
PHYSICAL REVIEW RESEARCH 4, 033028 (2022)

Optimized SWAP networks with equivalent circuit averaging for QAOA

Akel Hashim ,1,2,3,* Rich Rines,4,* Victory Omole ,4 Ravi K. Naik,1,3 John Mark Kreikebaum,1,5,† David I. Santiago,3

Frederic T. Chong,4,6 Irfan Siddiqi,1,3,5 and Pranav Gokhale4,‡

1Quantum Nanoelectronics Laboratory, Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
2Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, California 94720, USA

3Computational Research Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
4Super.tech, a division of ColdQuanta, Chicago, Illinois 60615, USA

5Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
6University of Chicago, Chicago, Illinois 60637, USA

(Received 11 November 2021; accepted 18 May 2022; published 11 July 2022)

The SWAP network is a qubit routing sequence that can be used to efficiently execute the Quantum
Approximate Optimization Algorithm (QAOA). Even with a minimally connected topology on an n-qubit
processor, this routing sequence enables O(n2) operations to execute in O(n) steps. In this work, we optimize the
execution of SWAP networks for QAOA through two techniques. First, we take advantage of an overcomplete
set of native hardware operations [including 150-ns controlled- π

2 phase gates with up to 99.67(1)% fidelity] to
decompose the relevant quantum gates and SWAP networks in a manner which minimizes circuit depth and
maximizes gate cancellation. Second, we introduce equivalent circuit averaging, which randomizes over degrees
of freedom in the quantum circuit compilation to reduce the impact of systematic coherent errors. Our techniques
are experimentally validated at the Advanced Quantum Testbed through the execution of QAOA circuits for
finding the ground state of two- and four-node Sherrington-Kirkpatrick spin-glass models with various randomly
sampled parameters. We observe a ∼60% average reduction in error (total variation distance) for QAOA of depth
p = 1 on four transmon qubits on a superconducting quantum processor.

DOI: 10.1103/PhysRevResearch.4.033028

I. INTRODUCTION

A key challenge for scaling near-term quantum computers
to address practical problems is limited qubit connectivity.
While qubit mapping techniques can mitigate this limitation,
recent results suggest that any mismatch between hardware
connectivity and the connectivity required for specific ap-
plications can erase the potential for a quantum speedup
[1,2]. This poses a particular challenge for superconducting
quantum hardware, which—despite the advantages of fast
operation speed, high gate fidelity, and scalable fabrication—
generally has the disadvantage of sparse nearest-neighbor
qubit connectivity.

The SWAP network, introduced in Ref. [3] and studied
further in Refs. [4,5], offers a promising path forward for
coping with limited connectivity. In fact, the SWAP network
requires only minimal linear connectivity between qubits; any
additional qubit couplings are unnecessary. This property is
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well suited to superconducting qubits where it has the addi-
tional advantage of minimizing the effect of crosstalk due to
frequency crowding [6].

Qubit routing in an n-qubit SWAP network follows a se-
quence of n − 1 steps, incurring O(n) total quantum circuit
depth. This linear cost suffices to carry out all O(n2) pair-
wise interactions between qubits, even for linearly arranged
qubits. By contrast, naive qubit routing approaches would
require O(n3) circuit depth to perform all of the necessary
operations because each of the O(n2) pair-wise interactions
would be serialized and would incur an O(n) SWAP overhead.
The quadratic advantage in circuit depth offered by SWAP
networks persists even in comparison to state-of-the-art qubit
routing [7].

There are numerous applications of SWAP networks,
broadly corresponding to evolution under a fully connected
Hamiltonian comprising interactions between all possible
pairs or subsets of qubits [4]. Examples include the simu-
lation of the Sherrington-Kirkpatrick spin-glass model [8],
Max-Cut for use cases like VLSI circuit design [9], and
k-means clustering on large datasets with coresets [7]. Fur-
thermore, Hamiltonian evolution is at the heart of many noisy
intermediate-scale quantum (NISQ) [10] algorithms such as
the Quantum Approximate Optimization Algorithm (QAOA)
[11] and its derivatives [12–14], making the implementation
of SWAP networks invaluable for near-term applications. In
addition, SWAP networks will be favorable for noise mitiga-
tion approaches involving virtual distillation [15], in which
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multiple copies of a quantum state can be arranged in parallel
registers with linear connectivity [16].

Given the fundamental importance of SWAP networks to
many quantum applications, it is important to fully optimize
their execution. Here, we introduce and apply two compilation
techniques that improve the performance of SWAP networks
for QAOA. The first technique employs a richer gateset than
enabled by standard quantum assembly (QASM) representa-
tion for circuit decomposition. The second technique, which
we term equivalent circuit averaging (ECA), involves ran-
domizing circuit decomposition over degrees of freedom in
compilation to mitigate the impact of systematic coherent
errors. Both of these techniques are validated at the Advanced
Quantum Testbed (AQT) at Lawrence Berkeley National
Laboratory.

The rest of this paper is organized as follows.
Section II describes the Advanced Quantum Testbed’s
hardware. Section III presents our optimized gate decompo-
sitions for the Hadamard, SWAP, and ZZ-SWAP operations.
Section IV presents results from cycle benchmarking of our
optimized gate sequences. Section V examines the application
of SWAP networks to QAOA, and Sec. VI introduces
equivalent circuit averaging for this application. Section VII
concludes. Appendixes A and B detail single-qubit and
two-qubit parameters for the Advanced Quantum Testbed.
Finally, Appendix C presents examples of the full QAOA
SWAP network circuits that we executed.

