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The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm
that solves combinatorial optimization problems. While there is evidence suggesting that the fixed form of the
standard QAOA Ansatz is not optimal, there is no systematic approach for finding better Ansätze. We address
this problem by developing an iterative version of QAOA that is problem tailored, and which can also be adapted
to specific hardware constraints. We simulate the algorithm on a class of Max-Cut graph problems and show
that it converges much faster than the standard QAOA, while simultaneously reducing the required number of
CNOT gates and optimization parameters. We provide evidence that this speedup is connected to the concept of
shortcuts to adiabaticity.
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I. INTRODUCTION

Many important computationally hard combinatorial opti-
mization problems such as Max-Cut, graph coloring, traveling
salesman, and scheduling management [1–3] can be mapped
to Ising Hamiltonians whose ground states provide the solu-
tions. One can in principle solve these optimization problems
on a quantum computer by initializing the quantum device in
the ground state of a Hamiltonian that is easy to prepare and
adiabatically tuning the latter into the problem Hamiltonian.
In a digital quantum computer, this translates into a Trotter-
ized version of the adiabatic evolution operator, which is the
alternating product of the evolution operators corresponding
to the initial mixer and the problem (Ising) Hamiltonians. In
the limit of an infinite product, this Trotterized form becomes
exact.

QAOA is a hybrid quantum-classical variational algorithm
that uses a finite-order version of this evolution operator
to prepare wave-function Ansätze on a quantum processor
[4–7]. QAOA is performed by variationally minimizing the
expectation value of the Ising Hamiltonian with respect to the
parameters in the Ansatz. The quantum processor is also used
to measure energy expectation values, while the optimization
is done on a classical computer. There has been a lot of
progress on QAOA recently on both the experimental and
theoretical fronts [1,8–14]. There is evidence suggesting that
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QAOA may provide a significant quantum advantage over
classical algorithms [14–16], and that it is computationally
universal [17,18].

Despite these advances, there are limitations and potential
issues with this algorithm. The performance improves with
the number of alternating layers in the Ansatz, but the lat-
ter is limited by coherence times in existing and near-term
quantum processors. Moreover, more layers implies more
variational parameters, which introduces challenges for the
classical optimizer [19]. Furthermore, Ref. [20] points out
that the locality and symmetry of QAOA can also severely
limit its performance. These issues can be attributed to, or
are at least exacerbated by, the form of the QAOA Ansatz.
In particular, short-depth QAOA is not really the digitized
version of the adiabatic problem, but rather an ad hoc Ansatz,
and as a result should not be expected to perform optimally,
or even well. A short-depth Ansatz that is further tailored to
a given combinatorial problem could therefore address the
issues with the standard QAOA Ansatz. However, identifying
such an alternative is a highly nontrivial problem given the
vast space of possible Ansätze.

In this work, we propose an iterative version of QAOA
termed adaptive derivative assembled problem tailored-
quantum approximate optimization algorithm (ADAPT-
QAOA). Our algorithm grows the Ansatz two operators at a
time by using a gradient criterion to systematically select the
QAOA mixer from a predefined operator pool. While ADAPT-
QAOA is general and can be applied to any optimization
problem, we focus on Max-Cut to quantify its performance.
We find that when entangling gates are included in the opera-
tor pool, there is a dramatically faster convergence compared
to standard QAOA. Surprisingly, despite the introduction of
entangling gates as mixers, these improvements come with a
reduction in the numbers of both the optimization parameters
and the CNOT gates by approximately 50% each compared to
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standard QAOA. We summarize the details of our algorithm
and its performance in Sec. II and provide evidence that this
improved performance is related to the concept of shortcuts
to adiabaticity [21–24] in Sec. III. Finally, we conclude in
Sec. IV with a look ahead.

II. ADAPT-QAOA

A. Framework

In QAOA [4,5], the variational Ansatz consists of p layers,
each containing the cost Hamiltonian HC and a mixer, HM :

|ψp(�γ , �β )〉 =
(

p∏
k=1

[e−iHMβk e−iHCγk ]

)
|ψref〉 , (1)

where |ψref〉 = |+〉⊗n, n is the number of qubits, and �γ and
�β are sets of variational parameters. If these parameters are
chosen such that 〈ψp(�γ , �β )| HC |ψp(�γ , �β )〉 is minimized, then
the resulting energy and state provide an approximate solution
to the optimization problem encoded in HC . The accuracy of
the result and the efficiency with which it can be obtained
depend sensitively on HM . In the standard QAOA Ansatz, the
mixer is chosen to be a single-qubit X rotation applied to
all qubits. A few papers have suggested modifications to the
standard QAOA Ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the po-
tential advantages of the QAOA Ansatz but do not provide
a universal strategy for choosing mixers that works across a
broad range of optimization problems.

