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Atomic-scale analysis of disorder by similarity learning from tunneling spectroscopy
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Rapid proliferation of hyperspectral imaging in scanning probe microscopy creates unique opportunities to
systematically capture and categorize higher dimensional datasets, toward insights into electronic, mechanical,
and chemical properties of materials with nano- and atomic-scale resolution. Effective hyperspectral imaging
requires a consistent framework for data analysis that would be broadly applicable, reproducible, and trans-
ferrable, conceptually resembling the success of integral transforms in image analysis. Here, we demonstrate
application of similarity learning for resolving the structure of tunneling spectroscopy data, characterizing a
superconducting material with sparse density of defects. Popular methods for unsupervised learning and discrete
representation of the data in terms of clusters of characteristic behaviors were found to produce inconsistencies
with respect to capturing the location and tunneling characteristics of defect sites. The underlying reason for
their ambiguity was traced to continuous variation of the electronic properties across the surface and therefore
the absence of clear structural boundaries in the low-dimensional latent spaces of the data. We supported this
hypothesis by direct analysis of the distributions of Euclidean distances within the dataset. We further proposed
distance rescaling with probabilistic description as a possible approach to mitigate the detrimental effect of
the long tails of the distributions on the performance of clustering methods. Subsequently, we applied a more
general, nonlinear similarity learning, where dimension reduction was explicitly trained to amplify similarities
and dissimilarities among individual spectra. This approach was found to outperform several widely used
methods for dimensionality reduction and produce a clear categorization of tunneling spectra. Significant spectral
weight transfer associated with the electronic reconstruction by the vacancy sites was systematically captured,
as was the spatial extent of the vacancy region. Given that a great variety of electronic materials will exhibit
similarly smooth variation of spectral response due to random or engineered inhomogeneities, we believe our
approach will be useful for systematic analysis of hyperspectral imaging with minimal prior knowledge as well as
prospective comparison of experimental measurements with theoretical calculations with explicit consideration
of disorder.
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I. INTRODUCTION

Electrical and mechanical measurements on the nanoscale
underpin most widely used scanning probe microscopy (SPM)
methods as well as many future electronic devices. An
outstanding challenge in such studies is a systematic and
quantitative interpretation of observations, often in the ab-
sence of well-defined analytical models. On the one hand,
localizing the probed volume to near-atomic scale almost
inevitably introduces systematic and random effects of elec-
tronic, mechanical, and chemical properties of the contacts,
resulting in persistent and often time-varying uncertainty
in the transfer function of the measurement. On the other
hand, exponential amplification of physical properties in the
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measured observables is often the basis for the enhanced sen-
sitivity and spatial resolution achieved by imaging methods
[1–3]. For example, the exponential distance dependence of
tunneling probability enabled scanning tunneling microscopy
(STM) [4], which subsequently revealed a broad variety
of atomic structures and dynamics with atomic resolution
[5–8]. However, the joint effects of uncertain and nonlin-
ear transfer functions [9,10] generally complicate quantitative
interpretation of data in SPM and related nanoscale device
measurements. Moreover, consistent theoretical calculations
that account for the exact shape of the measurement probe,
the nonequilibrium properties of electron tunneling, and the
electronically excited states require extensive numerical sim-
ulation [9,10] that may be computationally too prohibitive to
complement extensive experimentation. Therefore, a task of
increasing importance is the analysis of hyperspectral data
with minimum prior information [11]. The hyperspectral data
volume can yield rich information even in the absence of a
specific model, for example, by identifying variability in the
dataset or specific regions of interest.