II. ADVANCED QUANTUM TESTBED

The experiments in this work were performed on four
fixed-frequency transmon [17] qubits (labeled Q4, Q5, Q6,
and Q7; see Table III in Appendix A) on an eight-qubit super-
conducting quantum processor (AQT@LBNL Trailblazer8-
v5.c2) at the Advanced Quantum Testbed [18]. The eight
qubits are coupled to nearest neighbors via fixed-frequency
resonators in a ring geometry, thus the four qubits used in this
work have linear connectivity.

Arbitrary single-qubit SU(2) gates are typically imple-
mented using physical Xπ/2 gates (via resonant Rabi-driven
pulses) and virtual Zθ gates (via phase shifts between physical
pulses) [19]

U (α, β, γ ) = Zα−π/2Xπ/2Zπ−βXπ/2Zγ−π/2, (1)

this ZXZXZ-decomposition reduces the time and complexity
involved in calibrating and benchmarking single-qubit gates.
The disadvantage is that every computational single-qubit gate
is actually composed of two physical Xπ/2 pulses, each 30 ns
in duration; thus, every single-qubit gate (cycle) in a circuit
takes 60 ns by default, even if the gate could be implemented
with only a single Xπ/2 pulse. This needlessly increases circuit
depth, leaving the qubits more susceptible to decoherence.

Two-qubit entangling operations are achieved using a tun-
able ZZ-coupling via off-resonant drives [20,21] between
neighboring qubits, which is used to implement controlled-
Z (CZ) operations between adjacent qubit pairs, as well as
controlled-S (CS) and controlled-S† (CS†) gates. The duration
of our two-qubit CZ gate is 200 ns, which is limited by the
drive-induced decoherence discussed in Ref. [20]. However,
because the CS or CS† gate performs half the rotation of

a CZ , it can be implemented in less time than the CZ . We
calibrate and measure a process infidelity of 4.3(1) × 10−3

for a 150-ns CS gate between qubits (Q5, Q6), and process
infidelities of 5.0(1) × 10−3 and 3.3(1) × 10−3 for 150 ns CS†

gates between qubits (Q4, Q5) and (Q6, Q7), respectively (see
Table IV in Appendix B), which is ∼100 ns faster with an
error rate that is ∼2× lower than previously measured for
superconducting qubits [22].

III. OPTIMIZED GATE DECOMPOSITIONS

A. Optimized Hadamard and SWAP

We first optimize decompositions for the Hadamard (H)
and SWAP operations. The H gate has two equivalent decom-
positions using the {Xπ/2, Zθ } basis:

(2)

(3)

The standard ZXZXZ-decomposition of the H gate corre-
sponds to Eq. (2). While this is a valid decomposition, Eq. (3)
is preferable because it requires a single physical Xπ/2 pulse
instead of two. Therefore, the optimized Hadamard halves the
duration of the gate, taking only 30 ns instead of 60 ns.

Next, we consider the SWAP operation. The standard de-
composition of the SWAP is

(4)

where indicates the CZ gate. The middle circuit represents
the standard QASM decomposition of a SWAP, which in-
volves three alternating CX gates. No further decompositions
are possible until we go below the level of QASM [23]. Each
CX decomposes to AQT’s two-qubit CZ basis gate by in-
vocation of the identity CX (qc, qt ) = H (qt )CZ (qc, qt )H (qt ),
where qc (qt ) is the control (target) qubit. We immediately see
that applying the optimized H leads to an improvement: the
total SWAP duration is reduced by 4 × 30 ns = 120 ns, and
the number of required Xπ/2 physical pulses is halved from
12 to 6.

We can optimize even further by applying a transposition
identity to move the bottom-right H to the top-left. This
identity reduces the total SWAP duration by an additional
30 ns since the two “edge” H gates become parallelized.
After annihilating all virtual rotations arising from Eq. (3) via
commutation identities, we have the final optimized SWAP

(5)

We deployed these optimized Hadamard and SWAP decom-
positions through the SUPERSTAQ platform [24], which can
target AQT hardware. Section IV presents cycle benchmark-
ing [25] results for these optimizations.
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B. Background on ZZ-SWAP

The core operation needed in a QAOA SWAP network is
the ZZ-SWAP gate, which is equivalent to a ZZ interaction
followed by a SWAP operation and is defined as the unitary
operation below with input parameter θ :

Fθ =

⎛
⎜⎜⎝

1 0 0 0
0 0 eiθ 0
0 eiθ 0 0
0 0 0 1

⎞
⎟⎟⎠. (6)

The standard QASM-decomposed quantum circuit implemen-
tation of Fθ comprises three CX gates and a single-qubit Zθ

rotation [7]:

(7)

It is possible to boost performance beyond this decomposition
by leveraging knowledge of the target hardware’s underlying
native gateset. For example, the authors of Ref. [26] compiled
the ZZ-SWAP operation directly down to three native two-
qubit Sycamore (SYC) gates, rather than recompiling each
CX down to SYC gates. In a related manner, the authors of
Ref. [27] developed an efficient parametric implementation
of SWAP networks via access to a native XY (θ ) gate (with
duration independent of θ ) and a native CZ gate.