In this work, we replace the single, fixed mixer HM by a set
of mixers Ak that change from one layer to the next:

|ψp(�γ , �β )〉 =
(

p∏
k=1

[e−iAkβk e−iHCγk ]

)
|ψref〉 . (2)

We build up this Ansatz iteratively, one layer at a time, in a
way that is determined by HC . This iterative process is inspired
by the variational quantum eigensolver algorithm, ADAPT-
VQE [28,29]. It can be summarized by three basic steps: First,
define the operator set {Aj} (called the mixer pool, and where
Aj = A†

j ) and select a suitable reference state to be the initial
state: |ψ (0)〉 = |ψref〉. Here, we choose |ψref〉 = |+〉⊗n as in
the standard QAOA. We will return shortly to the question of
how to choose the pool. Second, prepare the current Ansatz
|ψ (k−1)〉 on the quantum processor and measure the energy
gradient with respect to the pool, the jth component of which
is given by −i 〈ψ (k−1)| eiHCγk [HC, Aj]e−iHCγk |ψ (k−1)〉, where
the new variational parameter γk is set to a predefined value
γ0. For the measurement, we can decompose the commutator
into linear combinations of Pauli strings and measure the
expectation values of the strings using general variational
quantum algorithm methods [30]. If the norm of the gradient is
below a predefined threshold, then the algorithm stops, and the
current state and energy estimate approximate the desired so-
lution. If the gradient threshold is not met, modify the Ansatz
by adding the operator, A(k)

max, associated with the largest

component of the gradient: |ψ (k)〉 = e−iA(k)
maxβk e−iHCγk |ψ (k−1)〉,

where βk is a new variational parameter. Third, optimize all
parameters currently in the Ansatz, βm, γm, m = 1, . . . , k,

such that 〈ψ (k)|HC |ψ (k)〉 is minimized, and return to the sec-
ond step. This algorithm, which we call ADAPT-QAOA, lies
somewhere between standard QAOA and ADAPT-VQE in the
sense that it possesses the alternating-operator structure of
QAOA but enjoys additional flexibility by allowing the mixers
to vary over the course of the iterative construction.

B. Operator pool

The first step in running this algorithm is to define
the mixer pool. Define Q to be the set of qubits. The
pool corresponding to the standard QAOA contains only
one operator, PQAOA = {∑i∈Q Xi}. Here, we introduce two
qualitatively different pools: one consisting entirely of single-
qubit mixers, and one with both single-qubit and multiqubit
entangling gates: Psingle = ∪i∈Q{Xi,Yi} ∪ {∑i∈Q Yi} ∪ PQAOA,
Pmulti = ∪i, j∈Q×Q{BiCj |Bi,Cj ∈ {X,Y, Z}} ∪ Psingle. Because
PQAOA ⊂ Psingle ⊂ Pmulti, we expect that Pmulti will provide the
best performance. The QAOA, single-qubit, and multiqubit
pools have O(1), O(n), and O(n2) elements, respectively.

Max-Cut is a classic (NP-hard) quadratic unconstrained
binary optimization problem, and it can be used to solve other
optimization problems. Thus, it is a useful benchmarking
problem for QAOA and has been used as such in prior works
[5,7,11]. It is defined as follows: Given a graph G = (V, E ),
with weight wi, j for edge (i, j), find a cut S ⊆ V such that
S ∪ S̄ = V , and

∑
iεS, jεS̄,i, jεE wi, j is maximized. This problem

can be encoded in the Ising Hamiltonian

HC = −1

2

∑
i, j

wi, j (I − ZiZ j ), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) represents
a possible cut. HC counts the sum of the weights of the edges
connecting one subgraph to the other, and its ground state
corresponds to the maximum cut. HC has a Z2 symmetry
generated by F = ⊗iXi. Only the Aj that commute with F
have a nonzero gradient (see Appendix A), so we retain only
these Pauli strings (which have an even number of Y or Z
operators) in our mixer pool.

