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Recent measurements in several different laboratories report the observation of an approximately linear-in-
temperature resistivity with a large twist-angle-dependent slope (or temperature coefficient) in moiré twisted
bilayer graphene down to a few K and sometimes to much lower temperatures. In this paper, we theoretically
discuss this “strange metal” linear-in-temperature transport behavior from the perspective of resistive scattering
by acoustic phonons, emphasizing the aspects of the transport data, which are and which are not consistent with
the phonon scattering mechanism. An extensive theoretical comparison with a recent experiment [A. Jaoui et al.,
Nat. Phys. 18, 633 (2022)] is the central new aspect of this work.
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I. INTRODUCTION AND BACKGROUND

An impressive recent experiment [1] reports extensive
transport measurements for the electrical resistivity ρ(T, n, θ )
of moiré twisted bilayer graphene (tBLG) as a function of
temperature (T ), twist angle (θ ), and carrier/doping density
(n). There already are existing works [2,3] that present similar
tBLG transport results, but Ref. [1] provides more extensive
resistivity data. This work [1] has attracted attention in the
context of the much-discussed “strange metal” behavior in
condensed matter physics [4]. The key message of Ref. [1]
is that the linear-in-T behavior exists over a large tempera-
ture range (at least, for some specific doping-induced band
fillings), making the behavior consistent with the putative
strange metal behavior much discussed in the literature on
strongly correlated materials [5–8]. Although “strange metal-
licity” is not a sharply defined concept with a universally
accepted description, it is associated with a linear-in-T re-
sistivity (which is often, but not always, also anomalously
large) that exists over a substantial temperature range with
the underlying scattering mechanism for the linearity that is
not obviously apparent. For strange metals, therefore, the key
question is what causes the large linear-in-T resistivity. In this
note, we discuss the possibility that the linear-in-T resistivity
observed in Ref. [1] arises (at least partially) from acoustic
phonon scattering, using a minimal Dirac model for the tBLG
band structure. This viewpoint was propounded earlier in our
theoretical works [9,10] in the context of the tBLG experi-
mental works in [2,3]. Reference [2] indeed concludes that the
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phonon scattering mechanism is the cause for the linear-in-T
dependence of ρ(T, n, θ ) in tBLG, whereas Ref. [3] suggests
that the strangeness in tBLG arises from quantum criticality.
The recent work in Ref. [1] claims that quantum criticality is
the underlying mechanism for the tBLG strangeness, based
mainly on the observation that the “metallic ground state
features a T -linear resistivity extending over three decades
in temperature, from 40 mK to 20 K, spanning a broad
range of dopings including those where a correlation-driven
Fermi surface reconstruction occurs” [1]. It is often stated
in the literature that some unknown hidden quantum critical-
ity may be giving rise to an observed linear-in-T resistivity.
While such a possibility can never be ruled out, no known
microscopic itinerant metallic quantum criticality has been
shown to decisively lead to any linear-in-T resistivity. Neither
quantitative nor qualitative arguments are provided for how
and why quantum criticality leads to a linear-in-T resistivity
at T > 10 K, or the nature of the putative quantum critical
point leading to strangeness in tBLG. There is, in fact, no
theoretically established and experimentally verified generic
mechanism for producing an extended linear-in-T metallic
resistivity, except for scattering by acoustic phonons.