In the past several years, approaches utilizing dimen-
sionality reduction and classification by clustering were
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FIG. 1. The conceptual goal of hyperspectral analysis of disorder is to infer the existence and structure of low-dimensional latent space
that effectively approximates the true parameter space. (a) Synthetic two-dimensional parameter space, represented by multinormal distribution
with two well-separated centroids. (b) A family of polynomials parametrized by randomly sampled parameters from the synthetic space (a)
[white dots in (a)]. The polynomial function Y = 0.1kX 2 + C was used, where k was sampled from the distribution in (a), while C was sampled
from a uniform distribution between 0 and 0.1. (c) First two principal components of the synthetic dataset (b) and the corresponding scree
plot (inset), which show that projection on the first two principal components already captures >99% of variability in the dataset. (d) Latent
space of hyperspectral data projected onto first and second principal components (c), revealing structure very closely resembling the original
parameter space. Two clusters (red and blue) are obtained by k-means clustering.

successfully applied to hyperspectral data spatially resolved
tunneling spectroscopy [12,13], force-distance spectroscopy
[14,15], and switching spectroscopy [16,17]. The essential
assumption of these approaches is the existence of a low-
dimensional parameter space from which measured spectra
arise through a convolution with the instrument transfer func-
tion. The analysis then aims to construct a low-dimensional
representation of the hyperspectral data, for example, in the
form of several clusters of characteristic behaviors. Figure 1
applies this concept to synthetic data, wherein random sam-
ples {Pi} from the a chosen two-dimensional (2D) parameter
space [Fig. 1(a)] are used to construct a series of polynomial
curves [Fig. 1(b)], representing the effect of the instrument
function F [{Pi}] and added noise. Subsequently, principal
component analysis (PCA) projects the family of curves (stan-
dardized to have zero mean and unit sample variance) onto
the first two principal components (the eigenvectors of the
covariance matrix sorted in order of decreasing eigenvalues).
The first two components already capture >99% of variabil-
ity in the synthetic dataset [Fig. 1(c)]. The latent space of
projections onto principal components [Fig. 1(d)] can then
be considered an effective representation of the data. Indeed,
Fig. 1(d) appears qualitatively very similar to Fig. 1(a) and can

become nearly identical by affine transformation that rotates
and scales the parameter space. Applying clustering is also
very effective in this case, drawing clear decision boundaries
that partition the latent space into two parts, reminiscent
of the two centers of the original distribution. Therefore,
this analysis will work well if the true parameter space and
therefore the derived latent space are both well structured.
However, disorder in electronic materials can manifest in a
broad range of behaviors, many of which will be perturbative
rather than drastically changing [18–20]. Moreover, in the
case of a sparse density of impurities, the number of data
points originating from defect sites may be limited (it ap-
pears as an outlier), which may also confuse popular methods,
such as k-means clustering [21]. The validity of classification
approaches can also be questioned, wherein partitioning the
dataset into an integer number of clusters inevitably intro-
duces ambiguity near decision boundaries. As a result, good
parameter separation in the latent space may be more of an
exception for atomically resolved microscopy data, and alter-
natives, such as probabilistic description or nonlinear methods
that can separate the latent space, are needed for the likely
more common case of smooth variation of properties across
the dataset.

033058-2



ATOMIC-SCALE ANALYSIS OF DISORDER BY … PHYSICAL REVIEW RESEARCH 4, 033058 (2022)

Here, we demonstrate similarity learning for the hyper-
spectral data comprising spectra of energy-resolved density
of states of the unconventional superconductor FeSe, acquired
over a spatial grid with near-atomic-scale resolution. We iden-
tified the existence and electronic signature of Fe vacancy
defects as well as their spatial locations with minimal prior
knowledge. Despite the apparent simplicity of the problem
with just one type of chemical vacancy, we show that con-
ventional clustering methods may produce ambiguous if not
conflicting results. We traced the origins of the ambiguity to
long-tailed structure of the distribution of Euclidian pairwise
distances in the dataset. This conclusion was reinforced by
the efficiency of ad hoc rescaling of pairwise distances to
identify the vacancy sites. This analysis can be effective for
low-defect scenarios, even though it obscures well-defined
geometric meaning of the latent space. To generalize, we
applied a weakly supervised similarity learning that explicitly
learns nonlinear pairwise distance functions [23] and enables
effective analysis of tunneling datasets, even when compared
with many popular techniques for nonlinear dimensionality
reduction. We believe that similarity learning [24] can play
an important role in future analysis of a broad spectrum of
problems in materials physics, such as detecting and analyzing
effects of disorder as well as classical and quantum phase
transitions.