C. Performance and resource comparison

We use the Max-Cut problem on regular graphs with n = 6
vertices and degrees D = 3 and D = 5 to benchmark the
performance of ADAPT-QAOA. For each type of graph, we
analyze 20 instances of random edge weights, which are
drawn from the uniform distribution U (0, 1) [31]. We use
Nelder-Mead for the optimization of the variational param-
eters �β and �γ . The gradients used to select new operators are
sensitive to the initial values for �γ . It is natural to initialize
these parameters at γ0 = 0 to avoid biasing the optimization.
However, as we show in Appendix B, γ0 = 0 is a critical
point of the cost function [32]. Moreover, the minimum of
the energy in the first layer of ADAPT-QAOA never occurs at
γ0 = 0. Therefore, we shift the initial value γ0 slightly away
from zero (γ0 = 0.01) to avoid these issues.

In Fig. 1 we show the error as a function of the number
of Ansatz layers for the standard QAOA and for ADAPT-
QAOA using single-qubit and multiqubit mixer pools. For
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FIG. 1. Comparison of the performance of standard QAOA (blue) with ADAPT-QAOA for the single-qubit (orange) and multiqubit (green)
pools. The algorithms are run on the Max-Cut problem for the regular graphs shown in the figure, which have n = 6 vertices and are of degree
(a) D = 3 and (b) D = 5. The energy error (the difference between the energy estimate obtained by the algorithm and the exact ground-state
energy of HC) is shown as a function of the number of layers in the Ansatz. Results are shown for 20 different instances of edge weights, which
are randomly sampled from the uniform distribution U (0, 1). The shaded regions indicate 95% confidence intervals.

both three- and five-regular graphs, we find that using the
single-qubit mixer pool provides a modest improvement over
standard QAOA. On the other hand, the multiqubit pool per-
forms dramatically better, leading to a rapid convergence to
the exact solution after only ∼3 layers. We also find that for
the degree-five graphs, standard QAOA and ADAPT-QAOA
with single-qubit mixers converge slower than the degree-
three case, whereas the performance of ADAPT-QAOA with
the multiqubit operator pool remains approximately the same.
Note that the particular form of the two-qubit operators in the
pool was chosen for its simplicity. In general, one can choose
a hardware-tailored operator pool, in the spirit of Ref. [33].
In Appendix C, we show similar results for n = 8 and n =
10 graphs of degree D = 2, where ADAPT-QAOA with the
multiqubit pool substantially outperforms the standard QAOA
again. Going to larger values of D or n is made challenging
by a sharp increase in the number of layers needed to reach
convergence, as reported for standard QAOA in Ref. [34].

It is interesting to ask how much the ADAPT-QAOA An-
sätze differ from the standard QAOA Ansatz. We find that
when the single-qubit mixer pool is used, the single-qubit
operators Xi are chosen instead of the standard mixer approx-
imately 36.6% of the time for n = 6, D = 3 graphs and 25%
of the time for n = 6, D = 5 graphs. For the multiqubit mixer
pool, the algorithm chooses operators other than the stan-
dard mixer approximately 75% of the time for n = 6, D = 3
graphs and 80% of the time for n = 6, D = 5 graphs (see
Appendix D). This trend supports the intuitive idea that a
more connected graph requires more entanglement for a rapid
convergence to the solution.

A crucial question, especially for near-term platforms, is
how the different mixer pools compare with respect to re-
source overhead. Figure 2 shows the number of CNOTs and
number of parameters for the three algorithms. The CNOT
counts are determined by decomposing each two-qubit op-
erator into two CNOT gates and one or two single-qubit
gates. Surprisingly, we find that both the standard QAOA
and the single-qubit mixer Ansätze in fact have more CNOTs

compared to that constructed from the entangling multiqubit
mixer pool. Moreover, on average, the standard QAOA algo-
rithm uses more parameters and CNOTs to reach the same
convergence threshold than either version of ADAPT-QAOA.
About half as many CNOTs are required for the ADAPT-
QAOA multiqubit pool case, despite the fact that the mixers
in the multiqubit pool themselves introduce additional CNOT
gates on top of those coming from HC . Reference [25] pro-
posed using a restricted form of entangling gates in the
Ansatz to obtain better performance in combinatorial prob-
lems at the cost of introducing more variational parameters.
In contrast, ADAPT-QAOA provides a systematic way to both
improve performance and reduce the number of parameters
and CNOTs.

