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Quantum algorithms have been successfully applied in quantum chemistry to obtain the ground-state energy
of small molecules. Although accurate near the equilibrium geometry, the results can become unreliable when
the chemical bonds are broken at large distances. For any adiabatic approach, this is usually caused by serious
issues, such as energy gap closing or level crossing along the adiabatic evolution path. In this work, we propose
a quantum algorithm based on adiabatic evolution to obtain molecular eigenstates and eigenenergies in quantum
chemistry, which exploits a smooth geometric deformation by continuously varying bond lengths and bond
angles. We demonstrate its utility in several examples on a noiseless quantum simulator, including H2O, CH2, and
a chemical reaction of H2+D2 → 2HD, by uniformly stretching chemical bonds. We find that this new algorithm
solves the problems related to energy gap closing and level crossing along the adiabatic evolution path at large
atomic distances. The new method performs more stably and achieves better accuracy than our previous adiabatic
method [Yu and Wei, Phys. Rev. Research 3, 013104 (2021)]. Furthermore, our fidelity analysis demonstrates
that even with finite bond length changes, our algorithm still achieves high fidelity for the ground state.
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I. INTRODUCTION

In recent years, quantum chemistry [1] has emerged as a
promising domain science field where quantum computers
can potentially lead to a breakthrough [2]. One important
area is the ground-state total energy problem, where many
systems exhibit strong character of many-body correlation ef-
fects (e.g., localized d and f electrons in transition-metal and
rare-earth complexes), and a proper treatment is beyond the
scope of widely used mean-field methods. As wave-function-
based correlated methods remain computationally intractable
against the system size on classical computers, various quan-
tum algorithms, such as iterative quantum phase estimation
(iQPE) [3], variational quantum eigensolver (VQE) [4,5],
quantum adiabatic evolution (QAE) [6,7], and quantum an-
nealing [8,9], have been proposed to tackle the ground-state
total energy problem. Several quantum algorithms have been
implemented and demonstrated for small molecules [2,4–6,9–
12]. Further improved methods, such as the equation of mo-
tion [13] and the adaptive VQE [14], have also been designed.
Some of us have previously proposed an adiabatic method that
uses a particular interpolation from the maximally commuting
(MC) Hamiltonian to the targeted full many-body molecular
Hamiltonian [15]. Such a quantum adiabatic evolution from
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the initial MC Hamiltonian (MC-QAE) approach performs
well for molecules near their equilibrium geometry, but the
results become inaccurate at large atomic separations, due to
energy crossing and the presence of dense low-lying energy
levels. Previously we proposed a quantum Zeno approach to
overcome this issue, which uses projection to instantaneous
eigenstates of the discretized time-dependent Hamiltonian
[15]. However, at present the spectral projection in the quan-
tum Zeno approach requires QPE-like circuits and is less
practical to implement than discretized Trotter evolution of
the adiabatic Hamiltonian.

Here, we propose an adiabatic evolution method to com-
pute ground-state and low-lying excited state energies of
the many-body Hamiltonian of molecular systems along an
adiabatic geometric path, which we refer to as the geomet-
ric quantum adiabatic evolution (GeoQAE). The GeoQAE
starts with an initial geometry where MC-QAE can solve the
ground state and low-lying excited states accurately. Then the
system evolves adiabatically following a smooth geometric
deformation by, e.g., stretching or compressing bonds and/or
increasing or decreasing bond angles. We show that the Geo-
QAE approach does not suffer from the energy level crossing
issue in the MC-QAE approach at large atomic distances. We
further demonstrate its utility by computing the energies of the
ground state and low-lying excited states of exemplary molec-
ular systems, including H2O and CH2, as well as the potential
energy surface of the chemical reaction of H2+D2 → 2HD.

In addition, we show that the MC Hamiltonian proposed
in our earlier work [15] is equivalent to the diagonal part
of the full configuration interaction (CI) Hamiltonian in the
qubit representation. The MC Hamiltonian in fact is closely
related to the Hartree-Fock approximation, because under the
fermionic basis it consists of diagonal one-body terms and
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two-body Hartree and Fock terms. We show that the Hartree-
Fock ground state is an eigenstate of the MC Hamiltonian and
the Hartree-Fock ground-state energy is the corresponding
eigenenergy.

The remainder of the paper is organized as follows. In
Sec. II, we briefly review the setup in the molecular Hamil-
tonian and discuss our choice of the initial Hamiltonian in
the adiabatic evolution. In Sec. III, we present the GeoQAE
approach and describe its protocol. There, we also present the
analysis of the energy gap in the new adiabatic Hamiltonian to
justify the approach. In Sec. IV, we show the results on noise-
less quantum simulators of the GeoQAE approach applied
to two molecules, H2O and CH2, which are more accurate
than the previous MC-QAE approach and the quantum Zeno
approach [15]. In Sec. V, we present a study on an ideal-
ized chemical reaction of H2+D2 → 2HD, by computing the
ground-state potential energy surface. In Sec. VI, we discuss
the errors and fidelity from the perspectives of the choice
of the geometric path, the evolution time T and the discrete
step number M in an evolution. We also discuss the effect of
Trotterization on the adiabatic evolution and the influence of
gate errors using a simple noise model. We make concluding
remarks in Sec. VII.

II. MOLECULAR HAMILTONIAN AND THE
CORRESPONDING MAXIMALLY

COMMUTING HAMILTONIAN

In this study, we focus on finding the ground state and low-
lying excited states of molecular systems. For a given set of
spin orbitals, the many-body Hamiltonian can be written in
the second quantized form,

H = H (1) + H (2) =
∑
i, j

ti ja
†
i a j + 1

2

∑
i, j,k,l

ui jkl a
†
i a†

kala j, (1)

where a and a† are annihilation and creation operators, and
i, j, k, l label the spin orbitals. The one-body hopping terms,
ti j , and two-body interacting terms, ui jkl , are given by the
following expressions:

ti j = 〈i|H (1)| j〉

≡
∫

dx1χi(x1)

(
−∇2

1

2
+

∑
α

ZI

|r1I |

)
χ j (x1),

ui jkl = [i j | kl]

≡
∫∫

dx1dx2χ
∗
i (x1)χ j (x1)

1

|r12|χ
∗
k (x2)χl (x2), (2)

where χi(x1) are single-particle spin wave functions of or-
bitals i. Note that [i j|kl] is expressed in the so-called
chemists’ notation and the same quantity is denoted as 〈ik| jl〉
in the physicists’ notation [1]. In quantum chemistry calcu-
lations, Eq. (2) is usually evaluated on local atomic orbitals,
known as the atomic basis set. While large basis sets can
in principle lead to better numerical convergence toward the
complete basis set limit, they require more qubits to imple-
ment the quantum algorithm. In this work the Slater-type
orbital (STO)-3G basis (see, e.g., Refs. [1,16]) is used as a
compromise between accuracy and computational cost, while

our main conclusion does not rely on the choice of the basis
set.

