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Solvable non-Hermitian skin effect in many-body unitary dynamics
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We study unitary evolution of bipartite entanglement in a circuit with nearest-neighbor random gates. Deriving
a compact nonunitary description of purity dynamics on qudits we find a sudden transition in the purity relaxation
rate the origin of which is in the underlying boundary localized eigenmodes—the skin effect. We provide the
full solution of the problem, being one of the simplest iterations of two-site matrices, namely, that each is a
sum of only two projectors. This leads to rich dynamics influenced by the Jordan normal form of the kernel
and, most importantly, a spectrum that is completely discontinuous in the thermodynamic limit. It provides a
simple example of how a seemingly innocuous many-body unitary evolution can harbor interesting mathematical
effects: an effective nonsymmetric Toeplitz transfer matrix description causes a phantom relaxation, such that
the correct relaxation rate is not given by the matrix spectrum, but rather by its pseudospectrum.
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I. INTRODUCTION

Success of physics relies on managing to describe seem-
ingly complicated phenomena in a simple way. Trying to
understand behavior of systems of many particles has been an
important theme ever since the exact solution of the two-body
problem of celestial mechanics. As the number of particles
increases the resulting many-body physics is in general not
analytically solvable anymore. Unitary evolution in such large
Hilbert space in quantum mechanics, or unitary Koopman
propagation in classical phase space [1], is simply too compli-
cated. Nevertheless, in the thermodynamic limit (TDL) when
the number of particles goes to infinity things can simplify for
sufficiently well-behaved quantities—the driving principle of
statistical physics.

The TDL of system size n → ∞ together with the long
time limit t → ∞ can bring in the game some very interesting
effects that are at first sight seemingly at odds with unitarity.
For instance, the overlap preservation due to unitarity would
seem to prohibit exponential sensitivity to initial conditions—
a characteristic of chaos, or, reversibility of unitary evolution
is against the entropy increase of the second law of thermo-
dynamics. A resolution of such fallacies often relies on (i)
the fact that we are not interested in unitary evolution on
the full space, particularly in many-body systems, but rather
in the evolution of few relevant quantities obtained by either
coarse graining or by integrating out most degrees of freedom,
and (ii) the fact that limits n → ∞ and t → ∞ often do not
commute. Behavior at fixed t and n → ∞ (the correct TDL)
can be counterintuitive and against our expectation based on
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unitary dynamics in the limit t → ∞ at fixed n, a fact that will
feature also in our paper.

Deriving and understanding such effective description of
relevant observables is therefore important. In the present
paper we are going to derive an exact description for a spe-
cific quantity in a many-body quantum system, resulting in
a non-Hermitian matrix that will cause rather interesting ef-
fects; for instance, the rate of generating entanglement will
exhibit a sudden change with time. Exact solution will bring
under the same roof mathematics related to a number of
recent interesting observations like topology-induced non-
Hermitian skin effect [2–12] (for reviews see Refs. [13,14]),
disparity between Lindbladian relaxation time [15–17] and
the inverse gap [18], metastable Majorana bosons localized
at a boundary of a Lindbladian system [19], and a phantom
two-step relaxation [20,21]. A solvable instance of the many-
body non-Hermitian skin effect that exactly emerges from
the underlying unitary dynamic, rather than starting with a
non-Hermitian Hamiltonian, should be of value. We also pro-
vide a solvable example of the recently numerically observed
phantom relaxation of purity [20], seen also in out-of-time-
ordered correlation (OTOC) functions [21] and von Neumann
entropy, and occurring in a variety of different random cir-
cuits. While exact solutions are always special, and in this
sense not generic, we should stress that our results present a
solvable example of this more generic phenomenon, thereby
providing an explicit understanding of the underlying inner
workings. It also adds an analytic result about entanglement in
random circuits (see Refs. [22–32] for a set of previous exact
results).

All this physics is a manifestation of rich underlying
mathematics. While non-Hermitian systems with their excep-
tional points have been studied extensively (see, e.g., reviews
[33–35]), focus has been on the single-particle setting (see
though, e.g., Ref. [36] for a many-body case). The many-
body setting brings with it an additional TDL. As we will
see, the non-Hermitian Toeplitz matrices [37] are such that
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their spectrum for any finite size is completely different than
the spectrum of the operator in the TDL. While such math-
ematical properties have been observed and appreciated in
numerical analysis [38], e.g., in the convergence rate of al-
gorithms like Gauss-Seidel iteration, they are less known in
physics (see though Ref. [19] for some cases). Also, the el-
ementary step of our effective description is rather simple:
It is just a sum of two projectors the action of which is a
sequence of project-rotate-stretch steps. Understanding ele-
mentary building blocks has proved beneficial in the past; an
example is the stretch-and-fold scenario of classical chaos as
epitomized by the horseshoe map [39].

II. AVERAGE PURITY EVOLUTION VIA
TRANSFER MATRIX

We want to study bipartite entanglement in a chain of n qu-
dits with local Hilbert space dimension d . Unitary propagator
U for one unit of time is a product of independent identically
distributed (i.i.d.) two-site random gates Uj, j+1 distributed
according to the unique unitary-invariant Haar measure (see,
e.g., Ref. [40]):

U = Un−1,nUn−2,n−1 · · ·U1,2. (1)

Gates are therefore applied in a staircase configuration with
open boundaries (see, e.g., Refs. [20,27,41] for cases where
such configuration has been discussed). The pure state at time
t is |ψ (t )〉 = Ut |ψ (0)〉. For exact analytical derivations we
will require that all two-site gates are i.i.d. random gates [in
total (n − 1)t i.i.d. gates in the whole Ut ]; however, numeri-
cally we will see that in the TDL physics is the same even if
we apply the same gate at all sites and all times (a single Haar
random gate in the whole Ut ). Purity for a bipartition into first
k sites (subsystem A) and the rest (subsystem B) is

Ik (t ) = tr
[
ρ2

k (t )
]
, ρk (t ) = trk+1,...,n(|ψ (t )〉〈ψ (t )|). (2)

For a separable initial state one has Ik (0) = 1 after which
purity decays, i.e., entanglement increases. At long time it will
converge to Ik (∞) = (dk + dn−k )/(1 + dn), being purity of a
random state [42]. We are interested in the decay of purity to
this asymptotic value.

