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Hessian geometric structure of chemical thermodynamic systems with stoichiometric constraints
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We establish a Hessian geometric structure in chemical thermodynamics, which describes chemical reaction
networks (CRNs) with equilibrium states. In our setup, the ideal gas assumption and mass action kinetics
are not required. The existence and uniqueness condition of the equilibrium state is derived by using the
Legendre duality inherent to the Hessian structure. The entropy production during a relaxation to the equilibrium
state can be evaluated by the Bregman divergence. Furthermore, the equilibrium state is characterized by
four distinct minimization problems of the divergence, which are obtained from the generalized Pythagorean
theorem originating in the dual flatness. For the ideal gas case, we confirm that our existence and uniqueness
condition implies Birch’s theorem, and that the entropy production represented by the divergence coincides with
the generalized Kullback-Leibler divergence. In addition, under mass action kinetics, our general framework
reproduces the local detailed balance condition.
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I. INTRODUCTION

Chemical thermodynamics is a solid physical basis for
treating systems consisting of chemical reactions [1–4]. In
recent years, it has found new applications in biophysics and
systems biology [5–11], and also been actively extended by
incorporating new techniques from stochastic thermodynam-
ics [12–17], chemical reaction network theory [18–20], and
information theory [21]. However, from a general physics
perspective, chemical thermodynamics is a chimera of pure
thermodynamic and kinetic aspects.

Historically, the conventional equilibrium chemical ther-
modynamics was established by the seminal papers by Gibbs
[22], in which the chemical equilibrium state is variationally
and globally characterized as the state to minimize the free en-
ergy. In the same period, the chemical kinetic theory was also
being developed in parallel with Gibbs’ equilibrium chemical
thermodynamics.

By combining the law of mass action by Guldberg and
Waage in 1864 [23] with Boltzmann’s characterization of the
equilibrium state by detailed balancing, Wegscheider clarified
the condition, which the rate constants of chemical reactions
must satisfy to have equilibrium states [24]. The character-
ization of an equilibrium state by the detailed balancing of
the reaction fluxes is kinetic and local but consistent with the
global free-energy characterization of the equilibrium state
under the ideal-gas or dilute-solution assumption [25].

Since then, theories of chemical reaction systems and their
thermodynamics have been developed, mainly based on the
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detailed balancing characterization of equilibrium states and
mass action systems. For example, in the 1970s, the chemical
reaction network (CRN) theory emerged [26]. Here, Horn
and Jackson formalized the complex-balanced state of a mass
action system, which extended the uniqueness and stability
of the equilibrium state [27]. In relation to the stability of
the equilibrium state, it was found that the Gibbs free energy
difference is identical to the generalized Kullback-Leibler
divergence (also known as the pseudo-Helmholtz potential)
and behaves as a Lyapunov function of mass action systems
[27–30]. This result could be regarded as a chemical version
of Boltzmann’s H theorem and was used for proving the
convergence of a mass action system to the unique equilib-
rium state characterized by detailed balancing [31,32]. Also,
around 1970, Hill and Schnakenberg extended the theory to
stochastic linear reaction systems [2,33,34].

The applicability of chemical thermodynamics has recently
been extended further in various ways. The generalized mass
action kinetics was proposed in the field of applied mathe-
matics as a broader class of kinetics in which the properties
of the equilibrium state can be conserved [18–20,35,36]. The
authors of Refs. [14–17,37] established a theory for open
CRNs and derived the conditions under which an open system
has an equilibrium state.

However, most of recent developments are not purely ther-
modynamic, because they are based on the characterization
of the equilibrium state by detailed balancing, assuming a
specific kinetics analogous to the mass action. As a result, it is
unclear whether the results are obtained just by mathematical
extensions that crucially depend on the specific kinetics of
the mass action and its variants, or whether they are truly
consistent with the general framework of thermodynamics. If
they are consistent, the same results must be derived from a
purely thermodynamic argument in the line of Gibbs without
assuming kinetics and detailed balancing. Once the consisten-
cies are confirmed, one could apply the previously-established
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results to a much broader class of nonideal and nonmass ac-
tion chemical systems, because thermodynamics can describe
the properties of systems independent of the details of their
kinetics. However, there have been few attempts to establish
the link [36]. In this paper, we reveal the link in chemical
thermodynamics of general CRNs.

Before outlining our main results, we recall the general
framework of thermodynamics, which should be formulated
as follows. The space of extensive variables is endowed with
a concave function, called entropy [1,3]. According to the
second law of thermodynamics, a system should evolve with
time such that the total entropy function increases under any
given constraints imposed on the extensive variables. If the
constraints are trivial, the system converges to the maximum
of the total entropy function, namely, the equilibrium state.
Furthermore, there is a well-established procedure to evaluate
the dissipation during a relaxation to the equilibrium state.

However, the constraints can have nontrivial impacts when
such a general theory is applied to CRNs, especially to those
with complex stoichiometry of chemical reactions. In a chemi-
cal thermodynamic system, the extensive variables include the
numbers of molecules constituting the system. These numbers
cannot change independently as they are algebraically con-
strained by the stoichiometry. It is these constraints, which
provide significant geometric structure into the problem, and
also yield several properties obtained from detailed balancing
and mass action kinetics.

In this paper, we develop a thermodynamic theory for
chemical reaction systems with complex constraints. With this
theory, we obtain the following four main results.

Theorem 1. Necessary and Sufficient Condition for Ex-
istence of Equilibrium States for Open CRNs: This is
a generalization of the Wegscheider condition and the
equilibrium condition of open CRNs obtained recently
in Refs. [14,15].

Theorem 2. Uniqueness Condition of the Equilibrium State:
This is a generalization of the uniqueness condition of the
equilibrium state obtained so far under the assumption of mass
action kinetics.

Theorem 3. The Difference of Total Entropy between the
Equilibrium State and Any State is Evaluated by Bregman
Divergence: This is a generalization of the fact that the free
energy difference is identical to the generalized Kullback-
Leibler divergence. In particular, we clarify that a convex
function characterizing the Bregman divergence corresponds
to the thermodynamic potential of the system.

Theorem 4. Four Variational Characterizations of the Equi-
librium State: One of them is the generalization of the
variational characterization of the equilibrium state as the
minimizer of the free energy (the generalized Kullback-
Leibler divergence). The other three are newly obtained as a
result of our Hessian geometric formulation.

We emphasize again that these results are derived purely
thermodynamically, without using any specific kinetics such
as the mass action laws and the local characterization of
equilibrium states such as detailed balancing. In particular,
we derive these generalizations by identifying and employing
the Hessian geometric structure [38] in constrained thermo-
dynamic systems. The Hessian geometry of thermodynamic
systems plays an essential role, when the constraints between
the variables become nontrivial and complex.

This paper is organized as follows. We devote Sec. II to
review the conventional thermodynamics of CRNs in light
of the entropy maximization problem. Also, we recapitulate
how different kinds of thermodynamic potentials are linked to
each other. In Sec. III, we derive the existence and unique-
ness condition for the equilibrium state. To this purpose, we
introduce two spaces, which are connected to each other by
Legendre duality. This pair of the spaces and their duality is
the basis of the Hessian geometric structure. The equilibrium
state is then uniquely determined by the intersection of two
submanifolds (see Theorem 2). Section IV reformulates the
second law from the geometric point of view. We show that
the dissipation can be evaluated by the Bregman divergence
(see Theorem 3). Furthermore, we obtain four distinct char-
acterizations of the equilibrium state (see Theorem 4). In
Sec. V, we demonstrate our geometric structure in ideal gas
cases to rederive the previously known results: Our theorems
for the existence and uniqueness condition reduce to Birch’s
theorem (see Theorem 5), and the entropy production can be
represented by the generalized Kullback-Leibler divergence.
In addition, by assuming the law of mass action, we reproduce
the local detailed balance condition. Finally, we summarize
our results with further discussions in Sec. VI.

While we derive all the results without the assumptions of
mass action systems and detailed balancing, the assumptions
are familiar to researchers working on stochastic thermo-
dynamics and CRNs. In our accompanying paper [39], we
reproduce our results for the special case starting from mass
action systems and detailed balancing.