However, in these examples, the total duration of the ZZ-
SWAP operation is always constant, regardless of θ . This
leaves room for improvement. For example, it was shown that
access to a parametric CZ [i.e. CPHASE(φ)] yields signifi-
cant improvements for the decomposition of many quantum
operations [28]; in the next subsection we demonstrate that
this is true for the ZZ-SWAP operation as well. However,
there are experimental obstacles to tuning a high-fidelity para-
metric gate with variable duration. For example, the authors
of Ref. [29] noted ramp effects at small θ for a parametric
cross-resonance gate.

Rather than incurring the calibration overhead of a para-
metric gate with variable duration like CPHASE(φ), we
instead focus on the optimization opportunities from an
overcomplete discrete two-qubit gate set, which contains addi-
tional two-qubit gates beyond what is necessary for universal
quantum computation. Concretely, we next examine the op-
timized Fθ decompositions possible when we have access to
both a CZ and CS = √

CZ gate, where the CS is faster than
the CZ gate.

In typical applications, multiple ZZ-SWAP gates are ar-
ranged into a nearest-neighbor ZZ-SWAP network that carries
out t = 0, . . . , n − 1 steps. Each step alternates between an
odd and even pattern. At steps with odd t , each neighboring
qubit pair with indices (2k, 2k + 1) for k ∈ [0, n

2 ] is entangled
in accordance with a target Hamiltonian and then SWAPped.
Even-t steps perform this interaction for qubit pairs with in-
dices (2k + 1, 2k + 2). Note that each step is highly parallel,
with ∼n/2 operations occurring simultaneously. A proto-
typical example is shown in Fig. 1, which implements the
Hamiltonian evolution eiγ H corresponding to a Sherrington-
Kirkpatrick spin-glass model H = ∑

i< j<n Ji jZiZ j on n = 4
nodes. The utility of a SWAP network is that it efficiently

FIG. 1. SWAP network implementing the Hamiltonian evo-
lution eiγ H for a four-node Sherrington-Kirkpatrick model H =∑

i< j<4 Ji jZiZ j , where θi j = γ Ji j . Note that the qubit order is re-
versed after the operation.

generates an all-to-all interaction with a linear-depth circuit
of nearest-neighbor interactions, where each interaction is a
single ZZ-SWAP gate corresponding to one of the commuting
weight-2 terms in H .

C. Optimized ZZ-SWAP Gates

We now introduce optimized, θ -dependent decompositions
of the ZZ-SWAP gate Fθ , taking advantage of an overcom-
plete two-qubit gate set consisting of both CZ and CS or CS†

gates.
For θ ∈ {0, π}, the ZZ-SWAP unitary in Eq. (6) is equiva-

lent (up to virtual phases) to the standard SWAP gate, and so
can be decomposed using the optimized SWAP described in
Sec. III A. In the general case, using the optimized Hadamard
[cf. Eq. (3)] and virtual Z rotations, the baseline ZZ-SWAP
decomposition still requires three CZ and six Xπ/2 gates

(8)

Unfortunately, in the general case the first and final Xπ/2 gates
in Eq. (8) cannot be parallelized as they are in the optimized
SWAP, and so both contribute to the depth of the standalone
ZZ-SWAP circuit. In Sec. III D, we will show that this over-
head can be mitigated in the context of a full SWAP network
for QAOA.

A second special case exists for θ = ±π/2, in which the
ZZ-SWAP is equivalent to the iSWAP (iSWAP†) gate and
requires just two CZ gates. Again employing the optimized
Hadamard, it can be decomposed as

(9)

If we have access to a parameterized CPHASE(φ) gate,
we can naturally generalize the optimized SWAP and iSWAP
decompositions to all ZZ-SWAP circuits. Setting φ = π − 2θ ,

(10)

correctly generates the three-CZ optimized SWAP for θ ∈
{0, π} and the two-CZ optimized iSWAP for θ = ±π/2.
Assuming the gate time of any CPHASE(φ) gate to be pro-
portional to φ for intermediary 0 � φ � π , the total time for
Fθ is the same as 2 + 2|θ mod π − π/2|/π CZ gates.
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FIG. 2. CZ-depth of optimized Fθ decompositions. The angle θ

defines the ZZ-SWAP unitary, with θ = 0 (π ) corresponding to the
standard SWAP gate (up to virtual phases) and θ = π/2 (−π/2) cor-
responding to the iSWAP (iSWAP†) gate. All Fθ can be implemented
with three CZ gates using Eq. (8). However, only two CZ gates
are needed for iSWAP and iSWAP† gates. For θ ∈ [±π/4, ±3π/4]
(red), Fθ can be implemented with two CZ and one CS gate; whereas
for θ ∈ [±3π/8, ±5π/8] (blue), Fθ can be implemented with two
CZ and one CT gate.

Absent a fully parameterized CPHASE(φ) operation, we
can generalize Eqs. (8) and (10) to implement subsets of Fθ

using only discrete values of φ. The Cartan decomposition
in SU(4) shows that any two-qubit gate is locally equivalent
(i.e., equivalent up to a transformation involving single-qubit
gates) to a unitary operator eic1XX+ic2YY +ic3ZZ , where the lo-
cally invariant coordinates (c1, c2, c3) fully characterize the
nonlocal properties of the gate [30]. The invariant coordinates
of CPHASE(φ) and Fθ are (φ/4, 0, 0) and (π/4, π/4, |π −
2θ |/4), respectively. The latter can therefore be constructed
from two CZ gates and any one CPHASE(φ) with φ � |π −
2θ |, along with the appropriate single-qubit gates.