One can show that the average dynamics of the squares
of expansion coefficients of ρ(t ) is governed by a Markovian
process [22,43] acting on the operator space of dimension d2n.
The dimensionality can though be reduced down to dimension
2n [23], regardless of d , with the Markovian matrix being
equal to the Hamiltonian of a XY spin chain. More recently
an equivalent mapping has been obtained by an independent
and more general means [32] and we shall use that formu-
lation (see Appendix A for technical details and different
possible representations). Defining purities for all 2n possible
bipartitions by Is(t ), where the n-bit string s = (s1, s2, . . . , sn)
encodes the bipartition A + B, s j = 1 denoting the jth site
being in A, while s j = 0 denotes it is in B (we will use a
scalar index k in Ik to denote a bipartition with the first k
contiguous sites in A, and a vector index s like in Is for an
arbitrary bipartition), one can show [32] that under a random
two-site unitary the average Is(t + 1) is obtained from Is(t )
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FIG. 1. Purity decay for a single random circuit realization with
20 qutrits and a half-half bipartition (squares and triangles). Due to
a self-averaging in large Hilbert space (dn ≈ 3 × 109) results are es-
sentially the same as for the exact average purity (full curve). Brown
dashed curve, theoretical asymptotic decay given by the transfer
matrix eigenvalue; black dashed line, theoretical phantom decay. The
inset shows the transition in the local λeff defined as I (t ) = Cλt

eff .

simply by a matrix multiplication:

Is(t + 1) =
∑

s′
[M]s,s′ Is′ (t ), (3)

where a 2n × 2n matrix M is a product of two-site matrices
Mj,k describing individual gates applied in a given protocol
per unit of time, in our case for the staircase configuration

M = Mn,n−1 · · · M1,2, Mj,k =

⎛
⎜⎝

1 0 0 0
α 0 0 α

α 0 0 α

0 0 0 1

⎞
⎟⎠, (4)

where the two-site Mj,k acts nontrivially only on sites j and
k and is written in the basis s jsk ordered as {00, 10, 01, 11},
while for α one gets [32]

α = d

d2 + 1
. (5)

We therefore have in (3) a transfer matrix description of
the time evolution of purity averaged over random unitaries.
Starting with a product initial state, for which all purities are
Is(0) = 1, i.e., the initial purity vector is (1, . . . , 1), we obtain
the average purity at time t by a multiplication by Mt . Before
going to exact derivations let us have a peek at what purity
looks like so that it will be clear what interesting physics
we are trying to explain. We show in Fig. 1 with squares an
example of purity evolution for a single qutrit (d = 3) circuit
realization with all two-site gates being independent random
(as well as for the case when all two-site gates are equal to the
same random unitary, blue triangles). The main observation
is that initially (t < 10 for the shown n = 20) the decay is
exponential, I (t ) = (3/7)t , whereas at later time it transitions
into I (t ) ∼ (9/25)t ; see also the inset that shows transition in
λeff defined by λeff (t ) = exp [I ′(t )/I (t )]. What is surprising is
that λph = 3/7 is larger than any nontrivial eigenvalue of M.
Namely, M has an eigenvalue 1 corresponding to the steady
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|10〉 − |01〉

|v1〉 ∼ |00〉 + |11〉

|v2〉 ∼ |00〉 − |11〉

σ1|u1〉

FIG. 2. Action of the two-site Mj,k (4): Project to a two-
dimensional plane |v1,2〉, then rotate into plane |u1,2〉, and stretch
along |u1〉 (the blue circle is transformed to a red ellipse).

state with purity I (∞), while the second largest eigenvalue is
λ2 = 9/25. One would expect the asymptotic decay I (t ) ∼ λt

2,
while in fact in the TDL the transition time between the
two decays moves to infinity and one observes decay with
λph = 3/7. Such sudden transition in the relaxation rate has
been recently numerically observed in purity [20] and OTOCs
decay [21] in a number of different qubit circuits. We will
explain it by providing an exact solution for any d for our
specific circuit.

III. RESULTS

A. Two-site transfer matrix

Let us begin by making a few observations on M the prop-
erties of which we need to understand. It is a product of quite
simple two-site matrices Mj,k (4) that have only two nonzero
eigenvalues equal to 1 and therefore only two projectors in the
spectral decomposition (see Appendix A).

Singular value decomposition (SVD) also has just two
nonzero singular values σ1 = √

1 + 4α2 and σ2 = 1, Mj,k =
σ1|u1〉〈v1| + |u2〉〈v2|, where (up to normalization) u1 =
(1, 2α, 2α, 1), u2 = (1, 0, 0,−1), and v1 = (1, 0, 0, 1), v2 =
u2. Vectors u j and v j are orthonormal, 〈u j |uk〉 = δ j,k ,
〈v j |vk〉 = δ j,k , offering a nice geometrical interpretation
(Fig. 2): From a four-dimensional two-site space we (i) project
to a two-dimensional subspace spanned by basis {|v1〉, |v2〉},
then (ii) rotate to a plane spanned by {|u1〉, |u2〉}, and finally
(iii) stretch by a factor σ1 > 1 along |u1〉. The whole circuit M
is an iteration of such elementary project-rotate-stretch steps
on successive sites. Such an elementary step could perhaps
serve as a simple nontrivial toy unit step to describe certain
features of nonunitary dynamics.