II. CONVENTIONAL THERMODYNAMICS
FOR CHEMICAL REACTION SYSTEMS

In this section, we recall conventional thermodynamics for
chemical reaction systems. Readers who are familiar with the
topic can skip to Eqs. (23), (24), and (25).

Consider a thermodynamic chemical reaction system sur-
rounded by a reservoir. We assume that the system is always
in a local equilibrium state, i.e., a well-mixed state, and there-
fore we can completely describe it by extensive variables
(�, E , N, X ). Here, � and E represent the volume and the in-
ternal energy; N = {Nm} denotes a vector, each component of
which is the number of the corresponding open chemical. The
open chemicals can diffuse across the boundary between the
system and the reservoir. By contrast, X = {X i} is the num-
bers of chemicals confined in the system; the indices m and
i run from m = 1 to NN and from i = 1 to NX , respectively,
where NN and NX represent the numbers of species of the
open and confined chemicals. Since we only discuss isochoric
cases (i.e., � = const.) for theoretical simplicity [40], we em-
ploy the density variables (ε, n, x) = (E/�, N/�, X/�). In
thermodynamics, a concave, smooth and homogeneous func-
tion �, which is called the entropy, is defined on (�, E , N, X ).
Owing to the homogeneity of the entropy function, without
loss of generality, we can write it as

�[�, E , N, X ] = �σ [ε, n, x], (1)

where σ [ε, n, x] represents the entropy density. In this work,
we additionally assume that σ [ε, n, x] is strictly concave,
which implies a situation without phase transitions from the
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FIG. 1. Diagrammatic explanation of an open CRN. The chem-
ical reactions occur with the reaction flux densities j(t ) = { jr (t )},
the rth reaction of which is represented as the chemical equation in
the figure. Here, X = {Xi} are the labels of the confined chemicals,
and N = {Nm} are the ones of the open chemicals, which can move
across the boundary with the diffusion flux densities kB(t ) = {km

B (t )}.
Also, (S+)i

r and (O+)m
r denote stoichiometric coefficients of the re-

actants in the rth reaction, whereas (S−)i
r and (O−)m

r are the ones
of the products. Thus, the stoichiometric matrices are given as Si

r =
(S−)i

r − (S+)i
r, Om

r = (O−)m
r − (O+)m

r .

physical point of view. The reservoir is characterized by inten-
sive variables (T̃ , μ̃), where T̃ is temperature and μ̃ = {μ̃m}
are chemical potentials corresponding to the open chemi-
cals; also we denote the corresponding extensive variables by
(Ẽ , Ñ ). We denote the entropy function for the reservoir by
�̃T̃ ,μ̃[Ẽ , Ñ], and therefore the total entropy can be expressed
by

�tot[ε, n, x|Ẽ , Ñ] = �σ [ε, n, x] + �̃T̃ ,μ̃[Ẽ , Ñ], (2)

where we use the additivity of the entropy.
Next, we define a dynamics as

dε

dt
= iB(t ),

dnm

dt
= Om

r jr (t ) + km
B (t ),

dxi

dt
= Si

r jr (t ),

dẼ

dt
= −�iB(t ),

dÑm

dt
= −�km

B (t ), (3)

where iB(t ), j(t ) = { jr (t )}, and kB(t ) = {km
B (t )} represent the

energy, the chemical reaction, and the chemical diffusion flux
densities, respectively; also, S = {Si

r} and O = {Om
r } denote

stoichiometric matrices for the confined and open chemicals
[see Fig. 1 and also Eqs. (69) and (70)]. The index r runs
from r = 1 to NR, where NR is the number of reactions. In
this paper, we employ Einstein’s summation convention for
notational simplicity.

Since, in most cases, the time scale of reactions is much
slower than the others [that is, iB(t ), kB(t ) � j(t )], we can
analyze the dynamics, Eq. (3), by separating it into the fast
and slow scales. By employing a scaling: τ := αt, i(τ ) :=
α−1iB(t ), k(τ ) := α−1kB(t ), α → ∞, we obtain the fast scale
effective dynamics as

dε

dτ
= i(τ ),

dnm

dτ
= km(τ ),

dẼ

dτ
= −�i(τ ),

(4)
dÑm

dτ
= −�km(τ ),

where we use the fact that the diverging bare flux densities,
iB and kB, converge to the finite effective flux densities, i and
k, in the scaling limit. The formal solution of Eq. (4) with an
initial condition (ε0, n0, Ẽ0, Ñ0) can be represented as

ε(τ ) = ε0 + ι(τ ), nm(τ ) = nm
0 + κm(τ ),

(5)
Ẽ (τ ) = Ẽ0 − �ι(τ ), Ñm(τ ) = Ñm

0 − �κm(τ ),

where ι(τ ) and κ (τ ) are the integrals of i(τ ) and k(τ ) with the
initial condition ι(0) = κ (0) = 0:

ι(τ ) =
∫ τ

0
i(τ ′)dτ ′, κm(τ ) =

∫ τ

0
km(τ ′)dτ ′. (6)

Here, we note that the densities of confined chemicals x can
be regarded as a constant in the fast dynamics. By substituting
the solution Eq. (5) into Eq. (2), we have the time evolution of
total entropy as

�tot (ι(τ ), κ (τ ), x) = �σ [ε0 + ι(τ ), n0 + κ (τ ), x]

− 1

T̃
�ι(τ ) + μ̃m

T̃
�κm(τ ) + const.,

(7)

where we use properties of the reservoir, �ι(t ) �
Ẽ0, �κ (t ) � Ñ0, and the Taylor expansion for �̃T̃ ,μ̃; we
also employ the thermodynamic relations: ∂�̃T̃ ,μ̃/∂Ẽ = 1/T̃
and ∂�̃T̃ ,μ̃/∂Ñm = −μ̃m/T̃ . Although the constant term is
explicitly given as �̃T̃ ,μ̃[Ẽ0, Ñ0], we abbreviate it to “const.”,
because it never affects the theoretical framework.

To introduce thermodynamics into our dynamics, we
briefly summarize its significant statements. According to the
first law, a heat dissipation Q0→τ from the system to the
reservoir during a time interval [0, τ ] is given by the entropy
increment in the reservoir:

Q0→τ : = −�ι(τ ) + �μ̃mκm(τ )

= T̃ {�̃T̃ ,μ̃(τ ) − �̃T̃ ,μ̃(0)}
= T̃ {�tot (τ ) − �tot (0)} − T̃ �{σ (τ ) − σ (0)}, (8)

where �ι(τ ) represents the internal energy gain of the system
and −�μ̃mκm(τ ) is the work done by the system through the
injection of chemicals into the reservoir.

The second law states that, for spontaneous changes, the
flux density functions, i(τ ) and k(τ ), must be chosen such that
�tot (τ ) becomes an increasing function with respect to time
τ [41]. In other words, the system climbs up the landscape
defined by the concave function �tot (ι, κ, x) with respect to ι

and κ in the time evolution, and finally converges to the max-
imum if it exists. If we write (ε(τ ), n(τ )) → (εQEQ, nQEQ) for
τ → ∞, candidates of the converged state (εQEQ, nQEQ) can
be evaluated by a variational form:

(ιQEQ, κQEQ) ∈ arg max
ι,κ

�tot (ι, κ, x)

= arg max
ι,κ

{
σ [ε0 + ι, n0 + κ, x] − 1

T̃
ι + μ̃m

T̃
κm

}
, (9)

and (εQEQ, nQEQ) = (ε0 + ιQEQ, n0 + κQEQ). In thermody-
namics, the states maximizing the total entropy are called
equilibrium states; therefore, (εQEQ, nQEQ) is an equilibrium
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state in the fast dynamics. However, we call it a quasiequi-
librium state, because we will treat the slow dynamics later.
By using the argument shift, ε = ε0 + ι, n = n0 + κ , we can
rewrite the variational form as

(εQEQ, nQEQ) ∈ arg max
ε,n

{
σ [ε, n, x] − 1

T̃
ε + μ̃m

T̃
nm

}
, (10)

and we directly obtain candidates of the quasiequilibrium
state.