III. SHORTCUTS TO ADIABATICITY

One may wonder whether there is a physically intu-
itive way to understand the strikingly better performance of
ADAPT-QAOA. Considering that the standard QAOA Ansatz
has a structure dictated by the adiabatic theorem, a possi-
ble explanation is that the ADAPT algorithm is related to
shortcuts to adiabaticity (STA). STA, also known as counter-
diabatic or transitionless driving, was introduced for quantum
systems by Demirplak and Rice [21] and later, independently,
by Berry [22,23]. STA has also been explored in the classical
context [35,36], including a recent application in biology [37].
The idea is that if we want to drive a system such that it
remains in the instantaneous ground state at all times, then
by adding a certain term HCD to the Hamiltonian, we can
achieve this without paying the price of a slow evolution.
Although the instantaneous eigenstates of the original Hamil-
tonian only solve the time-dependent Schrödinger equation in
the adiabatic limit, they become exact solutions when the
Hamiltonian is updated to include HCD. The advantage of
STA is that the evolution can be achieved nonadiabatically.
Below, we provide evidence that ADAPT-QAOA is indeed
related to STA, a likely explanation for why it converges to
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FIG. 2. Resource comparison of the standard QAOA, ADAPT-
QAOA with the single-qubit mixer pool, and ADAPT-QAOA with
the multiqubit mixer pool for the Max-Cut problem on regular graphs
with n = 6 vertices and random edge weights. (a) and (b) show the
comparison for graphs of degree D = 3 and D = 5, respectively. For
all cases except the standard QAOA applied to D = 5 graphs, we
count the number of parameters and CNOTs needed to reach an
energy error of δE = 10−3. As standard QAOA for D = 5 graphs
never reaches this error threshold, we instead count the CNOT gates
and parameters at the end of the simulation (15 layers). The dark
(light) red bars show variational parameter (CNOT gate) counts. The
error bars show variances obtained by sampling over 20 different
instances of edge weights.

the solution much faster than its adiabatic counterpart, the
standard QAOA. Before we present this evidence, we must
first explain how HCD can be constructed using the concept of
adiabatic gauge potentials.

A. Approximate adiabatic gauge potentials

Here we briefly review the mathematical machinery of STA
and adiabatic gauge potentials [38–40]. Let |ψ〉 be a state
evolving under H(θ (t )), i∂t |ψ〉 = H(θ (t )) |ψ〉, where θ is
a continuous variable that parameterizes the Hamiltonian. A
unitary transformation U (θ (t )) can be applied to move the
Hamiltonian H(θ (t )) from the initial basis to its instantaneous
eigenbasis, where H̃(θ ) = U †(θ )H(θ )U (θ ) is diagonal at all
times. The Schrödinger equation in the instantaneous eigen-
basis is i∂t |∗〉 ψ̃ = [H̃ − θ̇Ãθ ] |∗〉 ψ̃ , where |∗〉 ψ̃ = U † |ψ〉,
θ̇ = dθ/dt , and Ãθ = iU †∂θU is the adiabatic gauge potential

in the rotated frame. It is evident that the term −θ̇Ãθ drives
transitions between the energy levels of the original Hamil-
tonian H. Therefore, one can add the counterdiabatic term
HCD = θ̇Aθ to H(θ ), with Aθ = U ÃθU †, to eliminate such
transitions in the rotated frame. This is the core of transition-
less driving protocols.

Now, the matrix elements of the adiabatic gauge potential
in the instantaneous eigenbasis are

〈m(θ )|Aθ |n(θ )〉 = 〈m(θ )|U ÃθU † |n(θ )〉
= i 〈m(θ )| ∂θUU † |n(θ )〉
= i 〈m(θ )| |∂θn(θ )〉 , (4)

where we used Ãθ = iU †∂θU and |n(θ )〉 = U (θ ) |n0〉 with
|n0〉 being independent of θ . Moreover, the adiabatic gauge
potential Aθ satisfies [22,38]