B. Exact purity

Spectral properties of the full many-body M though do not
follow in any simple way from those of Mj,k . While one can
infer some of its properties (see Appendix A) we will take a
different route and derive a direct evolution equation for n − 2
purities Ik (t ), k = 2, . . . , n − 1 (2). Remember, those are pu-

rities for a subsystem A being the first k sites. The simplifying
property is that for, e.g., k = n/2 we need I1···10···0(t ), i.e., all
last n/2 bits in s have to be zero, and one can reach the 00
state by Mj,k only from the 00 [first row of Mj,k in Eq. (4)].
For the staircase configuration one can then work backwards
in time and see from which terms at previous times one can
get a given bit string. It turns out (see Appendix B) that the
equations are

Ik (t ) = αk +
k+1∑
r=2

αk+2−rIr (t − 1). (6)

This recursion can be used to get exact expressions for puri-
ties, starting with Ik (0) = 1. With increasing time expressions
get more and more complicated (see Appendix B); however,
all are of the form

Ik (t ) =
(

α

1 − α

)t

+ αk pt−1(n), (7)

where pr (x) is a polynomial of degree r in x (polynomial also
depends on k). Fixing extensive subsystem A with k ∝ n, for
instance k = n/2 for the half-half bipartition, letting n → ∞
the second term will be αk → 0 (α < 1/2 for d > 1), leaving
just

Ik (t ) = λt
ph, λph = α

1 − α
= d

d (d − 1) + 1
. (8)

For d = 3 this gives λph = 3/7 seen in Fig. 1, and explains
the phantom eigenvalue λph = 2/3 numerically observed for
d = 2 in Ref. [20].

An alternative and more insightful route is via spectral
properties of M. The recursion (6) can be compactly written
as a matrix iteration of the purity vector I = (I2, I3, . . . , In−1):

I(t + 1) = a + T I(t ), (9)

where a = (α2, α3, . . . , αn−2, αn−1 + α) and the Toeplitz ma-
trix T (a matrix that has the same matrix elements along each
diagonal):

T =

⎛
⎜⎜⎜⎜⎜⎝

α2 α 0 · · · 0
α3 α2 α · · · 0
...

...
. . . · · · ...

αn−2 αn−3 . . .
. . . α

αn−1 αn−2 · · · · · · α2

⎞
⎟⎟⎟⎟⎟⎠

. (10)

With T we are describing a subset of all 2n bipartitions, and
therefore eigenvalues of T are also eigenvalues of M. In fact,
the largest eigenvalues of M are precisely those of T . The
matrix T has a lower-Hessenberg form (i.e., nonzero lower
triangle plus a nonzero superdiagonal) and its spectral decom-
position can be written out explicitly in terms of Chebyshev
polynomials (Appendix C and Ref. [44]). It has a degenerate
kernel of dimension n

2 − 1 with a single Jordan normal block
[45], and n

2 − 1 nondegenerate eigenvalues λ̃ j :

λ̃ j = 4α2 cos2 ϕ j, ϕ j = jπ

n
, j = 1, . . . ,

n

2
− 1. (11)
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FIG. 3. The skin effect of eigenvectors of T (10) for d = 3.
Three right (full symbols) and left eigenvectors (empty symbols), all
showing localization at the left or right edge, respectively. Inset: the
angle ϕ1, j between eigenvectors R1 and Rj falls off as ≈1/n2.

The largest eigenvalue of T , which is also the second largest
eigenvalue λ2 of M, is therefore in the TDL

λ2 = 4α2 = 4d2

(d2 + 1)2
. (12)

For d = 3 it is λ2 = 9/25 (giving the asymptotic decay in
Fig. 1). We have therefore analytically shown that at fixed
t and n → ∞ the decay is In/2(t ) − In/2(∞) = λt

ph, while at
fixed n and sufficiently long time one will have In/2(t ) −
In/2(∞) ∼ λt

2. One can also see (Appendix C) that for ex-
tensive k the asymptotic decay λt

2 in Ik (t ) − Ik (∞) will kick
in only at a time that is proportional to n. Therefore, at any
fixed t and for n → ∞ the decay will be (8) as if there
would be a phantom eigenvalue λph in the spectrum of M
(λ1 = 1 > λph > λ2). This is the so-called phantom relaxation
[20]. How can that be?

C. Spectral resolution

On the level of the spectral decomposition, where we
would write a matrix in terms of its eigenvalues and left
and right eigenvectors, it happens because the left and right
eigenvectors of T are exponentially localized. This leads to
expansion coefficients of the initial vector over left eigenvec-
tors of T that grow exponentially with n, thereby delaying the
appearance of � λt

2 to later and later times as n increases.
Denoting by [Rj]k the un-normalized kth component (k =

1, . . . , n − 2) of the right eigenvector of T corresponding to
λ̃ j , one has

[Rj]k = (2α cos ϕ j )
k−2 sin [(k + 1)ϕ j]

sin ϕ j
, (13)

while the left eigenvectors are simply the reflected Rj :

[Lj]k = (2α cos ϕ j )
n−3−k sin [(n − k)ϕ j]

sin ϕ j
. (14)

Few eigenvectors are shown in Fig. 3. One can see that all
eigenvectors are localized at the boundary, resulting in over-
laps of un-normalized 〈Lj |Rj〉 being exponentially small in n.
What is more, an increasing number of left (as well as right)
eigenvectors is becoming almost colinear (the inset). With
increasing n those eigenvectors and eigenvalues are becoming

essentially degenerate. These properties are responsible for λ2

not giving the correct decay in the TDL. Our solution pro-
vides an example of a non-Hermitian skin effect—a situation
where an extensive number of eigenmodes becomes localized
at a boundary [13,14], and which is related to topological
invariants (similar to a winding number of Toeplitz matrices
[37]). The same effect is here responsible for the transition in
the purity relaxation rate. Using the spectral decomposition of
T one can explicitly write down Ik (t ) in terms of a sum, from
which another interesting feature arises: Using only nonzero
λ̃ j one will not correctly describe In/2(t ) for t < n/4; to get
that short-time decay correctly one needs to properly account
also for the Jordan structure of the kernel (see Appendix C).
To discuss the phantom relaxation itself though, the Jordan
structure of the kernel is not crucial.