As shown in Fig. 2, by choosing φ = π/2 (the CS gate) we
can implement half of all possible Fθ gates with the equivalent
of 2.5 CZ gates (that is, two CZ gates and one CS gate). For
any π/4 � θ mod π � 3π/4, we have

(11)

where

λ = cos−1(−
√

2 cos θ ) · sgn(sin θ ), (12)

enforces the local equivalence between Eq. (11) and Fθ , and

μ = csc−1(−
√

2 sin θ ), (13)

ν = − cos−1(cot θ ), (14)

provide the necessary local corrections. An equivalent decom-
position can be constructed using a CS† = CPHASE(−π/2)

in place of the CS:

(15)

The Xμ and Xν gates can each be implemented with two
Xπ/2 pulses and virtual phases using Eq. (1); however, this
complexity can be mitigated within a full SWAP network for
QAOA (Sec. III D).

Additional controlled-Zφ operations for fixed values of
φ would further refine the optimized Fθ decomposition
toward the lower bound provided by fully parameterized
CPHASE(φ). For example, as shown in Fig. 2 one quarter of
all possible Fθ are reachable using a CT = CPHASE(π/4) =

4
√

CZ gate, and so the addition of a CT to the gateset would
reduce the CZ depth of these decompositions to the equivalent
of 2.25 CZ gates.

D. Optimized SWAP Networks for QAOA

We can further simplify the decomposition of ZZ-SWAP
gates in the context of the larger SWAP network. Various dis-
crete and continuous symmetries in the ZZ-SWAP operation
result in the following degrees of freedom to its optimized
decomposition:

(1) Fθ = (1 ⊗ X )F−θ (X ⊗ 1),
(2) Fθ = (Z ⊗ Z )Fθ+π ,
(3) Fθ (q0, q1) = Fθ (q1, q0) (qubit interchange),
(4) Fθ = F†

−θ ,
(5) Fθ = (Z−ϑ ⊗ Z−ϕ )Fθ (Zϕ ⊗ Zϑ ) ∀ ϑ, ϕ ∈ R,

where ϑ , ϕ are continuous parameters. Symmetry 4 is use-
ful only for Fθ gates implemented using a CS or CS†, in
which case it can be used to reverse the order of entangling
gates (and corresponding single-qubit gates Xμ and Xν) in
the circuit. (For the 3-CZ decomposition of Fθ , the physical
implementations of Fθ and F†

−θ are identical.) Because any
F±θ admitting the CS decomposition in Eq. (11) also admits
the CS† decomposition in Eq. (15), we are always able to
construct both Fθ and F†

−θ using either one of these gates. We
therefore calibrate only one of {CS,CS†} per pair of qubits
(see Appendix B), and use symmetry 4 to reverse the order of
the interactions (i.e., whether or not the CS or CS† interaction
precedes or succeeds the two CZ gates).

We use an automated scheduler which computes the set of
logically equivalent decompositions generated by symmetries
1 to 4 for each gate in the network. For each decomposition,
the continuous parameters ϑ, ϕ (symmetry 5) are determined
analytically so as to minimize the cost of just the single-qubit
gates immediately preceding the gate (the trailing Z−ϕ and
Z−ϑ can be absorbed into any subsequent gates using the same
symmetry, so these parameters can be optimized for each
gate independently). The scheduler searches for a sequence of
these decompositions which minimizes overall circuit depth
(corresponding to Xπ/2 count in the critical path). Because the
combinatorial search space grows exponentially in the number
of ZZ-SWAP gates, finding an exact minimum is in general
intractable. For QAOA we are required to generate and exe-
cute many circuits while varying classical parameters, making
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TABLE I. Comparison of four-node p = 1 QAOA circuits gener-
ated with and without the optimized scheduling routines described in
Sec. III D. The optimized scheduler minimizes the number and depth
of Xπ/2 gates in each circuit, and further reduces the depth of the
CZ + CS circuits relative to those using only the CZ decomposition.

Xπ/2 Count

Decomposition Scheduler (total) (crit. path)

CZ Baseline 44 14
Optimized 34 11

CZ + CS Baseline 51 18
Optimized 38 11

classical optimization time especially important. However, the
regular structure of the SWAP network makes it possible to
find nearly optimal sequences using simple heuristics and
scalable local search procedures.

For networks using only the CZ decomposition of Fθ

[Eq. (8)], the two outer Xπ/2 gates of each decomposition
are independent of θ . Simple heuristics can then be used to
find sequences which maximally annihilate these outer gates:
specifically, we can use symmetry 3 to align pairs of Xπ/2

between layers of ZZ-SWAPs, which can then be annihilated
with X or Z gates injected via symmetry 1, 2, or 5. Applying
this strategy to four-qubit p = 1 QAOA circuits, we find that
we can reduce the number of Xπ/2 gates both overall and in
the critical path by over 20% (see Table I). Further, because
the annihilation of these gates is independent of the rotation
angles of each gate, this optimization does not need to be
repeated as we vary the classical parameters in subsequent
QAOA iterations.

