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Topological states and topological phase transition in Cu2SnS3 and Cu2SnSe3
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Based on the first-principles calculations and model analysis, we propose that the isostructural compounds
Cu2SnS3 and Cu2SnSe3 are both the simplest nodal-line semimetals with only one nodal line in their crystal
momentum space when spin-orbit coupling (SOC) is ignored. The inclusion of SOC drives Cu2SnS3 into a
Weyl semimetal (WSM) state with only two pairs of Weyl nodes, the minimum number required for a WSM
with time-reversal symmetry. In contrast, SOC leads Cu2SnSe3 to a strong topological insulator (STI) state. This
difference can be well understood as there is a topological phase transition (TPT). In it, the Weyl nodes are driven
by tunable SOC and annihilate in a mirror plane, resulting in a STI. This TPT, together with the evolution of Weyl
nodes, the changing of mirror Chern numbers of the mirror plane, and the Z2 indices protected by time-reversal
symmetry, has been demonstrated by the calculation of Cu2Sn(S1−xSex )3 within virtual crystal approximation
and an effective k · p model analysis. Though our first-principles calculations have overestimated the topological
states in both compounds, we believe that the theoretical demonstration of controlling the TPT and the evolution
of Weyl nodes will stimulate further efforts to explore them.

DOI: 10.1103/PhysRevResearch.4.033067

I. INTRODUCTION

After nearly 15 years of development, the classification
of topological electronic bands and their topological ma-
terials has been quite well developed [1–9]. The gapped
states have been classified both with internal and spatial
symmetries. The internal symmetries include time-reversal
symmetry, chiral (sublattice) symmetry, and particle-hole
symmetry, and the spatial symmetries include the crystalline
symmetries in all four types of magnetic space groups.
The Chern insulator, integer quantum anomalous Hall insula-
tor, topological insulator (TI), topological crystalline insulator
(TCI), as well as topological superconductor belong to these
classifications. For the metals, the topological classification
has been done mainly according to the nodal points close
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to the Fermi energy. According to the degeneracy, topolog-
ical charge, and distribution of these nodes, there has been
Weyl semimetal (WSM), Dirac semimetal (DSM), topological
nodal-line semimetal (TNLS), and multiple-degeneracy nodal
point semimetal [10–24]. Topological semimetal phases can
be viewed as the intermediate states in the process of the
topological phase transition (TPT) between different topolog-
ical phases, such as the normal insulator (NI) to TI, which
has been systematically studied by Murakami et al. [25–31].
In inversion-symmetric systems, the conduction band and
valence band gradually approach each other in the phase
transition process, and the band gap closes at time-reversal
invariant momenta (TRIM) only, where a fourfold degenerate
Dirac node appears. The intermediate state of the phase tran-
sition is a DSM phase, but as a critical point, it is unstable and
easy to destroy. On the other hand, for inversion-asymmetric
systems, the band gap will close at a certain k point away
from TRIM and at least two pairs of Weyl nodes with op-
posite chirality will emerge as constrained by time-reversal
symmetry (TRS) and the no-go theorem. This intermediate
state of the phase transition is a WSM phase. The Weyl nodes
are separated in reciprocal space and they should appear and
disappear in pairs when tuning one or more parameters in the
Hamiltonian properly. In this sense, the intermediate WSM
phase cannot be destroyed immediately and it is relatively
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robust against perturbation, facilitating the material realiza-
tion.