II. RESULTS AND DISCUSSION

FeSe is an unconventional superconductor with a transition
temperature of ∼8 K [25]. For this paper, FeSe single crystals
were grown out of KCl-AlCl3 flux by a liquid transport tech-
nique [26]. The surfaces were cleaved in ultrahigh vacuum at a
temperature of ∼150 K before STM measurements. Owing to
lack of dangling bonds, FeSe surfaces contain only a small
number of well-defined defects [27–29]. Fe vacancies, for
example, are readily detectable due their low surface den-
sity and characteristic dumbbell shape [Fig. 2(a)]. However,
despite their chemical simplicity, the vacancies in FeSe can
have a profound impact on the electronic properties. For ex-
ample, Fe vacancies locally modify magnetic ordering [30].
Se vacancies have been predicted to generate effective hole
doping through a combined effect of electron scattering, lat-
tice strains, and charge doping [27,30,31], contrary to intuitive
expectation of electron doping. The FeSe monolayer system
can achieve ∼10 times higher Tc due to the combined effect of
doping and strain at the interface [32]. Meanwhile, the interest
in the FeSe/Te system has been vigorously renewed in lieu
of predictions for the topologically protected superconducting
state in proximity of the 50/50 Se/Te ratio [33], where intrinsic
disorder of solid solutions also emerges [34].

To characterize spectral signatures of the Fe vacancies, we
acquired tunneling spectra on a 100 × 100 point grid in a
nearly pristine surface area with a few vacancies [Fig. 2(a)].
The energy-resolved histogram of all the spectra clearly re-
veals the superconducting gap [Fig. 2(b)] as well as a rather
broad distribution of density of states (about fourfold varia-
tion) because of the vacancies, electron scattering (resulting
in Friedel oscillations), noise, and other possible factors. Fe
vacancies are already known to develop in-gap impurity states
and therefore increase the observed density of states inside the

FIG. 2. Tunneling microscopy and spectroscopy of as-cleaved
FeSe surface, with a small number of Fe vacancies. (a) Constant-
current scanning tunneling microscopy (STM) image showing the
atomic lattice of the top surface layer and Fe vacancy sites which
appear as clear double-protrusions (this is primarily an electronic
effect). Inset shows crystallographic unit cell of tetragonal FeSe after
Ref. [22]. (b) Tunneling spectroscopy near the Fermi level, revealing
the ∼4 meV wide superconducting gap and a broad distribution of
the tunneling conductance due to combined effects of measurement
noise and vacancy sites. Individual spectra were acquired on a 100 ×
100 pixel spatial grid, with 512 sampling points per energy interval
from −15 to +15 mV. Purple in (b) is an energy-resolved histogram
of all the spectra. Green and red mark the average spectra from
the defect-free and defect regions of the surface, correspondingly.
The vacancy sites were identified by segmentation analysis of an
isoenergy slice of the hyperspectral volume at ∼−1 mV, and their
approximate outlines are shown in purple in (a).

superconducting gap [35]. This effect enables partitioning of
the spectra in the dataset into two groups—with and without
vacancies—for example, by segmentation of the isoenergy
slice of the hyperspectral cube at an energy of ∼−1 mV. The
corresponding outlines of the vacancy sites obtained by this
segmentation are shown in Fig. 2(a) in purple. Quite notably,
Fe vacancies significantly reconstruct the whole spectrum, not
just the proximity of the superconducting gap [compare the
red and green curves in Fig. 2(b)].

Although detecting vacancies in FeSe by visual inspection
is remarkably easy, the multivariate workflow presented in
Fig. 1 fails to do so reliably in the reduced dimensionality
representation. This is the focus of this paper. Almost all
methods presented below provide some level of separation in
real space. However, in a very general case, e.g., a sparsely
sampled dataset, disordered samples, or multiple kinds of
defects, real-space information may not be readily available.
We would like to find reliable approaches to separate charac-
teristic behaviors in the spectral space alone. Eventually, both
real-space and spectral-space information should be utilized
to maximize efficiency of analysis.