The fact that acoustic phonon scattering leads to a linear-in-
T metallic resistivity for T > T ∗, where T ∗ is a characteristic
temperature dependent on both phonon and electron param-
eters, has been known since the 1930s [11]. The basic idea
is simple: At “high T,” the phonons become classical with
equipartition, and their thermal occupancy increases linearly
with T , consequently producing a T -linear resistivity. In reg-
ular three-dimensional (3D) metals, this typically happens
for T > 40 K or so, which, in the dimensionless electronic
temperature units, implies an extremely low T/TF of O(10−3),
where TF is the metallic Fermi temperature. For T � T ∗, the
phonon-induced resistivity goes as T 4 (T 5) in 2D (3D) metals
and is extremely small. The crossover temperature scales as
T ∗ ∼ TBG/6 or TD/6, depending on whether TBG or TD is
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smaller. The Bloch-Grüneisen (BG) temperature is given by

TBG = 2h̄kFvph, (1)

where kF is the electronic Fermi momentum and vph is
the acoustic phonon (i.e., longitudinal sound) velocity.
The Debye temperature TD of most materials is around a
few-hundred kelvins and, in metals, by virtue of the very
large kF, TBG � TD, so T ∗ ∼ TD/6 ∼ 40-50 K. It has been
argued [12] that many 2D strongly correlated materials tend
to have very low carrier density, and hence kF ∼ n1/2 is small,
leading to rather low values of T ∗ ∼ TBG/6 ∼ 1-10 K (or
even lower depending on the actual doping density), since for
low-density systems TD � TBG. Thus, in principle, phonon
scattering could lead to strange metallicity with a linear-in-T
resistivity going down to very low temperatures in dilute
systems, but whether it actually happens in any of the actively
studied strange metals remains an open question. One thing
is certain: if the linear-in-T behavior survives to arbitrarily
low T , it is unlikely to arise entirely from phonon scattering
since the resistive scattering by phonons must be strongly
suppressed for T � T ∗, where quantum degeneracy strongly
suppresses the phonon thermal occupancy, changing the
T -linear resistivity to an almost unobservable T 4 dependence
(in 2D) with a complicated crossover regime (for T < T ∗) in
between the two different power-law behaviors.

Since scattering by acoustic phonons is the only known
generic mechanism for producing strange metallicity, i.e., a
linear-in-T resistivity over a large range of temperatures (but
not extending to arbitrarily low temperatures), it behooves
us to critically discuss the recent experimental findings of
Ref. [1] using phonon scattering within a minimal flat band
Dirac model (so that there is a minimum number of unknown
free parameters) as the underlying mechanism, in order to
discern what aspects of the data are consistent with the phonon
mechanism and where new physics may be lurking. This is
what we do in the current paper. We note that the current
work is an expanded and enhanced application of our earlier
transport theories on the electron-phonon interaction induced
temperature dependence of graphene and tBLG resistivity
[9,13]. The new aspects of the current work are applying the
theory quantitatively to new experimental data over a much
broader temperature and density range than before so as to
critically examine where new theoretical thinking might be
necessary.

II. THEORY AND RESULTS

Now, we focus on tBLG, where TBG < TD, for all dop-
ing densities, so T ∗ ∼ TBG/6 ∼ n1/2, where n is the effective
doping density. We note that in graphene, TBG tends toward
zero as the Dirac point or the charge neutrality point (CNP)
is approached since the effective doping vanishes at the CNP.
Thus, indeed, as a matter of principle, phonons could produce
a T -linear resistivity in graphene for arbitrarily low T and
for arbitrarily low carrier density. Of course, this linear-in-T
phonon-induced resistivity may be overwhelmed, particularly
at very low temperatures, by other resistive contributions
(e.g., disorder and impurity scattering) and thus become un-
observable. Also, such a phonon-induced linear-in-T resistive
behavior, even if it exists, can only happen at very small

FIG. 1. The linear-in-T resistivity onset temperature T ∗ ∼ TBG/6
as a function of the moiré band filling factor ν for different twist
angles.

doping near the CNP and cannot explain a very low-T lin-
earity at large doping values with finite kF.

