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Origin of viscosity at individual particle level in Yukawa liquids
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The transition of the viscosity η from a collisional gas through a minimum value to a correlated liquid is
investigated using computer simulations with the Green-Kubo relation. It is discovered that, as the temperature
varies, the transition of η is well described by the unity ratio of the instantaneous transverse sound speed CT to the
average particle speed v̄p. While CT /v̄p < 1, η increases with the temperature, since in this regime the viscosity
is dominated by the gaslike individual dynamics. However, when CT /v̄p > 1 where the cooperative dynamics
dominates, the fundamental origin of viscosity of liquids is found to be just losing or gaining neighbors for
individual particles, so that the viscosity of a typical liquid reasonably decreases with the temperature. Our results
reveal that the viscosity transition point of CT /v̄p = 1 is just ≈20 times the corresponding melting point for both
two-dimensional and three-dimensional Yukawa liquids with various screening parameters, which probably can
be used as a new criterion to distinguish the strong and weak couplings in plasma physics.
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I. INTRODUCTION

The viscosity of a material, a measure of internal frictional
forces [1–4], determines many of its properties, including
rates of instability growth and sound attenuation. Interest-
ingly, many fluids have a viscosity minimum [5–7], the value
of which determines how “perfect” the fluid can be in the
sense of behaving as a nondissipative fluid describable by the
Euler hydrodynamics. The behavior of the viscosity around
this minimum impacts a range of applications, ranging from
the Earth’s interior [8] to quark-gluon plasmas [9,10]. The
viscosity is described through a transport coefficient that
serves to incorporate microphysical processes into macro-
scopic equations [11]. In the past decades, numerous studies
have attempted to address the origin of viscosity for liquids
in various physical systems [12–23]. For example, the vis-
cosity is determined by the change of the local topological
structure of the atomic connectivity network in extremely high
temperature metallic liquids [18–20]. However, despite the
recent theoretical progress [12], details of the behavior of
the viscosity around its minimum remains poorly understood
[13–23]. Here, we examine this behavior in the context of
dusty plasmas because of their nearly unique ability to allow
experimental measurements of the individual particle motion.

As a model system, dusty plasma [24–32], or complex
plasma, refers to the combination of micron-sized dust par-
ticles with plasma, which provides the individual particle
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tracking capability. In the typical laboratory conditions, these
dusts are highly charged in plasma, interacting with each other
through the Yukawa repulsion [33], which can form a single
layer suspension, i.e., two-dimensional (2D) dusty plasma,
due to the electric field in the sheath. When the potential
energy between two nearest neighboring particles is higher
than the average kinetic energy, as for most cases of labora-
tory dusty plasmas, it is defined as the strong coupling [34],
while the reverse is the weak coupling. During experiments,
the collection of tens of thousands of dust particles exhibits
the typical collective solid- and liquidlike behaviors [24–32];
as a result, various physics procedures in liquids, like the
momentum transport of viscosity, can be studied at the atom-
istic scale in dusty plasmas [35–41]. Due to easily adjusted
parameters or conditions, computer simulations of Yukawa
liquids and solids play an important role in the dusty plasma
investigations.

II. SIMULATION METHODS

We perform equilibrium molecular dynamics (MD) sim-
ulations [42,43] of 2D Yukawa liquids to mimic 2D dusty
plasmas as in [43], with the equation of motion for each
particle as mr̈i = −∇�φi j . As in 2D dusty plasmas, the inter-
particle interaction term is specified as the Yukawa repulsion
[33] φi j = Q2 exp(−ri j/λD)/4πε0ri j , where λD is the Debye
length and ri j is the distance between the particles i and j.
We simulate N = 4096 dust particles constrained within a
rectangular box with the periodic boundary conditions. The
simulation parameters are specified in the liquid state, i.e.,
with the coupling parameter � varying from 0.1 to about the
corresponding melting point �m [44] for each of the three
values of κ = 0.75, 1, and 2. For each simulation run, first we
run 2 × 106 steps using the Nosé-Hoover thermostat to reach
the specified conditions of � and κ . Then, we turn off the
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thermostat to integrate the next 106 steps, with the obtained
data used for the viscosity calculation presented here. Note,
as in [45], our time step is chosen to be small enough, so that
the fastest particle cannot move beyond the distance of a/2000
in one step, and the energy conservation is adequately obeyed
for our simulation data. Other simulation details are the same
as in [43].