Optimizing networks using the CS decomposition of Fθ

is more challenging because Xμ and Xν both depend on θ

and do no naturally annihilate one another. We begin with
a simple scheduling pass which chooses from the equivalent
decompositions of each ZZ-SWAP considering just the single-
qubit gates immediately preceding it. Typically multiple such
decompositions are equally good in terms of minimizing
single-qubit gate cost; in this case we defer the selection until
the decomposition of a subsequent gate on that qubit and then
select one which allows for the best decompositions of the
later gate. Though the resulting circuit is not guaranteed to
be optimal, we find that by combining this localized search
routine and simple heuristics to determine the order in which
gates are expended we can achieve more than a 25% reduction
in the total Xπ/2 count and a 33% reduction in Xπ/2 gates along
the critical path for the four-node QAOA circuit (Table I). No-
tably, the resulting single-qubit gate complexity is comparable
to that of the CZ-only circuits, indicating that we successfully
mitigated the burden of Xμ and Xν in Eqs. (11) and (15).
The required optimization time is linear in the number of ZZ-
SWAP gates and at most quadratic in the number of equivalent
decompositions of each gate. In this case the optimal sequence
of decompositions depends on each ZZ-SWAP’s rotation an-
gle, and so will have to be updated as classical parameters
are varied between QAOA iterations. However, small changes
will often only require recomputing the values ϑ, ϕ for each

gate, significantly reducing this classical overhead as QAOA
converges on optimal parameter values.

IV. CYCLE BENCHMARKING OF OPTIMIZED
DECOMPOSITIONS

To benchmark the performance of the optimized pulse
sequences relative to their standard decompositions, we uti-
lize cycle benchmarking [25] (CB), a scalable protocol
for measuring the performance of parallel gate cycles. Cy-
cle benchmarking differs from randomized benchmarking
[31–34] (RB) in two keys ways: (i) it utilizes Pauli twirling
instead of Clifford twirling, which maps gate errors into
stochastic Pauli channels (instead of a global depolarizing
channel); (ii) CB benchmarks the performance of quantum
gates performed in parallel, providing a measure of their per-
formance in the context of multiqubit quantum algorithms.
In contrast, benchmarking the individual constituent gates
of multiqubit cycles was shown to be a poor predictor of
the global performance of quantum circuits [35] due to the
presence of coherent errors and crosstalk between qubits, and
because such benchmarks fail to capture errors on (or incurred
by) idling spectator qubits [36].

CB measures the process fidelity of a target cycle by
preparing the system in a Pauli basis state (e.g., XY IZ for four
qubits), and measuring the exponential decay as a function
of sequence depth. A separate exponential decay of the form
ApP can be fit for each basis preparation and measurement
state P (i.e., Pauli channel), where A is the state-preparation
and measurement (SPAM) parameter and p the fit parameter.
Much like interleaved randomized benchmarking [37] (IRB),
in which the target gate is interleaved between random Clif-
ford gates, CB interleaves the target cycle between cycles of
random single-qubit Pauli gates. Therefore, CB measures the
process fidelity of a dressed cycle, which contains the errors
due to the interleaved target cycle as well as the Pauli twirling
gates. The total process fidelity is the average over K Pauli
channels

F = 1

K

∑
P∈P

pP, (16)

where the number of Pauli channels K = |P| � 4n (n qubits)
in the set P that are sampled out of the full 4n possible
states sets the precision of the fidelity estimate [25]. The
process infidelity of the dressed cycle is therefore given as
eD = 1 − F . To separate the infidelity of the target cycle from
the twirling gates, we measure the CB fidelity of the “all-
identity” reference cycle, which equates to benchmarking the
average performance of only the Pauli twirling gates. Similar
to IRB, we can use this to estimate the process infidelity of the
target (T ) cycle by taking the ratio of the process fidelities of
the dressed (D) and reference (I) cycles,

eT = d − 1

d

(
1 − FD

FI

)
, (17)

where d = 2n is the dimension of the system. Using CB has
been shown to tighten the upper and lower bounds on the
fidelity estimate of the interleaved cycle relative to IRB [20],
which can span orders of magnitude [38]. We use this method
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FIG. 3. Improved SWAP gates via gate-based optimizations. The
process infidelity of the optimized SWAP gate between Q4 and
Q5 (top), Q5 and Q6 (middle), and Q6 and Q7 (bottom) is lower
than the process infidelity of the standard decomposition due to the
elimination of unnecessary gates. The blue, purple, and black data
points represent the Pauli infidelity 1 − pP for each Pauli channel P
for the standard (Std.) SWAP gate, optimized (Opt.) SWAP gate, and
reference (Ref.) cycle, respectively. The solid blue (purple) line is
the average process infidelity eD of the dressed cycle for the standard
(optimized) SWAP gate and the solid black line is the average process
infidelity eI of the Pauli twirling operators. The dashed blue (purple)
line is the process infidelity eT of target cycle (i.e., SWAP gate)
estimated via Eq. (17) for the standard (optimized) SWAP sequence.
The semi-transparent bands around the average process infidelities
represent the 95% confidence interval of the estimates.

to estimate a target infidelities for CZ , CS, and CS† gates (see
Table IV in Appendix B).

In Fig. 3, we plot the CB results for the standard and
optimized SWAP gates [see Eq. (5)] between all three qubit
pairs. We see that the optimized target cycle infidelity eT of
the SWAP gates is reduced 25%, 23%, and 13% relative to
the standard SWAP gate for (Q4, Q5), (Q5, Q6), and (Q6,
Q7), respectively. This average improvement can generally
be expected for circuits utilizing basic SWAP gates; however,
further optimizations can be implemented in the context of full
QAOA SWAP networks with the replacement of one of the
CZs in the SWAP gate with a CS or CS† gate, as outlined in

the previous section. Furthermore, while the benchmarking re-
sults in Fig. 3 show improvements in the SWAP gates between
all qubit pairs, they do not capture what improvements can
be expected for cycles of gates in any four-qubit application.
In Table II, we compare the benchmarked process infidelities
of optimized gate cycles versus the standard decompositions
for relevant cycles appearing in four-qubit QAOA SWAP net-
works (see Sec. V). These include the all-Hadamard cycle
for basis preparation and converting CZs to CX s, the rele-
vant multiqubit gate cycles appearing in the QAOA SWAP
networks and the parallel SWAP cycles incorporating the op-
timizations outlined in the previous section. We see universal
improvement in the target cycle infidelity eT for the optimized
cycles, with reductions in eT ranging from 64% for the all-
Hadamard cycle to 12% for the SWAP cycle.