Recently, Lohani et al. prepared ordered and disordered
polymorphic samples of Cu2SnS3 present in the space groups
Cc and F4̄3m, respectively, and studied their electronic and
vibrational properties systematically by experiments and ab
initio calculations [32]. In this work, we have theoreti-
cally investigated two isostructural compounds Cu2SnS3 and
Cu2SnSe3 belonging to the space group Imm2 [33–35]. We
find that they are very suitable to study the TPT from a WSM
to a TI. When spin-orbit coupling (SOC) is ignored, both of
them are a nodal-line semimetal with only one nodal ring
around the Fermi energy lying in one mirror plane. When SOC
is considered, Cu2SnS3 becomes a WSM with two pairs of
Weyl nodes, while Cu2SnSe3 is a strong TI. The evolution
and annihilation of Weyl nodes in these isostructural and
isoelectronic family compounds can be demonstrated by sys-
tematically tuning the effective SOC. To do this, we employ
the virtual crystal approximation (VCA) method to simulate
the different Se doping concentrations of Cu2Sn(S1−xSex )3.
Since there are no topologically nontrivial symmetry-based
indicators in their space group Imm2 (No. 44) to directly judge
their topological classification [2,36,37], we characterize their
topological states by calculating the mirror Chern number
(MCN) for two mutually perpendicular mirror planes and
Z2 indices according to the Wilson-loop method [38,39]. To
reveal the mechanism of TPT, an effective k · p model has
been constructed and analyzed according to the representa-
tions of the bands forming the nodal ring. In the following,
we first introduce the calculation method, and then discuss
the topological states of Cu2SnS3 and Cu2SnSe3 without and
with SOC, respectively. Finally, the TPT from the WSM in
Cu2SnS3 to the TI of Cu2SnSe3 has been systematically in-
vestigated.

II. METHOD

The density functional theory (DFT) calculation of the
electronic structures for Cu2SnS3 and Cu2SnSe3 is performed
by using the Vienna ab initio simulation package (VASP)
[40]. The generalized gradient approximation (GGA) with
the Perdew-Burke-Ernzerhof (PBE) functional is selected to
describe the exchange-correlation energy [41,42]. The cutoff
energy for the plane-wave basis is set to 520 eV and the
reciprocal space is sampled by a 11 × 11 × 11 � − centeredk
mesh. To further calculate the topological properties of
Cu2SnS3 and Cu2SnSe3 such as surface states and MCN,
we have constructed the tight-binding model with the max-
imally localized Wannier functions (MLWF) [43] generated
for Cu 3d , Sn 5s + p, and S (Se) 3p (4p) orbitals. The surface
states and Fermi arcs are calculated using the WANNIERTOOLS

package [44], which is based on the surface Green’s function
method. In order to study the TPT process between Cu2SnS3

and Cu2SnSe3, we use the VCA method (suppose differ-
ent proportions of S and Se atoms simultaneously occupy
the same atomic sites) to calculate the band structures with
different S:Se ratios. Similarly, we linearly mix the above
tight-binding Hamiltonian based on Wannier functions of the
two parent compounds to obtain the Hamiltonian of the doped
one, which is found to be efficient in further determining the

FIG. 1. (a) The crystal structure of Cu2SnS3(Se3). The blue, gray,
and yellow balls represent Cu, Sn, and S (Se) atoms, respectively.
(b) The bulk BZ and the projected surface BZ for (001) and (100)
surfaces. The light yellow and light green planes represent Mx and My

planes, respectively. (c),(d) The band structures of Cu2SnS3 without
and with SOC, respectively. (e) Three-dimensional (3D) schematic
diagram of the nodal ring (in the absence of SOC) and Weyl points
(with SOC) in the BZ. The green line represents the nodal ring. The
blue and red dots denote the Weyl points with opposite chirality. (f)
The band along the path passing through two Weyl points with the
same chirality related with time-reversal symmetry. The path P to P′

is shown in (e).

phase transition critical point and the evolution of the Weyl
points.

III. RESULTS AND DISCUSSIONS

The crystal structure and Brillouin zone (BZ) of Cu2SnS3

and Cu2SnSe3 are shown in Figs. 1(a) and 1(b). They belong
to the same space group Imm2 (No. 44), which includes two
mirror reflection symmetries Mx and My perpendicular to the
x and y axis, respectively, and one twofold rotation symmetry
C2z along the z axis. It has time-reversal symmetry (TRS)
T but no inversion symmetry, which means the minimum
number of Weyl nodes is four, with two pairs in opposite
chirality.