Since, in thermodynamics, the function maximized in
Eq. (10) is bounded above [42], the quasiequilibrium state
always exists. Furthermore, since we have assumed the strict
concavity for σ in this paper, we can conclude that the
quasiequilibrium state is uniquely determined by Eq. (10);
and, for an arbitrary initial condition (ε0, n0), the system con-
verges to the unique quasiequilibrium state (εQEQ, nQEQ). The
above conclusion, which is the existence and uniqueness of
the quasiequilibrium state, originates from the simplicity of
the fast dynamics, Eq. (4). In other words, the maximization
is easily conducted, because ε and n can be varied indepen-
dently. As shown later, the conclusion no longer holds for the
slow reaction dynamics, because of complex stoichiometric
constraints. Also, the total entropy at the quasiequilibrium
state can be represented as

�tot
QEQ = � max

ε,n

{
σ [ε, n, x] − 1

T̃
ε + μ̃m

T̃
nm

}
+ const. (11)

Employing the above results for the fast dynamics, we
analyze the slow dynamics, which is the chemical reaction
dynamics. Owing to the variational form, Eq. (10), the time
evolutions of the densities of the internal energy ε(t ) and of
the open chemicals n(t ) in the slow dynamics are already
solved. By using the time evolution of the confined chemicals
x(t ), we have

ε(t ) = εQEQ(T̃ , μ̃; x(t )), n(t ) = nQEQ(T̃ , μ̃; x(t )). (12)

Substituting these equations into Eq. (3), we obtain the effec-
tive slow dynamics as

dxi

dt
= Si

r jr (t ),
dẼ

dt
= −�

dεQEQ(T̃ , μ̃; x(t ))

dt
,

dÑm

dt
= �

{
Om

r jr (t ) − dnm
QEQ(T̃ , μ̃; x(t ))

dt

}
. (13)

The formal solution of Eq. (13) with the initial condition x0 is
represented as

xi(t ) = xi
0 + Si

rξ
r (t ), Ẽ (t ) = Ẽ (0) − �εQEQ(T̃ , μ̃; x(t )),

Ñm(t ) = Ñm(0) + �
{
Om

r ξ r − nQEQ(T̃ , μ̃; x(t ))
}
, (14)

where ξ (t ) = {ξ r (t )} is the integral of j(t ) with the initial
condition ξ (0) = 0. The vector ξ (t ) is the density of the extent
of reaction. Also, the initial conditions of the reservoir for the
slow dynamics, Ẽ (0) and Ñ (0), can be calculated from the fast
dynamics as

Ẽ (0) = Ẽ0 − �(εQEQ(T̃ , μ̃; x0) − ε0),

Ñm(0) = Ñm
0 − �(nm

QEQ(T̃ , μ̃; x0) − nm
0 ). (15)

The substitution of Eqs. (12) and (14) into Eq. (2) leads to the
time evolution of the total entropy in the reaction dynamics:

�tot (ξ (t )) = �σ [εQEQ(ξ ), nQEQ(ξ ), x0 + Sξ ]

− 1

T̃
�εQEQ(ξ ) − μ̃m

T̃
�

{
Om

r ξ r − nQEQ(ξ )
}

+ const., (16)

where we use the Taylor expansion for �̃T̃ ,μ̃ again. If
we use the quasiequilibrium entropy function �tot

QEQ =
�tot

QEQ(T̃ , μ̃; x(t )) given by Eq. (11), we can rewrite Eq. (16)
as

�tot (ξ ) = �tot
QEQ(T̃ , μ̃; x0 + Sξ ) − �

μ̃m

T̃
Om

r ξ r + const.

(17)
From the second law, an equilibrium state in the reac-

tion dynamics is evaluated by a variational form: ξEQ =
arg maxξ�

tot (ξ ), and xEQ = x0 + SξEQ; also, the equilibrium
total entropy is �tot

EQ = maxξ�
tot (ξ ). Furthermore, by follow-

ing the same argument as in Eq. (8), the heat dissipation of
this dynamics is given by

Qt ′→t = T̃ {�tot (ξ (t )) − �tot (ξ (t ′))}
− T̃ �{σQEQ(x(t )) − σQEQ(x(t ′))}, (18)

where σQEQ(x(t )) := σ [εQEQ(t ), nQEQ(t ), x(t )] denotes the
system entropy density at the quasiequilibrium state with the
confined chemicals x(t ).

The representation of the total entropy, Eq. (17), may be
unfamiliar to the reader, therefore we rewrite it by employing
thermodynamic potentials. First, consider the maximization in
Eq. (11) with respect to ε:

ψ

[
1

T̃
; n, x

]
:= max

ε

{
σ [ε, n, x] − 1

T̃
ε

}
, (19)

which is called the Massieu potential density. By using this
potential, the Helmholtz free-energy density is defined as

f

[
T̃ ; n, x

]
:= −T̃ ψ

[
1

T̃
; n, x

]
. (20)

Finally, a variant of the Legendre transformation [43] of
f [T̃ ; n, x] leads to

ϕ[T̃ , μ̃; x] := min
n

{ f [T̃ ; n, x] − μ̃mnm}, (21)

which coincides with the partial grand potential density.
Owing to the definition of ϕ[T̃ , μ̃; x], the quasiequilibrium
entropy function �tot

QEQ can be represented as

�tot
QEQ(T̃ , μ̃; x) = −�

T̃
ϕ[T̃ , μ̃; x] + const., (22)

and therefore Eq. (17) can be rewritten in a familiar form:

�tot (ξ ) = −�

T̃

{
ϕ[T̃ , μ̃; x0 + Sξ ] + μ̃mOm

r ξ r
} + const.

(23)
Also, the differentiation of ϕ[T̃ , μ̃; x] with respect to T̃ gives
−σQEQ(x) (see Appendix A). Hence, the heat dissipation,
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Eq. (18), can be expressed as

Qt ′→t = T̃ {�tot (ξ (t )) − �tot (ξ (t ′))}

+ T̃ �

{
∂ϕ[T̃ , μ̃; x(t )]

∂T̃
− ∂ϕ[T̃ , μ̃; x(t ′)]

∂T̃

}
. (24)

Since all important thermodynamic quantities for the reaction
dynamics can be calculated from the potential ϕ[T̃ , μ̃; x], we
will use it, instead of the entropy density σ [ε, n, x], hereafter.

Before closing this section, we consider the equilibrium
state of the slow reaction dynamics. Owing to the second law,
candidates of the equilibrium state are given by the variational
form:

ξEQ ∈ arg max
ξ

{−ϕ[T̃ , μ̃; x0 + Sξ ] − μ̃mOm
r ξ r}, (25)

and xEQ = x0 + SξEQ. However, differently from the case in
the fast dynamics [see Eq. (10)], the existence and uniqueness
of the equilibrium state are not guaranteed in this case because
of S and O. In the following sections, we will analyze the
equilibrium state from a geometric point of view.

III. A GEOMETRIC REPRESENTATION
OF EQUILIBRIUM STATES

In this section, we consider a geometric interpretation of
the variational form, Eq. (25). As a result, we reveal the
existence and uniqueness condition for the equilibrium state.

The geometry we use here is Hessian geometry [38], which
is based on a pair of linearly dual spaces. These spaces are
endowed with a second dual structure resulting from Legendre
transformation with a given convex function. The two duali-
ties yield a generalized orthogonality relation between affine
subspaces in the two spaces. Also, the convex function in-
duces the Bregman divergence, which works as an asymmetric
distance on the dual spaces.

As we demonstrate, Hessian geometry quite naturally cap-
tures the duality between chemical densities and chemical
potentials linked by the thermodynamic convex function, and
disentangle the algebraic constraints imposed by the stoi-
chiometry of CRNs.