The goal of this work is to find the eigenstates and eigenen-
ergies of Hamiltonian H of molecules, i.e., H |ψE 〉 = E |ψE 〉,
in particular the ground state and its energy, as well as
low-lying states. To solve the problem on quantum comput-
ers, the above fermionic Hamiltonian needs to be converted
to one composed of qubits. Several popular methods, such
as the Jordan-Wigner, parity, Bravyi-Kitaev, and superfast
Bravyi-Kitaev transformations [17–19], have been proposed
to transform the fermion operators into Pauli operators,

HP =
∑

i

hiPi, (3)

where Pi’s are n-qubit Pauli operators and hi’s are the cor-
responding coefficients. For the results presented below, we
use the parity and Jordan-Wigner transformation methods (see
Appendix A).

Initial Hamiltonian and initial state

Next we express H in Eq. (1) in a set of molecular or-
bitals, denoted by Greek letters α, β, γ , etc., which are the
solution of the Hartree-Fock Hamiltonian (see Appendix B).
The superscript F indicates that it is expressed in fermionic
field operators. The resultant Hartree-Fock states are single
Slater determinants in this molecular basis. We emphasize the
molecular basis by adding the superscript MO to the hopping
and interaction coefficients, respectively,

HF
full =

∑
α,β

tMO
αβ a†

αaβ + 1

2

∑
α,β,γ ,δ

uMO
αβγ δa†

αa†
γ aδaβ. (4)

For convenience, we denote the qubit version of HF
full as HP

full,
where the superscript P corresponds to Pauli operators.

In the MC-QAE approach, our choice of the initial Hamil-
tonian HP

I is the diagonal part of HP
full, which only consists of

products of Z terms and identities.

HP
I =

∑
Pi∈{Z,I}⊗n

hiPi, (5)

where Pi’s are from Eq. (3). Below we show that eigenstates
of HP

I , which are all in the quantum computational basis, cor-
respond to single Slater determinants in the fermionic picture.
A Slater determinant in HF

full is the simultaneous eigenvector
of the corresponding number operators a†

αaα for all α. Mean-
while, standard transformation methods (e.g., Jordan-Wigner,
parity, Bravyi-Kitaev, and superfast Bravyi-Kitaev) map a†

αaα

into Pauli Z terms, and a†
αaβ non-Z terms for β 
= α. As a re-

sult, the diagonal part of HP
full is the summation of all possible

combination of a†
αaα , a†

αa†
βaβaα , and a†

αa†
βaαaβ . Therefore,

the fermionic version of the initial Hamiltonian is

HF
I =

∑
α

tMO
αα a†

αaα

+ 1

2

∑
α,β

(
uMO

ααββa†
αa†

βaβaα − uMO
αββαa†

αa†
βaαaβ

)
. (6)

We remark that the Hartree-Fock ground-state wave func-
tion is an eigenstate of HF

I with eigenenergy EHF. This can
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be easily verified by directly applying HF
I to the Hartree-Fock

ground state |ψHF〉 = |1..10..0〉 that fills up orbitals with low-
est energies,

HF
I |ψHF〉 = EHF|ψHF〉, (7)

and obtaining EHF as the Hartree-Fock ground-state energy,

EHF =
∑
α∈occ

〈α|H (1)|α〉 + 1

2

∑
α,β∈occ

([αα | ββ] − [αβ | βα]),

(8)

where [αβ|γ δ] = uMO
αβγ δ in Eq. (4). More details are shown in

Appendix C.
We remark that the Hartree-Fock ground state is also an

eigenstate of the so-called Fock operator (also known as the
mean-field Hartree-Fock Hamiltonian) f̂ in Eq. (B7), but with
an eigenenergy Ẽ different from EHF [1], due to the double
counting in the interaction energy (i.e., a factor of two differ-
ence in the second term),

Ẽ =
∑
α∈occ

〈α|H (1)|α〉 +
∑

α,β∈occ

([αα | ββ] − [αβ | βα]). (9)

For the molecules examined in Ref. [15] and this work,
their HP

I is the same as the initial Hamiltonian constructed
by finding the maximum commuting set of terms in HP

full.
For convenience, we will simply refer HP

I as the maximally
commuting (MC) Hamiltonian. Prior results on molecular
systems [15] show that near the equilibrium geometry, a linear
adiabatic evolution starting from the Hartree-Fock initial state
can successfully drive the system from HP

I to HP
full,

H (t ) =
(

1 − t

T

)
HP

I + t

T
HP

full. (10)

We remark that, as we shall see below in the case of
CH2 molecule, the Hartree-Fock state does not always lead
to the final ground state. However, one can choose low-lying
Hartree-Fock excited states or their superposition as the initial
states. Since the electron number is conserved during the
evolution, it is possible to choose an appropriate initial state
with desired electron number. In special cases where the direct
evolution fails because the symmetry of the system is not fully
accounted for, one may use a symmetrized initial state instead
to overcome the problem (see Sec. IV B). For example, given
a MC Hamiltonian with two degenerate ground states |ψ ′

1〉 =
|01〉 , |ψ ′

2〉 = |10〉, we can prepare the initial state according
to the spin configuration, e.g., a singlet state or a triplet state,
which can be initialized by a short-depth circuit. Due to the
symmetry preserved by both initial and final Hamiltonians,
final ground states with different spin configurations can be
evaluated separately from the corresponding initial states.

III. GEOMETRIC QUANTUM ADIABATIC
EVOLUTION METHOD

Despite its good performance near the equilibrium geome-
try of molecules, the MC-QAE approach fails when chemical
bonds are broken at large distances, due to energy gap clos-
ing or level crossing along the adiabatic evolution path. To
overcome this problem, we propose the GeoQAE method as
described below.

The GeoQAE is defined on an adiabatic path, where the
geometry of the system evolves continuously characterized by
an effective coordinate, r. In simple cases, r can be atomic
distance or bond angle, but more generally r can be associated
with complex structural changes, such as phonon modes or
reaction coordinates. In the examples presented this study,
we only considered r as a specific atomic distance of small
molecules (e.g., O-H distance in a gas phase water molecule),
and generalization of r to more complex geometric changes is
straightforward.

Suppose we have computed the ground state of the qubit
Hamiltonian HP

full(r0) for a molecule at r0 near the equilibrium
position using, e.g., MC-QAE. In order to obtain the ground
state and energy of HP

full(r f ) at large interatomic distances, we
construct a series of Hamiltonians along the geometric path,
HP

full(r1), HP
full(r2), . . . , HP

full(rN = r f ), so that the sequence r0,
r1, ..., rN represents a gradual change in the atomic positions.
Then we let the system evolve piecewise according to their
interpolation as follows:

HMC
0 (t ) =

(
1 − t

T

)
HP

I (r0) + t

T
HP

full(r0),

HGeo
1 (t ) =

(
1 − t

T

)
HP

full(r0) + t

T
HP

full(r1),

...

HGeo
N (t ) =

(
1 − t

T

)
HP

full (rN−1) + t

T
HP

full (rN ). (11)

For each step, the evolution from HP
full(ri ) to HP

full(ri+1) is
likely to succeed due to the continuity of the Hamiltonian
HP

full(r) with respect to r.

A. GeoQAE protocol

Details of the GeoQAE protocol are summarized as
follows.