〈m|Aθ |n〉 = i 〈m| |∂θn〉 = i
〈m| ∂θH |n〉

En − Em
, (5)

which is obtained by differentiating the eigenfunction
H(θ ) |n(θ )〉 = En(θ ) |n(θ )〉 with respect to θ . Note that in-
creasing the size of the system can lead to divergent matrix
elements due to exponentially small denominators (En − Em).
In this regard, Ref. [40] proposes an approximate gauge po-
tential

A(p)
θ = i

p∑
k=1

ak[H, ∂θH]2k−1, (6)

where [X,Y ]k+1 = [X, [X,Y ]]k and {a1, a2, . . . , ap} is a set of
coefficients with p being the order of the expansion. This set
of coefficients is found by minimizing Tr[G2(A(p)

θ )], where
G(A(p)

θ ) = ∂θH − i[H,A(p)
θ ] [40]. In fact, Tr[G2(X )] is min-

imized when X is equal to the exact adiabatic gauge potential
Aθ [38,39]. Using matrix calculus identities and properties of
the trace, it is straightforward to show that

∂Tr[G2(X )]

∂X = 2[H, i∂θH − [X ,H]]. (7)

Only adiabatic gauge potentials satisfy [H, i∂θH −
[Aθ ,H]] = 0. This is easily proven by differentiating
H̃(θ ) = U †(θ )H(θ )U (θ ) with respect to θ ,

∂θH̃ = ∂θU †UU †HU + U †∂θHU + U †HUU †∂θU, (8)

and noting that Ãθ = −i∂θU †U = iU †∂θU and H =∑
n En(θ ) |n(θ )〉 〈n(θ )|, then

[Aθ ,H] = i(∂θH −
∑

n

∂θEn(θ ) |n(θ )〉 〈n(θ )|). (9)

Given that [H,
∑

n ∂θEn(θ ) |n(θ )〉 〈n(θ )|] = 0, adiabatic
gauge potentials clearly satisfy

[H, i∂θH − [Aθ ,H]] = 0. (10)

B. Connection between ADAPT-QAOA and STA

To investigate the connection between ADAPT-QAOA and
STA, we apply the above formalism using the Hamiltonian
H = f (t )HC + [1 − f (t )]

∑n
i Xi with f (t ) = t/T and, since

there is no other continuous variable that parameterizes the
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FIG. 3. Probability P of the operator at layer p of the ADAPT-
QAOA Ansatz to be among the Pauli strings with the largest
coefficient in HCD averaged over 32 graphs with n = 6, D = 3. The
different curves correspond to different orders of the approximation.

Hamiltonian, we simply set θ = t in the equations above. T
is the duration of the evolution from the initial state |ψre f 〉 =
|+〉⊗n to the ground state of the cost Hamiltonian HC , which
is given by Eq. (3). The counterdiabatic Hamiltonian HCD

is approximated using Eq. (6), where p is the order of the
approximation.

As a concrete example, we study the Max-Cut problem on
32 instances of regular graphs (n = 6, D = 3) with random
edge weights. Figure 3 shows the probability that an operator
in the ADAPT-QAOA Ansatz is also one of the dominant
operators in HCD. For each of the 32 cases, we define a
set O(i)

CD (with i = 1, . . . , 32) comprised of the five operators
with the largest coefficient in the time-averaged HCD.1 The
probability P in Fig. 3 is constructed by taking the total
number of times the mixer operator at layer p is also an
element of the corresponding set O(i)

CD and dividing it by the
total number of cases. In all cases, the mixer operator at
the first layer is also an element of the set O(i)

CD. For higher
layers, the probability of the mixer operator to be in O(i)

CD
is inversely proportional to the layer number. We attribute
this to the fact that HCD is computed for a specific mixer
Hamiltonian (

∑n
i Xi), while information about this choice

does not enter into ADAPT-QAOA, which only relies on the
initial state |+〉⊗n.2 Interestingly, from Fig. 3 we see that
going to higher order in the HCD approximation increases the
probability of finding the mixers in the set O(i)

CD. It therefore
appears that ADAPT-QAOA finds the appropriate rotation
axes in Hilbert space for faster convergence to the solution,

1We have seen in our simulations that only Pauli string operators
are chosen by ADAPT-QAOA until deep into the layer number. Since
we stop at layer five, only Pauli strings are chosen in all 32 cases.