D. Noncommutativity of limits

We see that in such phantom relaxation the limits t →
∞ and n → ∞ do not commute. On the other hand the
spectrum of finite T (or M) is perfectly smooth—nothing
special happens with λ̃ j as one increases n [see Eq. (11)].
Resolution of this “paradox” lies in the difference between
the spectrum of a finite Toeplitz matrix and the spectrum of
the corresponding Toeplitz operator (an infinite matrix T∞).
Toeplitz matrices [37] can be compactly specified in terms of
the so-called symbol a(z = eiθ ), being the Fourier transforma-
tion of its diagonals. That is, we can write Ti, j = ai− j , where
ak = 1

2π

∫ 2π

0 a(eiθ )e−ikθ dθ is defined in terms of the symbol.
For our specific T one can easily calculate the symbol, and
it is

a(z) = α

z
+ α2

1 − αz
. (15)

It is a sum of α/z giving the superdiagonal, and α2/(1 − αz)
responsible for the lower triangle. Many powerful results are
known for Toeplitz matrices [37], one of them stating (under
certain conditions fulfilled by T ) that the spectrum of the
Toeplitz operator T∞ is given by the set a(z) for |z| � 1. This
set is the oval shape visible in Fig. 4. We can see that the spec-
trum of T is completely discontinuous: For any finite n the
spectrum is real, λ̃ j ∈ [0, λ2], and is nothing like the spectrum
of T∞, which fills the lemon-shaped figure given by the sym-
bol. In particular, the norm of T∞ is equal to ‖a‖∞ = a(z =
1) = α/(1 − α). The phantom eigenvalue λph that determines
purity decay in the TDL, and was mysteriously absent from
the spectrum of T , is simply the norm of T∞:

λph = ‖a‖∞ = α/(1 − α). (16)

Such discontinuities are well known in the theory of
Toeplitz matrices and are for instance important in numerical
analysis when analyzing stability and convergence rate of
algorithms. In fact, the matrix T (10) is for α = 1

2 very similar
to the iteration matrix of the Gauss-Seidel method for solving
systems of linear equations [46]. When dealing with such
“fragile” spectra what usually matters is not the spectrum, but
rather the pseudospectrum [38]. A pseudospectrum is defined
as the spectrum of a perturbed matrix. An ε pseudospectrum
spε(z) of T is a set of z such that z is in the spectrum of T + εE
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FIG. 4. (a) Exact spectrum of the Toeplitz operator T∞ (shaded oval) vs the spectrum of a finite large Toeplitz matrix T (red line) for d = 3.
Red symbols show eigenvalues for small n = 20 (crosses, λ̃ j ; circle, λ = 0). (b) Pseudospectrum: Numerically computed spectrum of a single
T + εE (E is a matrix of i.i.d. real Gaussian random numbers; ε = 10−15) for n = 20, 100, 500 (circles, triangles, and squares, respectively).
(c) Decreasing perturbation ε at fixed n = 20, the spectrum of T + εE (points) goes towards that of a finite matrix T (11).

for some ‖εE‖ < ε. For normal matrices (e.g., Hermitian or
unitary) the pseudospectrum is essentially the same as the
spectrum; for non-normal ones this is not necessarily the case.
A quick estimate of the pseudospectrum can be obtained by
perturbing T by a single matrix, and this is shown in Fig. 4.
We can see that fixing small ε and letting n → ∞ the pseu-
dospectrum indeed goes to that of T∞ [Fig. 4(b)], rather than
to that of a finite matrix. Beware also that the limits ε → 0
and n → ∞ do not commute: If one decreases ε at fixed n the
spectrum goes to that of a finite matrix [Fig. 4(c)].

The pseudospectrum is smooth in n, including the TDL,
while the spectrum is not. Looking at the pseudospectrum of
T instead of at the spectrum would therefore even for finite
n predict the correct relaxation rate λph. We have an exam-
ple where being exact (exact finite T ) is actually wrong—it
gives λ2 that predicts an incorrect relaxation rate, while being
slightly wrong (perturbed T ) is correct—λph gives the correct
relaxation rate. The importance of the pseudospectrum has
recently been stressed in several situations [19,47–49].

IV. CONCLUSION

Calculating purity dynamics in a unitary staircase config-
uration random circuit on qudits reveals a transition in the
entanglement growth rate due to localized eigenmodes (skin
effect) of the underlying nonsymmetric matrix describing
purity dynamics. Explicit results for eigenvalues and eigen-
vectors allow us to get, among other things, exact results
for the initial phantom relaxation rate, i.e., the one relevant
in the TDL, and the asymptotic relaxation rate given by the
second largest eigenvalue of the transfer matrix as observed
in finite systems. The transition time between the two rates
diverges in the TDL, while their ratio increases for larger qudit
dimensions.

All this is a consequence of rich mathematics of the un-
derlying solvable Toeplitz matrix, which has an extensively
large Jordan normal form kernel; the main point though is that
its spectrum discontinuously changes in the TDL. Any finite
matrix has a completely different spectrum than the infinite-
size matrix. The relevant quantity for purity dynamics in the
TDL is in fact not the spectrum but rather the pseudospectrum.

Similar techniques as applied here could be applied to
other circuits with two-qudit random gates (for a brick-
wall example see Appendix C). Considering that a similar
phantom relaxation has been found for many other random
circuits with single- or two-site random gates, as well as for
out-of-time-ordered correlations, a natural question is whether
the physical/mathematical reason there is also the same,
i.e., the underlying non-Hermitian Toeplitz-like matrix with
a discontinuous spectrum. Classifying behavior of products
of other simple two-site transfer matrices that are sums of
projectors would also be desirable. For sums instead of prod-
ucts of elementary projectors a full classification of ground
state physics has been achieved [50]. That would help in
understanding in which other nonunitary situations the phe-
nomenon occurs. Having a solvable example of a many-body
non-Hermitian skin effect that naturally emerges from an ex-
act underlying unitary dynamics, rather than starting with a
non-Hermitian Hamiltonian put in by hand, should in itself be
of interest.
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APPENDIX A: DIFFERENT FORMULATIONS
OF PURITY EVOLUTION

1. Propagating state

Writing ρ(t ) in terms of a local basis one can show that
the evolution of average squares of expansion coefficients is
given by a Markovian process [22,43]: A random gate Uj, j+1

maps 1 ⊗ 1 to 1 ⊗ 1 (trace preservation), while any other
product σα ⊗ σβ is mapped equiprobably to any other of
15 of the same products (using qubits d = 2 for concrete-
ness, 15 = d4 − 1). Exact evolution of purity averaged over
two-site random gates is therefore determined by Markovian
dynamics on this d2n-dimensional operator space, with a two-
site matrix having a block diagonal structure, one block of
size 1 having the single matrix element equal to 1 and the
other 15 × 15 block having all matrix elements equal to 1/15
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(see Refs. [22,23] for details). The two-site matrix is therefore
doubly stochastic and the process is evidently Markovian.