Traditionally [27–32], we use the screening parameter κ =
a/λD and the coupling parameter � = Q2/(4πε0akBT ) to
characterize 2D Yukawa liquids, where a = (nπ )−1/2 is the
Wigner-Seitz radius for the areal number density of n. In our
simulations, the specified conditions are always in the typical
liquid state, i.e., the chosen � values are always <�m, where
�m is the melting point for the corresponding κ value [44].

III. RESULTS AND DISCUSSIONS

A. Universal scaling laws of viscosity and speed ratio

Viscosity of 2D dusty plasmas has been quantified in var-
ious experiments [35–41] and simulations [41,45–55]. The
random thermal motion of individual particles in liquids is
often used to quantify the viscosity from the Green-Kubo rela-
tion [46–53] of ηGK = (

∫ ∞
0 〈Pxy(t )Pxy(0)〉dt )/(AkBT ), where

Pxy is the off-diagonal element of the stress tensor [4], and
A is the studied area. In experiments [35–39], viscosity is
determined from either the velocity profile fitting [35–37] or
its definition directly [38,39]. In simulations [48], viscosity
is also quantified from the SLLOD [56] and the introducing
momentum methods. These obtained viscosity values from
2D dusty plasma experiments and 2D Yukawa simulations
[35–41,45–55] using various methods are well consistent with
each other.

The previous viscosity investigations [21,23,35,46–48,55]
indicate that, as the temperature varies, the viscosity of 2D
or 3D Yukawa liquids always exhibits a minimum at an in-
termediate temperature. In [21,23,46,47], this crossover of the
viscosity variation is attributed to the temperature dependence
of the kinetic and potential contributions in the Green-Kubo
relation. However, a quantitative physics picture of this vari-
ation, or the viscosity transition, is still unclear. Furthermore,
the microscopic atomic origin of viscosity in the typical liquid
state of any physical system is also unknown. In this paper, we
focus on the physical mechanism of the viscosity transition in
Yukawa liquids, to reveal the fundamental origin of the liquid
viscosity.

Our shear viscosity results, obtained from the Green-Kubo
relation with our 2D Yukawa liquid simulations, exhibit a
universal scaling law for various κ values, as shown in Fig. 1.
Here, our choice of the normalization for viscosity ηGK ,
mv̄pn1/2, is suggested by the elementary kinetic theory for the
dense medium of particles [57–60]. We normalize � using the
melting point �m as in [48].

From Fig. 1, the dimensionless viscosity ηGK/(mv̄pn1/2)
reaches its transition of minimum when �/�m = 0.05. While
�/�m > 0.05, the viscosity increases monotonically with �;
however, this variation trend is reversed when �/�m < 0.05.
Note, a scaling law of viscosity is also demonstrated in [48]
using a different normalization for viscosity, with the data well
agreeing with our current results, as presented next. We obtain
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FIG. 1. Obtained shear viscosity ηGK/(mv̄pn1/2) of 2D Yukawa
liquids, as well as the ratio of the instantaneous transverse sound
speed to the average particle speed CT /v̄p, while the coupling param-
eter � and the screening parameter κ vary. A universal scaling law
is well demonstrated in the viscosity data by normalizing ηGK and �

using mv̄pn1/2 and �m, respectively, where �m is the corresponding
melting point. The ratio of CT /v̄p also exhibits a universal law here.
For 2D Yukawa liquids with various κ values, we discover that the
minimum of ηGK/(mv̄pn1/2) always occurs at �/�m = 0.05, when the
ratio of CT /v̄p is just unity. We attribute CT /v̄p = 1 to the transition
between the individual and cooperative dynamics. When CT /v̄p > 1,
the viscosity is determined by the cooperative dynamics of particles.
Thus, as � increases, the interparticle interaction is enhanced, so
that the momentum transport of the cooperative dynamics is more
substantial, leading to the increase of viscosity. However, while
CT /v̄p < 1, the viscosity is dominated by the gaslike dynamics of
individual particles; as a result, the momentum transport by individ-
ual dynamics is more substantially when � decreases, leading to the
reasonable increase of viscosity then.

the viscosity data from [48] by capturing the data points in
Fig. 3(a) of [48]. In Fig. 2, we plot the viscosity data for 2D
dusty plasma liquids reported in [48] normalized by mv̄pn1/2

with our results reported in Fig. 1. From Fig. 2, our results
reported in Fig. 1 and the data points in [48] overlap with
each other, clearly indicating that our obtained viscosity data
well agree with the previous investigations of 2D Yukawa
liquids [48].

To understand the mechanism of the viscosity transition
with varying � values, we also present CT /v̄p, i.e., the ratio of
the instantaneous transverse sound speed CT = (G∞/ρ)1/2 [4]
to the the average particle speed v̄p [61] in Fig. 1. Here, G∞ =
〈(Pxy(0))2〉/(AkBT ) is the infinite frequency shear modulus
[4], and ρ = m/(πa2) is the mass density. This ratio of CT /v̄p

measures the relationship between cooperative and individual
dynamics. Clearly, our CT /v̄p results for 2D Yukawa liq-
uids also exhibit a universal law, which is surprisingly well
obeyed by 3D Yukawa liquids too, as demonstrated next.
This mysterious universal scaling law of CT /v̄p that we find
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FIG. 2. Same data as in Fig. 1, combined with the viscosity
values for 2D Yukawa liquids reported in [48]. Clearly, our obtained
viscosity data for 2D Yukawa liquids well agree with the previous
investigations of 2D Yukawa liquids [48].

here probably governs the fundamental dynamics of Yukawa
liquids.

We compare our results of the dimensionless viscosity
η/(mv̄pn1/2) and CT /v̄p for 2D Yukawa liquids with those
for 3D Yukawa liquids reported in [62,63]. We obtain the
viscosity data for 3D Yukawa liquids by capturing the data
points in Figs. 3(a), 4(a) and 5(a) of [62]. By capturing the data
points in Fig. 5(a) of [63], we obtain the Maxwell relaxation
time τM for 3D Yukawa liquids, so that we calculate the
corresponding instantaneous transverse sound speed CT using
CT = [η/(ρτM )]1/2, since τM = η/G∞ and CT = (G∞/ρ)1/2

from [4]. Thus, we achieve all data of the dimensionless
viscosity and CT /v̄p for 3D Yukawa liquids from [62,63].
Note, as in [58–60], to obtain dimensionless viscosity, the
normalizations of viscosity ηGK for 3D systems is mv̄pn2/3,
which is slightly different from mv̄pn1/2 for 2D systems.

In Fig. 3, we plot the achieved dimensionless viscosity
η/(mv̄pn2/3) and the ratio of CT /v̄p for 3D Yukawa liquids
from [62,63] with our results for 2D Yukawa liquids reported
in Fig. 1. From Fig. 3, when �/�m > 0.05, all data points
of the dimensionless viscosity for both 2D and 3D Yukawa
liquids overlap with each other. Similarly, in this cooperative
regime, all data points of the ratio of CT /v̄p for both 2D and
3D Yukawa liquids also overlap with each other. That is to say,
in this cooperative regime of �/�m > 0.05, we discover the
universal scaling laws of the dimensionless viscosity and the
ratio of CT /v̄p for Yukawa liquids, valid both for 2D and 3D
systems. These discovered dimensionality-independent scal-
ing laws probably suggest that, when �/�m > 0.05, the origin
of the viscosity for 3D Yukawa liquids is the same as that for
2D systems. However, while �/�m < 0.05, the results of the
dimensionless viscosity and CT /v̄p for 3D and 2D Yukawa
liquids seem to deviate a little bit, especially for CT /v̄p. Since
there are not enough data within �/�m < 0.05 for 3D Yukawa