A. Cu2SnS3

The band structure of Cu2SnS3 calculated without SOC is
shown in Fig. 1(c). The two mirror reflection symmetries Mx

and My are represented by the colored planes in Fig. 1(b).
We can clearly find the band crossing between the highest
valence band and the lowest conduction band along the �-S
and X-� directions. According to the representation analysis
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of the symmetric operations, the conduction band and valence
band forming the crossing node on path �-S have opposite
eigenvalues of the Mx and C2z operators, but the same eigen-
values of the My operator. This means that the band crossing
is protected by the Mx and C2z symmetries. The crossing
point on the path X-� is also protected by the Mx symmetry.
By searching the entire BZ, we find that these band-crossing
points form a closed nodal ring around � on the Mx plane, as
shown in Fig. 1(e). Therefore, without SOC, Cu2SnS3 is the
simplest TNLS with only one nodal ring.

When SOC is taken into account, the crossing points on the
above-mentioned nodal ring are fully gapped. The band struc-
ture near the Fermi level is plotted in Fig. 1(d). However, there
are two pairs of Weyl points created at the generic momenta
on the kz = 0 plane. They are symmetric about the Mx and My

planes. They also respect the C2z rotation symmetry and TRS
T . It is noted that the kz = 0 plane is invariant under the joint
operation C2z ∗ T , which results in a zero or π Berry phase for
any loop in this plane [7,31]. The positions and chiralities of
the Weyl nodes are shown in Fig. 1(e). The bands along the
k path, which connects a pair of Weyl points with the same
chirality to the � point, have been plotted in Fig. 1(f). The
energy of the Weyl points is very close to the Fermi level,
being about 1.4 meV above it.

It is noted that there is no topological indicator [2,36,37]
that can be used to determine the topological classification in
space group No. 44. Furthermore, spatial inversion symmetry
is also absent so that the Fu-Kane parity formula [45–47] is
not applicable. To determine its topological phase, we take
the Wilson-loop method to calculate the Z2 invariant protected
by TRS T and the MCNs of the mirror planes [17,38]. The
MCN calculations for the two mirror planes are plotted in
Figs. 2(a) and 2(b). They clearly show that MCN = 0 for the
Mx plane, while MCN = 1 for the My plane. To verify the
results, we further calculate the flow of Wannier centers of
all occupied states along half of the reciprocal lattice vector
in the Mx and My planes, which can give out a Z2 invariant
protected by TRS. As shown in Figs. 2(c) and 2(d), Z2 is 0
for the kx = 0 plane, while it is 1 for the ky = 0 plane, which
is consistent with the MCN results. The existence of Weyl
nodes between two nonparallel mirror planes with different
MCNs was first pointed out and demonstrated in TaAs [17],
and their influence on the pattern of Fermi arcs has also been
discussed and studied experimentally in TaAs [48]. Therefore,
the net topological charge of the Weyl nodes in one of the
four blocks divided by these two mirror planes should be an
odd number. In addition, the kz = 0 plane is invariant under
the joint operation of C2 ∗ T . Thus, there must be Weyl nodes
in this plane, which is essentially the same as the constraint
of in-plane Weyl nodes in the inversion-symmetric magnetic
space group with odd Z4 invariant and joint C2 ∗ T symmetry
[7,31].