(i) Choose an initial effective coordinate, r0, of a molecule to
construct the Hamiltonian and transform the fermion operators
to Pauli operators;

(ii) Choose the terms only consisting of products of Z terms
and identities to construct the initial Hamiltonian HP

I (r0) and
construct the initial state |ψ (0)〉 from appropriate computa-
tional states, e.g., the Hartree-Fock ground state;

(iii) Discretize the time steps by tk = k
M T and obtain a series

of Hamiltonians HMC
0 (tk ) in Eq. (11);

(iv) Perform the evolution operator e−iHMC
0 (tk )�T on |ψ (0)〉

successively for k = 1, . . . , M and �T = T/M, to reach one
chosen eigenstate, which can be the ground state or a low-
lying excited state, of the final Hamiltonian HP

full(r0 );

(v) Choose a suitable series of r’s, r1, r2, . . . , rN with rN being
the target. Then repeat similar evolution procedure [steps (iii)
and (iv)] for HGeo

i (t ), from the initial Hamiltonian HP
full(ri−1)

to final Hamiltonian HP
full (ri ) consecutively with N − 1 times.

We remark that steps (i)–(iv) are exactly the MC-QAE pro-
tocol, as GeoQAE uses MC-QAE as its first step at an
appropriate r0. The total evolution time for getting the ground
state of nth Hamiltonian HP

full(rn) is nT . Below we denote
T̃ ≡ nT as the accumulated evolution time. We normally
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FIG. 1. Several lowest-energy levels of H (s) for H2O molecule at O-H distance d = 1.758 Å. In case (a), the evolution begins with
maximum commuting Hamiltonian HP

I at d = 1.758 Å [see Eq. (14)]; in case (b), the evolution begins the full Hamiltonian HP
full at d =

1.558 Å and ends at the one at d = 1.758 Å [see Eq. (15)].

choose r0 near the equilibrium geometry, where the MC-QAE
algorithm usually obtains the ground state accurately using,
e.g., the Hartree-Fock ground state as |ψ (0)〉.

The performance of the GeoQAE can be measured by the
error in the final ground-state energy. However, even if the
energy is close, the final state |ψ (T̃ )〉 may not necessarily
be close to the exact ground state |ψg〉. For this reason, we
introduce the fidelity as an additional measure of the error
in the eigenstate wave function [20]. We define the fidelity
between two states |ψA〉 and |ψB〉 as

f (ψA, ψB) ≡ |〈ψA|ψB)〉|, (12)

and calculate f (ψg, ψ (T̃ )) to see how close the final state
|ψ (T̃ )〉 is to the ground state |ψg〉. In case of degeneracy
where there are multiple |ψg,i〉’s with the same energy, then
we will calculate the fidelity as follows:

f ({ψg,i}, ψ (T̃ )) =
√∑

i

|〈ψg,i|ψ (T̃ )〉|2. (13)

B. Energy gap analysis

To validate the GeoQAE method, we compare the energy
spectrum of the MC-QAE path and GeoQAE path that both
lead to the same final Hamiltonian HP

full(ri = 1.758 Å) of the
water molecule. The first one begins with the MC Hamilto-
nian HP

I (ri = 1.758 Å) associated with the final Hamiltonian
HP

full(ri = 1.758 Å) at the same O-H distance,

HMC(s) = (1 − s)HP
I (ri) + sHP

full(ri ). (14)

The second Hamiltonian begins with the full Hamiltonian at a
shorter O-H distance corresponding to an earlier position on
the geometric path, HP

full(ri−1 = 1.558 Å) and ends with the
final Hamiltonian HP

full(ri = 1.758 Å),

HGeo(s) = (1 − s)HP
full(ri−1) + sHP

full(ri ). (15)

Their energy spectra as a function of s along two adiabatic
paths are shown in Fig. 1. Clearly, there are multiple energy
crossing points (e.g., near s = 0.5 and 0.7) in HMC(s), as
shown in Fig. 1(a), and this is the reason that the direct MC-
QAE fails. In contrast, HGeo(s) has energy levels smoothly

connected without any crossing, as shown in Fig. 1(b). Thus,
we see that the energy-crossing problem is solved by evolving
from HP

full of a nearby structure at ri−1 = 1.558 Å instead
of the maximum commuting Hamiltonian at ri = 1.758 Å.
To obtain the ground state of HP

full(ri−1), one can construct
HGeo(s) consecutively between ri−2 and ri−1, ri−3, and ri−2,
all the way to r0 and r1. In the end, as far as one can solve the
ground state of HP

full(r0) at r0 using MC-QAE, the ground state
of HP

full along the adiabatic path from r0 to ri can be calculated
accurately, eliminating the issue of energy level crossing.

IV. RESULTS ON MOLECULAR
ENERGIES AND FIDELITIES

We apply the GeoQAE approach to three different systems
H2O, CH2, and a chemical reaction H2 + D2 −→ 2HD. We
numerically calculate the following evolution:

|ψ (T )〉 ≈ e−iH (T )�T e−iH (T −�T )�T . . . e−iH (�T )�T |ψ (0)〉 ,

(16)

and evaluate the resultant energy on a noiseless quantum
simulator, where �T = T/M and |ψ (0)〉 is a suitably chosen
initial state. The molecular Hamiltonian (i.e., its coefficients
t’s and u’s) is calculated with the PYSCF package [21] and
transformed to Pauli operators with QISKIT [22]. The transfor-
mation we employ in this work includes the Jordan-Wigner
transformation and the parity transformation. We also freeze
the 1s orbital of C and O atoms. We use the Hartree-Fock
state as our initial state, except for the case of CH2, where
a different initial state is required to obtain the correct HP

full
ground state (see details in Sec. IV B). We compare the Geo-
QAE results with the MC-QAE results that directly evolve
from HP

I (ri) to HP
full(ri).

A. H2O

Ground-state energy. For the gas phase H2O molecule,
we fix the H-O-H angle to be the equilibrium angle at θ =
104.45◦ and compute the ground-state energy as a function of
the O-H distance, d . The parity mapping method, along with
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FIG. 2. Top: the ground-state energy of H2O vs. the O-H
distance, d , obtained with different approaches: classically exact
diagonalization (solid curve), the MC-QAE (triangles), and the Geo-
QAE (dots). The H-O-H angle is fixed to the equilibrium angle
θ = 104.45◦. Bottom: relative errors in the ground-state energies
using the MC-QAE and GeoQAE. T = 40 and M = 20 are used for
both adiabatic methods. The GeoQAE may have larger errors when
T and M are small, but the error can be reduced by increasing the
two parameters.

the qubit reduction method and frozen O 1s orbital, are used
to reduce and simplify the Hamiltonian to ten qubits.

In the GeoQAE calculation, we choose r0 = 0.958 Å in
the initial MC-QAE step with the Hartree-Fock state as the
initial state to obtain the ground state of HP

full(r0). Then we
evolve HP

full to rN = 3.158 Å following the procedure outlined
in Sec. III. Compared to MC-QAE, the GeoQAE method
yields very accurate results with relative errors within 10−5

even at the very large atomic distances where MC-QAE fails,
as shown in Fig. 2. Nevertheless, during the sequential evo-
lution, the error will accumulate from all steps of evolution.
Therefore, to achieve the same fixed accuracy at larger atomic
distances, intuitively we may need more discretization steps
M and a longer evolution time T . However, a recent study
shows that the accumulating error in using Trotterization for
the adiabatic evolution is not as severe as one would expect
if the initial state is an eigenstate [23]. This is in line with
what we have also observed in the bottom panel of Fig. 2 with
T = 40 and M = 20 along the geometric path.