In Fig. 1, we show our calculated T ∗ for tBLG, for a few
values of the twist angle, as a function of doping expressed
in terms of the band filling ν, where ν = 0(4) indicates the
unfilled empty moiré conduction band with the Fermi level
at the CNP (the filled moiré conduction band with the Fermi
level at the band edge). We show our results in terms of the
band filling ν rather than the carrier density n in order to be
consistent with the data presentation in Ref. [1]. Note that
Fig. 1 stops at ν = 2 simply because the Dirac approximation
is manifestly invalid for large band filling beyond the van
Hove singularities in the moiré band structure. In fact, our
minimal model applies only for ν < 2.

We note that as expected, T ∗ increases (decreases) with
increasing (decreasing) band filling, simply because a higher
filling implies, within our minimal 2D Dirac model, a higher
carrier density and consequently a higher kF in Eq. (1). The
variation with θ arises from the moiré band structure effect
included in our theory within the minimal Dirac model. We
note that our minimal model predicts that for T > 10 K and
for θ = 1.1◦-1.5◦ (the experimental range for Ref. [1]), the
linear-in-T behavior arising from phonon scattering should
prevail everywhere for Ref. [1] measurements, and we there-
fore focus on the resistivity behavior for T > 10 K, leaving
the discussion of the intriguing low-T transport behavior to-
ward the end of this paper.

In Fig. 2, we show the filling- and twist-angle-dependent
linear temperature coefficient AT,1 = dρ(T )/dT for all the
experimental data in Ref. [1], obtained for [14]. We emphasize
that Fig. 2 is simply a succinct summary (for our purpose)
of the resistivity experimental data from Ref. [1], shown as a
temperature derivative of the resistivity plotted as a function of
both density and twist angle [14]. Any theory trying to explain
the strange metallicity reported in Ref. [1] must at least be
able to make sense of this “higher-temperature” T > 10 K
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FIG. 2. The linear-in-T resistivity slope AT,1 = dρ/dT for T >

10 K as a function of the filling factor ν in devices with different
twist angles. The data are obtained from Ref. [1]. The vertical axis
has a logarithmic scale.

data. The data for all seven samples of Ref. [1] are shown
in Fig. 2, corresponding to seven different values of the twist
angle between 1◦ and 1.5◦. We first discuss several salient
features of Fig. 2 before comparing our phonon theory with
the data.

First, the density (angle) dependence of AT,1 is weak
(strong). This is absolutely obvious in Fig. 2, but not so ap-
parent in Ref. [1], where ρ(T ) for many values of ν are shown
displaced in the same figure and different θ values correspond-
ing to different samples are plotted in different figures, making
a comprehensive understanding of the density/angle depen-
dence a challenge. Figure 2, which is a direct replot of the data
in Ref. [1] (and kindly supplied to us by the experimentalists
themselves [14]), makes it clear that the temperature deriva-
tive of resistivity, i.e., the slope of ρ(T ) with respect to T , is
almost independent of density, but very strongly dependent on
the twist angle, at least for all the high-T (>10 K) data. This
qualitative behavior (i.e., weak/strong dependence on ν/θ )
is easily explainable based on the phonon scattering mecha-
nism, as discussed below and in our earlier work [9,10]. One
should remember that each twist angle in Fig. 2 corresponds
to a different sample, with likely unknown variations arising
from disorder [15] and twist-angle fluctuations [16], making a
direct quantitative comparison between the results at different
angles difficult (and perhaps also explaining some of the non-
monotonicity and the crossing of various lines for |ν| > 1).
But the overall trend is clear: As the twist angle decreases
from 1.5◦ to 1.1◦, the resistivity coefficient AT,1 is enhanced
by more than a factor of 10 at, for example, ν = 0.5 in Fig. 2.
By contrast, AT,1 remains essentially a constant as ν varies
from 0.3 to 2 at the twist angle 1.5◦ and from 0.5 to 2.3 at the
angle of 1.1◦. Any theory must explain this dichotomy in the
temperature coefficient of the measured tBLG resistivity with
respect to its density and twist-angle dependence. Phonons
can do this easily and naturally as discussed below. (We note
that the drop-off at very low filling for all samples in Fig. 2
happens close to the CNP, where the carrier density is very
small, and many other effects, including thermal carrier exci-

tation and disorder, come into play. In addition, the CNP in the
samples of Ref. [1] can have a small substrate-induced gap,
which makes the temperature-dependent resistivity near CNP
insulating in contrast to the metallic behavior of interest [14].)