The surface states and Fermi arcs of Cu2SnS3 on the (100)
and (001) projected surfaces are plotted in Figs. 2(e)–2(h).
On the (001) surface, four Weyl points are all projected onto
the surface separately. There are two Fermi arcs connecting
the two pairs of Weyl points, respectively, which is clearly
observed in the enlarged illustration of Fig. 2(f). The �̄ - Ȳ
and �̄ - X̄ lines are the projection of the Mx and My plane,
respectively. Along the �̄ - X̄ line, we can find a cross where

FIG. 2. The calculated topological properties of Cu2SnS3.
(a),(b) The flow chart of the average position of the Wannier centers
for occupied bands with mirror eigenvalue +i in the (a) Mx and
(b) My planes. (c),(d) The flow chart of the Wannier centers for all
occupied bands in the (c) Mx and (d) My planes across half of the
reciprocal lattice vector. (e) The surface states of the (001) surface
and (f) the corresponding Fermi surface. (g) The surface states of
the (100) surface and (h) the corresponding Fermi surface. The red
and blue dots are the projections of opposite chiral Weyl points,
respectively. The cyan dots are the superposition of two projected
Weyl points with opposite chirality.

the Fermi arc runs through it, which comes from MCN = 1
for the My plane. There is no Fermi arc crossing the �̄ - Ȳ line
since MCN = 0 for the Mx plane. It is noted that if the Weyl
nodes are off the kz = 0 plane, the number of Weyl nodes will
be doubled and two Weyl nodes of the same chirality will
be superposed on each other when projected onto the (001)
surface. The number of Fermi arcs connecting each projection
should be two. The different MCNs for the Mx and My planes
limit that there must be an odd number of Fermi arcs crossing
�̄ - X̄ and an even number of Fermi arcs crossing �̄ - Ȳ .
Therefore, there is no way to satisfy all these constraints if
assuming the Weyl nodes were off the kz = 0 plane.

On the (100) surface, two opposite chiral Weyl nodes are
projected to the same point on the �̃ - Ỹ line, as shown in
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FIG. 3. (a) 3D schematic diagram of the nodal ring for Cu2SnSe3

in the absence of SOC. (b) The bulk BZ and the projected surface BZ
for (010) and (100) surfaces. (c),(d) The band structures of Cu2SnSe3

without and with SOC, respectively.

Fig. 2(h). Therefore, each projective point should be con-
nected by two or zero Fermi arcs. Here, the �̃ - X̃ line is the
projection of the My plane. We can still find that one Fermi
arc sticking close to the bulk state crosses this line, which
is consistent with MCN = 1 for the My plane. In Fig. 2(g),
the projected bulk Weyl points form solid Dirac cones with
continuous eigenenergies along �̃ - Ỹ . The surface states form
an empty Dirac cone and have the Dirac node at �̃. Along �̃

- Ỹ , both of its two branches merge into the solid Dirac cone
where the bulk Weyl nodes are projected. Along �̃ - X̃ , there is
only one branch connecting the bulk conduction bands and the
other one merges into the valence states, which is consistent
with MCN = 1 for My.

B. Cu2SnSe3

The band structures of Cu2SnSe3 without and with SOC
are shown in Fig. 3(c) and 3(d), respectively. In the absence
of SOC, Cu2SnSe3 is also a nodal-line semimetal with only
one nodal ring centering at � in the Mx plane. However, when
SOC is taken into account, the band structure of Cu2SnSe3 is
fully gapped at each k point along the nodal line. It can be
looked at as an insulator, although there is no global gap in
the whole BZ.

In order to determine whether it is a topologically nontriv-
ial insulator, we further obtain the MCNs for the Mx and My

planes, as shown in Figs. 4(a) and 4(b). It is obvious that
MCN = 1 for both of Mx and My planes, consistent with
the Z2 invariant calculation shown in Figs. 4(c) and 4(d).
Thus, Cu2SnSe3 might be a WSM with an even number of
Weyl nodes in one-quarter of the BZ divided by the Mx and
My planes, or a strong TI with Z2 indices (1;000). We have
found that the former situation is possible in another family
member compound Cu2GeSe3, as shown in the Appendix.
The present compound Cu2SnSe3 is the latter case. The most
typical feature of a TI is the appearance of an odd number of
Dirac cones on their surfaces. We further calculate the (010)
and (100) surface states of Cu2SnSe3, as shown in Figs. 4(e)

(a) (b)

(c) (d)