3D Yukawa liquids [62,63]

FIG. 3. Comparison of our obtained dimensionless viscosity and
the ratio of CT /v̄p for 2D Yukawa liquids with those for 3D Yukawa
liquids from [62,63]. While �/�m > 0.05, all data points of the
dimensionless viscosity for both 2D and 3D Yukawa liquids overlap
with each other, which is also the same for the ratio of CT /v̄p. These
results clearly indicate that, when �/�m > 0.05, the two physical
quantities of the dimensionless viscosity and CT /v̄p both exhibit
the universal scaling laws for 2D and 3D Yukawa liquids. These
discovered dimensionality-independent scaling laws probably sug-
gest that, while �/�m > 0.05, the origin of the viscosity for 3D
Yukawa liquids is the same as that for 2D Yukawa liquids. However,
while �/�m < 0.05, the results of the dimensionless viscosity and
CT /v̄p for 3D and 2D Yukawa liquids seem to deviate a little bit,
especially for CT /v̄p. Note, to obtain the dimensionless viscosity for
the comparison, the normalizations for 3D and 2D Yukawa liquids
are slightly different as in [58–60].

liquids in [62,63], and the individual dynamics regime is be-
yond the scope of this paper, we do not draw any conclusions
in the regime of individual dynamics for 3D Yukawa liquids
either.

As the major result of this paper, we discover that the
dimensionless viscosity ηGK/(mv̄pn1/2) for 2D Yukawa liq-
uids reaches its transition of minimum when CT /v̄p = 1, as
shown in Fig. 1. In fact, the condition of CT /v̄p = 1 just
corresponds to the transition between the cooperative and
individual dynamics. When CT /v̄p > 1, i.e., the instantaneous
transverse sound speed is higher than the average particle
speed, the momentum transport through transverse phonons
plays the crucial role, so that the viscosity is dominated by
the cooperative dynamics of particles. Thus, as � increases,
the interparticle interaction becomes stronger, so that the mo-
mentum transport from the cooperative dynamics is more
substantial, leading to the increase of viscosity, as the right
branch of ηGK/(mv̄pn1/2) shown in Fig. 1. However, while
CT /v̄p < 1, i.e., the average particle speed exceeds the in-
stantaneous transverse sound speed, the momentum transport
mainly relies on the gaslike dynamics of individual parti-
cles, leading to the reasonable increase of viscosity while
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� decreases, as the left branch of ηGK/(mv̄pn1/2) in Fig. 1
shows. Another striking point is that our discovered viscosity
transition at CT /v̄p = 1 in 2D Yukawa liquids is also valid
for 3D Yukawa liquids, as presented above, further suggesting
that this viscosity transition at CT /v̄p = 1 has the fundamental
physics significance.