The minimal theory for acoustic phonon scattering induced
carrier resistivity for moiré Dirac carriers gives the following
[9] formula:

ρ = 32F (θ )D2kF

gsgvgle2ρmv∗2
F vph

I

(
T

TBG

)
,

I (z) = 1

z

∫ 1

0
dxx4

√
1 − x2

ex/z

(ex/z − 1)2
, (2)

where D is the deformation potential electron-phonon cou-
pling, v∗

F is the Fermi velocity in the moiré band, gs,v,l are the
degeneracy factors (all equal to 2), and ρm is the atomic mass
density of graphene. The function F (θ ) is a weakly varying
function of θ , dependent on the detailed moiré band struc-
ture, which is discussed in detail in Ref. [9]. Typically, 0.5 <

F (θ ) < 1. Since our interest is in the equipartition regime of
T > T ∗, where the linear-in-T resistivity manifests, we can
obtain from Eq. (2), for T > T ∗, an approximate expression
for AT,1 = dρ/dT as

AT,1 = dρ/dT ∝
[

1

v∗2
F

(
D

vph

)2]
T . (3)

Thus the main features of the phonon-induced linear-in-T
resistivity are the following: (1) it has no dependence on
kF, and hence on carrier density or band filling, and (2) it
depends strongly on the moiré band velocity v∗

F through the
1/v∗2

F dependence—as the moiré band flattens approaching
the magic angle, the flat-band-renormalized Fermi velocity v∗

F
is strongly suppressed, enhancing the phonon-induced resis-
tivity slope by a factor of v∗−2

F . Thus, the two most significant
qualitative features of the data presented in Ref. [1] are com-
pletely explained by phonon scattering: Weak dependence on
carrier density or band filling and strong dependence on the
twist angle through the θ dependence of v∗

F. We know of
no other theoretical model for tBLG transport, which can
naturally explain these two key qualitative features of the
tBLG strange metallicity. We also mention that Eq. (3) for
the temperature coefficient of the linear-in-T tBLG resistivity
is similar to the corresponding result for the untwisted mono-
layer graphene (MLG) [13], which has been experimentally
verified [17], except for the appearance of the moiré flat-band
Fermi velocity v∗

F in Eq. (3), whereas for regular untwisted
graphene, the Fermi velocity is that for regular MLG, vF > v∗

F.
To show the obvious large effect of the flat-band sup-

pression of the Fermi velocity in the tBLG compared with
untwisted MLG, we plot in Fig. 3 the calculated ratio v∗

F/vF

as a function of the twist angle, obtained using the stan-
dard Bistritzer-MacDonald (BM) band structure model for
the moiré system [18]. Within the BM model, v∗

F vanishes
at the magic angle ∼1◦, and is as small as vF/4 even for a
large twist angle of 1.5◦, which corresponds to a factor of
16 enhancement in the tBLG resistivity and its temperature
coefficient compared with that in the untwisted MLG.

We use the full Eq. (2) to calculate the theoretical dρ/dT
using the BM moiré band structure [18] to compare with

033061-3



SANKAR DAS SARMA AND FENGCHENG WU PHYSICAL REVIEW RESEARCH 4, 033061 (2022)

FIG. 3. The twist-angle dependence of v∗
F/vF obtained from the

BM model. vF and v∗
F are the Fermi velocity at the Dirac points in

MLG and tBLG, respectively.