 0.0

 0.5

 1.0

 0.0  0.1  0.2  0.3  0.4  0.5

W
C

C
 (

2
)

 0.0

 0.5

 1.0

 0.0  0.1  0.2  0.3  0.4  0.5

W
C

C
 (

2
)

(e) (f)

— — ~ ~ ~ ~ ~ ~— — — —

(100) surface state(010) surface state

 0

 0.5

 0  0.2  0.4  0.6  0.8  1

(2
)

 0

 0.5

 0  0.2  0.4  0.6  0.8  1

(2
)

Mx My

MyMx

FIG. 4. The calculation results of the topological properties of
Cu2SnSe3. (a),(b) The flow chart of the average position of the
Wannier centers obtained by the Wilson-loop calculation for bands
with mirror eigenvalue i in the (a) Mx and (b) My planes. (c),(d) The
flow chart of the Wannier centers of all occupied states in the (c) Mx

and (d) My planes along half of the reciprocal lattice vector. (e),(f)
The surface states of the (010) projected surface and (100) projected
surface, respectively.

and 4(f). There is one Dirac cone at the �̃ point on either the
(010) or (100) surface and the two branches of the Dirac cone
connecting the valence and conduction bands, respectively.

IV. TOPOLOGICAL PHASE TRANSITION

As the materials of a family with the same space group,
Cu2SnS3 and Cu2SnSe3 are both topological nodal ring
semimetals when SOC is not taken into account, but they are
obviously different in band topology when SOC is considered.
It is intriguing to understand the mechanism underlying this
difference. Therefore, we are going to explore the process
of TPT between them continuously from a WSM to a TI by
doping Se into Cu2SnS3, through which the strength of the
SOC can be tuned.

We use the virtual crystal approximation (VCA) method
to calculate the bands of Cu2Sn(S1−xSex )3 to simulate the
Se doping effect, as shown in Figs. 5(a)–5(d). The change
in lattice constants is linearly scaled between Cu2SnS3 and
Cu2SnSe3 with the doping concentration. We note that exper-
imentally, the doping of Se into Cu2SnS3 has been done [49]
and we have also estimated the formation energy of several
doping concentrations, as shown in Appendix E. It can be
seen that the band inversion between the valence band and
the conduction band around � remains as the Se doping ratio
increases from Fig. 5(a) to Fig. 5(d), and the spin splitting
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FIG. 5. (a)–(d) Band structures calculated by the VCA method with different values of the S:Se ratio. (e),(f) The flow of Wannier centers
and mirror Chern numbers of the Mx plane with different S:Se ratio values.

in these bands also increases due to enhanced SOC. This
indicates that the SOC is tunable. In order to accurately
determine where the phase transition has occurred, we cal-
culated the MCN and Z2 for the Mx plane in different doping
cases. We find that when S:Se = 0.9:0.1, the MCN and Z2

on the Mx plane are both zero. When S:Se = 0.6:0.4, both
the MCN and Z2 on the Mx plane become one, as shown in
Figs. 5(e) and 5(f), indicating that a TPT has occurred around
this point.

This work presents a simple and ideal model material sys-
tem for realizing the TPT in a 3D case with TRS as proposed
by Murakami [28]. The TPTs in other situations, such as those
in different dimensions [50,51] and those driven by changes
of crystal structure [52] and magnetism [31,53], have also
been studied. The process of Weyl nodes annihilation in a pair
and the TPT from a WSM to a TI are shown in Fig. 6(a).
This is further simulated by using the linear mixing of the
tight-binding Hamiltonians of Cu2SnS3 and Cu2SnSe3 con-
structed from the generated Wannier functions. We find that
the Weyl points gradually approach the kx = 0 plane along
the trajectory when the Se doping ratio increases, as shown in
Fig. 6(b). According to the results, we find that at about S:Se
= 0.63:0.37, the Weyl points finally annihilate on the kx = 0
plane, and a TPT from a WSM to a TI is realized with the
MCN = 0 for Mx. The critical value of S:Se determined from
linear mixing of the tight-binding Hamiltonian is nearly the
same as the first-principles calculation within VCA.

