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Quantitative absorption imaging: The role of incoherent multiple scattering in the saturating regime
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In this paper, we study the modification of coherent scattering processes in dense ensembles. Using absorption
imaging, we experimentally demonstrate that the absorption cross section in dense 87Rb cold atom ensembles is
reduced, with respect to the single-particle response. This reduction is linearly dependent on the optical density
and well reproduced by a one-dimensional model of coherent field propagation in an ensemble of quantum
two-level systems that self-consistently incorporates multiple scattering contribution. Our model shines light
upon the key role of incoherent scattering on the modification of the optical response of dense ensembles and
leads to a generalization of the Beer-Lambert law. Our result applies to any effective two-level system ensemble
and allows for quantitative and absolute in situ absorption imaging.
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I. INTRODUCTION

The formal description of light propagation in a dilute
medium was first reported by Bouguer [1], and later redis-
covered by Beer and Lambert [2,3]. As the Beer-Lambert law
(BLL) is a single-particle model, it discards multiple scatter-
ing (MS), a mode of light transport challenging to account
for, but of utmost importance in various situations, ranging
from light localization [4], tumor cell detection [5] to diffuse
reflectance on epithelial layers [6]. MS is also of theoretical
interest as it provides a tool for testing models of long-range
forces [7] and perturbative models of light transport [8].

The generalization of the BLL (gBLL) to optically dense
systems requires one to use large saturation parameters of the
order of the optical density [9] that generate large incoherent
scattering intensities. The single-particle response is exact and
very well characterized experimentally in both unsaturated
and saturated regimes [10–12], and a gBLL can be derived,
yielding a decay of the light intensity following the Lambert
W function [13]. This solution is exact in a dilute medium of
two-level systems (TLSs) and was used to develop absorption
imaging techniques and derivatives [14]. The single-particle
picture breaks down when increasing the density as high-
order correlations between scatterers must be computed [15]
and the global geometry of the medium must be carefully
considered as seen experimentally with endfire superradiance
[16], or as predicted theoretically in the spectroscopy of two-
dimensional (2D) arrays of atoms [17]. It is widely accepted
that collective phenomena in dense media scale with powers
of the optical density [18,19] which is precisely the quantity
that BLL endeavors to estimate.
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Within the cold atom community, Reinaudi et al. [20]
originally proposed to globally account for any deviation of
the gBLL via a single heuristic reduction factor α of the
bare scattering cross section σ0, for which they proposed an
experimental calibration method. α was used in experiments
as a holdall that subsumes the undesired complexity arising
from the presence of stray magnetic fields, imperfect probe
polarization, MS, or even the multilevel structure. The reduc-
tion factor α has been estimated independently in numerous
experiments [20–27] with large deviations from the ideal
TLS case (α = 1) and even very disparate results for simi-
lar probe conditions (see Table I). By solving the multilevel
optical Bloch equations, α could be derived analytically [28]
for a linear polarization and numerically [29] for any other
polarization. In [29], it was also shown that stray magnetic
fields or an imperfect probe polarization have little influence
on α especially for a σ polarization, while an incoherent
electromagnetic background dramatically increases its value,
indicating an absolute need to account for MS.

In this paper, we show experimentally that the value of
α scales linearly with the optical density which is a clear
deviation from the single-particle dynamics (Sec. II). Under
resonant saturated illumination, we actually expect that in-
coherent scattered fields will be reabsorbed by neighboring
atoms and modify their coherent response in the forward
and backward directions [30,31]. To study their influence, in
Sec. III we propose a 1D model of light propagation that self-
consistently includes MS at the lowest order, and recover with
excellent agreement the linear dependence of α on the optical
density. This result suggests that the cooperative response of
dense media can be incorporated in a single-particle gBLL.
The conclusion is given in Sec. IV.

II. EXPERIMENT: SCALING OF THE SCATTERING
CROSS-SECTION WITH THE OPTICAL DENSITY

The derivation of the gBLL is strongly connected to the
single-atom coherent scattering rate. For a continuous en-
semble, the summation of these coherent scatterings leads to
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TABLE I. Calibration factor α reported in the literature for
thermal clouds in magneto-optical traps (MOT) or Bose-Einstein
Condensates (BEC).