the experimental data shown in Fig. 2. The only unknown,
which we use as an adjustable parameter, is the deformation
potential coupling D in tBLG, whose value we fix by demand-
ing agreement between theory and experiment at the largest
twist angle θ = 1.5◦ (and then keep it fixed throughout). Note
that D just determines the overall scale of the resistivity, not
its functional dependence on carrier density and twist angle.
Thus, the qualitative finding of a weak (strong) density (angle)
dependence is generic in the phonon theory and independent
of the value of D. We use the accepted graphene values for the
sound velocity and mass density for the transport calculation,
ρm = 7.6 × 10−8 g/cm2 and vph = 2 × 106 cm/s. In Eqs. (2)
and (3) for the resistivity of tBLG, the Fermi velocity v∗

F takes
the renormalized value due to moiré superlattices, but the
mass density and sound velocity take the same values as those
in monolayer graphene. The sound velocity of longitudinal
acoustic phonons in tBLG is found to be not significantly
altered compared to that in monolayer graphene, as shown in
Ref. [19]. Therefore, we take vph to be the sound velocity of
monolayer graphene. ρm is taken to be the mass density of
monolayer graphene in Eq. (2), while the additional layer de-
gree of freedom in tBLG is taken into account by the factor gl .
A detailed description of electron-phonon coupling in tBLG
can be found in Ref. [9].

In Fig. 4, we provide a direct comparison of the theoret-
ical results for the calculated temperature coefficient AT,1 =
dρ/dT as a function of the twist angle with the corresponding
experimental results from Ref. [1], as shown in Fig. 2. The
experimental data for different band fillings (i.e., different
densities) are replotted from Fig. 2 for clarity, and the solid
line is the theoretical calculation within the minimal Dirac
model using the BM band structure.

The deformation potential fit at θ = 1.5◦ gives D =
100 eV, which is what we use throughout in Fig. 4. It is
reassuring that the same value of D (∼80-100 eV) is necessary
here for agreement with the tBLG data of Ref. [1] as what was

FIG. 4. Comparison between theoretical (black curve) and exper-
imental (colored dots) slope dρ/dT for T > T ∗. The experimental
data are replotted from Fig. 2. The theoretical curve is calculated
based on Eq. (2) with a fixed D = 100 eV.

needed [9] to obtain quantitative agreement with the earlier
tBLG transport results in Refs. [2] and [3]. For regular MLG,
the quoted value for D ranges between 20 and 40 eV [9,13],
and for tBLG, we need roughly a D which is 2–3 times larger.
It is possible that the twisted graphene layers indeed have
larger values of deformation potential coupling than regular
untwisted graphene, but, for us, D is simply one free param-
eter of the theory, which we fix at the largest twist angle,
for which Ref. [1] reports its experimental results. It may be
useful to point out in this context that, in general, the defor-
mation potential coupling is often unknown in materials, and
different ways of estimating the coupling constant often differ
by factors of 2–3. For example, even in extensively studied
GaAs, the deformation potential coupling differs by a factor of
2 between optical and transport measurements, and typically
its precise value for calculating the resistivity of doped GaAs
has to be fixed by comparing with the transport data [20]. It
is thus quite possible for the moiré structure to modify the
deformation potential coupling by a factor of 2–4 in the tBLG
system. More work should be carried out to definitively settle
this question. In fact, it has been argued [21] that an effective
“Purcell effect” associated with the compression of the Wan-
nier orbitals in tBLG strongly enhances the electron-phonon
coupling, which is certainly consistent with our finding of an
effective enhanced deformation potential necessary for quan-
titatively explaining the tBLG resistivity data.