In addition, we list the duration of each cycle and use this
to approximate an upper bound on the error rate due to T1. We
see optimized cycles provide a reduction in the error due to
T1 ranging from 50% for the all-Hadamard cycle to 17% for
the SWAP cycle. The remaining improvement is likely due
to reduction in coherent errors. For example, the CS and CS†

gates perform a smaller rotation and thus generally require a
smaller pulse amplitude, which can lead to less crosstalk on
neighboring qubits. These results demonstrate that simple im-
provements in circuit decomposition and gate optimizations
can lead to dramatic improvements in benchmarked gate and
cycle performance. Next, we highlight how these fidelity im-
provements can lead to performance improvements in SWAP
networks for QAOA.

V. APPLICATION BENCHMARKING OF QAOA

The Quantum Approximate Optimization Algorithm
(QAOA) [11] describes a variational ansatz for solving com-
binatorial optimization problems described by an objective
Hamiltonian H . QAOA is characterized by a hyperparam-
eter p that specifies the depth of the ansatz. Specifically,
the ansatz is eiβpBeiγpH . . . eiβ1Beiγ1H , where B = ∑

i Xi is a
mixing Hamiltonian and �γ , �β represent 2p classically op-
timized variational parameters. It is believed that QAOA is
hard to approximate even at p = 1 and is therefore a lead-
ing candidate for demonstrations of quantum advantage [39].
We generate QAOA circuits corresponding to Sherrington-
Kirkpatrick spin-glass model Hamiltonians with edge weights
Ji j randomly selected from ±1 (see Appendix C for the exact
symbolic form of the circuits). Each eiγ H is then implemented
with a network of ZZ-SWAP gates F±γ . Parameters βi, γi are
sampled uniformly from [0, 2π ).

In Fig. 4, we measure two-qubit (p = 1) and four-qubit
(p = 1 and p = 2) QAOA circuits (see Appendix C for ex-
ample circuits) for various angles γ and benchmark the
performance using the total variation distance (TVD)

D(p, q) = 1

2

∑
x∈X

|px − qx|, (18)

where px is the probability of measuring a bit string x in
a set X and qx is the ideal (noiseless) probability. We see
that the optimized (Opt.) circuits generally provide more
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TABLE II. Benchmarked improvements in optimized cycles. All optimized (Opt.) cycles have a lower CB process infidelity than their
respective standard (Std.) decompositions. The duration of each cycle is calculated using the two-qubit gate times listed in Table IV and 30 ns
for every Xπ/2 gate. An approximate upper bound on the error rate due to T1 is calculated via (1 − ∏

q∈{4,5,6,7} e−t/T1,q )/2 using the duration t
of each cycle listed above and the T1 times listed in Table IV for each qubit q, which assumes that T1 events are independent across all qubits.
(The factor of 1/2 accounts for the fact that, averaged over all possible input states, the qubits only spend half of the time in an excited state.)

Cycle I

I

I

I

H

H

H

H

H

H

H

H

I

•
•
I

I

S
•
I

•
•
•
•

S†

•
S†

•

I

×
×
I

I

×
×
I

×
×
×
×

×
×
×
×

Error Rate Ref. Std. Opt. Std. Opt. Std. Opt. Std. Opt. Std. Opt.
eI (10−3) 9.6(6)
eD (10−2) 1.5(1) 1.16(6) 2.11(7) 1.67(8) 3.4(1) 2.09(8) 9.6(7) 6.3(2) 11.7(4) 10.4(4)
eT (10−2) 0.5(1) 0.19(8) 1.09(9) 0.68(9) 2.3(1) 1.07(9) 8.1(7) 5.1(2) 10.2(3) 9.0(4)

Reduction in eT 64% 38% 53% 38% 12%
Cycle Duration (ns) 60 30 200 150 200 150 840 690 840 690
T1 Error (10−2) ∼ 0.21 0.11 0.68 0.52 0.68 0.52 2.8 2.3 2.8 2.3

Reduction in T1 Error 50% 25% 25% 17% 17%

accurate performance relative to the standard (Std.) decom-
positions, reducing the average TVD from DStd. = 0.20(5) to
DOpt. = 0.14(3) for four-qubit QAOA circuits of depth p = 1
and from DStd. = 0.23(4) to DOpt. = 0.22(6) for circuits of
depth p = 2. For two-qubit networks, the optimized circuits
outperform the standard circuits on average for qubits (Q5,
Q6), but perform worse [equivalent] for (Q4, Q5) [(Q6, Q7)].
We conjecture that the failure of the optimized circuits to
outperform the standard circuits for qubits (Q4, Q5) and
(Q6, Q7) is due to systematic coherent errors whose impacts
can dominate algorithm performance and are not accurately
captured by randomized benchmarks (see the discussion
in Sec. VI).