The dimensionality if this formulation can though be
reduced down to dimension 2n [23] irrespective of d ,
with the resulting two-site matrix Mj,k being equal to the
Hamiltonian of a XY spin chain, Mj,k = 1

2 (1 ⊗ 1 + hXY ),
with hXY = 1+γ

2 σ x
j σ

x
k + 1−γ

2 σ
y
j σ

y
k + h

2 (σ z
j + σ z

k ), with γ and
h depending on d . For instance, for qubits (d = 2; in the
following we shall for concreteness always use d = 2, but the
form of all matrices stays the same for any d) one has [23]

Mj,k =

⎛
⎜⎝

9/10 0 0 3/10
0 1/2 1/2 0
0 1/2 1/2 0

3/10 0 0 1/10

⎞
⎟⎠

= 1

2

(
1 ⊗ 1 + 4

5
σ x

j σ
x
k + 1

5
σ

y
j σ

y
k + 2

5

(
σ z

j + σ z
k

))
.

(A1)

It is symmetric and conserves the parity of the number of ones
in the bit string.

Choosing a different basis one can also get a nonsymmetric
formulation with

Mj,k =

⎛
⎜⎝

1 0 0 0
0 1/5 1/5 1/5
0 1/5 1/5 1/5
0 3/5 3/5 3/5

⎞
⎟⎠. (A2)

This matrix has only two nonzero eigenvalues, both equal to
1, and is therefore a sum of two projectors (nonorthogonal)
giving spectral decomposition:

Mj,k = |(1, 0, 0, 0)〉〈(1, 0, 0, 0)| +
∣∣∣∣ (0, 1, 1, 3)

5

〉
〈(0, 1, 1, 1)|,

(A3)
where we used a bra-ket notation of a direct product of vec-
tors. One can also write a SVD decomposition. Because in
the above spectral decomposition the left eigenvectors hap-
pen to be orthogonal (which is in general not the case for
nonsymmetric matrices) the SVD decomposition is in fact, up
to different normalization of vectors, the same as the spectral
decomposition, therefore

Mj,k = 1|(1, 0, 0, 0)〉〈(1, 0, 0, 0)|

+
√

33

5

∣∣∣∣ 1√
11

(0, 1, 1, 3)

〉〈
1√
3

(0, 1, 1, 1)

∣∣∣∣, (A4)

with the two singular values being σ1 = 1 and σ2 = √
33/5.

The product of such two-site matrices in the order of applied
gates is then the matrix M needed for evaluating the average
purity at time t . For the above matrix (A2) the initial state is
x(0) = (1, 1, . . . , 1), i.e., |x(0)〉 = (|0〉 + |1〉)⊗n. Calculating
|x(t )〉 = Mt |x(0)〉, purity is for a half-half bipartition given by

I (t ) = 1

NA

NA−1∑
j=0

x j (t ) = 1

NA
〈y|x(t )〉, (A5)

where |y〉 = (|0〉 + |1〉)⊗n/2|0...0〉 and NA = 2n/2. For other
bipartitions one uses an obvious generalization: In |y〉 one
takes |0〉 for all sites in subsystem B and one takes (|0〉 + |1〉)

for those in A. Summation in (A5) comes from having to sum
over squares of all state expansion coefficients that have 1 on
sites in the subsystem B. The steady state approached starting
from x(0) is x(∞) = (1, 0, . . .) + 2n−1

4n−1 (. . . , 3w(s), . . .), where
w(s) is the number of ones in the bit string.

2. Propagating purities

In Ref. [32] a different procedure is used. Instead of
propagating expansion coefficients one directly propagates
an abstract vector encoding purity for all bipartitions. The
resulting two-site matrix is in this case

Mj,k =

⎛
⎜⎝

1 0 0 0
α 0 0 α

α 0 0 α

0 0 0 1

⎞
⎟⎠, (A6)

with α = d/(d2 + 1). Its spectral decomposition is a sum of
two projectors:

Mj,k = |r1〉〈l1| + |r2〉〈l2|, (A7)

with right and left eigenvectors r1 = (1, 0, 0,−1), l1 =
(1, 0, 0, 0) and r2 = (0, α, α, 1), l2 = (1, 0, 0, 1) (written in
the two-site basis s jsk ordered as {00, 10, 01, 11}, and nor-
malization 〈r j |l j〉 = 1, 〈l1|r2〉 = 〈l2|r1〉 = 0).

The initial state is x(0) = (1, 1, . . . , 1), i.e., |x〉 = (|0〉 +
|1〉)⊗n, x(t ) = Mt x(0), and half-half bipartite purity

In/2(t ) = [x]2n/2−1(t ) = 〈1 · · · 10 · · · 0|x(t )〉, (A8)

with indices of x ranging as 0, 1, .., 2n − 1.
The two-site Mj,k as well as the whole M have a spin-flip

symmetry, X = ∏
j σ

x
j , meaning that if My = λy then also Xy

is an eigenvector with the same λ. Eigenvectors have a good
parity X ; they are either even or odd. For the relevant initial
state x(0) only the even parity sector matters.

The above two-site matrix (A6) is not symmetric; however,
by a similarity transformation one can transform it to a sym-
metric version. Namely, taking a single-site transformation
A1,

A1 =
(√

3 1√
3 −1

)
, (A9)

and making a two-site transformation A = A1 ⊗ A1, one can
transform the nonsymmetric Mj,k (A6) to the symmetric
M̃ j,k = A−1Mj,kA, with

M̃ j,k =

⎛
⎜⎝

9/10 0 0 3/10
0 1/2 1/2 0
0 1/2 1/2 0

3/10 0 0 1/10

⎞
⎟⎠. (A10)

We can see that it is the same as the matrix (A1) obtained in
Ref. [23] starting from a state rather than purity evolution.