2In principle, the mixer Hamiltonian in H(t ) could be replaced by
any other Hamiltonian that has |+〉⊗n as the ground state, but this
would modify the counterdiabatic Hamiltonian and any resemblance
to the ADAPT-QAOA Ansatz would be reduced or even lost. In-
terestingly, using the mixer Hamiltonian

∑n
i Xi involves the lowest

possible energetic cost [41,42] of implementing the shortcut to adia-
baticity.

and that these axes may in some sense be universal across all
possible choices of H(t ) that interpolate between the initial
and target states. This suggests that STA can be used as a tool
to construct operator pools for ADAPT-QAOA.

IV. CONCLUSION

In conclusion, we introduced ADAPT-QAOA, an optimiza-
tion algorithm that grows the Ansatz iteratively in a way
that is naturally tailored to a given problem. We tested sev-
eral instances of random diagonal Hamiltonians and found
that ADAPT-QAOA always outperforms the standard QAOA.
Given its flexibility with the choice of mixer pool, the algo-
rithm can be tailored to the native gates, connectivities, and
experimental constraints of hardware. It would also be fruitful
to employ ADAPT-QAOA for optimization problems that use
higher-dimensional Hilbert spaces, such as graph coloring
[26,27]. Finally, more work into the connection to STA would
be of both fundamental and practical interest.
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APPENDIX A: ISING SYMMETRY AND MIXER POOL
OPERATORS

In this work, we focus on Ising Hamiltonians of the form

HC = −1

2

∑
i, j

wi, j (I − ZiZ j ), (A1)

which have a Z2 symmetry associated with the operator F =
⊗iXi. Since [F, HC] = 0 and F |ψref〉 = |ψref〉, we can rewrite
the gradient in the first iteration as

〈ψref |eiHCγ1 [HC, Aj]e
−iHCγ1 |ψref〉

= 〈ψref |eiHCγ1 F [HC, Aj]Fe−iHCγ1 |ψref〉, (A2)

where Aj is an operator from the mixer pool. However, we
also know that FAj = ±AjF because F and Aj are Pauli
strings (except when Aj is the standard QAOA mixer

∑
i∈Q Xi

or
∑

i∈Q Yi, but the former commutes and the latter anticom-
mutes with F ), so F [HC, Aj]F = ±[HC, Aj]. Comparing this
to Eq. (A2), we see that to have a nonzero gradient, we need
[F, Aj] = 0. This holds for all steps of the algorithm, because
only operators that commute with F appear in the Ansätze, so
a formula like Eq. (A2) holds at every iteration. The Aj that
commute with F are Pauli strings that have an even number of
Y or Z operators, so we retain only these Pauli strings in our
mixer pool.

APPENDIX B: FIRST LAYER OF ADAPT-QAOA ANSATZ

Here we analyze the ADAPT-QAOA cost function in the
first layer, and the results show that the minimum of the energy
in the first layer of ADAPT-QAOA never occurs at γ = 0 for
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FIG. 4. The performance of three algorithms for the Max-Cut
problem on a n = 8 and D = 2 graph with randomly chosen edge
weights.

any operator included in the pool. We also show that γ = 0 is
a critical point of the cost function.

At level p of ADAPT-QAOA, the cost function is

Ep(β, γ ) = 〈ψ (p−1)|e−iγ H e−iβMHeiβMeiγ H |ψ (p−1)〉. (B1)

Where H is a linear combination of Pauli strings that are
tensor products of the identity and Z . All the terms in H
commute with each other. M is the mixer. If the mixers M
are single-Pauli strings, we have

e−iβMHeiβM = Hc + cos(2β )Ha − i sin(2β )MHa, (B2)

where Hc is the part of H that commutes with M, and Ha is
the part of H that anticommutes with M. We then have

e−iγ H e−iβMHeiβMeiγ H

= Hc + cos(2β )Ha − i sin(2β )e−iγ H Meiγ H Ha

= Hc + cos(2β )Ha − i sin(2β )MHae2iγ Ha . (B3)

We know that Ep(β, γ ) is periodic in β with period π .
Therefore, we can restrict β to the range β ∈ [−π/2, π/2]
without loss of generality. Let us define

G(γ ) ≡ −iMHae2iγ Ha . (B4)

The cost function is then

Ep(β, γ ) = 〈Hc〉 + cos(2β )〈Ha〉 + sin(2β )〈G(γ )〉, (B5)

where the expectation values are taken with respect to
|ψ (p−1)〉. Therefore,

∂Ep

∂β
= −2 sin(2β )〈Ha〉 + 2 cos(2β )〈G(γ )〉 = 0

⇒ tan(2β ) = 〈G(γ )〉
〈Ha〉 , (B6)

and

∂Ep

∂γ
= sin(2β )〈G′(γ )〉 = 0

⇒ β = 0,±π/2 or 〈G′(γ )〉 = 0. (B7)

FIG. 5. The performance of three algorithms for the Max-Cut
problem on a n = 10 and D = 2 graph with randomly chosen edge
weights.

