfect quantum strategy for this

game can be performed by preparing the state |Cn〉 with a
constant-depth quantum circuit and measuring each Pauli term
in E (1, x). The measurement outcomes will deterministically
satisfy Eq. (34) due to Lemma 4. �

Corollary 9. Circuits in with depth-(D + 1) and fan-in �
3 that are geometrically restricted with respect to the cycle
graph Cn can win the game SS(C6D, I (5)

HLF,6D) on all inputs.
Proof. In the following all arithmetic is performed modulo

2. Notice that in this case, yD+1 = yD+1(x0, x2D), y3D+1 =
y3D+1(x2D, x4D), and y5D+1 = y5D+1(x0, x4D). Taking yD+1 =
x0x2D, y3D+1 = x2Dx4D, y5D+1 = x0x4D, and y j = 0 other-
wise gives y(even) = x0x2D + x2Dx4D + x0x4D and y(odd)

[0,2D] =
y(odd)

[2D,4D] = y(odd)
[4D,0] = 0, which satisfies all the above constraints

imposed by the win conditions. �

APPENDIX E: UNCERTAINTY ANALYSIS

In this Appendix we provide details regarding the statistical
estimates of our experiments. In particular, we make explicit
the uncertainty contributions due to covariances between si-
multaneously measured stabilizers, and we show how the
SPAM-correction procedure affects these error bars.

1. Raw-data estimates

In our tomography experiment, we prepare the n-qubit state
ρ using the graph-state formation circuit, further apply a local
Clifford unitary U to rotate into the appropriate Pauli basis,
and then perform a projective measurement in the compu-
tational basis {|z〉 | z ∈ {0, 1}n}. Repeating this procedure N
times yields a collection of N samples b1, . . . , bN ∈ {0, 1}n.

Let S ∈ {I, X,Y, Z}⊗n × {±1} be a (signed) n-qubit Pauli
observable diagonalized by U , i.e.,

USU † = ωS

n∏
j=1

Z
f (S)

j

j , (E1)

where f (S)
j = 1 if S acts nontrivially on the jth qubit, and

0 otherwise. Here, ωS ∈ {±1} denotes the phase factor of S.
Then we can construct an estimator for tr(ρS) as

μ̂S = 1

N

N∑
k=1

ωS (−1)f (S)·bk , (E2)

where f (S) ≡ ( f (S)
1 , . . . , f (S)

n ). Since S2 = 1, an estimate for
the variance is given by σ̂ 2

S = 1 − μ̂2
S , and in particular the
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standard error of the sample mean μ̂S is

σ̂μ̂S = σ̂S√
N

. (E3)

This is the statistical uncertainty reported for each (non-
SPAM-corrected) stabilizer expectation value in Table III.

To compute the standard error of our fidelity estimate, we
need to address the covariances between stabilizer expecta-
tion values that are evaluated within the same measurement
setting. Given a set C of locally commuting Pauli operators,
referred to as a clique, there exists some local Clifford trans-
formation U = UC such that Eq. (E1) holds for all S ∈ C. Then
we can evaluate μ̂S for each S ∈ C, using the same samples bk ,
as prescribed above.

Now consider

OC =
∑
S∈C

hSS, hS ∈ R. (E4)

By linearity, tr(ρOC ) is estimated via

μ̂OC =
∑
S∈C

hSμ̂S, (E5)

which has variance

Var[μ̂OC ] = Cov[μ̂OC , μ̂OC ]

=
∑

S,T ∈C
hShT Cov[μ̂S, μ̂T ]. (E6)

We already have an estimate for the diagonal terms,
Cov[μ̂S, μ̂S] = Var[μ̂S], via σ 2

S . The off-diagonal covariances
Cov[μ̂S, μ̂T ] are estimated as

�̂S,T = μ̂ST − μ̂Sμ̂T . (E7)

Note that this expression involves the Pauli operator ST , even
if ST /∈ C. Nonetheless, since S and T locally commute, the
samples obtained from this measurement setting contain suf-
ficient information to compute μ̂ST . Recognizing that �̂S,S =
σ̂ 2