Ground-state fidelity. We also compute the fidelity of the
final state of the adiabatic evolution |ψ (T̃ )〉 with the exact
molecular ground state |ψg〉 of HP

full. In these simulations we
use evolution time T = 40 and discretize the continuous time
evolution to M = 20 time slices. We compare the resultant
ground-state fidelity between MC-QAE and GeoQAE. As we
can see in Fig. 2, MC-QAE results agree with the exact solu-
tion near the equilibrium geometry and show a large error of
0.118 Hartree at d = 1.758 Å. This point can be seen clearly
in Fig. 3, where the fidelity drops to zero beyond 1.758 Å.

FIG. 3. The fidelity of the ground state of H2O. The H-O-H angle
is fixed to the equilibrium angle, θ = 104.45◦. We set T = 40 and
M = 20 for both methods.

The failure of the MC-QAE method can be understood, be-
cause the direct adiabatic evolution from HP

I experiences level
crossings and evolves into excited states at large d , which was
reported in our previous work [15] and illustrated in Fig. 1(a).
On the other hand, the final state evolved via GeoQAE does
have the fidelity close to unity.

B. CH2

CH2 is an open-shell system and it presents a more chal-
lenging case for the GeoQAE method. Due to the facts that the
ground state of CH2 is a triplet state and the spin is conserved
in both MC-QAE and GeoQAE methods, a triplet initial state
has to be prepared in order to obtain the correct ground state.

Energy of the lowest few levels and the choice of initial
states. For the CH2 molecule, we fix the H-C-H angle to be the
equilibrium angle at θ = 101.89◦ and vary the C-H distance,
d . Similar to the H2O case, we freeze the 1s orbital of the C
atom, and the number of spin orbitals and the number of elec-
trons are reduced to 12 and 6, respectively. Since the lowest
few states are not in the same spin configurations, we cannot
use the qubit reduction method in parity transformation. We
use the Jordan-Wigner transformation instead. In Fig. 4, we
list the lowest six eigenstates of the MC Hamiltonian HF

I (r0)
from a closed-shell Hartree-Fock calculation in the occupa-
tion representation (spin up orbitals followed by spin down
orbitals) at r0 = 1.109 Å.

φ1 = |110000, 111100〉, E1 = −10.540

φ2 = |111100, 110000〉, E2 = E1

φ3 = |110100, 110100〉, E3 = −10.499

φ4 = |110100, 111000〉, E4 = −10.487

φ5 = |111000, 110100〉, E5 = E4

φ6 = |111000, 111000〉, E6 = −10.311,

where the energy is in Hartree units. The use of the frozen
C 1s orbital leads to an extra energy shift (−33.895 Hartree)
along with the nuclear repulsion energy of 6.034 Hartree. As
shown in Fig. 4, in the eigenstates above, the first six binary
numbers in the kets represent the occupation of the molecular
orbitals with spin up (labeled as α) in the order of increasing
energy and the last six numbers represent the occupation of
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FIG. 4. The spin and orbital configurations for several lowest-
energy states of HF

I (r0) for CH2 near its equilibrium position. The
four orbitals are obtained from the Hartree-Fock procedure and the
orbital 5 and 6 are empty for all the states we consider here.

the same set of molecular orbitals but with spin down (labeled
as β).

φ1 and φ2 are degenerate triplet ground states. φ4 and φ5 are
also degenerate, which differ by opposite spins in molecular
spin orbitals 3 and 4 (see Fig. 4). The close-shell Hartree-Fock
ground state turns out to be φ6, which is the sixth excited state
of HP

I . Due to the fact that HP
I and HP

full conserve the total spin
angular momentum and its z component, we can use linear
combination of the degenerate single-Slater determinants to
form the singlet and/or triplet states as the desired initial
states. For example, from φ4 and φ5 we can construct a singlet
ψ3 ≡ (φ4 − φ5)/

√
2 and a triplet ψ1,c ≡ (φ4 + φ5)/

√
2 initial

states. For convenience, we also define ψ1,a ≡ φ1, ψ1,b ≡ φ2,
ψ2 ≡ φ3, and ψ4 ≡ φ6.

By using these new sets of initial states, where ψ1,a, ψ1,b,
and ψ1,c are triplet states, it turns out that ψ1’s under HMC(s)
via the MC-QAE evolve into the triple degenerate ground
states of the final Hamiltonian around the equilibrium posi-
tion, while ψ2, ψ3, and ψ4 separately evolve into three low
excited states. We carry out the MC-QAE procedure numer-
ically and verify that they indeed achieve the corresponding
energies and eigenstates with over 99% fidelity. Subsequently,
we proceed with the GeoQAE steps to obtain energies and
wave functions at different d’s that are both smaller and larger
than r0. As shown in Fig. 5, the three energy curves originating
from ψ1’s, ψ2, and ψ3 remain the lowest, whereas the curve
originating from ψ4 evolves to an excited state at large molec-
ular distances (as seen from its gap between the three lower
curves). It is interesting that the lowest two energy curves
cross, i.e., the threefold degenerate ground states become the
first excited states at larger molecular distances. Given that
these different levels have different symmetries, the adiabatic
evolution will not mix them.

We remark that the superposition states, such as ψ1,c and
ψ3, are similar to the Greenberger-Horne-Zeilinger states and
can be easily created and initialized by a short-depth circuit
consisting of Hadamard and CNOT gates. In the above, φi’s
are calculated by direct diagonalizing the initial MC Hamil-

FIG. 5. The lowest four eigenstate energies of CH2 versus the
distance d between the C and H atoms with different initial states.
The H-C-H angle is fixed to the equilibrium angle θ = 101.89◦. We
choose T = 60 and M = 30 for all the cases. Top: The curves repre-
sent exact solutions from directly diagonalizing the Hamiltonian and
the four different legends (labeled by GeoQAE1-4) represent results
from simulated evolution on four different initial states (see the main
text). The bottom panel displays the respective errors in targeting the
eigenenergies.

tonian, which is essentially classical (with Hamiltonian terms
being products of Pauli Z and identity operators). Despite that
finding the lowest configuration of a generic classical (e.g.,
Ising spin-glass) Hamiltonian can be NP, the time complexity
of finding its low-lying states is still much less than those of
the final quantum Hamiltonian for molecules. However, it is
also not known whether the MC Hamiltonians from quantum
chemistry problems are necessarily NP hard.

Fidelity with lowest three levels and the other excited level.
In addition to the energy curves, we also calculate the fidelity
of the evolved states ψ (T̃ ) with the corresponding numeri-
cally solved exact eigenstates ψE , and the results are shown
in Fig. 6. Despite that the ground states (near equilibrium)
are threefold degenerate, their spin configurations are differ-
ent and hence their states can be numerically separated and
distinguished, the use of the fidelity expression in Eq. (12) is
appropriate.

From Fig. 6 we conclude that the GeoQAE can find all
the lowest three levels and the other excited level (the latter
corresponding to the fourth level around the equilibrium) with
high fidelity. In contrast, the direct evolution from MC-QAE
encounters serious problems at larger distances (not shown
explicitly) [15], similar to the case of H2O in the previous
section.