α b0 Cloud type Probe polarization Ref.

1.13(2) 0.5 BEC Circular [25]
1.11 1.2 BEC Circular [26]
2.0(2) 2.5 1D Li condensate Circular [24]
3.15(12) 5 1D BEC Circular [21]

2.12(1) 4.8 2D MOT Linear [20]
2.6(3) Quasi-2D BEC [22]
2.9 8.4 MOT Linear [23]

a differential equation of propagation of the coherent field.
Reformulated as an intensity attenuation, this equation corre-
sponds to the gBLL which is valid in any saturation regime
(see Appendix A 1). The optical density is then obtained by a
simple analytical integration [20]:

b(x, y) = −α ln [T (x, y)] + sc[1 − T (x, y)], (1)

where sc = I0/Isat is the saturation parameter, T (x, y) = I (x,y)
I0(x,y)

the probe transmission, and I0(x, y) the incident imaging beam
intensity. Isat is the saturation intensity of a closed TLS which
is related to the on-resonance cross section of a TLS σ0 =
6π/k2 = h̄ω�/(2Isat ), with k = ω/c the probe wave vector
and � the excited state natural linewidth.

The optical density being an intrinsic cloud quantity, it
should be independent of the probe beam properties. Fol-
lowing [20], the value of α in Eq. (1) can be determined
by minimizing the influence of the intensity of the probe
on the measured optical density. In the following, we show
experimentally that α depends on the optical density. We
then propose a model that emphasizes the role of incoherent
scattering from the ensemble.

Experimentally, we prepare thermal atoms in a pure |Fg =
1, mF = −1〉 spin state in a crossed dipole trap formed by
two orthogonal 1064-nm Gaussian beams. The dipole trap
depths are U1,U2 = 33(3), 11(1) μK with, respectively, beam
waists of w1,w2 = 50(1), 65(1) μm. The cloud tempera-
ture is T = 2.2(2) μK with a total atom number of Ntot =
1.92(15) × 105 measured by absorption imaging of a low
saturation, π -polarized probe after long time-of-flight (TOF;
bmax < 0.5). The in situ expected widths of this thermal cloud
are σx, σy =

√
kbT/mω2

i = 6.5(5), 14.6(9) μm as calculated
from the measured temperatures and trap angular frequencies
ωx, ωy =

√
4U/mw2

i = 2π.358(18), 159(8) rad/s. The mag-
netic field at the atoms position is characterized by microwave
(MW) spectroscopy and compensated for, below 10 mG. A
constant offset of B0 = 512 mG is then applied along the
imaging beam propagation axis (i.e., gravity axis). Its direc-
tion matches a σ− configuration of the circularly polarized
imaging probe [Figs. 1(a) and 1(b)].

From |Fg = 1, mF = −1〉, the atoms are transferred to
|Fg = 2, mF = −2〉 by an on-resonance MW pulse. The pop-
ulation ratio between the two states is controlled by the
MW pulse duration tMW. The transfer probability P(tMW) =
Ptot sin2(πtMW/TMW) has a Rabi period TMW/2 = 28 μs and
an amplitude Ptot = 0.96 [Fig. 1(c)]. The peak atomic density

FIG. 1. (a) Experimental setup showing the two imaging axes for
TOF and in situ absorption imaging. (b) D2-line energy structure of
87Rb. (c) Rabi oscillation of the normalized atom number (points)
between |Fg = 1, mF = −1〉 and |Fg = 2, mF = −2〉 as a function
of the pulse duration and a sinusoidal fit (solid line). The data are
normalized by the optically repumped total atom number. (d) Cuts
along X of the transmission for sc = 12.

is n = 2.1 × 1019 at/m3. For tMW = 2 μs, we expect a central
optical density of 1.1(1).