B. Lifetime of local atomic connectivity

To study the mechanism of viscosity at the
atomic/molecular scale, we calculate the lifetime of the
local atomic connectivity τLC . As in [18,64], τLC describes
the time for the atomic topological structure change, or the
time for a particle to maintain its unchanged surrounding
neighbors. We calculate τLC for our simulated 2D Yukawa
liquids by tracking the neighbor list of each particle, where the
neighbor is defined as the particle pair within the distance for
the first minimum [18,64] of the radial distribution function
g(r) [1–4]. We assume that, in the initial configuration,
there are N (t0) neighbors for the central particle, where t0
is the initial reference time. As the time goes to t0 + t , the
neighbors of the central particle change, i.e., some of the
initial neighbors are not its neighbors anymore, so that we
can use N (t0 + t ) to label the number of the initial neighbors
which are still its neighbors at the time of t0 + t . Thus, we
define τLC as the time duration (relative to t0) for the number
of initial neighbors falls by 1 in the ensemble avarage, i.e.,
〈N (t0)〉 − 〈N (t0 + t )〉 = 1 [18,64], for all central particles and
the varying different initial time of t0. Note, if one neighbor
leaves the central particle for a while, and then comes back
as a neighbor again, it is regarded as a new neighbor for the
central particle. Thus, τLC can be regarded as the averaged
time for the first of the initial neighbors of the central particle
going beyond the distance of the first minimum of g(r), or a
reduction of the coordination number by one [64].

As shown in Fig. 4, our calculated τLC data for 2D Yukawa
liquids, normalized by av−1

p , also exhibit a universal scaling
law. This scaling law of τLC is reasonable, since the normal-
ization of av−1

p is just the timescale of the individual particle
motion. The local atomic connectivity τLC is just the time for
one particle to lose its original neighbors, which is reasonably
caused by the individual particle motion. Note, our results of
τLC here well agree with the data in [64].

The universal scaling law of τLC/(av−1
p ) in Fig. 4 also con-

tains a transition at �/�m = 0.05, exactly the same condition
of CT /v̄p = 1 in Fig. 1. Clearly, τLC/(av−1

p ) is a microscopic
quantity; however, the dimensionless viscosity in Fig. 1 is the
transport coefficient of fluids. The transitions of both the fluid
coefficient and the microscopic topological structure at the
same condition indicate that the fundamental mechanism of
the viscosity probably can be interpreted from this atomistic
diagnostic of τLC .

In Fig. 4, when �/�m < 0.05, the value of τLC/(av−1
p )

is nearly unchanged at ≈0.53. In fact, this value is just
equivalent to the procedure of one particle, with the speed of
vp, moving from the first maximum to the first minimum of
g(r) (just ≈0.53a for 2D Yukawa liquids), further confirming
the individual dynamics dominates. Here, we provide our
derivation of τLC/(av−1

p ) ≈ 0.53 when �/�m < 0.05. From
Fig. 5, for 2D Yukawa liquids with a constant κ , as the value
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FIG. 4. Normalized lifetime of the local atomic connectivity
τLC/(av−1

p ) for 2D Yukawa liquids as �/�m varies. For various κ

values, our obtained data of τLC/(av−1
p ) clearly exhibit a universal

scaling law. Here, τLC is determined as the time for a particle to
lose/gain one neighbor. When �/�m < 0.05, the value of τLC/(av−1

p )
is nearly unchanged, which just corresponds to the time for one
particle moving from its location to the neighbor edge of the
other particle, further verifying the individual dynamics dominates.
When �/�m > 0.05, the τLC/(av−1

p ) increases monotonically with
�. The transition of τLC/(av−1

p ) at �/�m = 0.05 just corresponds to
CT /v̄p = 1, i.e., the transition of viscosity in Fig. 1.
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FIG. 5. Our calculated pair-correlation functions g(r) of 2D
Yukawa liquids for �/�m = 0.99, 0.50, 0.050, and 0.025, respec-
tively, while κ = 2. As the value of � decreases, or equivalently the
temperature increases, the heights of peaks in g(r) drop gradually.
Except for g(r) of the extremely low values of � whose maxima
and minima are not very distinctive, the locations of the maxima and
minima for g(r) are nearly unchanged. For our calculated g(r) of
various � values, the locations of the first maximum and minimum
are always at r = 1.885a and 2.635a, respectively, as the solid and
dashed lines show.