V. CHEMICAL REACTION

The knowledge of the potential energy surface of a chem-
ical reaction is critical to understand the reaction mechanism.
In particular, reaction energies and reaction barrier heights
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FIG. 6. The fidelity of CH2 versus the distance d between the C
and H atoms with different initial states. The H-C-H angle is fixed to
the equilibrium angle θ = 101.89◦. We choose T = 60 and M = 30
for all the cases.

(i.e., the energy differences between reactants/products and
the transition state) are key quantities that dictate the reaction
energetics. It is important to develop quantum algorithms to
compute the reaction potential energy surface.

In the previous section, we have seen that molecular ener-
gies can be accurately obtained by the GeoQAE, which shows
more robustness and wider applicability than the MC-QAE.
As a further application, we now apply this method to ex-
plore the energy landscape of an exemplary chemical reaction:
H2 + D2 −→ 2HD. In addition to a model system for proof
of principle, such a system is also of interest in the context
of experimental realization of cold controlled chemistry [24].
Below we do not consider the difference in the nuclear effects
between H and D, which will influence the dynamics.

To reduce the complexity of the problem, we consider that
the four atoms are initially set as the vertices of a rectangle
with vertical edges from H2 and D2 (r1) longer than horizontal
edges from H. . .D (r2), as shown in Fig. 7. We study the
chemical reaction corresponding to simultaneously stretching
r2 while compressing r1, such that H2 and D2 break apart
and 2HD pairs are formed. In order to reveal the reaction
pathway, it is crucial to obtain the accurate energy of the
square configuration as the most important reaction intermedi-
ate [25]. We find that the MC-QAE method works fairly well
for nonsquare configurations, but fails when the structure is
close to a square, because of the energy crossing associated
with the high symmetry of a square. For square configurations,

FIG. 8. (a) The results of the potential energy surface using
MC-QAE. (b) The results of the potential energy surface after the
correction from geometric adiabatic path. The distances r1 and r2

are in unit of Å. We choose T = 80 and M = 40 for both methods.
The correction only takes place in the region between the two dashed
lines in Fig. 9.

the GeoQAE performs more stable and accurate than the MC-
QAE, as demonstrated in Figs. 8(a) and 8(b). In this study,
we use the Jordan-Wigner mapping to convert the fermionic
Hamiltonians to the corresponding qubit Hamiltonians with
eight qubits. For the off-diagonal points representing unequal
distances in Fig. 9, we use the MC-QAE for both cases. For
the near-diagonal points, we use a two-step process: first we

FIG. 7. The geometric configurations for chemical reaction H2+D2 −→ 2HD.
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FIG. 9. The energy difference compared to the exact results of
the potential energy. The points within the two dashed lines are
calculated by GeoQAE evolving from the nearest (in the sense of
keeping either r1 or r2 the same) boundary of this region. And the
white two arrows show the two possible evolution directions. The
points outside the dashed line is calculated directly from MC-QAE.

compute the ground state of the system at its nearest off-
diagonal neighbor via the MC-QAE, then adiabatically evolve
the system to its ground state at the diagonal point via the
GeoQAE, which is illustrated by the arrows and green dashed
lines in Fig. 9. For each run of evolution from one distance to
another, we set T = 80 and M = 40.

The error in the ground-state energy between the GeoQAE
and the exact solution is shown Fig. 9 and the results are
very accurate except in the region of larger r’s, which can
be improved by using larger M and T (see, e.g., Sec VI).
In Fig. 10, we explicitly compare the results of the MC-
QAE and GeoQAE at r1 = r2, i.e., the square configuration.
We find that the energies from the MC-QAE are substan-

FIG. 10. Top: The results of the potential energy along the r1 =
r2 ≡ d line for two different methods, MC-QAE and GeoQAE. The
bottom panel shows the relative errors from the two methods.

FIG. 11. The results of the fidelity vs. M and T using the H2O
molecule as an illustration. The evolution is from HP

I to HP
full at O-H

distance d = 0.958 Å.

tially higher than those from the GeoQAE (e.g., by 3.6% at
1.390 Å), with the latter having 10−4 relative errors or smaller.
This again underscores the remarkable advantage of the Geo-
QAE in regions where the MC-QAE fails.

VI. ERROR ANALYSIS AND
COMPUTATIONAL COMPLEXITY

Apart from the possible noise and error from real quantum
computers discussed in our previous paper [15], the intrinsic
error of the GeoQAE method mainly depends on three factors:
the evolution time T , the discretizing step number M, and
the discretization of geometric path. We discuss each of them
below.

A. Effects of evolution time T
and discretization number M

The evolution time T and discretization number M control
the degree of adiabaticity and discretization rate, respectively.
If a finite energy gap is maintained along the adiabatic evo-
lution path, one can theoretically achieve arbitrarily high
accuracy by choosing sufficiently large T and M. However,
such large values are not necessarily practical, because large
number of gates will lead to the accumulation of noisy gate
errors. In our simulations, we usually choose T to be inversely
proportional to the minimum gap of the evolution, and fixed
the ratio of T/M to keep the discretization error small. How-
ever, one may not necessarily have the information on the
gaps, and may need to empirically test a few choices to see if
the energy reaches the convergence as T increases. We test the
influence of T and M on the fidelity with the ground state and
find that T has larger impact than M on the fidelity as shown in
the Fig. 11. As one can see, while the fidelity along the M axis
is almost constant, it exhibits a much larger variation along
the T axis. For M � 5, the fidelity increases as a function of
T from ∼0.98 and quickly plateaued close to 1.

B. Effects of Trotter decomposition

To simulate quantum evolution on current gate-based quan-
tum computers, one needs to perform Trotter decomposition
to reduce the evolution operator to simple Pauli rotations.
For one-step evolution e−iH�t of Hamiltonian H = ∑

j h jPj ,
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FIG. 12. Top: the ground-state energy of H2O versus the O-H
distance, d , obtained with different approaches: exact diagonal-
ization (solid curve), the GeoQAE with exact discrete evolution
operators (triangles), and the GeoQAE with Trotter expansions
(dots). The H-O-H angle is fixed to the equilibrium angle θ =
104.45◦. Bottom: relative errors in the ground-state energies using
the MC-QAE and GeoQAE. T = 10 and M = 20 are used for both
methods.

where Pj are Pauli operators, a naive first-order Trotter
expansion is simply

e−iH�t ∼
∏

j

e−ih j Pj�t . (17)

If operators A and B commute with each other, the first-order
Trotter expansion becomes exact, i.e., eA+B = eAeB. There-
fore, a more insightful way to do Trotter expansion than the

FIG. 13. The fidelity of the ground state of H2O for the GeoQAE
with exact discrete evolution operators (diamonds) and GeoQAE
with Trotter expansions (squares). The H-O-H angle is fixed to the
equilibrium angle, θ = 104.45◦. We set T = 10 and M = 20 for both
methods.