Atoms in |Fg = 2, mF = −2〉 are imaged, in situ, by ab-
sorption of a resonant circularly polarized imaging probe.
The in situ imaging system consists of a microscope ob-
jective (NA = 0.44, feff = 53 mm) followed by a 500-mm
magnification lens forming an intermediate image. A sec-
ondary telescope magnifies this image by 2 on a low noise
(<3e− rms read noise) Princeton CCD camera (16 μm pixel
size). For each realization, three images are acquired cor-
responding to the probe absorption [Iat (x, y)], probe profile
[Ino-at (x, y)] and background [Iat(x, y)]. To minimize the in-
fluence of air turbulence, the consecutive images are taken
400 μs apart. A circular aperture with a 3 mm diameter in the
Fourier plane of the secondary telescope reduces the effective
NA to 0.185 and increases the depth of field to 22 μm, larger
than the cloud width. The Gaussian probe profile has a waist
w = 1.13(5) mm. Using the intermediate imaging plane, we
measured a radial positioning offset of 464 μm between the
probe profile center and the cloud center leading to a reduction
factor of the intensity on the atoms by 0.71 with respect to the
probe center.

To quantitatively explore various optical density regimes
only the MW duration (tMW = [2, 4, 6, 8, 10, 12] μs) is
changed. For the scanned probe saturation parameters (sc =
[0.44,0.63,1.36,2.2,4.9,7.8,12.3,16.3,20.9,28, 37.3, 49]),
the probe pulse duration is adjusted from 12.9 to 3.7 μs to
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FIG. 2. Correction factor α vs the optical density for all MW
datasets (2, 4, 6, 8, 10, 12 μs). Each point corresponds to 1 pixel and
the solid line is a linear fit to the data α = 1.17(9) + 0.255(2)b.

maintain the number of scattered photons per atom at around
70. In absence of atoms and taking into account the imaging
system transmission (Tim = 0.76), each pixel receives in
between 200 and 6500 photons depending on the probe
saturation parameter. Each couple of parameters [tMW, sc] is
repeated five times for averaging. Shot-to-shot fluctuations of
the saturation intensity are compensated by acquiring each
imaging pulse by a calibrated photodiode.

Following the spirit of [20], for each MW duration we use
the local transmission T (x, y) = (Iat − Iback)/(Ino-at − Iback)
acquired for the various saturation intensity and compute, for
every pixel (x, y), the couple of parameters {b(x, y), α(x, y)}
that makes b [Eq. (1)] independent of the probe saturation.
The resulting parameters are plotted in Fig. 2 where a clear
correlation can be observed.

In the insets, we show ten curves of b vs sc corresponding to
α varying from 1 (black) to 11 (light gray). The best value of α

minimizes std (b). To reject the noise at very low transmission
that is influenced by camera read noise and fluorescence,
that might cause systematic errors, we limit the analysis to
transmissions T in the range [0.05,+∞[. From the value
of α, the optical density is obtained by averaging it over
all values of sc. The upper inset corresponds to a pixel at
the center of the cloud with tMW = 6 μs : (bc, αc) = (8.6, 3)
and the lower inset to a side shifted pixel for tMW = 10 μs
: (bs, αs) = (8.7, 3). The position offset of these two pixels
compensates for the difference of central densities of their
respective clouds, giving rise to a similar local optical density.
Independently from their difference of position in the cloud,
equivalent local optical densities lead to the same reduction of
the scattering cross section. A linear fit of the entire dataset
in Fig. 2 gives a slope of 0.255(2) and an offset of 1.17(9)
where the uncertainty is dominated by the uncertainty of the
saturation parameter. This offset close to 1 shows that in the
limit of low densities the atomic response is well modeled
by an ensemble of independent TLSs. The value of α at low
atomic density depends on both the probe polarization and the

magnetic field direction but also linearly depends on the cal-
ibration of the saturation intensity as observed by the atomic
cloud. The calibration of the offset between probe center and
atoms was important in this respect. The dependence of α on b
shows that α is not solely determined by the probe properties
but also depends on the optical density which is a signature of
the influence of MS.