For the first layer, p = 1, the state is |ψ (0)〉 = |+〉⊗n, and
so 〈Ha〉 = 0. From Eq. (B6), we see that β = ±π/4 assuming
〈0|G(γ )|0〉 �= 0. Eq. (B7) then requires 〈G′(γ )〉 = 0. Using
Eq. (B4), for p = 1 this is

〈0|G′(γ )|0〉 = 2〈0|MH2
a e2iγ Ha |0〉

= 2〈0|H2
a e2iγ Ha 0〉 = 0. (B8)

Notice that γ = 0 is not a solution of this equation be-
cause 〈0|H2

a |0〉 > 0, which follows from the fact that this is
the norm of a nonzero state, Ha|+〉⊗n. Numerics are needed
to determine if there is a nonzero value of γ that satisfies
〈0|G′(γ )|0〉 = 0.

On the other hand, if 〈0|G(γ )|0〉 = 0, then there is no
constraint on β from ∂Ep

∂β
= 0. Notice that this happens when

γ = 0 since 〈0|G(0)|0〉 = −i〈0|MHa|0〉 = 0, which is true
for regular graphs where Ha is a sum of terms like ZjZk , and
M is a Pauli string that commutes with F = ⊗
X
. In this
case, we must have β = 0 or ±π/2. There could be other
values of γ that satisfy 〈0|G(γ )|0〉 = 0, but it seems unlikely
that both this condition and 〈0|G′(γ )|0〉 = 0 can be satisfied
simultaneously, so it is probably still true that β must be 0 or
±π/2 in this case.

In summary, there are two classes of possible solu-
tions for p = 1: (i) β = ±π/4 and γ = γ ∗ �= 0 where
〈0|G′(γ ∗)|0〉 = 0; (ii) γ = γ ∗ where 〈0|G(γ ∗)|〉 = 0 and ei-
ther 〈0|G′(γ ∗)|0〉 = 0 or β = 0,±π/2. To clarify whether
these solutions are maxima or minima, we calculated the
second derivatives:

∂2Ep

∂β2
= −4 cos(2β )〈0|Ha|0〉 − 4 sin(2β )〈0|G(γ )|0〉, (B9)

∂2Ep

∂γ 2
= sin(2β )〈0|G′′(γ )|0〉, (B10)

∂2Ep

∂β∂γ
= 2 cos(2β )〈0|G′(γ )|0〉. (B11)
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FIG. 6. Probability of operators picked by the original QAOA, ADAPT-QAOA with the single-qubit mixer and ADAPT-QAOA with
multiqubit pool for the Max-Cut problem on regular graphs with n = 6 vertices with degree (a), (b) D = 3 and (c), (d) D = 5 with random
edge weights sampled from a uniform distribution U (0, 1). The blue bars show the probability of each particular operator used for Ansatz, and
green bars show the probability of the original mixer, sum over all single-qubit gates and sum over all entangling gates used in Ansatz. The
results from 20 instances of random edge weights.

Let us consider the class (i) extrema first. In this case

∂2Ep

∂β2

∣∣∣∣
β=±π/4,γ=γ ∗

= ∓4〈0|G(γ ∗)|0〉, (B12)

and the Hessian is{
∂2Ep

∂β2

∂2Ep

∂γ 2
−

(
∂2Ep

∂β∂γ

)2
}∣∣∣∣

β=±π/4,γ=γ ∗

= −4〈0|G(γ ∗)|0〉〈0|G′′(γ ∗)|0〉. (B13)

Thus, we need 〈0|G(γ ∗)|0〉〈0|G′′(γ ∗)|0〉 < 0, in which case
β = π/4 is a maximum and β = −π/4 is a minimum if
〈0|G(γ ∗)|0〉 > 0, while β = −π/4 is a maximum and β =
π/4 is a minimum if 〈0|G(γ ∗)|0〉 < 0.