FIG. 14. The ground-state energy of H2O at the O-H distance
d = 1.158 Å with different discretization number M, obtained with
the GeoQAE with exact evolution operators (diamonds) and Geo-
QAE with Trotter expansions (squares). T = 10 is used for both
methods.

naive approach is to divide the Hamiltonian into subsets of
commuting Hamiltonians [26],

H =
∑

j

S j, (18)

S j =
∑

k

h jkPk, (19)

where all Pk commute with each other within each S j and
h jk = 0 if Pk does not belong to S j . Thus, one can rewrite the
original expansion as

e−iH�t ∼
∏

j

e−iS j�t

=
∏

j

(∏
k

e−ih jk Pk�t

)
. (20)

Since the second step is exact, the error of this expansion
only comes from the first step of decomposition. To further
reduce the expansion errors, one can choose S1 as the MC
Hamiltonian of H , and S2 as the MC Hamiltonian of H \ S1,
and repeating such procedure until only one term is left or
the rest of the terms commute to each other. As finding the
MC Hamiltonian is NP hard, one can use the greedy algorithm
to get an approximate solution. In addition, for the evolution
from HP

full(ri) to HP
full(ri+1), the forms of Pauli operators do not

change. Therefore, one can use a reference Hamiltonian, e.g.,
1/2[HP

full(ri) + HP
full(ri+1)], to determine the forms of S j , and

only change coefficients hjk during each step of evolution.
We compare the results of the above Trotter expansion

methods with those from the exact (but discretized) evolution
operator from GeoQAE as used in Eq. (16). As shown in
Figs. 12 and 13, the accuracy of the Trotter expansion is
comparable with the exact evolution operator. The error of the
Trotter expansion and exact evolution operators are 10−4 and
10−6 at d = 0.958 Å, and become even closer to each other
when d gets larger. We also study the effect of discretiza-
tion number M for H2O molecule evolving from HP

I (r1 =
0.958 Å) to HP

full(r1) and finally reaching HP
full(r2 = 1.158 Å),

as shown in Fig. 14 and 15. We find that the Trotter expansion
introduces large errors at small M, and when M � 20, the
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FIG. 15. The fidelity of the ground state of H2O at the O-H dis-
tance d = 1.158 Å with different discretization number M, obtained
with the GeoQAE with exact evolution operators (diamonds) and
GeoQAE with Trotter expansions (squares). T = 10 is used for both
methods.

energy (within ∼0.02 Hartree) and fidelity (within ∼0.01)
obtained from the Trotter expansion is very close to the exact
evolution operators.

C. Effects of noise and errors of real machine

To run GeoQAE on current digital quantum computers,
one need perform the evolution operators hundreds of times.
Due to the intrinsic noise of the physical systems in current
quantum computers, such large number of gate operations
may result in substantially inaccurate results. Here we use
random bit-flipping errors as an example to demonstrate the
substantial effects of noise on our GeoQAE method. We first
use the Trotter expansion method described in Sec. VI B to
construct a sequence of Pauli rotations, then with probability
P randomly add an X gate on a randomly chosen qubit after
each Pauli rotation. As shown in Fig. 16, even with very small
probability of bit flipping, the energy results are far away from
the exact one. This indicates that the GeoQAE method is cur-
rently not yet practical for noisy quantum machines. However,
there was an experiment [27] that demonstrated a digitized

FIG. 16. The energy results of the ground state of H2O at the
O-H distance d = 1.158 Å with different flipping error probability
P, obtained with the GeoQAE with Trotter expansions and a random
flipping gate (X ) on each qubit after each Trotter gate. T = 10, M =
20 is used for all the points. The gray line indicates the exact result
E = −74.998 Hartree.

FIG. 17. The dependence of the energy gaps of one-step Geo-
QAE evolution and the fidelity of the ground-state wave functions
of H2O on the bond change �r. The evolution is from HP

full(r0)
to HP

full (r0 + �r), with initial O-H bond length r0 = 0.958 Å and
H-O-H angle fixed θ = 104.45◦. The gap minimum between the
ground state and the first excited state for H (s) = (1 − s)HP

full(r0) +
sHP

full(r0 + �r) shows a trend of exponential decay with �r. The
upper fidelity curve is obtained with T = 160 and M = 80 and the
lower fidelity curve is obtained with T = 40 and M = 20. There is a
substantial improvement using larger T and M values.

adiabatic procedure for Ising systems with smaller number
of qubits and Trotter steps; there one obtained good results.
Thus, with the development of the scaling and accuracy of
quantum computers, one can expect the GeoQAE method may
become realizable in the future.

D. Effects of the discretization of the geometric path

The discretization of the geometric path is also an im-
portant factor of the GeoQAE algorithm. In this work, we
vary bond slightly �r ≡ ri+1 − ri in each step from ri to ri+1.
While �r needs to be small enough to ensure that the physical
evolution is continuous, if it is too small, the computational
time becomes too long and errors will accumulate rapidly.
Therefore, �r needs to chosen carefully. In essence, the ro-
bustness of the GeoQAE algorithm relies on the continuity of
the Hamiltonians when atoms are displaced gradually along
the geometric path (see Appendix D for several methods we
use to ensure the continuity in the Hamiltonians). When �r
is sufficiently small, the one- and two-body coefficients in
Hfull are expected to vary slowly, which ensures the finite
separation of energy levels in HGeo(s). In our calculations, we
found �r ≈ 0.1|r0| as a good empirical rule in the GeoQAE.

Here we investigate the effects of �r on the energy gap
and the fidelity of the H2O system as an example. When �r
gets larger, it requires fewer accumulated steps to evolve to the
desired bond length. However, within each evolution from one
distance to another, the minimum gap will becomes smaller.
Thus, we need longer evolution time for each step in order to
achieve the same accuracy. As shown in Fig. 17, the energy
gaps decrease exponentially with �r as expected. However,
at a moderate size �r = 1.0 Å with small energy gaps (about
0.02 Hartree), the fidelity of the final ground state still remains
high (above 0.98) with T = 40 and M = 20. Even with �r =
2.0 Å, the ground-state fidelity can still reach a value of 0.93,
which can be further improved to 0.99 with larger parameter
values T = 160 and M = 80 (four times more discretization
steps).
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In this study, we only consider the geometric path defined
by simple atomic distances. For more complicated cases, one
can define the coordinate of collective variables and identify
critical points that requires the GeoQAE to provide the accu-
rate answer. For instance, the reaction coordinate is often used
to study chemical reactions, connecting initial state, transition
state, and final state on the potential energy surface. To obtain
the ground-state energy of the transition state, a geometric
path can be chosen along the reaction coordinate. For a given
target geometry, there is vast degree of freedom to choose the
geometric path. In principle, this degree of freedom can be
explored to find optimal paths, where a sizable energy gap is
maintained. This can be an interesting research topic, but it is
beyond the scope of the current work.

VII. CONCLUSION

We have substantially improved an adiabatic algorithm for
computing the ground state and low-lying excited states of
molecules (MC-QAE) proposed in a previous work by in-
troducing a geometric adiabatic evolution path (GeoQAE).
The idea of choosing a suitable Hamiltonian that can be
connected naturally and smoothly to the final Hamiltonian
can be applied to other many-body problems. In our present
focus on the molecular energy, the MC Hamiltonian associ-
ated with a particular final molecular Hamiltonian generalizes
the Fock operator such that the Hartree-Fock ground state is
an eigenstate with the eigenenergy being the Hartree-Fock
ground-state energy.

We showed by numerical simulations of the adiabatic
evolution that the GeoQAE approach gives significant im-
provement on both ground-state energies and the fidelity of
wave functions (as well as few lowest excited states) for
different molecules in the region where the MC-QAE fails
due to energy level crossing. We also demonstrated its po-
tential application by simulating the potential energy surface
for an exemplary chemical reaction involving two pairs of
molecules.