Figure 3(a) shows the projection of the hyperspectral
dataset onto its first two principal components (that account
for > 90% of the observed variance in the data, with three
components accounting for >99%). Locating the projections
of the spectra due to vacancies (red) and pristine (green)
surface sites shows that the two are separated in the latent
space, albeit without a clear break into distinct groups. In
other words, the dataset is not linearly separable.
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FIG. 3. Dimensionality reduction and clustering applied to tun-
neling spectroscopy dataset in Fig. 2. (a) Principal component
analysis (PCA): projection of the individual tunneling spectra into
the latent space of two principal components (PC1 and PC2) whose
linear combination accounts for >90% of variability in the dataset.
Green and red highlight projections due to surface and vacancy
regions (determined by segmentation in Fig. 2), respectively. Purple
are all the projections. (b) Partitioning of the PCA latent space by
k-means clustering with 2 and 3 clusters. The decision boundary
for two clusters is shown by the red dashed line. (c) Cluster centers
(average IV curves within each cluster) for 3-means analysis in (b).
Insets show spatial maps of clusters (left = 2, right = 3). The aver-
aged IV curve for the vacancy region (vac in the legend) from Fig. 2
is shown for reference. (d) Results of agglomerative (hierarchical)
clustering of the hyperspectral dataset, shown as a dendrogram. The
y axis shows linkage distance between individual clusters, while the
numbers below show the number of individual IV curves in each
shown branch of the dendrogram. Bottom panel shows the number
of samples vs the hierarchical order of the specific cluster.

The assertion is best reflected in the confusing results of
clustering methods applied to the latent space: k-means points
to few clusters [Fig. 3(b)], while agglomerative clustering
points to the opposite—dozens if not more distinct behav-
iors [Fig. 3(d)]. k-means—a top-down algorithm—identifies
k (where k is given) centroids and iteratively refines their
position until the net variances of the point-cluster distances
are minimized [21,36]. Agglomerative (hierarchical) cluster-
ing builds a bottom-up cluster hierarchy [37], beginning with
n clusters (where n is the number of spectra in the dataset) and
iteratively merging distinct clusters with the same linkage dis-
tance. At some intermediate value of linkage distance, a small
number of clusters may be revealed. In our case, k-means is
effective at approximate identification of the vacancy sites for
two-cluster partitioning, which is to be expected [see mask in
the inset of Fig. 4(c)]. Adding a third cluster into partitioning,
however, does not refine the location of the vacancy, instead
partitioning the latent space region of the surface sites and
assigning a few spurious locations to the vacancies [Fig. 3(c)
inset]. Meanwhile, hierarchical clustering partitions the spec-

FIG. 4. Statistics of pairwise Euclidean distances between single
tunneling spectra in the FeSe dataset. (a) Distribution of Euclidean
distances within the dataset from Fig. 2(b) exhibiting a long tail
(inset shows distribution on the log scale). (b) Distributions of
rescaled pairwise distances, with rescaling as log(di j + offset). (c)
Fitting rescaled distribution of the log-Euclidean distance by two
normal distributions. (d) The abundance map of minority spectra
in the dataset, obtained as value for the distance histogram of each
spectrum at rescaled distance value of log(di j + 1) = 2.5. The inset
clearly shows typical probability distributions for a majority (blue)
and minority (orange) spectrum, with minority exhibiting a peak at
∼2.5.

tra into essentially arbitrarily many clusters, with dozens and
even hundreds of clusters having approximately equal weight-
ing. This is seen in Fig. 3(d), where at no point up to even
300 clusters does the number of members in each cluster
exceed 10 spectra [and most often just one, Fig. 3(d) bottom
panel]. In an effective agglomerative clustering scenario, we
would expect to have much more significant weighting for
clusters already at the top of the hierarchy (e.g., for three-
to four-cluster partitioning). In other words, according to ag-
glomerative clustering, either there are hundreds of observable
behaviors—which is unlikely given the origin of our data—or
there are no significant clusters, i.e., vacancies and pristine
surface are not statistically distinct, which contradicts direct
observations.