033064-4



ORIGIN OF VISCOSITY AT INDIVIDUAL PARTICLE … PHYSICAL REVIEW RESEARCH 4, 033064 (2022)

of � decreases, the heights of peaks for the pair-correlation
function g(r) drop monotonically. However, the locations of
the maxima (peaks) and minima of the pair-correlation func-
tion g(r) are nearly unchanged, well agreeing with Fig. 1 of
[65]. The locations of the first maximum and minimum of
g(r) are at r = 1.885a and 2.635a, respectively, so that the
distance between them is just around 0.75a. Thus, to calculate
τLC , we define neighbors as the particle pair within the dis-
tance of 2.635a, i.e., r � 2.635a. In the individual dynamics
regime of �/�m < 0.05, especially when � is very low, the
pair-correlation function g(r) has no distinctive maxima or
minima anymore, just gradually increasing from 0 to the sta-
ble value of unity; however, our criterion of the particle pair of
r � 2.635a is still unchanged. Viewing from one central par-
ticle, in the range of r � 1.885a, other particles are nearly
uniformly distributed with the number density of n. In ad-
dition, the particle velocity in one direction is just v̄p/

√
2

for our 2D systems. For a particle at the location r between
1.885a and 2.635a, after it moves to the location of 2.635a
in the radial direction with the speed of v̄p/

√
2, then it is not

the neighbor of the central particle anymore. Thus, the lifetime
of the local atomic connectivity τLC can be derived as the
averaged time for all particles between r = 1.885a and 2.635a
to move outside of r = 2.635a as

τLC = 1

n(2.635a − 1.885a)

∫ 2.635a

1.885a

(2.635a − r)

v̄p/
√

2
n dr

=
√

2

0.75av̄p

∫ 2.635a

1.885a
(2.635a − r)dr = 0.53

(
av̄−1

p

)
, (1)

well agreeing with the obtained τLC in Fig. 4.
However, in Fig. 4, when �/�m > 0.05, the value of

τLC/(av−1
p ) increases monotonically with �. To clarify this

increase mechanism of τLC/(av−1
p ), we also quantify the

macroscopic viscoelasticity of liquids by calculating the
Maxwell relaxation time [4] using τM = η/G∞, as presented
next.

C. Origin of viscosity

In Fig. 6, we find that our calculated τLC/τM for various
2D Yukawa liquids also exhibit a universal law as the values
of � and κ vary. The ratio of τLC/τM connects the microscopic
quantity τLC with the fluid quantity τM . An interesting feature
here is that τLC/τM is just around unity when �/�m = 0.05.
That is to say, while �/�m < 0.05, τLC < τM corresponds
to the individual dynamics regime; however, while �/�m >

0.05, then τLC > τM corresponds to the cooperative dynamics
regime, as we interpret above. The same transition of τLC/τM

here as that of CT /v̄p in Fig. 1 suggests the mechanism con-
nection between τLC/τM and CT /v̄p.

The most striking feature in Fig. 6 is that, when �/�m >

0.05, all data points of τLC/τM and (CT /v̄p)2 overlap with
each other. From this data overlapping, while �/�m > 0.05,
we are able to obtain C2

T τM = v̄2
pτLC for 2D Yukawa liquids,

where C2
T τM is just the kinematic viscosity η/ρ [35,41]. This

expression clearly indicates that the momentum transport by
transverse phonons is completed by the microscopic process
of particles losing/gaining neighbors, at the atomistic level.
However, while �/�m < 0.05, the mechanism is not valid

m
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FIG. 6. Obtained ratio of the lifetime for local atomic connectiv-
ity τLC to the Maxwell relaxation time τM , and the square of the ratio
CT /v̄p, for various conditions of 2D Yukawa liquids. While �/�m >

0.05, all data points of τLC/τM and (CT /v̄p)2 overlap with each
other, indicating that τLC/τM = (CT /v̄p)2. This equation is equivalent
to C2

T τM = v̄2
pτLC , which suggests that the momentum transport by

instantaneous transverse phonons in fluids (left-hand side) can be be
expressed as the momentum transport by exchanging neighbors at
the atomistic/kinetic level (right-hand side).

anymore, because the individual dynamics serve as the domi-
nant momentum transport mechanism [21–23].