Another possibility is that the sound velocity vph is some-
how suppressed by the moiré superlattices, decreasing it from
its nominal graphene value of 2 × 106 cm/s. Since AT,1 ∝
(D/vph)2, a decrease of vph is equivalent to an increase in
the deformation potential constant compared with its nominal
MLG value. It is also possible that both D and vph are affected
by the moiré superlattices, leading to an enhancement of the
effective coupling. These are all possibilities that future work
should explore, but, for our purpose, it suffices to take the
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overall scale as a phenomenological tuning parameter and fix
it by comparing with the experiment at the highest available
twist angle of 1.5◦ in Ref. [1]. We note that a suppressed
vph in the twisted moiré system would also decrease the
crossover temperature scale T ∗ since TBG ∝ vph, leading to the
linear-in-T resistivity extending to lower temperature scales
of the order of 1 K or less. Our calculation assumes that the
phonons are unaffected by the moiré superlattice and retain
their pristine values for MLG. It is, however, possible that the
twisting strongly affects the acoustic phonons through strain
and other effects. If so, D/vph could increase considerably
from their MLG value, providing a unified explanation for
why the resistivity is linear down to low-T and why it is
so strongly enhanced. We do not, however, pursue such a
line of argument further in this paper since our goal is not
seeking a precise quantitative agreement with experiments,
but to understand which aspects of the data in Ref. [1] are
generically and qualitatively in agreement with the phonon
scattering mechanism so that we can, in the future, focus
on the unknown mechanisms perhaps in play here beyond
phonon scattering.

The results presented in Fig. 4 show that the phonon
mechanism explains the experimental data of Ref. [1] for
all samples for twist angle down to ∼1.17◦, but then the
theory predicts much larger resistivity than the experiment.
Fine tuning the value of D to obtain the best recursive fit to
the experimental data may extend the regime of agreement
down to ∼1.15◦, but we do not believe that this is a useful
exercise as the experiment and theory most definitely disagree
at low enough twist angle somewhere just below 1.2◦. A trivial
possibility, which we do not consider, is that D somehow
decreases for θ < 1.2◦, for example, experiment and theory
would agree well at θ = 1.1◦ if we arbitrarily reduce D (at
1.1◦ twist angle) to 30 eV. However, this is just data fitting
with no justification.

We believe that the systematic quantitative failure of our
transport theory at lower twist angle, apparent in Fig. 4, arises
from two reasons: (1) as the moiré band flattens with decreas-
ing angle, our Dirac approximation becomes increasingly
inaccurate quantitatively, and, perhaps more importantly, (2)
for small twist angles, the moiré band Fermi velocity v∗

F be-
comes comparable to the phonon velocity vph, leading to the
inapplicability of the Migdal theorem [22], which is the basis
of our minimal Boltzmann transport theory. To demonstrate
this point more concretely, we show in Fig. 5 the calculated
ratio v∗

F/vph as a function of the twist angle. We emphasize
that for regular MLG, i.e., for untwisted graphene (or, equiv-
alently, for very large twist angles), this ratio goes to the
very high value of 50 since vph ∼ 2 × 106 cm/s and vF ∼ 108

cm/s for regular graphene, and the Migdal approximation is
essentially exact [23]. But with decreasing v∗

F/vph in tBLG,
as shown in Fig. 5, the Migdal approximation, and hence the
leading-order transport theory, becomes increasingly inaccu-
rate [24]. In Fig. 5, we denote, on the abscissa, the points
where v∗

F = vph as well as the “magic angle” where the moiré
band is perfectly flat within the BM approximation producing
v∗

F = 0. Since v∗
F ∼ vph already at θ ∼ 1.1◦, we expect our

transport approximation to work only for θ > 1.1◦. If we ar-
bitrarily set the lower limit of the Migdal approximation to be
v∗

F > 3vph, then the theory should give reasonable quantitative

FIG. 5. The twist-angle dependence of v∗
F/vph obtained from the

BM model. v∗
F is calculated using the BM model, and vph is assumed

to be independent of the twist angle in the calculation. The blue dot
marks the magic angle at which v∗

F vanishes. The two black dots
indicate the angles where v∗

F = vph.

results for θ > 1.15◦, which is approximately consistent with
Fig. 4. We emphasize that there is no controlled way to go be-
yond the minimal theory when the Migdal approximation no
longer applies since all diagrams in the electron-phonon cou-
pling to all orders contribute to the resistivity in a hopelessly
strong-coupling manner since the electron-phonon coupling
itself is also strong by virtue of the small Fermi velocity v∗

F
at small angles, exactly where the Migdal approximation also
breaks down.