In order to further understand the TPT, we first construct a
two-band k · p model, which describes the nodal ring around
the � point without SOC. The � point has little-group sym-
metries Mx, My, and C2z, and time reversal T . According to
the band representations, we can obtain the operator Mx = τz,
My = τ0, C2z = τz, T = K , where K is the complex conjugate
operator. The Hamiltonian expanded around the � point with
momentum q = (qx, qy, qz ) can be simply written as

H0(q) = (m − q2)τz + 2qxτy. (1)

In the absence of SOC, the Hamiltonian forms a closed nodal
ring around � with radius m on the ky − kz plane when m > 0.
When m < 0, the nodal ring disappears and the system be-
comes trivial. In the following, we always assume m > 0.

FIG. 6. (a) Schematic evolution of the topological phase tran-
sition from Cu2SnS3 (WSM) to Cu2SnSe3 (strong topological
insulator, STI). (b) Band structures of Cu2Sn(S1−xSex )3 calculated
by linear mixing of Wannier Hamiltonians with Se doping of 0.0 (1),
0.3 (2), and 0.365 (3). The k path passes through the two Weyl points
with opposite chirality along the kx axis.
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When SOC is included, the two-band k · p model should
become a four-band model because of the spin degree of
freedom. The matrix representations of the Mx, My, C2z, and
T symmetries can be obtained:

Mx = iτz ⊗ sx, My = iτ0 ⊗ sy,C2z = iτz ⊗ sz, T = iτ0 ⊗ syK.

(2)
By considering the symmetry constraints cast by Mx, My,

C2z, and T , all symmetry-allowed k · p terms can be obtained
[54,55], and we choose the following form of the k · p Hamil-

tonian with extra mass term m1 in order to describe the TPT:

H (q) = (m − q2)τzs0 + 2qxτys0 + qyτxsz + qzτxsy + m1τysy.

(3)

For the Mx plane, by applying the unitary matrix U di-
agonalized Mx operator to H (qx = 0), we can get the block
diagonal matrix of H (qy, qz ) in the i or −i eigenvalue sub-
spaces of Mx [56,57],

UMxU
−1 =

⎛
⎜⎝

i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

⎞
⎟⎠, (4)

UH (qy, qz )U −1 =

⎛
⎜⎜⎜⎜⎝

q2
y + q2

z − m −qy + iqz − m1 0 0

−qy − iqz − m1 −q2
y − q2

z + m 0 0

0 0 q2
y + q2

z − m −qy − iqz + m1

0 0 −qy + iqz + m1 −q2
y − q2

z + m

⎞
⎟⎟⎟⎟⎠. (5)

The subspace Hamiltonian of the ±i eigenvalue is

H±i
yz (q) = d · σ = (−qy ∓ m1)σx ∓ qzσy + (

q2
y + q2

z − m
)
σz, (6)

and the MCN on the Mx plane can be calculated by

C±i
Mx

= − 1

4π

∫
dqydqzd̂ · (∂qy d̂ × ∂qz d̂), (7)

where d̂ = d/|d|. We find that when m2
1 < m, CMx = 1; and when m2

1 > m, CMx = 0.
For the My plane, we can obtain the matrix of H (qx, qz ) by applying the unitary matrix U ′ diagonalized My operator to

H (qy = 0):

U ′H (qx, qz )U ′−1 =

⎛
⎜⎜⎜⎜⎝

q2
x + q2

z − m 2iqx + qz + im1 0 0

−2iqx + qz − im1 −q2
x − q2

z + m 0 0

0 0 q2
x + q2

z − m 2iqx − qz − im1

0 0 −2iqx − qz + im1 −q2
x − q2

z + m

⎞
⎟⎟⎟⎟⎠. (8)

The subspace Hamiltonian of the ±i eigenvalue is

H±i
xz (q) = d · σ = ±qzσx + (−2qx ∓ m1)σy

+ (
q2

x + q2
z − m

)
σz, (9)

and the MCN on the My plane can be calculated by

C±i
My

= − 1

4π

∫
dqxdqzd̂ · (∂qx d̂ × ∂qz d̂). (10)

We find that when m2
1 < 4m, CMy = 1; and when m2

1 > 4m,
CMy = 0.