Given the extensive amount of literature on clustering
methods, such ambiguities are not uncommon [36]. It is rather
clear that the Euclidian distance (ED) between individual
spectra or between their projections in the latent space plays
a key role in the subsequent performance of the clustering
methods. We directly examined the distribution of EDs across
the whole hyperspectral dataset [Fig. 4(a)]. It is immediately
apparent that the distribution is long tailed, which at least
partially is caused by a relatively small number of vacancy
sites. The sparsity of the vacancies in the dataset creates an
immediate problem for the k-means clustering method, which
is most efficient when the number of samples from distinct
behaviors is comparable in the dataset [21,36]. The long tail
also confuses agglomerative clustering, essentially due too
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FIG. 5. Distance correlation plot that compares distances between individual points within the dataset (or distance from the mean) among
two latent spaces. (a) Comparison of the original data space before dimensionality reduction with the distance distribution in the latent space
defined by first two principal components [Fig. 3(a)]. (b) Similar comparison after logarithmic rescaling of the latent space. (c) Schematic
of distance correlation plot for an idealized scenario of nonlinear dimensionality reduction, where two (or more) groups of spectra would be
clearly separated from each other by the appropriate distortion of the latent space.

slow of a pace of agglomeration, so that inferred clusters end
up containing very few spectra up to a very high level in the
hierarchy [Fig. 3(d)].

Our reasoning can be further supported by an ad hoc rescal-
ing of the Euclidean distances between spectra. Figure 4(b)
plots the distributions of log(di j + n) with n from 0.1 to 8
(where di j is the Euclidean distance between a pair of spectra).
In these cases, logarithmic rescaling symmetrizes the distance
distribution by contracting the long tail of large relative dis-
tances while expanding smaller values. For n between 1 and
5, the distribution becomes not only much more symmetric,
but it also clearly reveals a shoulder on the side of the main
peak [Fig. 4(b)]. A weak shoulder is also visible in Fig. 4(a).
In this form, the modified distance distribution can be readily
fit by two Gaussian distributions [Fig. 4(c)]. The bimodality
of the distribution then points to existence of at least two
distinct groups of spectra, which are similar within the group
[therefore yielding small relative Euclidean distance captured
by the blue peak in Fig. 4(c)] and are dissimilar across the
groups [with larger relative distance under the purple peak in
Fig. 4(c)]. Extending this logic, we can now take advantage
of the sparsity of the vacancies on the surface to label the in-
dividual spectra as belonging to majority vs minority species.
To this end, we first calculate distributions of log-Euclidean
distance for each spectrum and then effectively label each
spectrum with its distance histogram. For majority (surface
sites), the histograms are dominated by the first peak, while
for vacancies, the opposite is true [Fig. 4(d), inset]. Visual
inspection of the abundance maps of individual histograms in
real space for the minority species in Fig. 4(d) indeed confirms
our notions as well as the assignment of the assumed bimodal
distribution in Fig. 4(c).

The rescaling described above, which amounts to nonlin-
ear geometric transformation of the data space, is effective,
but it is also arbitrary and is likely not generalizable to
more complex cases. We therefore sought nonlinear dimen-
sionality reduction methodologies that can achieve nonlinear
and effective separation between tunneling spectra algorith-
mically. Nonlinear dimensionality reduction encompasses a
large range of algorithms, such as kernel PCA (kPCA) [38],

t-distributed stochastic neighbor embedding [39], neural net-
work autoencoders, among others, each with its own approach
to construction of the latent space.