III. MODEL: LIGHT PROPAGATION IN 1D WITH
INCOHERENT MULTIPLE SCATTERING

To account for MS, we propose a model of saturated prop-
agation that can be quantitatively compared to the data. Under
a saturating coherent probe, a single atom emits coherent
and incoherent light, the latter physically corresponding to
the Mollow’s spectrum. Our model derives the propagation
of each component and accounts for their nonlinear cou-
pling through atomic saturation. The system we consider is
a coherent probe propagating along z in a cloud that is ho-
mogeneous in the transverse directions and has a Gaussian
density profile along z. As the system is translation invariant
in the transverse plane (x, y), there can be no net transverse
energy flux and scatterings only redistribute in the forward
and backward directions. Therefore, we use a 1D model where
the electromagnetic field and intensity only depend on z. For
a resonant σ -polarized probe, the scattering properties of an
atom embedded in an incoherent electromagnetic background
are well described [29] by an effective TLS. To numerically
solve our model, we divide the propagation direction in in-
finitely small slabs of width dz (see Appendix A 2). For
each slab, we derive a set of differential equations that relates
the intensity profile of the coherent intensity Ic(z), forward
incoherent intensity I+

i (z), and backward incoherent inten-
sity I−

i (z). The set of equations is expressed in terms of the
nondimensionalized saturation intensity parameters sc(z) =
Ic(z)/Isat, s+

i (z) = I+
i (z)/I iso

sat , and s−
i (z) = I−

i (z)/I iso
sat where

I iso
sat = αisoIsat = 2.12Isat:

dsc

dz
= −n(z)σ0

sc

1 + sc + si
,

ds(±)
i

dz
= −n(z)σ iso

0

2

(
s(±)

i − s(∓)
i

1 + sc + si

− sc(sc + si )

(1 + sc + si )2 − sc

(1 + sc + si )2

)
, (2)

where the isotropic cross section is σ iso
0 = h̄ω�/(2I iso

sat )
and the total incoherent intensity is si = s(+)

i + s(−)
i .

Although incoherent fields have off-resonance spectral
components [32], we consider their rescattering to behave as
an on-resonance spectrum with a reduced isotropic scattering
cross section [30,31]. The prefactor 1/2 accounts for equally
distributed backward and forward scattered intensities. In
the derivatives of s(±)

i in Eqs. (2), the first term accounts
for rescattering of the incoherent field, and the second one
accounts for the temporally incoherent scattering of the
coherent field (i.e., resonant fluorescence). The last term
that conserves energy corresponds to the coherent field
scattering in a temporally coherent but spatially incoherent
field arising from the discrete random position of atoms in
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FIG. 3. α parameters calculated from the 1D saturated scatter-
ing model [Eq. (2)]. The simulated probe saturation intensities are
comparable to the experiment: (a) sc = 0.5, (b) sc = 10, and (c)
sc = 50. The blue line (respectively, blue dashed line) corresponds
to the value of α as calculated from the sole coherent transmission
Tc = sc(L)/sc(0) [respectively, the total transmission T = [sc(L) +
αisos+

i (L)�/(2π )]/sc(0), where αisos+
i (L)� is the fluorescence back-

ground emitted in the solid angle � of the imaging system]. In red in
(a) is the limit of diffusive regime (see text); and in (c) the analytical
large saturation limit for (plain line) an effective TLS approximation
of a MLS with σ iso

0 = σ0/α
iso, and (dotted line) an ideal scalar TLS

corresponding to σ iso
0 = σ0.

an ensemble. This spatially incoherent field is out of phase
with the coherent probe and its effect on the coherence
term of the density matrix ρeg will spatially average to 0.
As checked numerically, for large saturation, the scattering
being mostly temporally incoherent, the directionality
of spatially incoherent scattering (forward, backward, or
equally distributed) has no influence on the value of α.
In this model, both temporally and spatially incoherent
contributions are summed in the incoherent intensities
(I (±)

i ). Summing incoherent intensities is justified by the
independent scattering approximation [8], valid for
(klsc)−1 � 1, with lsc = 1/(nσ0) the photon mean free
path. Our largest optical density of 30 gives (klsc)−1 = 0.25.