The parameter angle γ determines what gate optimizations
can be implemented for each network, with π/4 � γ � 3π/4
and 5π/4 � γ � 7π/4 defining the angles for which CS or
CS† gates can be used in place of CZ gates (see Fig. 2). The
γ values are randomly chosen in Fig. 4, but they are seeded
such that half of the circuits tested can take advantage of the
CS or CS† decomposition of ZZ-SWAP at p = 1. Values of
β are chosen uniformly at random. We note that in regions
where CS or CS† gates can be used for two (four) qubits,
the standard (optimized) decompositions outperform the op-
timized (standard) decompositions on average. This is likely
due to the fact that the small improvements in two-qubit gate
fidelities provided by the CS or CS† gates (see Table IV) are
unlikely to provide any significant performance guarantees for
two-qubit circuits in the presence of coherent errors. In con-
trast, the large improvements in cycle fidelity for multiqubit
(n > 2) cycles containing CS or CS† gates (cf. Table II) are
much more likely to provide robust performance guarantees
for multiqubit circuits, even in the presence of coherent er-
rors. These results demonstrate that simple changes to circuit
decomposition and gate-based optimizations can lead to clear
improvements in algorithm and application performance, es-
pecially in multiqubit circuits, highlighting the importance
of smart compilers and more continuous gatesets in the
NISQ era.

VI. EQUIVALENT CIRCUIT AVERAGING

One limitation of benchmarking the average performance
of gates or cycles is that randomized benchmarks are not
accurate predictors of the global performance of structured
quantum circuits due to the presence of coherent errors [35].
When averaging over a twirling group, such as the Clifford
(Pauli) group for RB (CB), all errors are converted into a
global depolarizing (stochastic Pauli) channel. However, in
actual quantum algorithms, the physical error mechanisms
are more complex than depolarizing or Pauli channels, as
coherent errors can interfere constructively or destructively
from one cycle to the next. Therefore, while the optimized
pulse sequences show clear improvements in cycle fidelity (cf.
Table II) measured via CB, this does not always guarantee
improvements in the performance of algorithms composed
of these cycles. This can be seen in Fig. 4, in which the
standard circuit decompositions occasionally outperform the
optimized circuits for the four-qubit results and outperform
the optimized circuits on average for the two-qubit results for
qubits (Q4, Q5).

Being systematic in nature, coherent errors can, in theory,
be measured and corrected via recalibration or added compen-
sation pulses. However, the complexity of fully characterizing
coherent errors (i.e., context-dependent rotation axes and an-
gles [40]) on multiqubit processors that arise due to classical
and quantum crosstalk is intractable, and no known scal-
able methods exist for doing so for systems with continuous
single-qubit gate sets. Various methods exist for suppressing
coherent errors, such as dynamical decoupling [41] and error-
correcting composite pulse sequences [42], or randomization
methods for “tailoring” them into stochastic noise, such as
Pauli twirling [43–46], Pauli frame randomization [47–49],
and randomized compiling [50,51]. However, these methods
generally require the modification of single-qubit gates or
the inclusion of more gates (e.g., in the case of dynamical
decoupling and composite sequences), or require that the
two-qubit gates in circuits are Clifford so that inverting Pauli
operators can be efficiently computed and applied. Adopting
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FIG. 4. Improved QAOA SWAP networks via gate-based opti-
mizations. The TVD performance of QAOA networks of angle γ are
plotted for qubits (a) (Q4, Q5), (b) (Q5, Q6), and (c) (Q6, Q7), and
four-qubit circuits with (d) p = 1 and (e) p = 2 stages. The mixing
parameter β is chosen at random for each network. For (b), (d),
and (e), the optimized (blue, Opt.) circuits outperform the standard
(black, Std.) on average (dashed lines). The ECA (purple) results
consistently outperform both the standard and optimized circuits.
The gray shaded regions define the angles for which CS or CS† gates
can be utilized. The results in (e) are plotted against the γ from stage
1 (the triangle markers denote circuits which utilize a CS or CS† gate
in stage 2). (Error bars on the TVD ∼O[10−3] are smaller than the
markers.)

these techniques would therefore require forgoing the circuit
optimizations (and corresponding fidelity gains) employed
so far in this work—both by necessitating additional Xπ/2

pulses and precluding the use of non-Clifford CS and CS†

gates.
A similar strategy was proposed for circuit synthesis meth-

ods, in which systematic approximation errors are rendered
incoherent by averaging over various circuits near a target
unitary generated from ensembles of approximate decompo-
sitions [52,53]. We employ this general idea (with systematic
errors in the physical gates taking the place of approximation
errors) using the space of equivalent ZZ-SWAP decompo-
sitions generated by the degrees of freedom outlined in
Sec. III D. By randomly sampling from these decompositions
for each ZZ-SWAP gate, we can generate a set of randomized
but logically equivalent circuits to average over. However,
this unconstrained randomization would require forgoing the
single-qubit gate reduction achieved by the optimized sched-
uler. Instead, we can generate logically equivalent circuits
which preserve these gate-level optimizations by following
the optimized scheduling procedure outlined in Sec. III D,
but with randomness injected into the selection between the
equally good decompositions of each gate. Though the con-
straints on randomization necessary to preserve circuit depth
mean that we cannot make solid guarantees on the mitiga-
tion of coherent errors, we empirically find that averaging
over equivalent circuits generated in this way is an effective
strategy for systematic error mitigation. We call this strategy
equivalent circuit averaging (ECA). The computational over-
head of ECA scales linearly with both the number of logically
equivalent circuits to be generated and the cost of optimized
scheduling for each circuit (proportional to the number of
ZZ-SWAP gates in the circuit).