S , we have a compact expression for the variance of μ̂OC ,

σ̂ 2
OC

=
∑

S,T ∈C
hShT �̂S,T . (E8)

Finally, suppose we have disjoint cliques C1, . . . , CL, cor-
responding to the different measurement settings of our
experiment. Such cliques are constructed in order to estimate
the observable O = ∑L

�=1 OC�
. (For instance, our fidelity ex-

periment featured O = |C6〉〈C6|, L = 37, and hS = 2−6 ∀S ∈
SC6 .) Then we set

μ̂O =
L∑

�=1

∑
S∈C�

hSμ̂S, (E9)

which has standard error

σ̂μ̂O =
√√√√ 1

N

L∑
�=1

∑
S,T ∈C�

hShT �̂S,T . (E10)

For simplicity, we have assumed that all cliques were sampled
the same number of times N , as was the case in our experi-
ment. This is the statistical uncertainty for the fidelity estimate
reported in the main text. Note that there are no covariances

between estimators of different cliques, since they correspond
to separate, independently obtained samples.

2. SPAM-corrected estimates

To correct for SPAM errors in our device, we ran a series of
calibrating experiments to characterize measurement-readout
error rates. This corresponds to constructing a 2n × 2n

stochastic matrix M such that, for the probability distribu-
tion q = (qz | z ∈ {0, 1}n)T encoded in the prepared quantum
state, we instead observe (due to measurement errors solely)
the distribution p = Mq. By computing the inverse matrix
M−1, we can recover the SPAM-error-free distribution q =
M−1 p.

In practice, we only have access to the estimate p̂ of p, con-
structed from the samples b1, . . . , bN . Applying this inversion
procedure to p̂, we obtain

q̂z =
∑

z′∈{0,1}n

[M−1]z,z′ p̂z′

=
∑

z′∈{0,1}n

(
[M−1]z,z′

1

N

N∑
k=1

δz′,bk

)

= 1

N

N∑
k=1

[M−1]z,bk . (E11)

All SPAM-corrected expectation values (and their associated
uncertainties) are then evaluated by simply replacing p̂ with q̂.
For instance, in terms of M−1, the expectation-value estimates
become

μ̂S = 1

N

N∑
k=1

[ ∑
z∈{0,1}n

[M−1]z,bk ωS (−1)f (S)·z
]
. (E12)

Similarly, the SPAM-corrected covariance matrix between
clique elements is

�̂S,T = 1

N

∑
z,z′∈{0,1}n

[(
N∑

k=1

[M−1]z,bi [M
−1]z′,bi

)

×ωSωT (−1)f (S)·z+f (T )·z′
]

− μ̂Sμ̂T , (E13)

where μ̂S, μ̂T are SPAM-corrected estimates, per Eq. (E12).

APPENDIX F: ADDITIONAL EXPERIMENTAL DATA

In Table III we explicitly list our experimental estimates
for each stabilizer expectation value, before and after SPAM
correction, along with 1σ statistical uncertainties (see Ap-
pendix E). These values are the same as those plotted in Fig. 3
of the main text. Furthermore, in this table the stabilizers are
partitioned into our choice of locally commuting sets, such
that we measure all stabilizers in each set by a single Pauli
measurement setting.
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TABLE III. Expectation values for the 63 nontrivial stabilizers
of |C6〉 estimated from the CBF experiment. Uncertainties denote 1σ

standard errors (details in Appendix E). Horizontal rules indicate our
partitioning of the stabilizers into 37 locally commuting sets, such
that we estimate all stabilizers in that set from the same global Pauli
measurement.