Therefore, we can find that when m2
1 > 4m, the MCNs on

the Mx and My planes are both 0. When m < m2
1 < 4m, the

MCNs change to CMx = 0 and CMy = 1, with two pairs of
Weyl points emerging on the kz = 0 plane with coordinate

(±
√

(m2
1 − m)/3,±

√
(4m − m2

1 )/3, 0), which corresponds to

the case of the Weyl semimetal Cu2SnS3. When m2
1 < m, the

Weyl points are pairwise annihilated on the ky axis, and the
MCNs both become 1, which corresponds to the case of STI
Cu2SnSe3. The detailed phase diagram is shown in Fig. 7.

V. SUMMARY

Through first-principles calculations, we have proposed
that Cu2SnS3 and Cu2SnSe3 can be used to model the topo-
logical phase transition from a WSM to a TI. In the absence of
SOC, both of them are the simplest nodal-line semimetal with
only a single nodal ring centering at �, which is protected
by Mx symmetry and lies in the mirror plane. When SOC is
taken into account, they are quite different. For Cu2SnS3, the

STI

m1

WSMtrivial

-  m-2  m 2  mm0

FIG. 7. The schematic phase diagram of topological phase tran-
sitions between the trivial insulator, Weyl semimetal, and STI by
adjusting parameter m1 when m > 0.
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FIG. 8. Band structures of Cu2SiTe3, Cu2GeS3, Cu2GeSe3, Cu2GeTe3, and Cu2SnTe3 along high-symmetry points without the spin-orbit
coupling.

nodal ring evolves into two pairs of Weyl points in the kz = 0
plane, as indicated by the different MCN for the Mx and My

planes, namely, MCN = 0 for the Mx plane and MCN = 1 for
the My plane. For Cu2SnSe3, the nodal ring is fully gapped
and the system becomes a strong TI, as indicated by the same
MCN = 1 for both the Mx and My planes. The difference
in them comes from the different strength of the effective
SOC, which can be systematically tuned by doping Se into

Cu2SnS3. Employing VCA, we have simulated the doping
concentration continuously to show the movement of Weyl
points and their annihilation in the Mx plane during the TPT.
The critical doping level is S:Se = 0.63:0.37. We have also
constructed a k · p model to explain these results. Here, it must
be noted that all the above results on specific materials are
based on the GGA calculations, which usually overestimate
the band inversion. The previous work [33–35] mentioned

FIG. 9. Band structures of Cu2SiTe3, Cu2GeS3, Cu2GeSe3, Cu2GeTe3, and Cu2SnTe3 along high-symmetry points with the spin-orbit
coupling.
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FIG. 10. Mirror Chern numbers (MCNs) of Cu2SiTe3, Cu2GeS3, Cu2GeSe3, Cu2GeTe3 and Cu2SnTe3 for the Mx plane.

that Cu2SnS3 and Cu2SnSe3 are gapped insulators in reality
and our improved hybrid functional (HSE06) calculations,
shown in the Appendix, are consistent with them. There are
still some family compounds, such as Cu2SiTe3, Cu2GeSe3,
Cu2GeTe3, and Cu2SnTe3, that keep the band inversion, and
their band topology can be analyzed similarly. Nevertheless,
our work is of importance and is useful to theoretically study
the topological states and phase transitions among them.
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TABLE I. The distribution of Weyl points in the Cu2SnS3 family.