A. Preparation for geometry

We write x ∈ X = RNX
>0 for the density space of the con-

fined chemicals, where NX is the number of species. Also, we
define its dual space: y ∈ Y = RNX , which is the correspond-
ing chemical potential space. Consider a map from X to Y by
using the convex function ϕ(x) := ϕ[T̃ , μ̃; x] as

∂ϕ : x ∈ X �→ ∂ϕ(x) = {∂iϕ} =
{

∂ϕ

∂xi

}
∈ Y, (26)

where, to focus on x, we omit the arguments T̃ and μ̃ in ϕ,
and the convexity of ϕ(x) is guaranteed by the definitions
of thermodynamic potentials, Eqs. (19), (20), and (21). In
physical interpretation, the map ∂ϕ gives the value of the
chemical potential of a state x. Since we have assumed strict
concavity for σ , which implies strict convexity of ϕ(x), the
map ∂ϕ is injective. Furthermore, in the ordinary setting of
chemical reaction systems, the range of ∂ϕ is RNX ; thus ∂ϕ is
bijective (see also [42]). To construct the inverse map of ∂ϕ,

FIG. 2. The left and right spaces represent the density space X
and the chemical potential space Y , which are mapped each other by
∂ϕ and ∂ϕ∗. The red manifold represents the equilibrium manifold,
which is curved in X and is flat in Y . By contrast, the blue manifold
denotes the stoichiometric manifold, which is flat in X and is curved
in Y . The intersection between these two submanifolds gives the
equilibrium state.

we define the strictly convex function ϕ∗(y) on the dual space
Y by the Legendre transformation:

ϕ∗(y) := max
x

{yix
i − ϕ(x)}. (27)

Employing ϕ∗(y), we can represent the inverse map as

∂ϕ∗ : y ∈ Y �→ ∂ϕ∗(y) = {∂ iϕ∗} =
{

∂ϕ∗

∂yi

}
∈ X . (28)

The diagrammatic summary of these spaces and maps is
shown in Fig. 2.

With the above setup, we analyze the equilibrium state
given by Eq. (25). The critical equation of the variational
form, Eq. (25), is represented as

Ar (T̃ , μ̃; x0 + Sξ ) := −∂iϕ(x0 + Sξ )Si
r − μ̃mOm

r = 0, (29)

where we define the affinity A(T̃ , μ̃; x) [44]. This measures
how far a state x is from the equilibrium state [14,15]. The
solutions of Eq. (29) with respect to ξ give candidates of the
equilibrium extent of reaction ξEQ.

Since it is difficult to directly analyze Eq. (29), we intro-
duce its geometric representation. Define the following two
submanifolds (subsets) in the density space X (see Fig. 2).
One is the equilibrium manifold:

VX
EQ(T̃ , μ̃) := {x|A(T̃ , μ̃; x) = 0}, (30)

which represents a set of candidates of the equilibrium state.
The other is the stoichiometric manifold:

PX (x0) := {x|x ∈ x0 + Im[S]}, (31)

which describes an affine subspace in X and expresses the
domain in which the system can evolve by the reaction
dynamics with an initial condition x0 [18–20,27]. The impor-
tant points here are that the equilibrium manifold VX

EQ(T̃ , μ̃)
is determined by the reservoir condition (T̃ , μ̃), whereas
the stoichiometric manifold PX (x0) is given by an initial
condition x0.

By using these two submanifolds, we can identify can-
didates of the equilibrium state xEQ = x0 + SξEQ with the
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intersection between them (see Fig. 2):

xEQ(T̃ , μ̃; x0) ∈ VX
EQ(T̃ , μ̃) ∩ PX (x0). (32)

If the intersection consists of precisely one point, the equi-
librium state is uniquely determined by the variational form,
Eq. (25), under a given initial condition x0 [45]. By contrast, if
the intersection is empty, the equilibrium state does not exist.
In the next subsection, we will derive the existence condition
for the equilibrium state and prove its uniqueness.

B. Existence and uniqueness condition for the equilibrium state

Let us begin with the derivation of the existence con-
dition, which is composed of two steps: (1) finding the
condition for VX

EQ(T̃ , μ̃) �= ∅ and (2) proving VX
EQ(T̃ , μ̃) �=

∅ ⇒ VX
EQ(T̃ , μ̃) ∩ PX (x0) �= ∅. To obtain the condition for

VX
EQ(T̃ , μ̃) �= ∅, we introduce the equilibrium manifold in the

chemical potential space Y by using the map ∂ϕ:

VY
EQ

(
μ̃

)
:= ∂ϕ

(
VX

EQ

) = {
y|yiS

i
r + μ̃mOm

r = 0
}
, (33)

which defines an affine subspace in Y (see Fig. 2) [46]. For
VY

EQ(μ̃) �= ∅, the simultaneous equations yiSi
r + μ̃mOm

r = 0
must be consistent. The consistency condition is known as
OT μ̃ ∈ Im[ST ] in linear algebra, where (·)T denotes the trans-
pose operation and μ̃ := (μ̃1, μ̃2, ...)T . If we use complete
basis of Ker[S]: (V 1,V 2, ...) =: {V r

c } (i.e., SV = 0), the con-
sistency condition can be rewritten as, for all c,

μ̃mOm
r V r

c = 0, (34)

where we employ Im[ST ] ⊥ Ker[S]. The basis vectors {V c}
are called reaction cycles [2,14–17] and the condition,
Eq. (34), says that all affinities along reaction cycles vanish,
that is ArV r

c = 0 for all c. In other words, μ̃mOm
r V r

c represent
chemical gradients in the reservoir [14,15]; Eq. (34) argues
that the system does not feel external chemical gradients, and
therefore the existence of the equilibrium state is expected.
If and only if the condition, Eq. (34), is satisfied, we ob-
tain VX

EQ(T̃ , μ̃) �= ∅ because the inverse map ∂ϕ∗ exists and

VX
EQ(T̃ , μ̃) = ∂ϕ∗(VY

EQ).
We proceed to the second step: VX

EQ(T̃ , μ̃) �= ∅ ⇒
VX

EQ(T̃ , μ̃) ∩ PX (x0) �= ∅. If the consistency condition,
Eq. (34), holds, the simultaneous equations yiSi

r + μ̃mOm
r = 0

have solutions. Denoting a particular solution by yP = {yP
i },

we get μ̃mOm
r = −yP

i Si
r . The substitution of it into Eq. (25)

leads to

ξEQ ∈ arg max
ξ

{
yP

i Si
rξ

r − ϕ[T̃ , μ̃; x0 + Sξ ]
}
. (35)

By using the argument change x = x0 + Sξ , we obtain

xEQ ∈ arg max
x∈PX (x0 )

{
yP

i xi − ϕ[T̃ , μ̃; x]
}
. (36)

Here, we note that the function maximized in Eq. (36) is
bounded above on the density space X [47], which means
that the function is also bounded above on the affine subspace
PX (x0). Thus, the equilibrium state xEQ must exist, that is,
VX

EQ(T̃ , μ̃) ∩ PX (x0) �= ∅.
Combining the above two steps, we obtain the following

theorem:

Theorem 1. Equilibrium states exist, if and only if the
consistency condition Eq. (34) is satisfied. In that case, the
intersection between the equilibrium and stoichiometric man-
ifolds [Eq. (32) or Eq. (25)] is not empty.

An analogous theorem was originally stated by Wegschei-
der [24,35] and has been recently reported in Refs. [14,15],
under the ideal gas assumption and mass action kinetics.
Therefore, our theorem is a generalization of their statement
because we use neither ideal gas nor mass action kinetics as-
sumptions. Also, if the stoichiometric matrices S and O satisfy
OV = 0 (i.e., Im[OT ] ⊂ Im[ST ]), the system is a so-called
unconditionally equilibrium system [14,15]. This means that,
for any choice of reservoir condition (T̃ , μ̃), the system must
converge to an equilibrium state.

Next, we show uniqueness of the equilibrium state under
a given initial condition x0. Since the function maximized in
Eq. (36) is strictly concave and also bounded above on the
affine subspace PX (x0), the point xEQ is uniquely determined
by Eq. (36). Hence, we obtain the following theorem:

Theorem 2. If the consistency condition, Eq. (34), is satis-
fied, under a given initial condition x0, the system converges to
the equilibrium state that is uniquely determined by Eq. (36),
that is, the intersection, Eq. (32), consists of precisely one
point.

This theorem is a generalization of the Horn-Jackson the-
ory for detailed-balanced CRNs [13–15,27], which was more
recently rephrased as Birch’s theorem in the language of al-
gebraic geometry [18–20]. As will be shown in Sec. V, if we
assume ideal gas conditions, this theorem reduces to Birch’s
theorem.