As the main conclusion of this paper, from our obtained
C2

T τM = v̄2
pτLC in Fig. 6, we achieve the expression of viscos-

ity for 2D Yukawa liquids at the atomistic/kinetic level as

ηLC = ρv̄2
pτLC . (2)

Equation (2) provides the atomic origin of viscosity for
2D Yukawa liquids in the cooperative dynamics regime of
�/�m > 0.05. For metallic liquids at extremely high tem-
peratures [18–20], the viscosity is found to be induced by
the change of the local topological structure of the atomic
connectivity network. Here, based on our obtained Eq. (2), it
seems that this atomic picture of the local topological structure
changing for viscosity is also applicable for our 2D Yukawa
liquids at lower temperatures, or in the cooperative dynamics
regime. From Eq. (2), the viscosity can be interpreted as the
momentum transfer process of exchanging neighbors between
particles, or gaining and losing neighbors for individual parti-
cles, i.e., while one particle loses a neighbor, another particle
gains a new neighbor. In fact, from Eq. (2), we can also obtain
the microscopic information of τLC directly from the fluid
transport coefficient of viscosity. However, when �/�m <

0.05, Eq. (2) is not applicable anymore, and the corresponding
viscosity should be estimated using various theories related to
the particle collisions as in [21–23].

As the minor conclusion from all figures above, we also
obtain the transition point �/�m = 0.05 between the coop-
erative and individual dynamics for 2D Yukawa liquids, no
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matter how κ varies. This transition point is equivalent to
≈20 times of the corresponding melting point of the 2D
Yukawa liquid, which can be clearly identified from the vari-
ation trends of both the viscosity η and the lifetime of the
local atomic connectivity τLC . At this transition point, the
ratio of CT /v̄p just equals unity, providing a clear physics
picture that the contributions of the cooperative dynamics and
individual dynamics are just comparable. Another interesting
point is that, our obtained transition point of �/�m = 0.05
for 2D Yukawa liquids is also surprisingly applicable to 3D
Yukawa liquids, as presented above. We suggest that, instead
of the traditional � = 1 [34], the condition of �/�m = 0.05
could be considered as a new criterion to distinguish the
strong- and weak-coupling regimes for Yukawa liquids, since
it contains the fundamental physics significance. Note, be-
sides this transition, the melting points of 2D and 3D Yukawa
systems also surprisingly correspond to the same value of
CT /v̄p = 3.1 from Figs. 1 and 3.

IV. CONCLUSION

In conclusion, from our obtained universal scaling laws
using MD simulations, we find that the variation transition of
the dimensionless shear viscosity for Yukawa liquids always
occurs at CT /v̄p = 1, i.e., the instantaneous transverse sound
speed CT equals the average particle speed v̄p. When CT < v̄p,
the viscosity ηGK is mainly determined by the dynamics of

individual particles. However, while CT > v̄p, the cooperative
dynamics become dominant. We discover that, for Yukawa
liquids in the cooperative dynamics regime, the viscosity
can be analytically expressed using the lifetime of the local
atomic connectivity, i.e., Eq. (2), which provides the physics
picture of viscosity at the atomistic scale. From this expres-
sion, the microscopic origin of the fluid/continuum transport
coefficient of viscosity is just the momentum transfer process
of losing/gaining neighbors for individual particles. We also
suggest that the transition between the individual and cooper-
ative dynamics of CT /v̄p = 1, or equivalently �/�m = 0.05,
can be considered as a new criterion to distinguish the strong-
and weak-coupling regimes for Yukawa liquids. Future in-
vestigations may be performed later to verify our analytical
expression of viscosity, Eq. (2), and the scaling laws for other
liquids with the different interparticle interactions.
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