Material a (Å) b (Å) c (Å) Weyl points (kx , ky, kz) (2π/ita) Energy (eV) Number

Cu2SiTe3 4.2527 12.5882 5.9446 Upper and lower surfaces of BZ 8 small nodal-rings
Cu2GeS3 3.7660 11.3210 5.2100 (0.0510, 0.4044, 0.3047) –0.0749 8

(0.0287, 0.2935, 0.2154) 0.0062 8
Cu2GeSe3 3.9600 11.8600 5.4850 (0.0617, 0.3173, 0.2536) –0.0111 8
Cu2GeTe3 4.2115 12.6410 5.9261 (0.1313, 0.0775, 0.1327) 0.1290 8

Upper and lower surfaces of BZ 4 large nodal-rings
Cu2SnS3 3.8937 11.5720 5.4436 (0.0061, 0.1120, 0.0000) 0.0014 4
Cu2SnSe3 4.1158 12.2715 5.7528 Topological insulator (TI) 0
Cu2SnTe3 4.2740 12.8330 6.0430 (0.0576, 0.1502, 0.1226) 0.0748 8

(0.0782, 0.4763, 0.3110) –0.1824 8

FIG. 12. The schematic diagrams of the Weyl points distribution of Cu2SiTe3, Cu2GeS3, Cu2GeSe3, Cu2GeTe3, and Cu2SnTe3. The green
line represents the nodal chain and nodal ring. The blue dots denote the Weyl points with negative chirality and the red dots denote the Weyl
points with positive chirality.

FIG. 13. The band structures of Cu2SiTe3, Cu2GeS3, Cu2GeSe3, Cu2GeTe3, Cu2SnS3, Cu2SnSe3, and Cu2SnTe3 with HSE06 along high-
symmetry points without the spin-orbit coupling. The red dotted lines in part of the figures are the bands with SOC for comparison.
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APPENDIX A: BAND STRUCTURES OF THE OTHER
MEMBERS IN Cu2SnS3 FAMILY

In this Appendix, we present, in Figs. 8 and 9, the bulk
band structures of the other members in the Cu2SnS3 family
without and with spin-orbit coupling (SOC), which are all
calculated using the GGA.

APPENDIX B: MCNs OF Mx AND My PLANES FOR OTHER
MATERIALS OF Cu2SnS3 FAMILY

In this Appendix, we give, in Figs. 10 and 11, the MCNs
of the Mx and My planes for other materials of the Cu2SnS3

family. It is obvious to see that all the members have MCN =
1 for the My plane, but for the Mx plane, except for Cu2SnS3,
all the other members have MCN = 1. This is a very different
phenomenon.

APPENDIX C: THE DISTRIBUTION OF WEYL POINTS IN
Cu2SnS3 FAMILY

In this Appendix, we give the position of Weyl points
for these materials of the Cu2SnS3 family; see Table I and
Fig. 12.

APPENDIX D: BAND STRUCTURES OF Cu2SnS3 FAMILY
WITH HSE06

In this Appendix, we show, in Fig. 13, the band calculation
results with HSE06 for all materials without SOC and partial
materials with SOC.

FIG. 14. The unit of formation energy as a function of the doping
ratio x for Cu2Sn(S1−xSex )3.

APPENDIX E: FORMATION ENERGY OF Cu2Sn(S1−xSex)3

In order to study the doping ratio x dependence of the
formation energy of Se-doped Cu2SnS3, we calculate the for-
mation energy Eform by using the formula below [58,59],

Eform = ECu2Sn(S1−xSex )3 − ECu2SnS3 − mμSe + nμS, (E1)

where m = n = 3x, and μSe and μS are the chemical potential
of the isolated atom Se and S, respectively.

In practical applications, Eform could be averaged over all
atoms (Natom) as the unit of formation energy to help estimate
the feasibility of practical synthesis. The unit of formation
energy, Eform/Natom, changes with the doping ratio x (Fig. 14).
The dashed lines in Fig. 14 indicate the doping concentrations
that have been synthesized experimentally [49].
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