In the derivation of the theorems, one may be concerned
with the arbitrariness in choosing a particular solution. How-
ever, even if we choose another particular solution, the derived
equilibrium state xEQ is unchanged because a particular solu-
tion is just a reference point for VY

EQ(μ̃). That is, the choice of
a particular solution amounts to fixing a “gauge” in the theory.

Finally, we comment on the equilibrium state in the
chemical potential space Y . On the one hand, by denoting
a particular solution of the simultaneous equations yiSi

r +
μ̃mOm

r = 0 by yP, the general solution can be represented as

yi = yP
i + ηlU

l
i , (37)

where η = {ηl} represents coordinates on Ker[ST ]; Here, U
is a basis matrix: {U l

i } := (U1,U2, ...)T whose rows U l form
a basis of Ker[ST ] (i.e., US = 0). Thus, we get a parameter
representation of the equilibrium manifold VY

EQ(μ̃) as

VY
EQ(μ̃) = {

y|yi = yP
i + ηlU

l
i , ηl ∈ R

}
. (38)

On the other hand, by using ∂ϕ, we can map the stoichiometric
manifold PX (x0) into Y:

PY (y0) := ∂ϕ(PX (x0)), (39)

where y0 = {y0
i } = ∂ϕ(x0) represent the chemical potential

at the initial state x0 [46]. Here, we note that this manifold
no longer describes an affine subspace in Y , but a curved
one in general (see Fig. 2). By employing the above two
submanifolds, VY

EQ(μ̃) and PY (y0), the equilibrium state can
be characterized in Y as

yEQ = {
yEQ

i

} = ∂ϕ(xEQ) ∈ VY
EQ(μ̃) ∩ PY (y0). (40)
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FIG. 3. The schematic definition of the Bregman divergence
DX [x||x′]. The curve represents the convex function ϕ(x). The line
denotes the hyperplane tangent to ϕ(·) at the point x′. The divergence
is given by the deviation between them at the point x, which is shown
in red.

IV. THE SECOND LAW AS MINIMIZATION
OF DIVERGENCE

If the consistency condition, Eq. (34), is satisfied, the time
evolution of the total entropy, Eq. (23), on the stoichiometric
manifold PX (x0) can be written as follows. By using μ̃mOm

r =
−yP

i Si
r , we get

�tot (x(t )) = �

T̃

{
yP

i

(
xi(t ) − xi

0

) − ϕ[T̃ , μ̃; x(t )]
} + const.,

(41)

where yP ∈ VY
EQ(μ̃) and x(t ) ∈ PX (x0). We also note that the

form of Eq. (41) does not depend on the choice of a particular
solution yP (see details in [48]). In this section, we give a
geometric representation of Eq. (41) through the Bregman
divergence [38,49,50]. Moreover, we reformulate the second
law from the viewpoint of Hessian geometry. As a result, we
obtain four distinct characterizations of the equilibrium state;
one of them is equivalent to Eq. (36).

A. Entropy production during a relaxation
to the equilibrium state

The Bregman divergence on X is defined by

DX [x||x′] := {ϕ(x) − ϕ(x′)} − ∂iϕ(x′){xi − (x′)i}. (42)

It measures the deviation at a point x between the convex
function ϕ(x) and the hyperplane tangent to it at a point
x′ (see Fig. 3). This divergence has the following property:
DX [x||x′] � 0, and equality holds if and only if x = x′, i.e.,
it acts as an asymmetric distance from x′ to x. By employing
the divergence, we can calculate the production (increment)
of the total entropy, Eq. (41), during a time interval [t ′, t] as

�tot (x(t )) − �tot (x(t ′))

= −�

T̃
{DX [x(t )||xP] − DX [x(t ′)||xP]}, (43)

where xP := ∂ϕ∗(yP ) ∈ VX
EQ(T̃ , μ̃). Here, we also used the

fact that both x(t ) and x(t ′) are on the stoichiometric manifold
PX (x0) to cancel out the term depending on the initial condi-
tion x0 in Eq. (41). Using this representation, we can evaluate

the heat dissipation, Eq. (24), involving the divergence as

Qt ′→t = −�{DX [x(t )||xP] − DX [x(t ′)||xP]}

+�T̃

{
∂ϕ[T̃ , μ̃; x(t )]

∂T̃
− ∂ϕ[T̃ , μ̃; x(t ′)]

∂T̃

}
. (44)

For a relaxation to the equilibrium state, the production of the
total entropy, Eq. (43), is computed as

�tot (xEQ) − �tot (x0) = −�

T̃
{DX [xEQ||xP] − DX [x0||xP]}

= �

T̃
DX [x0||xEQ], (45)

where we choose the equilibrium state xEQ as a particular
state xP ∈ VX

EQ(T̃ , μ̃) in the second equality. Thus, the heat
dissipation during the relaxation can be represented as

Q0→EQ = �DX [x0||xEQ]

+�T̃

{
∂ϕ[T̃ , μ̃; xEQ]

∂T̃
− ∂ϕ[T̃ , μ̃; x0]

∂T̃

}
. (46)

The above result can be summarized as follows:
Theorem 3. If a CRN relaxes to the equilibrium state [i.e.,

the consistency condition, Eq. (34), is satisfied], then the total
entropy production during a relaxation from an initial state x0

to the corresponding equilibrium state xEQ can be evaluated by
the Bregman divergence given by Eq. (45). Furthermore, the
heat dissipation during the relaxation is calculated by Eq. (46).

This theorem represents a generalization of the result by
Rao and Esposito [15], which was also reported in the context
of mass action systems in Refs. [27–29]. As shown in Sec. V,
if we assume ideal gas conditions, the Bregman divergence
reduces to the generalized Kullback-Leibler divergence, and
our statement corresponds to their result.

B. Characterizations of the equilibrium state

Next, we characterize the equilibrium state by four dis-
tinct variational forms based on the divergence. For any three
points, x, x′, and x′′ in X , the following equality holds:

DX [x||x′] + DX [x′||x′′]

= DX [x||x′′] + {xi − (x′)i}{∂iϕ(x′) − ∂iϕ(x′′)}. (47)

Since we have assumed that the consistency condition,
Eq. (34), holds, the equilibrium manifold is not empty,
VX

EQ(T̃ , μ̃) �= ∅, and the unique equilibrium state xEQ ∈
VX

EQ(T̃ , μ̃) ∩ PX (x0) exists. If we choose x ∈ PX (x0), x′ =
xEQ and x′′ = xP ∈ VX

EQ(T̃ , μ̃), the last term in the right hand
side of Eq. (47) vanishes, because{

xi − xi
EQ

}{∂iϕ(xEQ) − ∂iϕ(xP )}
= {xi − xi

EQ}{yEQ
i − yP

i } = 0, (48)

where we use the facts that x − xEQ ∈ Im[S], yEQ − yP ∈
Ker[ST ] and Im[S] ⊥ Ker[ST ]. This represents the orthogo-
nality between PX (x0) and VX

EQ(T̃ , μ̃) at xEQ [38,49]. Thus,
we get the generalized Pythagorean theorem (see Fig. 4):

DX [x||xEQ] + DX [xEQ||xP] = DX [x||xP]. (49)
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FIG. 4. The equilibrium and stoichiometric manifolds in X
orthogonally intersect at the equilibrium state xEQ [51]. The
Pythagorean theorem states that the divergence of hypotenuse,
DX [x||xP], is equal to the sum of the ones on the other two sides,
DX [x||xEQ] and DX [xEQ||xP].

From this equality, we can derive two distinct variational
forms to characterize the equilibrium state xEQ.

First, we minimize Eq. (49) with respect to x in the stoi-
chiometric manifold PX (x0). Then, we obtain

xEQ = arg min
x∈PX (x0 )

DX [x||xP], (50)

where we use xEQ = arg minx∈PX (x0 )DX [x||xEQ]. Taking
Eqs. (41) and (43) into account, we find that this variational
form coincides with Eq. (36); that is, Eq. (50) implies the
conventional characterization of the equilibrium state by the
second law.