For type (ii) extrema, we have

∂2Ep

∂β2

∣∣∣∣
β=0,±π/2,γ=γ ∗

= ±4〈0|Ha|0〉 = 0, (B14)

and the Hessian is{
∂2Ep

∂β2

∂2Ep

∂γ 2
−

(
∂2Ep

∂β∂γ

)2
}∣∣∣∣

β=0,±π/2,γ=γ ∗

= −4〈0|G′(γ ∗)|0〉2, (B15)

these extrema are saddle points. Notice that γ = 0 is one of
these saddle points.

We can see that the minimum of the energy in the first
layer of ADAPT-QAOA never occurs at γ = 0, and the only
minima occur at β = ±π/4 and γ = γ ∗ �= 0, which is con-
sistent with our numerical simulation results. The fact that
γ = 0 is a saddle point (at least in the first layer) makes this
a problematic choice for the initial value of γ in the classical
optimization subroutine of ADAPT-QAOA. For this reason,
we instead choose the initial value, γ0, to be a small nonzero
value, e.g., γ0 = 0.01. Similar performance is achieved for
any value of γ0 � 0.1. Keeping γ0 close to zero is preferable
to avoid biasing the optimization.
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FIG. 7. Comparison of the performance of the original QAOA
algorithm (blue) with the ADAPT-QAOA algorithm for the single-
qubit (orange) and multiqubit (green) pools run for the Max-Cut
problem on graphs with n = 6 vertices with degree (a) D = 3 and
(b) D = 5. The energy error is shown as a function of the number of
total CNOTs used in the Ansatz.

APPENDIX C: SCALABILITY OF ADAPT-QAOA

Here, we investigate the scalability of our algorithm. We
perform simulations for degree D = 2 graphs with n = 8 and

n = 10 qubits, with results shown in Figs. 4 and 5. Clearly,
even for larger system sizes and less connected graphs where
D/n < 1/2, our algorithm exhibits substantially better perfor-
mance compared to standard QAOA.

APPENDIX D: ROLE OF ENTANGLING MIXERS VERSUS
ENTANGLING GATES

In Fig. 2, we compared the resources used by three differ-
ent algorithms for the Max-Cut problem on regular graphs.
These resources include the number of CNOT gates and the
number of optimization parameters. From the comparison
we can see that including entangling mixers in the Ansatz
produces a dramatically faster convergence to the exact so-
lution compared to the original QAOA. Surprisingly, despite
the inclusion of these entangling mixers, the improvement in
convergence comes with a simultaneous reduction in both the
number of entangling gates in the compiled Ansatz.

To further investigate the role of entangling mixers, we
consider the n = 6, D = 3 [in Figs. 6(a), 6(b)] and n =
6, D = 5 graphs [in Figs. 6(c), 6(d)] and show the probability
for an operator to be picked by the original QAOA and by
ADAPT-QAOA with a single-qubit mixer pool in Fig. S1.
Similar results for ADAPT-QAOA with a multiqubit mixer
pool are also shown in Figs. 6(b), 6(d). We find that when only
the single-qubit mixer pool is used, the single-qubit operators
Xi are chosen instead of the original mixer approximately
25% of the time. For the multiqubit mixer pool, the algorithm
chooses two-qubit entangling operators approximately 70% of
the time. Clearly, entangling mixers play a central role in the
improved performance of ADAPT-QAOA.

Additionally, to understand the importance of CNOT gates
in the compiled Ansatz, in Fig. 7 we show the error for the
solution determined by each algorithm as a function of the
number of CNOTs used in the Ansatz for both n = 6, D = 3,
and n = 6, D = 5 graphs. Based on the figure, we can see
that ADAPT-QAOA with the multiqubit mixer pool converges
using a much smaller number of CNOTs compared to the orig-
inal QAOA or to ADAPT-QAOA with the single-qubit mixer
pool. On the other hand, the latter only provides a modest
reduction in CNOT count compared to the original QAOA.
Interestingly, we see that while entangling mixers are crucial
for the dramatic improvement in the performance afforded by
ADAPT-QAOA with the multiqubit mixer pool, at the same
time far fewer entangling gates are needed in the Ansatz. Thus,
the role of entanglement in this algorithm is rather subtle.
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