To aid in evaluation of the effectiveness of a specific tech-
nique, we tracked the relevant geometry of the projected space
by plotting the Euclidean distance of each spectrum from the
average in the dataset spectrum vs a similar metric in the latent
space (Euclidean distances of coordinates of these spectra
in a given latent space from the coordinates of the average
spectrum). Examples of such a distance correlation plot, in
the form of the density histogram, are shown in Fig. 5(a)
for PCA and our logarithmic rescaling of the distances dis-
cussed above in Fig. 5(b). PCA is a linear dimensionality
reduction technique, and this is very well reflected by the dis-
tance correlation plot with a clear linear scaling of distances
between original and reduced dimensionality representations
[Fig. 5(a)]. Deviation from linearity in this case is the effect
of partial loss of information due to dimensionality reduction.
Meanwhile, the logarithmic rescaling appears as a log func-
tion, by design [Fig. 5(b)]. The transition from the long-tailed
to the more symmetric distribution of the relative distances
is also apparent by following the redistribution of the point
density upon log rescaling. We can further hypothesize what
the desired geometric distortion may look like, as shown in
Fig. 5(c). Essentially, parts of the original dataset will be
grouped into small and well-separated regions of the pro-
jected space, creating a large local density of projections. This
specific shape is valid under the assumption that one group
[group 2 in Fig. 5(c)] has a lot fewer data points than the other
(e.g., group 1), which is typically the case for low density of
vacancies and defects.

Figure 6 shows the projections and the distance correlation
plots for the FeSe dataset generated by several popular meth-
ods for nonlinear dimensionality reduction: kPCA [38,40]
[Fig. 6(a)], nonnegative matrix factorization (NMF) [41], uni-
form manifold approximation and projection (UMAP) [42]
[Fig. 6(c)], and deep autoencoder [Fig. 6(c)]. All the methods
introduce various nonlinearities as seen from the correlation
plots: kPCA squeezes the latent space as a whole [Fig. 6(a)],
somewhat like the log rescaling in Fig. 5. NMF also squeezes
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FIG. 6. Distance correlation plots for nonlinear dimensionality
reduction methods applied to the spectroscopy dataset: (a) kernel
principal component analysis (kPCA), (b) nonnegative matrix fac-
torization (NMF), with implementation in SCIKIT-LEARN [42], (c)
uniform manifold approximation and projection (UMAP), and (d)
deep autoencoder. The autoencoder was constructed as a sequence
of three fully connected layers, with dimensions of 100, 2, and 100.
The center bottleneck layer thus represents compressed and genera-
tive representation of the dataset. Blue and red accents in the main
figure highlight the positions of the surface and vacancy sites cor-
respondingly. The insets show two-dimensional (2D) latent spaces
obtained by each method. The following parameters for the nonlinear
dimensionality reduction algorithms, implemented in SCIKIT-LEARN

library, have been used: kPCA - “rbf” kernel with � of 0.04; NMF–2
components with maximum of 1000 iterations; UMAP-2 compo-
nents with 1000 nearest neighbors. The autoencoder was trained with
the ADAM optimizer, batch size of 64, 5376 training examples and
640 validation examples, L2 regularization set to 0.002, and 100
training rounds. All other parameters have been set to their default
implementation.

the latent space but otherwise does not introduce significant
distortion. UMAP partitions the surface spectra but does not
clearly separate out the vacancies [Fig. 6(c)]. In none of these
cases is there a clear separation between surface (blue) and
vacancy (maroon) sites [Figs. 6(a)–6(c)]. Finally, the deep
autoencoder does reconstruct the latent space, splitting it into
∼3 regions, two of which [both surface sites, Fig. 6(d)] have
comparable density. Thus, although nonlinearities introduced
by these methods have not yielded the sought-after result of
clearly partitioning the data space, as is also evident from
direct inspection of the latent spaces for all the methods (see
insets). We note that each of these methods has a set of hyper-
parameters and a pronounced sensitivity to specific choices of
these parameters. However, we are seeking a more general so-
lution. Given the relatively unsatisfactory performance of the
unsupervised nonlinear dimensionality reduction techniques,
we next applied algorithms where some prior information
about the properties of the spectra is passed to the algorithm.