Second, if we minimize Eq. (49) with respect to xP in
the equilibrium manifold VX

EQ(T̃ , μ̃) and set x = x0, we get
another nontrivial variational form:

xEQ = arg min
xP∈VX

EQ(T̃ ,μ̃)
DX [x0||xP], (51)

where we use xEQ = arg minxP∈VX
EQ(T̃ ,μ̃)DX [xEQ||xP]. In ad-

dition, from Eq. (45), the total entropy production for a
relaxation can be evaluated as

�tot (xEQ) − �tot (x0) = �

T̃
min

xP∈VX
EQ(T̃ ,μ̃)

DX [x0||xP]. (52)

Owing to Eq. (52), we can evaluate the heat dissipation during
the relaxation by using Eq. (46).

The above framework constructed in the density space X
can be mapped to the chemical potential space Y . We define
the Bregman divergence on Y by

DY [y||y′] := {ϕ∗(y) − ϕ∗(y′)} − ∂ iϕ∗(y′){yi − y′
i}. (53)

Since the equality, DX [x||x′] = DY [∂ϕ(x′)||∂ϕ(x)] holds, we
get the Pythagorean theorem in Y as

DY [yP||yEQ] + DY [yEQ||y] = DY [yP||y], (54)

where yP ∈ VY
EQ(μ̃), y ∈ PY (y0) and yEQ = ∂ϕ(xEQ); y0 =

∂ϕ(x0). By employing the same discussion as for the density
space X , the equality, Eq. (54), yields the other two variational
forms in Y to characterize the equilibrium state yEQ. One is
given by the minimization of Eq. (54) with respect to y in

PY (y0):

yEQ = arg min
y∈PY (y0 )

DY [yP||y], (55)

which corresponds to Eq. (50). The other is obtained by the
minimization of Eq. (54) with respect to yP in VY

EQ(μ̃):

yEQ = arg min
yP∈VY

EQ(μ̃)
DY [yP||y0], (56)

�tot (yEQ) − �tot (y0) = �

T̃
min

yP∈VY
EQ(μ̃)

DY [yP||y0], (57)

which correspond to Eqs. (51) and (52). Of course, from these
variational forms, Eqs. (56) and (57), we can evaluate the heat
dissipation during the relaxation as

Q0→EQ = �DY [yEQ||y0]

+�T̃

{
∂ϕ∗[T̃ , μ̃, yEQ]

∂T̃
− ∂ϕ∗[T̃ , μ̃, y0]

∂T̃

}
, (58)

where we write all arguments of ϕ∗(y) as ϕ∗[T̃ , μ̃, y].
The above four characterizations of the equilibrium state

are the main results of this paper, which is summarized as
follows:

Theorem 4. Consider a CRN such that the stoichiometric
matrices S and O satisfy the consistency condition, Eq. (34)
(i.e. the CRN relaxes to the equilibrium state). Define the
Bregman divergences in the density space X and the chemical
potential spaces Y by Eqs. (42) and (53), respectively; the
convex function ϕ(x) represents the partial grand potential
density given by Eq. (21), and ϕ∗(y) is its Legendre dual
function as in Eq. (27). Then, in the density space X , the
equilibrium state xEQ for a given initial state x0 is charac-
terized by the two distinct variational forms, Eqs. (50) and
(51). Also, the total entropy production during a relaxation
to xEQ is evaluated by Eq. (52). Furthermore, in the chemical
potential space Y , the equilibrium state yEQ for a given initial
state y0 is determined by the other two distinct variational
forms, Eqs. (55) and (56); the total entropy production during
a relaxation to yEQ is computed by Eq. (57).

In particular, the variational forms, Eqs. (56) and (57),
lead us to the following simple prescription to identify the
equilibrium state:

Prescription 1. (0) Confirm the consistency condition,
Eq. (34), from given stoichiometric matrices, S and O, and
the reservoir condition (T̃ , μ̃). If it does not hold, the equilib-
rium state does not exist, and the total entropy is diverging
in the time evolution. (1) Calculate ϕ(x) and ϕ∗(y) by the
Legendre transformation of a given thermodynamic potential.
(2) Obtain the equilibrium manifold VY

EQ(μ̃) in chemical po-
tential space Y as in Eq. (38) by solving the simultaneous
equations yiSi

r + μ̃mOm
r = 0. (3) Compute the corresponding

chemical potential y0 by applying the map ∂ϕ to a given initial
condition x0. (4) Obtain the equilibrium state yEQ in the mini-
mization problem of the divergence, i.e., the variational form,
Eq. (56). (5) If one wants to know the equilibrium density
of confined chemicals, xEQ, it is given by using the inverse
map ∂ϕ∗. Also, the heat dissipation during the relaxation is
computed by Eqs. (57) and (58).

The schematic explanation of Prescription 1 is shown in
Fig. 5.
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FIG. 5. The initial state in Y is denoted by y0. The total entropy
production is given by the minimized divergence from y0 to the
equilibrium manifold VY

EQ(μ̃), which is an affine subspace in Y . The
orthogonal projection of y0 to VY

EQ(μ̃) represents the equilibrium
state yEQ.

V. CONNECTION TO PREVIOUS WORK

In the preceding sections, we have not imposed detailed
functional forms on the thermodynamic potential or the flux
density. We have only assumed for them that the potential is
a convex (or a concave) function and the flux density satisfies
the second law, which guarantee the increasing property of
the total entropy function �tot (ξ (t )). In this section, we take
the ideal gas potential and the mass action kinetics as specific
forms of the thermodynamic potential ϕ[T̃ , μ̃; x] and the re-
action flux density j(t ). As a result, a connection to previous
work is clarified.

Readers, who are familiar with kinetic modeling of CRNs,
can refer to our accompanying paper [39]. There, we derive
the results of this section starting from the mass action kinetics
and detailed balancing.

A. Ideal gas

In this subsection, under the ideal gas assumption, we
demonstrate the geometric structure of thermodynamics con-
structed in the preceding sections. The form of the Helmholtz
free-energy density for the ideal gas is known as

f [T̃ ; n, x] = nmμo
m(T̃ ) + RT̃

∑
m

{nm log nm − nm}

+ xiνo
i (T̃ ) + RT̃

∑
i

{xi log xi − xi}, (59)

where R represents the gas constant; μo(T̃ ) = {μo
m(T̃ )} and

νo(T̃ ) = {νo
i (T̃ )} denote the standard chemical potentials of

open and confined chemicals, which are functions only of the
temperature T̃ . Details of the definitions of μo(T̃ ) and νo(T̃ )
are shown in Appendix B. By using Eq. (21), we can calculate
the partial grand potential density as

ϕ[T̃ , μ̃; x] = ϕ(x) = xiνo
i (T̃ ) + RT̃

∑
i

{xi log xi − xi}

− RT̃
∑

m

e{μ̃m−μo
m (T̃ )}/RT̃ . (60)

Since the differentiation of ϕ[T̃ , μ̃; x] with respect to μ̃

leads to the quasiequilibrium density of the open chemicals

nQEQ(T̃ , μ̃; x) [see Eq. (A2) in Appendix A], we get

nm
QEQ(T̃ , μ̃; x) = −∂ϕ(T̃ , μ̃; x)

∂μ̃m
= e{μ̃m−μo

m (T̃ )}/RT̃ . (61)

This argues that, under a given constant μ̃, the density of the
open chemicals is kept to be constant in the reaction dynamics
for the ideal gas cases. This is a natural consequence, because
the ideal gas does not have any interactions among chemicals.
Furthermore, if the reservoir also consists of ideal gas, its
chemical potentials can be represented as

μ̃m = μo
m(T̃ ) + RT̃ log ñm, (62)

where ñ = {ñm} is the density of the open chemicals in the
reservoir. Thus, the quasiequilibrium density of the open
chemicals in the system is equivalent to the one in the reser-
voir, nQEQ = ñ. Also, the last term in Eq. (60) becomes the
total density of the open chemicals RT̃ �mñm.