III. DISCUSSION AND CONCLUSION

We have established a reasonable case that the tBLG linear-
in-T resistivity data of Ref. [1] are well explained by acoustic
phonon scattering at higher temperatures (>10 K) and at
higher twist angles (>1.15◦), suggesting the failure of the
Migdal theorem as the reason for the quantitative failure of
our theory at lower twist angles. In addition to providing a
reasonable quantitative description of the data [1], the theory
has the great intrinsic advantage of providing a natural quali-
tative explanation for the weak density (i.e., band filling) and
the strong twist-angle dependence of the temperature coeffi-
cient of the observed linear-in-T resistivity. We know of no
alternative theory which is capable of providing a qualitative
understanding of the experimentally observed (see Fig. 2 and
also the results in Ref. [1]) weak (strong) density (twist-
angle) dependence of the resistivity as the phonon theory does
naturally.

The open question we have not discussed yet is the low-
temperature behavior of the resistivity, below 10 K, and
actually even below 1 K. We emphasize a key aspect of
the experimental data which all theories must address. The
slope of dρ/dT in the observed linear-in-T resistivity can
remain constant throughout the low-T and high-T regimes
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for certain density ranges at magic-angle devices, hinting at
one underlying universal transport mechanism in play since it
is unlikely that two independent mechanisms would produce
the same slope. In our phonon theory, this constant slope is
naturally explained as arising from the phonon equipartition
physics coming from the high-T regime. Any quantum critical
or other competing theories must address why the resistivity
remains linear to very high T (∼50 K) without changing
the slope since quantum criticality is a T = 0 phenomenon.
We emphasize that our focus has been on the experimental
resistivity of Ref. [1] for T > 10 K, where the linear-in-T
resistivity is fairly generic in all samples essentially for most
values of band filling. Our Fig. 2 is a precise replotting of
the experimental data for T > 10 K in Ref. [1], shown as
dρ/dT for different ν and θ . Unfortunately, the experimental
data of Ref. [1] at low temperatures do not reflect a universal
behavior, with the temperature dependence of ρ(T ) manifest-
ing different power laws at different band fillings, as can be
clearly seen in Fig. 1(d) as well as Fig. S2(c) of Ref. [1].
This is in fact to be expected since, at low temperatures for
T < T ∗, the phonon scattering gets quenched and phonon-
induced resistivity changes from the linear-in-T behavior to
a T 4 behavior, decreasing by four orders of magnitude and
becoming essentially unobservable. In this situation, many
different scattering mechanisms come into play, including
phonon drag, impurity scattering, disorder scattering by twist-
angle fluctuations, electron-electron Baber and/or umklapp
scattering, and possible scattering by the quantum fluctuations
associated perhaps with any quantum critical point dominat-
ing the T = 0 quantum phase diagram. We comment that
scattering by spin or isospin (e.g., valley) fluctuations leads
to a rather weak resistivity, which manifests a power law
higher than linear, thus making these mechanisms unlikely to
be the underlying resistive scattering mechanisms. A possible
way to distinguish experimentally between quantum critical-
ity and phonon scattering mechanisms for tBLG transport is
to directly demonstrate the existence of critical fluctuations
by measuring a diverging susceptibility, which, to the best of
our knowledge, has not yet been established in tBLG systems.
We do not anticipate any universal temperature dependence
in this regime because of the presence of multiple different
scattering processes competing with each other. Reference
[1] reports resistivity power laws on T varying from 1 to 2,
depending on the band filling, in the T < 1 K regime. It is
unlikely that any linear-in-T resistivity in the T < 1 K regime
could arise from the electron-phonon scattering mechanism
of interest in the current work since, according to Fig. 1, the
crossover temperature scale for phonon scattering to manifest
a linear-in-T resistivity is ∼1 K even for a band filling as low
as ν = 0.1. We do not therefore have any explanation based
on our minimal phonon scattering theory for any linear-in-T
behavior arising in the T < 1 K regime in Ref. [1]. We do,
however, mention that low-temperature (< 10 K) resistivity
of even regular normal metals is not explicable based on any
single scattering mechanism, and typically one must combine
several different scattering sources in a rather arbitrary man-
ner to make sense of the low-T resistivity of metals, in sharp
contrast to the high-T (>40 K for metals, >10 K for tBLG)
linear-in-T resistivity which is generic and universal, and is
caused by phonon scattering [25].