FIG. 7. Application of similarity learning by twin (Siamese)
network architecture for the tunneling spectroscopy dataset. (a)
Schematic structure of the basic twin architecture (DNN = deep
neural network, wi = shared weights, ED = Euclidean distance,
CL = contrastive loss layer). (b) Distance correlation plot for a
typical projection of the trained Siamese network applied to the
dataset (insets show two different projections, obtained by slight
variation of the parameters of the training set, such as the threshold
Euclidean distance beyond which the spectra are distinct). (c) The
result of applying two Siamese networks to the dataset in sequence.
First network to project the dataset onto two components (tC1 and
tC2), the projection is the same as the distance correlation plot in
Fig. 7(b). Second, simplified network to create one-dimensional (1D)
scores for each of the projections, based on their proximity to each
other in the projected space. The field of scores is superimposed on
top of the projection as a colormap, while (d) shows the abundance
map of the scores in real space. Very clearly, the scores act as unique
labels for individual spectra, clearly separating vacancy, surface,
and intermediate sites. The image has been slightly smoothed by
Gaussian convolution for presentation purposes.

One such architecture is a twin (Siamese) neural network
architecture, which was proposed by Koch [43] to achieve
better classification of image datasets. The goal of the net-
work is to learn nonlinear embedding of the original data that
would maximize Euclidean distance (ED) between distinct
spectra and minimize it between similar spectra in the pro-
jected space. The schematic of such a network is shown in
Fig. 7(a). The network is being trained by propagating a pair
of spectra (in our case, selected directly from the raw data
in Fig. 2) through a pair of identical networks. The network
pair has both identical topology and shared trainable weights.
We chose a deep network consisting of three fully connected
layers with dimensionality of 20 → 5 → 2 separated by
nonlinear activation functions. The network therefore maps
the spectra into 2D projected space. Subsequently, ED is cal-
culated between the outputs of the two networks [Fig. 7(a)].
The key to twin network performance is a contrastive loss [CL
in Fig. 7(a)], which computes a loss based on the distance
across the twin network and a target that specifies whether
the distance should be minimized or maximized. One added
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FIG. 8. Spectral weight transfer due to Fe vacancies in FeSe as seen by tunneling spectroscopy. (a) Average spectra due to surface, vacancy,
and transition regions (red, blue, and yellow) identified by the appropriate scores in Fig. 7(d). (b) Energy-resolved Euclidean distances between
the collection of surface and vacancy spectra, plotted as a density histogram (yellow corresponds to high abundance). (c) Correlation plot for all
spectra in the dataset, revealing two distinct anticorrelated energy windows for spectral changes (from −15 to −5 mV and from 7 to 15 mV),
as well as window of intermediate correlation (between ∼0 and 7 mV). This plot statistically confirms that Fe vacancies reduce the density of
filled states and increase the density of empty states compared with pristine surface.

advantage of this architecture is that the number of pairs scales
as N2 with the N size of the dataset, so that twin networks
work well with smaller-sized datasets characteristic of tunnel-
ing spectroscopy. In our case, the networks were trained by
randomly selecting 5000 pairs from a total possible pool of
1
2 × 108 spectra. Given the relatively small number of vacancy
sites in our dataset, we ascertained that the random selection
contains a small fraction of vacancy sites.

The input into the twin network is a binary choice of
whether the two spectra are of the same overall group. In our
case, we simply chose a particular threshold for the ED in
the original hyperspectral dataset to partition the pairs within
the dataset. As seen in Fig. 7(b), vacancies (red) become well
separated from surface sites in the projected space of the
twin network (green). This is also clearly seen in the distance
correlation, which bears the closest similarity to the scenario
in Fig. 5(c). The training is also sensitive to hyperparameters,
although producing qualitatively similar results. Figure 7(b)
shows two qualitatively similar projected spaces obtained in
different initialization and training runs (with randomly gen-
erated training sets in each case).

The twin architecture then enables categorization of the
projected and latent spaces, as shown in Fig. 7(c), wherein
another twin network with smaller and even simpler (10 → 5
→ 1) topology was applied to the projected space in the upper
corner of Fig. 7(b). The network, trained on random samples
from the point cloud in Fig. 7(c), outputs just one number, pro-
viding a continuously varying score for each spectrum based
on its proximity to other spectra in the projected space. As
seen in Fig. 7(c), twin networks very effectively categorize the
latent space, drawing clear decision boundaries for the surface
(blue) and vacancy (red) sites and rather remarkably outlining
the transition region between the two (yellow). Because this
type of classification avoids discretization of the clustering
procedure, the real-space map of the scores both confirms its
assignment and separates the vacancies, surface sites, and the
transition region in both projected and real spaces [Fig. 7(d)].