From Eq. (26), the map ∂ϕ from X to Y is represented as

∂iϕ(x) = νo
i (T̃ ) + RT̃ log xi, (63)

which gives the chemical potential for the confined chemicals
at a state x. The dual convex function ϕ∗(y) on Y is calculated
by the Legendre transformation, Eq. (27), as

ϕ∗(y) = RT̃
∑

i

e{yi−ν0
i (T̃ )}/RT̃ + RT̃

∑
m

e{μ̃m−μo
m (T̃ )}/RT̃ . (64)

Therefore, the map ∂ϕ∗ from Y to X is

∂ iϕ∗(y) = e{yi−ν0
i (T̃ )}/RT̃ , (65)

which is the inverse map of ∂ϕ.
If the consistency condition, Eq. (34), holds, by using the

inverse map, Eq. (65), we get a parameter representation of
the equilibrium manifold in X as

VX
EQ(T̃ , μ̃) = ∂ϕ∗(VY

EQ

) = {
x|xi = �i

PeηlU l
i , ηl ∈ R

}
, (66)

where we define �i
P := e{yP

i −ν0
i (T̃ )}/RT̃ . A submanifold ex-

pressed by the form of Eq. (66) is known as the exponential
family or the toric model [49,52]. In this algebro-geometric
language, we can rephrase Theorem 2 in the ideal gas cases as

Theorem 5 (Birch’s Theorem). The intersection between
the toric model, Eq. (66), and the affine subspace (the stoi-
chiometric manifold), Eq. (31), consists of precisely one point
in the density space X .

This theorem is known as Birch’s theorem [18–20], which
is employed not only for chemical reaction systems but also
for the maximum likelihood estimation in statistics [52].

Next, we calculate the Bregman divergences on X and Y ,
Eqs. (42) and (53):

DX [x||x′] = RT̃
∑

i

[
xi log

xi

(x′)i
− {xi − (x′)i}

]
, (67)

DY [y||y′] = RT̃
∑

i

e−νo
i (T̃ )/RT̃

[
{eyi/RT̃ − ey′

i/RT̃ }

− ey′
i/RT̃

RT̃

{
yi − y′

i

}]
, (68)

where we use Eqs. (60), (63), (64), and (65). Note that, for
the ideal gas cases, the Bregman divergences on X reduces
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to the generalized Kullback-Leibler divergence [13,15,27].
Therefore, if the consistency condition, Eq. (34), holds, that
is, if the equilibrium state exists, we can evaluate the total
entropy production by the generalized Kullback-Leibler diver-
gence through Eq. (43). This result was reported in previous
paper [15,27–29] based on the mass action kinetics and the
local detailed balance condition. Also, by using the Bregman
divergences on Y , Eq. (68), we can rephrase Prescription
1 to identify the equilibrium state for the ideal gas cases
as

Prescription 2 (Ideal Gas). (0) Confirm the consistency
condition, Eq. (34), from given stoichiometric matrices, S
and O, and the reservoir condition (T̃ , μ̃). (1) The con-
vex functions ϕ(x) and ϕ∗(y) are given as Eqs. (60) and
(64). (2) Determine the equilibrium manifold VY

EQ(μ̃) in
Y by solving the simultaneous equations yiSi

r + μ̃mOm
r = 0.

(3) Calculate the initial chemical potential y0 by substituting
a given initial density x0 into Eq. (63). (4) Obtain the equi-
librium state yEQ by employing the variational form, Eq. (56),
with the Bregman divergence, Eq. (68). (5) The substitution
of yEQ into Eq. (65) leads to the equilibrium density xEQ.
Also, the heat dissipation during a relaxation is computed by
Eq. (58).

B. Mass action kinetics

In this subsection, by using mass action kinetics as a spe-
cific form of the reaction flux density j(t ), we discuss, in
terms of the kinetics, the chemical reaction systems composed
of ideal gas. As a result, we obtain the local detailed balance
condition and find that the entropy production can be repre-
sented by the flux density.

For modeling reaction flux densities in ideal gas chemical
reaction systems, we here employ mass action kinetics [2–4],
which is defined as follows: Consider a set of chemical equa-
tions, the rth reaction of which is represented as

(S+)i
rXi + (O+)m

r Nm � (S−)i
rXi + (O−)m

r Nm, (69)

where X = {Xi} and N = {Nm} are the labels of the confined
and the open chemicals, respectively; also, (S+)i

r and (O+)m
r

denote stoichiometric coefficients of the reactants in the rth
reaction, whereas (S−)i

r and (O−)m
r are ones of the products.

By using these coefficients, the stoichiometric matrices are
represented as

Si
r = (S−)i

r − (S+)i
r, Om

r = (O−)m
r − (O+)m

r . (70)

The law of mass action imposes the functional form of the
reaction flux density of the rth reaction, Eq. (69), to be

jr (x, n) = jr
+(x, n) − jr

−(x, n)

= wr
+

∏
i,m

(xi )(S+ )i
r (nm)(O+ )m

r

−wr
−

∏
i,m

(xi )(S− )i
r (nm)(O− )m

r . (71)

Here, jr
±(x, n) are the one-way fluxes, which reflect the

following microscopic description. jr
+(x, n) represents the ex-

pectation that the reaction occurs from the left to the right
in Eq. (69), whereas jr

−(x, n) is the expectation that the
opposite reaction happens. The coefficients, wr

+ and wr
−,

are called the rate constants, which imply the conditional
probability that the reaction occurs, given the condition that
the involved chemicals encountered. The remaining product
parts, �i,m(· · · ), correspond to the probabilities that the chem-
icals encounter in the well-mixed situation.

Employing Eq. (71), we define the following quantity:

log
jr
+(x, n)

jr−(x, n)
= log

wr
+

wr−
−

∑
i

Si
r log xi −

∑
m

Om
r log nm.

(72)
If the consistency condition, Eq. (34), holds, the system must
have equilibrium states. Since the flux density should van-
ish at equilibrium states, we get jr (x, n) = 0[⇔ jr

+(x, n) =
jr
−(x, n)], for x ∈ VX

EQ(T̃ , μ̃) and n is given by Eq. (61). By
employing Eqs. (61) and (66), we can rewrite Eq. (72) at an
equilibrium state as

0 = log
wr

+
wr−

− 1

RT̃

{
yP

i − ν0
i (T̃ )

}
Si

r − 1

RT̃

{
μ̃m − μo

m(T̃ )
}
Om

r ,

(73)

where yP ∈ VY
EQ(μ̃) and we use US = 0. Since yP is a particu-

lar solution of the simultaneous equations yP
i Si

r + μ̃mOm
r = 0,

we obtain, from Eq. (73),

log
wr

+
wr−

= − 1

RT̃

{
ν0

i (T̃ )Si
r + μo

m(T̃ )Om
r

}
, (74)

which is known as the local detailed balance condition
[14,15]. This condition bridges kinetics and thermodynamics.

In the ideal gas case, the densities of open chemicals are
constant [see Eq. (61)]. For notational simplicity, effective rate
constants are often employed [2], which are defined as

ŵr
+ := wr

+
∏

m

(nm)(O+ )m
r , (75)

ŵr
− := wr

−
∏

m

(nm)(O− )m
r . (76)

In this case, the chemical equation, Eq. (69), reduces to the
effective one:

(S+)i
rXi � (S−)i

rXi, (77)

and the local detailed balance condition, Eq. (74), can be read
as

log
ŵr

+
ŵr−

= − 1

RT̃

{
ν0

i (T̃ )Si
r + μ̃mOm

r

}
, (78)

where we use Eq. (61).
Finally, we confirm that the local detailed balance condi-

tion guarantees that the system satisfies the second law. The
differentiation of the total entropy, Eq. (23), with respect to
time t , leads to

d

dt
�tot (ξ (t )) = −�

T̃

{
ν0

i (T̃ )Si
r + RT̃

∑
i

Si
r log xi(t )

+ μ̃mOm
r

}
jr (t ), (79)
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where we use Eq. (63). By substituting the local detailed
balance condition, Eq. (74), into Eq. (79), we get

d�tot

dt
= �R

{
log

wr
+

wr−
−

∑
m

Om
r log nm

−
∑

i

Si
r log xi(t )

}
jr (t ), (80)

where we use Eq. (61). From Eq. (72), we obtain

d�tot

dt
= �R

∑
r

{ jr
+(t ) − jr

−(t )} log
jr
+(t )

jr−(t )
� 0, (81)

which guarantees non-negativity of the entropy production
rate. Also, since the equality holds if and only if j+ = j−
(that is j = 0), the entropy production rate is strictly positive
except for equilibrium states. That is precisely the second law.
In addition, the representation by the flux densities, Eq. (81),
is often employed to evaluate the entropy production in the
chemical reaction systems [2,4,12–17].