Expectation value

Input Stabilizer Raw value SPAM-corrected

000001 +ZIIIZX 0.7164(10) 0.7616(10)
001000 +IZXZII 0.6732(10) 0.7178(11)
001001 +ZZXZZX 0.4952(12) 0.5627(14)

000010 +IIIZXZ 0.7208(10) 0.7654(10)
010000 +ZXZIII 0.7320(10) 0.7787(10)
010010 +ZXZZXZ 0.5352(12) 0.6046(14)

000011 +ZIIZYY 0.7656(9) 0.8302(10)
010011 +IXZZYY 0.6168(11) 0.6813(12)

000100 +IIZXZI 0.6764(10) 0.7205(11)
100000 +XZIIIZ 0.7200(10) 0.7646(10)
100100 +XZZXZZ 0.5324(12) 0.6019(14)

000101 +ZIZXIX 0.5748(12) 0.6221(13)
010001 +IXZIZX 0.5584(12) 0.6034(13)
010100 +ZXIXZI 0.5900(11) 0.6448(12)

000110 +IIZYY Z 0.5360(12) 0.5803(13)
100110 +XZZYY I 0.4368(13) 0.4862(14)

000111 −ZIZY XY 0.6112(11) 0.6765(12)
010111 −IX IY XY 0.5936(11) 0.6449(12)

001010 +IZXIXZ 0.5536(12) 0.5984(13)
100010 +XZIZXI 0.5392(12) 0.5884(13)
101000 +XIXZIZ 0.5832(11) 0.6311(12)

001011 +ZZXIYY 0.6084(11) 0.6718(12)

001100 +IZYY ZI 0.7376(10) 0.8037(10)
101100 +XIYY ZZ 0.6316(11) 0.6981(12)

001101 +ZZYY IX 0.6068(11) 0.6712(12)

001110 −IZY XY Z 0.5924(11) 0.6565(13)
101110 −XIY XY I 0.5308(12) 0.5784(13)

001111 +ZZY XXY 0.7056(10) 0.7970(11)

010101 +IX IXIX 0.5368(12) 0.5690(13)
111110 −Y XXXY I 0.6228(11) 0.6925(12)

010110 +ZXIYY Z 0.4936(12) 0.5483(14)

TABLE III. (Continued.)

Expectation value

Input Stabilizer Raw value SPAM-corrected

011000 +ZYY ZII 0.5768(12) 0.6275(13)
011010 +ZYY IXZ 0.4676(13) 0.5171(14)

011001 +IYY ZZX 0.4500(13) 0.4976(14)

011011 +IYY IYY 0.5200(12) 0.5628(13)
101101 +Y IYY IY 0.5584(12) 0.6037(13)
110110 +YY IYY I 0.5016(12) 0.5487(13)

011100 −ZY XY ZI 0.6444(11) 0.7192(12)
011101 −IY XY IX 0.5524(12) 0.5982(13)

011110 +ZY XXY Z 0.5528(12) 0.6233(13)

011111 −IY XXXY 0.6544(11) 0.7232(12)

100001 +Y ZIIZY 0.5404(12) 0.5872(13)
101001 +Y IXZZY 0.4708(12) 0.5214(14)

100011 −Y ZIZY X 0.6172(11) 0.6856(12)
101011 −Y IXIY X 0.5836(11) 0.6308(12)

100101 +Y ZZXIY 0.4624(13) 0.5114(14)

100111 +Y ZZY XX 0.5476(12) 0.6190(13)

101010 +XIXIXI 0.5500(12) 0.5863(13)
111101 −XXXY IY 0.6764(10) 0.7486(12)

101111 −Y IY XXX 0.6884(10) 0.7606(11)

110000 +YY ZIIZ 0.7484(9) 0.8090(10)
110100 +YY IXZZ 0.5948(11) 0.6597(13)

110001 −XY ZIZY 0.6144(11) 0.6785(12)
110101 −XY IXIY 0.5580(12) 0.6048(13)

110010 +YY ZZXI 0.5880(11) 0.6549(13)

110011 +XY ZZY X 0.6952(10) 0.7871(11)

110111 −XY IY XX 0.6428(11) 0.7138(12)

111000 −Y XY ZIZ 0.6248(11) 0.6893(12)
111010 −Y XY IXI 0.5592(12) 0.6091(13)

111001 +XXY ZZY 0.5164(12) 0.5832(14)

111011 −XXY IY X 0.6248(11) 0.6908(12)

111100 +Y XXY ZZ 0.7492(9) 0.8456(11)

111111 +XXXXXX 0.8304(8) 0.9378(9)
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