The key prospective advantage of being able to identify
distinct tunneling spectra as well as transitions between them
is the analysis of the spectral weight transfer associated with
disorder in any doped, and particularly highly correlated elec-

tronic materials [19,20,44]. Figure 8 shows the tunneling
spectra of the vacancies, surface sites, and transition region
averaged within their characteristic score values, as deter-
mined in Fig. 7(c). For added clarity, we also show the EDs
between the spectra in Fig. 8(b) and a correlation plot for
the whole dataset in Fig. 8(c). The spectral intensity is redis-
tributed in the whole probed energy window ±15 meV, not
just around the superconducting gap (±3 meV). The corre-
lation plot [Fig. 8(c)] reveals that the changes from −15 to
∼+7 mV are anticorrelated with those from +7 to 15 mV,
wherein suppression of the density of states in one region
causes enhancement in the other. The redistribution of the
spectral weight may signal significant electronic reconstruc-
tion associated with the vacancy site that goes beyond charge
doping expected of impurities and intentional dopants. In fact,
Se vacancies were predicted to cause significant reconstruc-
tion within as much as a ±2 eV window around the Fermi
level, causing substantially weaker doping of the Fe d bands
than expected based on stochiometric arguments [27]. The
detailed understanding and theoretical analysis of this phe-
nomenon for the Fe vacancies is left for future work. However,
we note that the analysis presented here may also conceptually
translate to analysis of the first-principles data, providing a
path to compare theory with experiment through the effects of
disorder on the electronic structure.

III. CONCLUSIONS

To conclude, we applied several dimensionality reduction
techniques toward effective measurement of effects of disor-
der on the electronic properties of FeSe superconductor using
tunneling spectroscopy. It is shown that the tunneling spec-
tra are not linearly separable, owing to a likely combination
of continuous variation of the electronic density of states,
expected for atomic and nanoscale defects and impurities,
combined with relatively low defect density. Meanwhile, sev-
eral common nonlinear dimensionality reduction algorithms
were not effective in separating of the vacancy sites in the
latent space, which could potentially improve the follow-on
clustering. Instead, twin (Siamese) neural network architec-
ture, which learns the similarity directly from the data and
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amplifies the similarities and dissimilarities during training,
was shown to be effective at both creating well-separated pro-
jected space of the tunneling spectroscopy dataset as well as
subsequently categorizing tunneling with continuous single-
valued scores. The immediate advantage of this approach is
the ability not only to detect and describe the properties of
defects and impurities but also those of the transition region
between distinct behaviors in the dataset. This is arguably a
key advantage over discretization of the hyperspectral dataset
with clustering methods, wherein neither the uniform state
within a cluster nor the abrupt cluster boundaries are phys-
ically sound. Moreover, twin networks are well adapted to
work with smaller-sized datasets characteristic of tunneling
spectroscopy, due to N2 scaling of the training set size with
the N size of the dataset. In the specific case of FeSe, we
have found that Fe impurities modify the density of states
in a broad window around the Fermi level, well beyond the
superconducting gap. This may be an indication of an even
more dramatic electronic reconstruction, qualitatively resem-
bling earlier predictions of the effect of Se vacancies [27].
Ultimately, these methods will serve to better understand the
effects of disorder in complex electronic materials, toward
tailored fundamental and applied properties for advancement
of quantum electronics.

IV. METHODS

Tunneling spectroscopy and microscopy were carried out
using a Specs Joule-Thomson STM microscope, operating

at 4.5 K base temperature. Freshly cleaved surfaces were
obtained by delaminating a small sample of FeSe in low vac-
uum of ∼10−6 Torr, followed by rapid sample transfer to the
cryogenic chamber. Data analysis presented above was carried
out using primarily Wolfram Language, with additional use of
Python libraries for nonlinear dimensionality reduction. All
the data and codes are available upon reasonable request.
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