VI. SUMMARY AND DISCUSSION

We have established the Hessian geometric structure in
chemical thermodynamics of CRNs. We have derived the
existence and uniqueness condition of the equilibrium state,
which is determined by the intersection of equilibrium and
stoichiometric manifolds. Also, the entropy production dur-
ing a relaxation to the equilibrium state is evaluated by the
Bregman divergence. Furthermore, the equilibrium state is
characterized by four distinct minimization problems of the
divergence, two of which are in the density space and the
other two are in the chemical potential space. For the ideal
gas cases, we have confirmed that our Theorem 2 reduces
to Birch’s theorem, and the entropy production represented
by the divergence coincides with the generalized Kullback-
Leibler divergence; the additional assumption of the mass
action kinetics leads to the local detailed balance condition.

Although we have only treated the isochoric ideal gas cases
in Sec. V, the application is straightforward to conventional
CRNs appearing in isobaric ideal-dilute-solution situations in
chemistry and biology. To move from an isochoric to an iso-
baric situation, we replace the Helmholtz free energy with the
Gibbs one. At this step, one may be concerned that the volume
of the system can change under a constant pressure. However,
we can effectively identify the isobaric situation with the
isochoric one, because the solvent dominates the volume and
the amount of solvent is constant in the reaction dynamics.
Thus, the Gibbs free energy is obtained just by modifying the
standard chemical potentials in Eq. (59) [1,15]. This direct
correspondence between Helmholtz and Gibbs free energies
originates from the fact that we can regard the solvent as the
background of the reaction dynamics.

However, there exist situations, such as cellular growth,
which do not have the simple correspondence between iso-
choric and isobaric free energies. In this situation, the volume
� is no longer constant with time, and thus the system may not
have any conserved quantities. Due to that, the homogeneity
of the entropy function [see Eq. (1)] gives a nontrivial impact

to the structure of our theory, and a further extension is re-
quired [53].

Much work has been devoted to interpret thermodynam-
ics with geometric frameworks [54–58]. They revealed the
geometric dual structure by Legendre transformations in
thermodynamics. However, if nontrivial constraints such as
stoichiometric ones enter the problem, the constraints intro-
duce important submanifolds (equilibrium and stoichiometric
manifolds) into the Legendre dual spaces. We have clarified
how the resulting Hessian geometric structure enables us
to handle the complex constraints in CRNs. We have also
demonstrated that the characteristic thermodynamic proper-
ties obtained for mass action systems with the local detailed
balance condition emerge from this fundamental structure
without assuming any of them. Not limited to CRNs, such ge-
ometric structure with the submanifolds can appear in a wide
variety of systems with complex constraints, which implies
general applicability of our theory.

In this paper, we have only dealt with the cases that the
system converges to the equilibrium state, that is, the reservoir
satisfies the condition, Eq. (34). Otherwise, the equilibrium
state does not exist, and the total entropy keeps increasing
and finally diverging. Even in such cases, it is known that
the system may converge to a certain stable state in a time
evolution, which is called the nonequilibrium steady state
(NESS) [13–17]. A typical example of NESS in CRNs is the
complex-balanced state [13,15,18,27]. However, we can not
characterize NESS solely by the entropy function, because
the variational form based on the entropy maximization as in
Eq. (25) can no longer be employed. The extension of our
geometric structure to the cases of NESS is future work [59].
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APPENDIX A

Here, we derive ∂ϕ(T̃ , μ̃; x)/∂T̃ = −σQEQ(x). By sub-
stituting the definitions of the thermodynamic potentials,
Eqs. (19) and (20), into Eq. (21), we get

ϕ[T̃ , μ̃; x] = − max
ε,n

{T̃ σ [ε, n, x] − ε + μ̃mnm}

= −T̃ σ [εQEQ, nQEQ, x] + εQEQ(T̃ , μ̃; x)

− μ̃mnm
QEQ(T̃ , μ̃; x), (A1)

where we use Eq. (10). Therefore, we obtain
∂ϕ(T̃ , μ̃; x)/∂T̃ = −σ [εQEQ, nQEQ, x] = −σQEQ(x), where
we note that the implicit differentiations with respect to εQEQ

and nQEQ vanish, due to the critical equation of Eq. (A1). In
addition, from the same reason, we get nQEQ(T̃ , μ̃; x) and
εQEQ(T̃ , μ̃; x) as

nm
QEQ(T̃ , μ̃; x) = −∂ϕ(T̃ , μ̃; x)

∂μ̃m
, (A2)

εQEQ(T̃ , μ̃; x) = ϕ[T̃ , μ̃; x] − μ̃m
∂ϕ

∂μ̃m
− T̃

∂ϕ

∂T̃
. (A3)
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APPENDIX B

The differentiations of the free-energy density f [T̃ ; n, x]
with respect to n and x lead to the forms of chemical potentials
as

μm(T̃ ; n, x) = μo
m(T̃ ) + RT̃ log nm, (B1)

yi(T̃ ; n, x) = νo
i (T̃ ) + RT̃ log xi. (B2)

From these forms, we can find that μo
m(T̃ ) and νo

i (T̃ )
are the chemical potentials standardized at nm = 1 and
xi = 1 in the chosen physical units for all m and i, that is,
μo

m(T̃ ) := μm(T̃ ; 1, 1) and νo
i (T̃ ) := yi(T̃ ; 1, 1). If one wants

to standardize at arbitrary concentrations, n̄i and x̄i, the forms
of chemical potentials can be written as

μm(T̃ ; n, x) = μ̄o
m(T̃ ) + RT̃ log

nm

n̄m
, (B3)

yi(T̃ ; n, x) = ν̄o
i (T̃ ) + RT̃ log

xi

x̄i
. (B4)

Here, the standard chemical potentials are modified as

μ̄o
m(T̃ ) = μm(T̃ ; n̄, x̄) = μo

m(T̃ ) + RT̃ log n̄m, (B5)

ν̄o
i (T̃ ) = yi(T̃ ; n̄, x̄) = νo

i (T̃ ) + RT̃ log x̄i. (B6)

Furthermore, the functional form of free energy in Eq. (59)
should be represented as

f [T̃ ; n, x] = nmμ̄o
m(T̃ ) + RT̃

∑
m

{
nm log

nm

n̄m
− nm

}

+ xiν̄o
i (T̃ ) + RT̃

∑
i

{
xi log

xi

x̄i
− xi

}
. (B7)

Taking the physical dimensionality into account, the
representations, Eqs. (B3), (B4), and (B7), are more
suitable, because the insides of logarithms become
dimensionless. However, we use the representations,
Eqs. (59), (B1), and (B2), in the main text, for notational
simplicity.

In chemistry, the chemical potential is often standardized
by pressure. It is straightforward to switch our standard chem-
ical potentials, μo

m and νo
i , to the common ones, μ̂o

m and ν̂o
i ,

as follows. For the standard partial pressures, �̄m and P̄i, the
equations of state can be represented as n̄m = �̄m/RT̃ and
x̄i = P̄i/RT̃ . By substituting them into Eqs. (B5) and (B6),
we obtain

μ̂o
m(T̃ ) = μo

m(T̃ ) + RT̃ log
�̄m

RT̃
, (B8)

ν̂o
i (T̃ ) = νo

i (T̃ ) + RT̃ log
P̄i

RT̃
. (B9)

Then, the chemical potentials, Eqs. (B3) and (B4), can be
rewritten as

μm(T̃ ; �, P) = μ̂o
m(T̃ ) + RT̃ log

�m

�̄m
, (B10)

yi(T̃ ; �, P) = ν̂o
i (T̃ ) + RT̃ log

Pi

P̄i
, (B11)

where �m and Pi are the partial pressures for nm and xi,
respectively.
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force) Â may be the differentiation of the total entropy �tot (ξ )
in Eq. (23) with respect to the extent of reaction ξ , that is, Â =
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