Although on the present noisy quantum devices, the Geo-
QAE approach might not yet be implemented to yield accurate
results due to the required large gate numbers for the evolution
operators, hardware is continuing to be improved and this
may make our algorithm practical in the future. Moreover,
the existence of gaps in the suitably chosen geometric path
may allow alternative quantum approximate optimization al-
gorithm (QAOA)-like approaches or better variational Ansätze
to be developed.
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APPENDIX A: MAPPING FERMIONIC OPERATORS
TO QUBITS

Here we briefly review two widely used methods to map
the fermionic operators to Pauli operators.

1. Jordan-Wigner mapping

The Jordan-Wigner transformation is a widely used method
for mapping fermions (a’s) to spins (σ ’s),

ak =
(

k∏
j=1

σ z
j

)(
σ x

k + iσ y
k

)
/2, (A1)

a†
k =

(
k∏

j=1

σ z
j

)(
σ x

k − iσ y
k

)
/2. (A2)

Let the spin state |−1〉 be qubit state |1〉q and |+1〉 be |0〉q,
it can be easily verified that the fermionic state |0〉 f will be
transformed to |0〉q and |1〉 f to |1〉q. Thus, the mapping keeps
the wave function in the same expression. For example, the
wave function in the fermionic basis |1011〉 f will be mapped
to qubit vector |1011〉q.

2. Parity mapping and qubit reduction

Parity mapping is a method to map the wave function from
the fermion-occupation basis to the so-called parity basis. Let
f j (can only be 0 or 1 for fermions) be the occupation number
in the fermionic basis, and p j = (

∑ j
i=1 f j mod 2) counts the

parity of the orbitals up to j, the parity basis can be chosen as
|p1 p2 . . . pn〉. And the corresponding transformation is [17]

ak = 1

2

⎛
⎝ n∏

j=k+1

σ x
j

⎞
⎠(

σ x
k σ z

k−1 + iσ y
k

)
, (A3)

a†
k = 1

2

⎛
⎝ n∏

j=k+1

σ x
j

⎞
⎠(

σ x
k σ z

k−1 − iσ y
k

)
. (A4)

Our label for fermions and qubits begin at 1 and we define the
operator σ z

0 to be the identity matrix. One can verify that the
fermionic basis | f1 . . . fn〉 can be mapped to the parity basis
|p1 . . . pn〉 according to the definition of pis. For example,
the fermionic state |101110〉 f will be mapped to parity state
|110100〉p.

Now consider a fermionic state with spin configura-
tion | f α

1 . . . f α
n , f β

n+1 . . . f β

2n〉 and its parity correspondence
|p1 . . . pn, pn+1 . . . p2n〉. Note that the pn counts for the parity
of all α-spin orbitals and p2n counts for the parity of all
orbitals. Therefore, if one further assumes the conservation
of the spin and particle number, the parity numbers pn, p2n

are constants. Thus, one can remove the two qubits and only
consider the subspace spanned by states with same electron
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number and spin configuration, which reduces the complexity
of both quantum computations and classical simulations.

APPENDIX B: BRIEF REVIEW OF THE
HARTREE-FOCK METHOD

Here we summarize the Hartree-Fock procedure so as to
introduce the notation used in the main text of the paper. We
refer the readers to standard textbooks such as Ref. [1], for
more details. Given a molecule, our goal is to solve the time-
independent electronic Schrödinger equation,[

−1

2

∑
i

∇2
i − 1

2

∑
I

∇2
I

MI/me
−

∑
A,i

ZA

rAi

+
∑
A>B

ZAZB

RAB
+

∑
i> j

1

ri j

]
�̃(r; R)

= E�̃(r; R), (B1)

where �̃ is the wave function for both nuclei and electrons,
ZI is the atomic number for atom I (whose nucleus shares the
same symbol and has mass MI ), i and j index electrons (whose
mass is denoted by me, and charge e is set to unity). If we are
only interested in the electronic wave functions, we can treat
the nuclei as fixed point charges, and the Hamiltonian will be
simplified to[

−1

2

∑
i

∇2
i −

∑
A,i

ZA

rAi
+

∑
i> j

1

ri j

]
�(r; R) = Eel�(r; R),

(B2)

where �(r; R) now represents the electronic wave function,
with nuclei positions R as parameters. Suppose we use single
Slater determinants as one-electron wave function, and intro-
duce fermionic creation operators and annihilation operators,
the Hamiltonian can be written in the second quantized picture

Hel =
∑
i, j

ti ja
†
i a j + 1

2

∑
i, j,k,l

ui jkl a
†
i a†

kala j, (B3)

where

ti j = 〈i|h| j〉 =
∫

dx1χ
∗
i (x1)

(
−1

2
∇2

1 −
∑

A

ZA

rA1

)
χ j (x1)

(B4)

and

ui jkl = [i j | kl]

=
∫

dx1dx2χ
∗
i (x1)χ j (x1)

1

r12
χ∗

k (x2)χl (x2) (B5)

were introduced in the main text. The energy expression
becomes

Eel = 〈�|Ĥel |�〉
=

∑
i

〈i|h|i〉 + 1

2

∑
i j

([ii | j j] − [i j | ji]). (B6)

In Hartree-Fock method, we assume the ground-state wave
function can be approximated by a single Slater determi-

nant, and the Hamiltonian can be reduced to a one-body
Hamiltonian,

f̂ =
∑
i, j

(ti j + Vi j )a
†
i a j, (B7)

Vi j =
∑
k∈occ

(uikk j − uik jk ), (B8)

where f̂ is referred to as the Fock operator. In the Hartree-
Fock calculation, we seek for an optimal molecular basis set
(labeled by Greek letters in the main text) that can minimize
the energy expectation value, starting from a chosen set of
atomic orbitals (labeled by Roman letters), such as the STO-
3G basis set. An iterative calculation can be performed to
obtain the optimal molecular basis set. After we obtain one
basis set for the Fock operator, we diagonalize the operator
and rewrite the full Hamiltonian in the new basis set, then
perform the diagonalization again until the result converges.
We use the quantum chemistry package PYSCF [21] to perform
this classical step of calculations.

APPENDIX C: JORDAN-WIGNER MAPPING OF THE
INITIAL HAMILTONIAN AND ITS RELATION

TO THE HARTREE-FOCK SOLUTION

Here we use Jordan-Wigner mapping as an example to
show the connection between our choice of the initial Hamil-
tonian and the classical Hartree-Fock method. Suppose after a
classical Hartree-Fock calculation, we get a set of converged
orbital basis {|ψα〉} and their corresponding creation and an-
nihilation operators aα, a†

α , the full Hamiltonian in the second
quantization picture is

HF
full =

∑
α,β

tMO
αβ a†

αaβ + 1

2

∑
α,β,γ ,δ

uMO
αβγ δa†

αa†
γ aδaβ,

which, by Jordan-Wigner mapping, results in a summation
of Pauli operators HP = ∑

Pi. And our choice of the initial
Hamiltonian for the Pauli operators is the summation only
over the terms containing only Zs and Is, which originate from
the terms of the fermionic operators that only contains number
operators a†a,

HF
I =

∑
α

tMO
αα a†

αaα

+ 1

2

∑
α,β

(
uMO

ααββa†
αa†

βaβaα − uMO
αββαa†

αa†
βaαaβ

)
. (C1)

Note that due to the choice of our molecular basis, the
|ψα〉s are converged Hartree-Fock molecular basis. Thus, the
Hartree-Fock state in the fermionic basis is simply occupy-
ing the lowest-energy orbitals. Suppose the wave function
for orbital labels f α

1 , f α
2 , . . . with lowest energy first (for

same spins) and consisting of α and β spin takes the
form | f α

1 ... f α
n , f β

n+1 . . . f β

2n〉, the Hartree-Fock wave function
for a four-electron and eight-orbital state is |1100, 1100〉.
It is obvious that the state is one of the eigenstates
of our initial Hamiltonian Eq. (C1), with corresponding
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eigenenergy

HF
I |ψHF〉 =

( ∑
α∈occ

tMO
αα + 1

2

∑
α,β∈occ

(
uMO

ααββ − uMO
αββα

)) |ψHF〉 .