From the solution of Eqs. (2), the value of α is obtained for
different probe intensities and presented in Fig. 3 as a function
of the integrated optical density.

For small probe saturation [Fig. 3(a)], the conversion of
the coherent probe field into incoherent intensity (si) cannot
generate high incoherent intensity (si � 1) and should there-
fore not affect the value of α in the coherent propagation
[Eqs. (2)]. Nevertheless, for high optical density, we are in
the diffusive regime. Along the propagation, while the co-
herent field is exponentially reduced in the mean free path
length lsc and quickly disappears, the incoherent field, that
will also be detected on the camera, is only algebraically
reduced, Tdiff ∝ 1/b = C/b [33,34]. In this regime (b � sc),
α ≈ b/ ln[2πb/(C�)] is dominated by the diffuse transmis-

sion [dashed red asymptote in Fig. 3(a) with C = 1] where
� is the solid angle of the imaging system. This lower limit
of α does not correspond to a reduction of the absorption
cross section but rather to an excess of detected light and
is mostly constant over a wide range of solid angles (see
Appendix A 2).

In the opposite high saturation regime sc � b [Fig. 3(c)],
the probe intensity is little depleted, and the incoherent satu-
ration intensity becomes homogeneous along the propagation.
By energy conservation we have si = sc(1 − T )/(2αiso). For
high saturation, the last term in Eq. (1) dominates in the
expression of the optical density: b ≈ sc(1 − T ). It leads to a
reduction of the coherent absorption cross section that scales
as α = 1 + si ≈ 1 + b/(2αiso) [red curve in Fig. 3(c)]. The
intermediate regime of saturation [Fig. 3(b)] lies in-between
the two theoretical limits. The equivalence between si and b
at large sc unravels the nonlocal character of the incoherent
saturation intensity. This upper limit of the slope is evaluated
for two models of incoherent scattering interaction considered
either σ polarized (αiso = 1) or isotropic (αiso = 2.12), giving,
respectively, a slope of 1/2 and 1/(2 × 2.12) = 0.24. The
experimental data lie in-between the above-mentioned lower
and upper theoretical limits indicating that, even if the 1D
model neglects to account for the cloud inhomogeneity, it still
captures the MS origin of the increase of α with b.

IV. CONCLUSION

In contrast with the commonly used calibration methods
of the reduction factor α of the scattering cross section [20],
this study shows that α is not unique for an inhomogeneous
ensemble. Via a 1D model, we have shown that the reduction
of the apparent absorption cross section is connected, in the
diffusive regime (b � sc), to the residual diffuse transmission
and, in the saturating regime, to the ambient electromagnetic
background originating from multiple incoherent scattering
in the cloud. In both cases, this reduction is shown to scale
mainly linearly with the local optical density. For a circu-
lar probe polarization under a well-controlled magnetic field
orientation and laser detuning, the slope of the correction
factor, α = 1.17(9) + 0.255(2)b, is independent of the trans-
verse position in the cloud. Our model suggests that this slope
is applicable to any ensemble of effective TLS. The offset
α0 = 1.17(9) ultimately depends on a fine calibration of the
saturation parameter and should be 1 for a perfect σ light.
Using Eq. (1) and dα/db = 0.255(2), we obtain a gBLL
expression of the optical density that accounts for MS:

b(x, y) = −α0 ln [T (x, y)] + sc[1 − T (x, y)]

1 + dα
db ln [T (x, y)]

. (3)

A similar calibration could certainly be performed for other
probe configurations such as linear π probes. A strength of
the proposed model is to take into account both the saturated
response of a single atom embedded in an electromagnetic
environment and the collective participation of the surround-
ing atoms to this environment in a self-consistent solution.
At the cost of numerical computation power, the proposed
1D model could certainly be extended to three dimensions to
account for the transverse inhomogeneity of the ensemble and
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further incorporate multilevel internal dynamics influence on
the reabsorption cross section.