There are known situations in semiconductor-based 2D
systems [26–30] where an approximate low-temperature
linear-T resistivity may manifest in dilute carrier systems,
arising from the nonphonon mechanism of the interplay be-
tween disorder and screening effects [31], but this mechanism
is very unlikely to play any role in graphene or tBLG. Also,
a Hubbard-type strongly correlated model may produce a
linear-in-T resistivity from umklapp electron-electron scat-
tering at very “high” temperatures, but this is essentially a
classical effect of energy equipartition with absolutely nothing
“strange” in this linearity. It is unlikely that the linear-in-T
resistivity behavior observed in tBLG [1–3] has anything to
do with the high-T Hubbard model properties. In fact, we
believe that any umklapp electron-electron interaction is likely
to produce a T 2 low-temperature resistivity in tBLG itself,
as has recently been argued in the literature [32,33]. Thus,
the appearance of a linear-in-T resistivity in tBLG down to
arbitrarily low temperatures for some specific band fillings, as
reported in Ref. [1] (and earlier in Ref. [3]), remains a mystery
at this stage, but the observed higher-T linear-in-T resistivity
most likely arises from the phonon scattering that is strongly
enhanced by flat-band moiré effects.

Before concluding, we mention that a pronounced linear-
in-T resistivity has also recently been reported [34,35] in
moiré twisted double bilayer graphene (tDBLG), as predicted
earlier in [36] based on phonon scattering considerations, with
a strong flat-band-induced enhancement of the temperature
coefficient of the resistivity with respect to the untwisted reg-
ular DBLG [37]. Thus, the phenomenon of phonon-induced
pronounced strange metallic behavior may be a generic prop-
erty of all moiré systems where the carrier Fermi velocity is
strongly suppressed by the moiré band structure. We should
also comment on the so-called Planckian behavior of the
phonon physics [3–8]. Converting the electron-phonon defor-
mation potential D into an effective dimensionless coupling
constant λ, we get λ ∼ 0.5-1 for tBLG [9], which should be
contrasted with a λ ∼ 0.0001 for regular untwisted MLG [13].
Thus, the scattering rate 1/τ in tBLG for small twist angles,
h̄/τ = 2πλkBT , is roughly 3–6 times the temperature (similar
to the situation in strong electron-phonon coupling metallic
systems such as Pb), making tBLG a super-Planckian metal,
strongly violating the Planckian bound of h̄/τ < kBT , as has
been discussed in the literature [1,3,8]. The super-Planckian
behavior in our theory is of course neither strange nor mys-
terious (for T > 10 K at least) since it arises from enhanced
phonon scattering under the moiré flat-band conditions.

To conclude, acoustic phonon scattering provides a rea-
sonable generic explanation for the observed temperature
dependence of the tBLG resistivity reported in Ref. [1], but
cannot explain the transport properties for T < 1 K. More
work would be necessary to figure out the scattering mecha-
nisms in tBLG at low temperatures below 1 K, where phonon
scattering is likely strongly suppressed because of low thermal
phonon occupancy in the Bloch-Grüneisen regime.
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