(C2)

Comparing the value with the expression of the Hartree-Fock
energy Eq. (8), one can verify that they are exactly the same.
Therefore, the Hartree-Fock wave function is an eigenstate
of our initial Hamiltonian with the eigenenergy equal to the
Hartree-Fock energy. We remark that the Hartree-Fock state
is not always the ground state of the HF

I (while in most cases
where the bond lengths are near equilibrium, it is), and the
fermionic Hamiltonian HF

I is also different from the conven-
tional definition of Hartree-Fock Hamiltonian Eq. (B7), where
only one-body terms are contained.

APPENDIX D: METHODS TO ENSURE THE CONTINUITY
OF THE HAMILTONIAN

The energy gap for the evolution from HP
full(r) to HP

full(r +
�r) rely on the continuity of the Hamiltonian with respect
to geometric configuration r. If the Hamiltonian difference
|HP

full(r) − HP
full(r + �r)| is small, then the changes of the

spectrum are also small, which gives rise to a relatively large
energy gap during the evolution so that the evolving state is
not likely to mix with other energy levels; see, e.g., Fig. 1(b).
Since the HP

full(r) is transformed from the fermionic Hamil-
tonian HF

full(r), the continuity of HP
full(r) is equivalent to that

of HF
full(r), which is essentially the continuity of tMO

αβ (r) and
uMO

αβγ δ (r). If we choose a fixed basis for all configurations
of a molecule, the continuity is guaranteed by the physical
continuity of the Hamiltonian with respect to the geometric
configuration r. However, our choice for each configuration
is the Hartree-Fock molecular basis, which depends on the
Hartree-Fock calculation at each geometric configuration and
is not necessarily continuous with bond length. We will dis-
cuss below several methods to ensure the continuity of the
HP

full(r). We emphasize again that for our purpose it is not
important how good the Hartree-Fock solution is to the exact
solution but continuity of the Hamiltonians HP

full(r) as r varies.

1. Initial guess

The efficiency and convergence of a Hartree-Fock calcu-
lation depends largely on the choice of the initial guess. In
our algorithm, we need the Hartree-Fock molecular bases for
a series geometric configurations r0, r1, . . . , rN , where r0 is
chosen to be a near-equilibrium configuration and the dis-
tances between each successive configurations |rn+1 − rn| are
small. Since the difference of the two configurations is small,
the Hartree-Fock calculation results of them are close to each
other. Thus, the converged basis from previous configuration
is a good initial guess for the next configuration and a Hartree-
Fock calculation is likely to converge near the initial basis.

Therefore, for a given configuration rn of the molecule,
our choice of initial guess is chosen to be the converged
density matrix at previous configuration rn−1. For the initial
configuration r0, we can choose any initial guess that gives a
converged result.

2. Permutations and signs of the molecular basis

Suppose we have obtained a set Hartree-Fock molecu-
lar basis states {|ϕi〉r} at configuration r, it is obvious that,
if we perform a permutation |ϕ′

1〉 = |ϕ2〉 , |ϕ′
2〉 = |ϕ1〉, or

add a minus sign |ϕ′
1〉 = − |ϕ1〉, the new molecular basis

set is equivalent as before. However, after one does such
transformation to the basis, the Hamiltonian should also be
transformed accordingly. And such transformation will result
in a noticeable nonvanishing increase of the difference of the
Hamiltonians |HP

full(r) − HP
full(r + �r)| (compared to the case

where the bases at both distances are very similar, even in
terms of their ordering) despite that �r is very close to 0.

To solve this problem, we manually perform a proper
permutation and a suitable sign change (if necessary) to re-
align and enforce the molecular basis {|ϕi〉r+�r} at r + �r
consistent with {|ϕi〉r} at r, so that the basis is continuous
with respect to the change in the geometric configuration r.
In our calculation, the molecular orbitals |ϕi〉 are written in
combinations of atomic orbitals |ϕi〉 = ∑

j Ci j |φAO
j 〉, where

the superscript AO denotes the atomic orbitals, which are con-
structed locally and automatically continuous with geometric
configuration r. Therefore, by comparing and realigning the
molecular coefficients C(r)

i j and C(r+�r)
i j at the successive con-

figurations r, r + �r, one can ensure the continuity of the
Hartree-Fock molecular basis with respect to the geometric
configuration r.

3. Transforming the unconverged molecular basis

In some cases where the Hartree-Fock calculation is hard to
converge and cannot be improved by choosing a good initial
guess, we need to abandon the quality of the Hartree-Fock
results to ensure the continuity of the Hamiltonian HP

full(r).
To do this, we use the molecular coefficients C(rn )

i j at the
previous configuration rn to calculate the molecular basis at
next configuration rn+1

|ϕi〉rn+1
�

∑
j

C(rn )
i j

∣∣φAO
j

〉
rn+1

. (D1)

Note that the atomic orbitals are not necessarily orthogonal
to each other. We need additional transformations to ensure
|ϕi〉rn+1

is an orthonormal basis. Denote S(rn )
i j = 〈φAO

i |φAO
j 〉

rn

and S(rn+1 )
i j = 〈φAO

i |φAO
j 〉

rn+1
, and assume the molecular basis

at rn is already orthonormal 〈ϕi|ϕ j〉rn
= δi j . We construct the

molecular basis at rn+1:

|ϕi〉rn+1
=

∑
j,k,l

C(rn )
i j (S(rn ) )

1
2
jk (S(rn+1 ) )

− 1
2

kl

∣∣φAO
l

〉
rn+1

≡
∑

l

D(rn+1 )
il

∣∣φAO
l

〉
rn+1

, (D2)

where the matrix power operation A1/2 is defined as follows: if
matrix A can be diagonalized A = U T �U and � is a positive
diagonal matrix, we define A1/2 = U T �1/2U . One can easily
verify that 〈ϕi|ϕ j〉rn+1

= δi j . Note that matrix S(r) is only re-

lated to |φAO〉r. If �r = rn+1 − rn is small enough, we have
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|φAO
l 〉rn+1

∼ |φAO
l 〉rn

and S(rn ) ∼ S(rn+1 ). Thus,

|ϕi〉rn+1
∼

∑
j

C(rn )
i j |φAO

l 〉rn
= |ϕi〉rn

. (D3)

After transforming the Hamiltonian HP
full(rn+1) according to

the new molecular basis Eq. (D2), we assure the continuity of
the Hamiltonian.
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