Note added. Recently, we become aware of a related work
from Jan Arlt’s group [35].
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APPENDIX

This Appendix contains two sections. In Sec. 1 we derive,
under the continuous medium approximation, the Beer-
Lambert’s law in any saturation regime for an ensemble of
effective two-level systems. In Sec. 2, we detail the derivation
of the set of coupled equations [Eqs. (2)] in the main text and
the numerical resolution method.

1. Beer-Lambert derivation in the saturating regime

In this section, we will derive the differential equation of
propagation of a probe radiation (considered as a coherent
field) in a continuous medium. The field at the point r is ob-
tained by summing the coherent incident field E(r) = EA

2 eikzε

with polarization ε and the total scattered field E tot(r′):

E(r′) = E(r) + E tot(r′). (A1)

The total scattered field in Eq. (A1) is obtained by integrat-
ing over space the fields emitted by a continuous ensemble of
dipoles [11,36]:

E tot(r′) =
∫∫∫

V
n(r)Esca(r, r′)[ε − (ε.urr′ )urr′ ]dr3, (A2)

where Esca(r, r′) = 3EA
2k eikzi eik|r′−r|

|r′−r| is the scattered field ampli-
tude, urr′ = (r′ − r)/|r′ − r| is a vector unit, n(r) is the atomic
density, and V is the volume of integration. For an infinite
homogeneous slab of atoms of width dz, the integration is
carried for x, y in ] − ∞,+∞[ and z in [z, z + dz].

In Eq. (A2), we consider only the dipole scattering in the
far-field regime varying in 1/r which corresponds well to
the regime of the data presented in the main text (nk−3 �
1). We also emphasize that the above expression is only
valid in the weak saturation approximation when a TLS
is well approximated by a dipole. Performing the inte-
gration in cylindrical coordinates over a circle R0 � 1/k
(i.e., ignoring edge effects) for a constant atomic density
in this disk n(r) = n(z) and a circular polarization ε+, the
first term proportional to ε which is the on-axis scatter-
ing becomes −n(z) 3EA

2k2 eik(z+dz)2πε+dz and the second term
depending on urr′ , which is the off-axis scattering, reads
n(z) 3EA

2k2 eik(z+dz)πε+dz. Equation (A2) can then be simplified

into

E(z + dz) =E(z)

(
1 − n(z)

2

6π

k2
eikdzdz

)
, (A3)

which can be reformulated in a differential expression of the
Beer-Lambert’s law in field:

dE
dz

= − E
n(z)σ0

2
eikdz, (A4)

where σ0 = 6π/k2 is the on-resonance absorption cross sec-
tion. For kdz � 1, Eq. (A4) gives the standard exponential
attenuation of the intensity:

d|E|2
dz

= − |E|2n(z)σ0. (A5)

When the medium is saturated, the amplitude of the co-
herent field emitted on resonance by a single TLS is reduced
but its radiation pattern for a given driving field polarization
is unchanged. The volume integral carried in Eq. (A2) is still
exact but the integral is globally reduced by a factor 1/(1 + sc)
where sc = 2�2

c/�
2 is the saturation parameter and �c the

Rabi frequency proportional to the incident electric field am-
plitude. This reduction factor of the coherently emitted field
is directly related to the coherent scattering rate �|ρeg|2 =
�
2

sc
(1+sc )2 that can be derived from the optical-Bloch equa-

tions of a TLS. To take into account the effect of saturation,
the equation of propagation in field [Eq. (A3)] is modified into

E(z + dz) =E(z)

(
1 − 1

(1 + sc)

n(z)

2

6π

k2
eikdzdz

)
, (A6)

which gives the general form of the Beer-Lambert’s law in
intensity I for any saturation regime:

dI (z)

dz

(
1 + I (z)

Isat

)
= − n(z)σ0I (z), (A7)

where Isat is the saturation intensity which is related to the
cross section by σ0 = h̄ω�/(2Isat ). For a multilevel system, it
can be shown [29] that the coherent scattering rate is reduced
and takes the form �|ρeg|2 = �

2
sc

(α+sc )2 where α depends on
the probe polarization, residual magnetic field, detuning from
the resonance or the ambient electromagnetic background. In
other words, it reduces (respectively, increases) the cross sec-
tion (respectively, the saturation intensity) by a factor α. For
87Rb, on resonance with the |5S1/2, Fg = 2〉 to |5P3/2, Fe = 3〉
cycling transition, a resonant probe with circular polarization
has α = 1 (i.e., a perfect two-level system), α = 1.829 for
linear polarization, and α ∈ [1, 1.829] for any other probe
polarization. Including this correction in the above derivation,
Eq. (A7) becomes

dI

dz

(
α + I

Isat

)
= − n(z)σ0I. (A8)

Using the saturation intensity for the coherent field sc(z) =
I (z)/Isat, Eq. (A8) can be written as

dsc

dz
= − n(z)σ0

sc(z)

α + sc(z)
, (A9)

which gives the first equation of the 1D propagation model in
the main text with α = 1 + si. We stress that this equation has
been obtained via the coherent propagation of the probe field.
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FIG. 4. 1D model for the coherent and incoherent propagation
and conversion of light between adjacent layers. The coherent and
incoherent scattering rates are given by Eq. (A10). The spatial repar-
tition is taken as r+

+ = 1 − r−
+ = r−

− = 1 − r+
− = r+

c = 1 − r−
c = 1/2

(see text).

Equation (A9) can be analytically integrated over the prop-
agation direction which leads to the expression of the optical
density in the saturating regime given by Eq. (1) in the main
text.

2. 1D propagation model

a. Derivation of the set of coupled equations

In this section, we detail the derivation of Eqs. (2) in the
main text which arise from a self-consistent influence of the

coherent field on the incoherent intensity propagation and vice
versa. The coherent and total scattering rates of a two-level
system, as deduced from the density matrix calculations, are
given by [29]

R(coh)
sca = �

2α

sc/α

(1 + sc/α)2 ,

R(tot)
sca = �

2

(
sc/α

1 + sc/α
+ si/αc

1 + si/αc

)
, (A10)

where the corrected scattering rates are α = αSA(1 + si)
and αc = 1 + sc, where αSA is the single-atom reduction
of the cross section that depends on polarization, detun-
ing, and magnetic field offset. In this work, we have
αSA = 1 corresponding to on-resonance σ polarization. The
single-atom incoherent rate R(inc)

sca = R(tot)
sca − R(coh)

sca can be
written as

R(inc)
sca =�

2

(
si

1 + sc + si
+ sc(sc + si)

(1 + sc + si)2

)
. (A11)

This incoherent scattering rate is responsible for a re-
homogenization of the forward and backward incoherent
intensities in a layer dz and corresponds to the first and second
terms in the 1D differential equations of incoherent inten-
sity (s(±)

i ) propagation [Eqs. (2) in the main text]. In Fig. 4,

FIG. 5. Saturation profiles of for the coherent part sc(z) and incoherent parts s+
i (z), s−

i (z), and s+
i (z) + s−

i (z) for coherent input saturations
of sc(0) = 0.5, 10, 50 and optical densities b0 from 1.25 (dark-blue solid line) to 30.1 (light-blue solid line). The black dotted line is the
Gaussian atomic density profile with an arbitrary amplitude to match the plot size. The x axis is normalized by the Gaussian width σz = 5 μm.
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r+
+ = r−

+ = 1/2 and r−
− = r+

− = 1/2 account for an isotropic
rescattering of the incoherent field; r−,t i

c = r+,t i
c = 1/2 is well

justified by the fact that temporally incoherent (ti) scattering
of the incident coherent field cannot interfere and therefore
has no preferred direction. It follows the radiation pattern of
the probe polarization giving rise to an equal amount of back-
ward and forward incoherent scattering. r−,si

c = r+,si
c = 1/2

account for the incident coherent probe being scattered in
a spatially incoherent (si) field. It leads to the last term in
Eqs. (2) which guarantees the conservation of energy. The
temporally and spatially incoherent contributions are summed
in the incoherent intensity: r+/−

c = r+/−,ti
c + r+/−,si

c .