There are therefore several equivalent formulations with
which one can propagate average purity in time. We are
not going to study the full spectral properties of M in any
detail because we will first derive a simpler matrix descrip-
tion. Let us just state that on the relevant even subspace the
2n−1-dimensional Meven has 2n/2−1 nonzero eigenvalues and
the kernel (zero eigenvalue) of algebraic multiplicity 2n−1 −
2n/2−1 and geometric 2n−2. The kernel of Meven is a direct
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sum of Jordan normal blocks of different dimensions: 2n/2−1

blocks of dimension n
2 , 2n/2−1 blocks of dimension n

2 − 1, 2n/2

blocks of dimension n
2 − 2, 2n/2+1 blocks of dimension n

2 − 3,
and so on (decreasing size by 1 and increasing degeneracy by
2), and finally 2n−3 blocks of dimension 1.

APPENDIX B: CALCULATING PURITY

Let us use the two-site matrix Mj,k in Eq.(A6), the staircase
configuration,

M = Mn,n−1 · · · M1,2, (B1)

and for a starter calculate In/2(t = 1) for any system size n.
This simple calculation will guide us towards more compli-
cated results for larger t and the recursion formula for Ik (t ).

To avoid cluttered indices let us denote the vector of all
2n purities Is by x and label its components by bit strings.
The half-half bipartition purity is then In/2(1) = x1···1|0···0(1),
where we use a vertical line to denote the bipartition cut.
Vector x is propagated as x(t + 1) = Mx(t ), and one starts
with xs(t = 0) = 1.

Looking at Mj,k (A6) we see that we can get to state 00
only from 00, and therefore to be in the state 1 · · · 1|0 · · · 0
at t = 1 we already need to be in that very same state after
the gate Mn/2−1,n/2 that acts across the cut is applied (all latter
gates are benign because they cannot change the 00 on any
pair of bits in B). Denoting by y the state before the cut
gate is applied, we have In/2(1) = x1···1|0···0(1) = αy1···10|0···0 +
αy1···11|10···0. Working backwards on gates applied on A, we
can get to 11 only from 11, while one can get to 10 from either
00 or 11. Each 10 term can be obtained from two possible
bit strings on the previous step. For n = 6 we for instance
have I3(1) = αx111|100(0) + α(αx111|000(0) + α2(x000|000(0) +
x110|000(0))). For general n one has

In/2(1) = αx1̄1|10̄ + α2x1̄1|00̄ + α3x1̄0|00̄ + · · ·
+ αn/2x110̄|0̄ + αn/2x000̄|0̄

= αn/2x0̄|0̄ +
n/2+1∑

r=2

αn/2+2−rx11···1r 0̄, (B2)

where we use 0̄ and 1̄ for a number of consecutive repeated
bits (their number is such that the number of all bits in a
subsystem is n/2), and x11···1r 0̄ is a domain wall with r 1s.

Using the initial vector gets us

In/2(1) = αn/2 +
n/2∑
k=1

αk = α

1 − α
+ 1 − 2α

1 − α
αn/2. (B3)

Specifically, for d = 2

In/2(1) = 2

3
+ 1

3

(
2

5

)n/2

, (B4)

and for d = 3

In/2(1) = 3

7
+ 4

7

(
3

10

)n/2

. (B5)

That was for a half cut. By similar arguments one can also
write Ik (1) for a cut after first k consecutive spins in A—one
just has to replace n/2 in Eq. (B3) by k (all three occurrences).
Purity for a cut after k spins is therefore

Ik (1) = α

1 − α
+ 1 − 2α

1 − α
αk . (B6)

This is an exact expression holding for any n.
We also immediately recognize that the coefficients x j in

Eq. (B2) are nothing but Ik , so that we can write a recursion:

Ik (t ) = αk +
k+1∑
r=2

αk+2−rIr (t − 1). (B7)

This recursion is a significant simplification of the origi-
nal x(t + 1) = Mx(t ) iteration as one does not have to deal
with an exponentially large M, but rather just ≈n relevant
continuous-A purities.

The recursion (B7) can be used to obtain purity at later
times. For instance, for a half cut we obtain

In/2(2) =
(

α

1 − α

)2

+ αn/2 1 − 2α

1 − α

(
1

1 − α
+ α2 n

2

)
, (B8)

where we need to have n � 4 in order for all Ik (1) used in the
recursion to make sense (be defined and nonzero). For d = 2
the term in the last bracket is 5

3 + 2n
25 . For general k we get

Ik (2) =
(

α

1 − α

)2

+ αk 1 − 2α

1 − α

(
1

1 − α
+ α2k

)
. (B9)

Iterating again, we get the result at t = 3:

Ik (3) =
(

α

1 − α

)3

+ αk (1 − 2α)[(1 − αβ ) + kα2β(1 + 3α2β/2) + k2α4β2/2]

β3
, (B10)

where β ≡ 1 − α. For instance, for k = n/2 and d = 2 we
have

In/2(3) =
(

2

3

)3

+
(

2

5

)n/2 1

3352

(
475 + 858

25
n + 18

25
n2

)
,

(B11)

holding for n � 6.

It is clear from these explicit results as well as from the
recursive formula that the general result is of the form

In/2(t ) =
(

α

1 − α

)t

+ αn/2 pt−1(n), (B12)

holding for n � 2t , and where pk (x) is a polynomial of order k
in x. This means that in the TDL one has at any finite t purity
Ik (t ) = (α/(1 − α))t for any extensive k ∝ n. The phantom
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eigenvalue giving this thermodynamically relevant decay is
therefore

λph = α

1 − α
= d

d (d − 1) + 1
, (B13)

and is λph = 2
3 for d = 2, λph = 3

7 for d = 3, while for d � 1
it scales as λph � 1

d .