b. Iterative numerical solution

The solution for the set of coupled equations [Eqs. (2)]
are obtained by an iterative process similar to a perturbation
approach. We note (i) the ith step of the iteration. At step
0, the spatial profile of the coherent intensity [s(0)

c (z)] is de-
termined without considering the influence of the incoherent
background (s+/−,(0)

i = 0). Then at step (i + 1), the equa-
tion for s+,(i+1)

i (z) is numerically integrated with sc = s(i)
c (z),

s−
i = s−,(i)

i , and the boundary condition s+,(i+1)
i (−∞) = 0. A

similar calculation is carried for s−,(i+1)
i (z) with sc = s(i)

c (z),
s+

i = s+,(i)
i (z), s−,(i+1)

i (∞) = 0, and for s(i+1)
c (z) with s−

i =
s−,(i+1)

i (z), s+
i = s+,(i+1)

i (z), and s(i+1)
c (−∞) = s0

c . In other
words, we iteratively reinject the solution of step (i) into the
equation for step (i + 1) and converge towards an autoconsis-
tent solution that no longer varies in between successive steps.
At this stage, our set of equations is considered as solved for
the particular input coherent intensity (s(0)

c ) and atomic density
[n(z)].

c. Steady-state solutions

Figure 5 shows the steady-state intensity profiles along
the propagation direction obtained for various saturation sc

and optical density b. At a low saturation [sc(0) = 0.5], as
b increases, the coherent field gets converted into incoherent
light at the entrance of the cloud. Most of the incoherent
intensity is converted into s−

i as the probability for a photon
to pass through the cloud gets reduced. As sc(0) increases,
more coherent intensity passes through the cloud. The cross
section is then mostly determined by the coherent saturation
parameter. At large saturation [sc(0) = 50], the incoherent
intensity is homogeneous along the propagation direction as
most of the coherent light is transmitted.

From these profiles, the expected α can be calculated
using the transmitted intensities. The reduction of the
cross section α is computed numerically from the coherent
transmission [sc(∞)] and the incoherent intensity [s+

i (∞)]
collected in a solid angle � and inverting the equation giving
the optical density [Eq. (1)]:

α = −b − [sc(∞) + s+
i (∞)�αiso − sc(0)]

ln {[sc(∞) + s+
i (∞)�αiso)/sc(0)]} . (A12)

As final remarks, we focus on the transmitted incoherent
intensity s+

i (+∞)
sc (0) and the influence of the solid angle. Figure 6

gives this incoherent transmission as a function of the optical
density for three initial values of sc(0). At fixed sc(0), the

FIG. 6. Forward incoherent transmission vs the optical density
for three initial coherent saturations (blue lines). The black line is the
diffuse transmission given by Tdiff.

initial increase of the incoherent transmission as a function of
the optical density means that the coherent intensity is initially
converted by incoherent scattering into an incoherent propa-
gating intensity. On the other hand, in the large optical density
limit (b � sc), the residual diffuse transmission obtained with
our model tends towards the analytical limit Tdiff = 1+0.7104

b+2×0.7104
[34] which was obtained from a model of light propagation
in an homogeneous slab that excludes coherence and interfer-
ence effects (diffuse equation or random walk).

Finally, we evaluate the impact of the solid angle where
a part of the incoherent intensity (incoherent transmission)
is measured by the camera. Figure 7 shows α as a func-
tion of �/(2π ) ∈ [0, 0.017] for a large optical density of
30.1. The upper value of � corresponds to the experimen-
tal case (NA = 0.185) in the main text. We see that for
sc(0) � 1, the value of α is approximately constant over
a wide range of solid angles. The effect is a bit more

FIG. 7. Influence of the solid angle on the value of α at a large
optical density and for three initial saturations.
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important for sc(0) < 1 where the sensitivity for low transmis-
sions is sharp, due to the logarithm term in the optical density.

However, it remains constant in a wide range of solid angles
[�/(2π ) > 10−3].
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