APPENDIX C: MATRIX FORMULATION

We could also write purity recursion (B7) as a matrix
iteration. Defining an n-component vector of purities Ĩ =
(1, I2, I3, . . . , In−1, 1), one has Ĩ(t + 1) = AĨ(t ), where the
n × n matrix A is

A =
⎛
⎝ 1 0 0

a1 T a2

0 0 1

⎞
⎠, (C1)

with the vector a1 = (α2, α3, . . . , αn−1), a2 = (0, . . . , 0, α),
and (n − 2) × (n − 2) Toeplitz matrix T :

T =

⎛
⎜⎜⎜⎜⎜⎝

α2 α 0 · · · 0
α3 α2 α · · · 0
...

...
. . . · · · ...

αn−2 αn−3 . . .
. . . α

αn−1 αn−2 · · · · · · α2

⎞
⎟⎟⎟⎟⎟⎠

. (C2)

Alternatively, defining I = (I2, I3, . . . , In−1) we could write
I(t + 1) = a + T I(t ), where a = a1 + a2. This matrix
scheme gives the exact purity for any k, n, and t [in the above
formulas for Ik (t = 1, 2, 3) holding for n � 2t we evaluated
the sums as if A would be of infinite size, i.e., no boundary
effects; this matrix formulation though correctly accounts
also for boundaries].

We remark that the transpose MT preserves a subspace
of domain-wall bit strings, that is, the subspace spanned by
{0̄, 110̄, 1110̄, . . . , 1̄} is invariant under MT. Similarly, also
this subspace with bits flipped is invariant. So one can form
an invariant basis of n − 1 one-domain-wall states even under
spin flip, {0̄ + 1̄, 110̄ + 001̄, . . .}/√2. Projection of MT to
this subspace would give a (n − 1)-dimensional matrix that
is essentially the same as A (C1). One could also extend this
projection to r-domain-wall states. This was used in Ref. [32]
to discuss decay of purity. From such projections of MT one
could obtain the corresponding left eigenvectors of M.

Because A is of size n we can easily calculate exact average
purity dynamics for thousands of sites. In Fig. 5 we show
how the local effective rate changes with time, thereby more

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0  0.5  1  1.5  2  2.5  3  3.5  4

λph=3/7

λ2=9/25

λ e
ff

t/n

n=20
n=200

n=1000
n=2000

FIG. 5. Effective purity decay rate λeff = exp (I ′/I ), i.e., I (t ) =
Cλt

eff , for qutrits d = 3.

clearly seeing the transition from the initial decay I (t ) = λt
ph

with the phantom λph to the asymptotic decay I (t ) � λt
2 with

the second largest eigenvalue of M. We define I (t ) = Cλt
eff ,

from which one can calculate λeff = exp [I ′(t )/I (t )] where
I ′(t ) = dI/dt . We can see (Fig. 5) that the transition time be-
tween the two rates is proportional to n, and therefore diverges
in the TDL limit.

1. Spectral decomposition

Crucial is matrix T , which has a form of an asymmetric
hopping on a lattice of n − 2 sites, with the left hops being of
length 1 only, while all right hops are allowed. Toeplitz matrix
T has a Hessenberg form. By a similarity transformation it
can be transformed to a matrix where all the nonzero matrix
elements are, instead of being powers of α, equal:

R−1T R = α2

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0
1 1 1 · · · 0
...

...
. . . · · · ...

1 1 . . .
. . . 1

1 1 · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎠

, (C3)

where one uses diagonal R = diag(α, α2, . . . , αn−2).
Eigenvalues of T (10) are roots of the characteristic

polynomial det (T − λ̃1) = 0. One can get a two-step
recursive relation in n for the determinant by subtracting
from the first column the second column multiplied by α.
The final expression for the characteristic equation is [44]
Dn = det (T − λ̃1) = (−1)nαn−1λ̃(n−3)/2Un−1(

√
λ̃/4/α) =

0, where Uk is the Chebyshev polynomial of the second
kind, U1(x) = 2x,U2(x) = 4x2 − 1, . . ., or explicitly
Uk (cos ϕ) = sin [(k + 1)ϕ]/ sin ϕ.

One therefore has eigenvalue λ̃ = 0 with algebraic mul-
tiplicity n/2 − 1 and geometric multiplicity 1, and n/2 − 1
nonzero eigenvalues (assuming n even):

λ̃ j = 4α2 cos2

(
jπ

n

)
, j = 1, . . . , n/2 − 1. (C4)
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FIG. 6. Purity decay for qubits (a), qutrits (b), and d = 4 (c). One can see agreement with λph (B13) for times smaller than ≈ n, and
asymptotic decay with λ2 (C7) for longer times.

The kernel therefore has just one Jordan block of size n/2 − 1
while all other eigenvalues are real and nondegenerate for any
finite n.

As a side remark: If one would take in T only the su-
perdiagonal such a matrix would have a (n − 2)-dimensional
Jordan block with λ = 0; taking the diagonal and the super-
diagonal one would again have only one (n − 2)-dimensional
Jordan block with λ = α2; while deleting the superdiagonal
(triangular matrix) one would have a (n − 2)-dimensional
Jordan block with λ = α2. T is therefore in a way a simple
solvable deformation of a single Jordan block resulting in a
nontrivial spectrum.

Denoting the corresponding right eigenvector as |Rj〉 and
writing ϕ j := jπ/n, its components are

[Rj]k = (2α cos ϕ j )
k−2Uk (cos ϕ j ), k = 1, . . . , n − 2.

(C5)
The left eigenvector |Lj〉 corresponding to the same eigen-
value λ̃ j can be obtained simply by reflecting vector
components, i.e., replacing index k → n − 1 − k, or explicitly

[Lj]k = (2α cos ϕ j )
n−3−kUn−1−k (cos ϕ j ), k = 1, . . . , n − 2.

(C6)

2. Decomposition of A

Once we have the spectral decomposition of T it is easy to
write down the spectral decomposition of A. The spectrum of
A is a union of the spectrum of T plus two eigenvalues λ1 = 1,
one in the even and one in the odd sector. All eigenvalues of A
are also eigenvalues of 2n-dimensional M on the space of all
bipartite purities. In fact, the largest nontrivial (i.e., smaller
than 1) eigenvalue of M is λ̃1, and therefore we have an exact
expression for the second largest eigenvalue λ2 of M,

λ2 = 4α2 cos2

(
π

n

)
−→ 4d2

(d2 + 1)2
, (C7)

that determines the eventual asymptotic decay of purity; that
is, at any fixed n and for large enough t one has Is(t ) −
Is(∞) ∼ λt

2. For instance, one has λ2 = 16
25 , 9

25 , ( 8
17 )2, for d =

2, 3, 4, respectively. In Fig. 6 we show purity relaxation for
d = 2, 3, 4. We can see that the transition point between the
initial phantom decay λt

ph and the asymptotic ≈ λt
2 moves

to infinity with increasing system size n. Also worth noting
is that with increasing d the ratio λph/λ2 � d

4 increases, and
therefore the transition becomes more prominent.

Going to eigenvectors of A, the even left and right eigen-
vector corresponding to the eigenvalue 1 form a projector to
the steady state, |R〉〈L|, and have components Rk = Ik (∞) =
(dk + dn−k )/(1 + dn) for k = 2, . . . , n − 1 and R1 = Rn = 1,
while L = ( 1

2 , 0, . . . , 0, 1
2 ). Eigenvectors of A corresponding

to nonzero eigenvalues λ̃ j (11) can be constructed from those
of T . Denoting them by R̃ j , one has [R̃ j]k=1,n = 0 and [R̃ j]k =
[Rj]k−1 for k = 2, . . . , n − 1. For the left eigenvectors one has
instead [L̃ j]k = [Lj]k−1 for k = 2, . . . , n − 1, while [L̃ j]1 =
〈Lj |a1〉/(λ̃ j − 1) and [L̃ j]n = 〈Lj |a2〉/(λ̃ j − 1).

Once we normalize left and right eigenvectors as 〈L̃ j |R̃ j〉 =
1, it would be tempting to write the relevant spectral decompo-
sition for A as A = |R〉〈L| + ∑n/2−1

j=1 λ̃ j |R̃ j〉〈L̃ j |; however, that
would give correct purity only at later times. For instance, for
In/2(t ) we would get the correct value only for t � n/4 [while
I2(t ) would be correct only for t � n/2 − 1]. This, at first
sight surprising, failure is due to the Jordan normal form of the
kernel. Remembering that the single Jordan normal block is of
size n/2 − 1, we have the spectral decomposition A = PdP−1,
where d has the Jordan normal form

d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

. . .
. . .

0 1
0

1
λ̃1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C8)

Rows of P−1 are left eigenvectors; columns of P are right
eigenvectors of A. Therefore one has

A = |R〉〈L| +
n/2−1∑

j=1

λ̃ j |R̃ j〉〈L̃ j | +
n/2−2∑
k=1

|rk〉〈lk+1|, (C9)

where we have separated the kernel part with eigenvectors
lk and rk that satisfy Ap�k|rk〉 = 0, and (AT )n/2−k|lk〉 = 0
and AT |lp〉 = |lp+1〉. In other words, |l1〉 is in the kernel of
(AT )n/2−1 but not in the kernel of any lower power of AT

(see, e.g., Ref. [45] for a summary of Jordan normal forms).
Namely, because the geometrical multiplicity of λ = 0 is 1
there are vectors y such that Ay �= 0, but Ary = 0 for some
1 < r � n/2 − 1.
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FIG. 7. Purity decay for d = 4 for a half cut, In/2, and for a quar-
ter cut, In/4. The saturating curve shows In/2(t ) without subtracting
In/2(∞), while black squares are using spectral decomposition with
only nonzero eigenvalues of A, thereby not correctly accounting for
its Jordan kernel structure.

Making powers of A the size of the kernel shrinks; for
instance, for A2 we have

A2 = |R〉〈L| +
n/2−1∑

j=1

λ̃2
j

∣∣R̃ j
〉〈L̃ j | +

n/2−3∑
k=1

|rk〉〈lk+2|, (C10)

i.e., the kernel part shifts by 2 instead of by 1 as in A. In An/2−1

one has no kernel part anymore and all evolution is correct just
using nonzero λ̃ j in the spectral decomposition. This is the
reason that using only nonzero eigenvalues does not correctly
capture the initial decay. We illustrate this in Fig. 7 where one
can see that the spectral decomposition with only λ̃ j terms
gives correct In/2 only for t � n/4 = 5. We also show purity
for a bipartition into first n/4 sites and the rest. One can see
that, as predicted, In/4 also exhibits the transition in the decay

rate. In fact, the initial phantom relaxation λt
ph holds even up

to slightly longer times than for In/2.

3. Brick-wall configuration

An interesting observation is that for a brick-wall config-
uration of gates with open boundary conditions the decay
of purity is given by the same λ2 [Eq. (C7)] as calculated
here, however, without the phantom relaxation [20]. Such
asymptotic decay λt

2 for the random brick-wall protocol has
been derived before [27,28,32]. The fact that λ2 is the same
for staircase and brick-wall configurations is a consequence of
the exact spectral equivalence of all configurations with open
boundary conditions (see Ref. [20]). It might be instructive
though to see this using the same techniques as used here for
the staircases. Looking again at Ik , one notices that purities for
even-k consecutive sites decouple from odd k. One can write
recursive equations just for Ik with even k. Taking again even
n, and defining purity vector I = (I2, I4, . . . , In−2), having
n/2 − 1 components, one gets iteration I(t + 1) = a + T I(t ),
where a = (α2, 0, . . . , 0, α2) and

T = α2

⎛
⎜⎜⎜⎜⎝

2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 2

⎞
⎟⎟⎟⎟⎠. (C11)

T is a tridiagonal Toeplitz matrix. Its exact eigenvalues are
exactly the same λ̃ j as for the staircase configuration (11).
Furthermore, T is symmetric, i.e., normal; its symbol a(z)
is real on the unit circle; and the spectra of the operator
(infinite matrix) and of a finite matrix in the limit n → ∞
coincide; it fills the interval [0, 4α2]. Therefore, there is no
phantom relaxation for the brick-wall configuration with open
boundaries.
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