For the circuits in Fig. 4, we generate M = 20 logi-
cally equivalent optimized circuits for each angle γ (see
Appendix C for example circuits). To normalize shot statis-
tics, we measure each equivalent circuit s = S/M times and
compute the union over all M results to obtain an equiv-
alent statistical distribution for a circuit measured S times;
S = 10 000 and s = 500 for the results in Fig. 4. We see that
ECA dramatically reduces the TVD on average in compari-
son to both the standard and optimized results for all of the
two- and four-qubit QAOA SWAP network results, reducing
the average TVD by ∼ 60%[26%] from DStd. = 0.20(5) to
DECA = 0.08(2) [DStd. = 0.23(4) to DECA = 0.17(6)] for the
four-qubit p = 1[p = 2] QAOA results, and providing the
most accurate measured probability distribution in 88% of all
of the two- and four-qubit circuits measured.

While the classical overhead of generating and measur-
ing M logically equivalent circuits increases linearly in M,
we observe significant improvements in the measured re-
sults. These results demonstrate that ECA is a useful tool
for smart compilers which optimize circuit decomposition
using various degrees of freedom, and is not limited to
circuits only containing two-qubit Clifford gates, adding to
the toolbox of randomization methods that can be employed
in the NISQ era. We also note that averaging out systematic
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errors is likely beneficial even at the expense of gate-level
optimizations. The simplest version of ECA, which samples
from the set of all logically equivalent decompositions of each
ZZ-SWAP by randomly applying the symmetries in Sec. III D
without consideration of circuit depth would have negligible
computational overhead.

VII. CONCLUSION

Quantum compilers play a fundamental role in the trans-
lation of abstract quantum circuits to machine instructions
in gate-based quantum computing. In the NISQ era, it is
necessary to consider the balance between the calibration
overhead for large gatesets and optimal circuit decomposi-
tion for quantum application performance. In this work, we
show that utilizing a smart compiler for canceling unnec-
essary single-qubit gates is a simple method for improving
the performance of quantum circuits. We further demon-
strate that, by adding an additional two-qubit gate (CS
or CS†) to our gateset for each qubit pair, we observe
significant improvement in the benchmarked cycle and ap-
plication performance. While our work focuses on SWAP
networks and their application to QAOA, non-Clifford CS
gates also find importance in universal quantum computa-
tion and magic-state distillation for fault-tolerance [54–56].
Furthermore, while we added additional two-qubit gates to
our gateset, future work could explore the potential bene-
fits of compiling all circuits down to high-fidelity two-qubit
gates which are not fully entangling [57–59], thus remov-
ing the need to calibrate multiple two-qubit gates per pair
of qubits.

Additionally, we introduce ECA to mitigate the impact of
systematic coherent errors in non-Clifford circuits by utilizing
the various degrees of freedom of quantum compilers to gen-
erate many logically equivalent circuits. Given the difficulty
in characterizing and predicting the impact of coherent errors
on algorithm performance, such a method negates the need for
doing so by assuming that the average over many circuits will
reduce the impact of coherent errors on the algorithm results.
We demonstrate the effectiveness of this approach with our
application benchmark results, in which we find that ECA im-
proves the accuracy of the measured probability distribution
for 88% of the randomly generated two- and four-qubit QAOA
circuits.

While ECA was employed by taking advantage of the
various degrees of freedom in networks of ZZ-SWAP gates,
a more sophisticated search procedure would likely expand
the applicability of our methods for scheduling and gener-
ating equivalent circuits for more general applications. We
further imagine possible “hybrid” strategies in which ECA is
combined with other randomization protocols (e.g., random-
ized compiling) for maximizing the ways in which logically
equivalent circuits can be expressed, thus minimizing residual
coherent errors. The cost of ECA (both classically and in
terms of single-qubit gate optimization) in the general case
and the degree to which it tailors noise in quantum systems
(i.e., in the manner of other randomization methods which

twirl over a specific gateset) are open questions, which we
plan to explore in future work.

Finally, as described in Sec. III C, access to a parame-
terized CPHASE(φ) gate would minimize the CZ gate time
for any ZZ-SWAP gate. The corresponding gate decompo-
sition [Eq. (10)] also avoids the θ -dependent Xμ and Xν

gates in Eq. (11), allowing for more efficient gate cancel-
lation and a greater opportunity for randomness in ECA.
The experimental demonstration of this decomposition would
be a natural extension of this work and would provide in-
sight into the value of parameterized two-qubit gates for
NISQ systems.
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APPENDIX A: SINGLE-QUBIT PARAMETERS

Table III lists the relevant qubit parameters for the four
transmon qubits used in this work. Qubit frequencies and
anharmonicities are measured using Ramsey spectroscopy.
Relaxation (T1) and coherence (T ∗

2 and T echo
2 ) times are

extracted by fitting exponential decay curves to the ex-
cited state lifetime and Ramsey spectroscopy measurements
(without and with an echo pulse), respectively. Readout fi-
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FIG. 5. Example SWAP networks for QAOA. Symbolic circuit representations of QAOA SWAP networks (of depth p) for (a) two qubits
(p = 1), (g) four qubits (p = 1), and (h) four qubits (p = 2). (b) Baseline decomposition of a two-qubit QAOA SWAP network for a random
choice of γ and β with three CZs. (c) Optimized decomposition of the circuit in (b) in terms of the native gateset utilizing a CS instead of a
CZ . (d) Logically equivalent decomposition of the circuit in (c). (e) Optimized decomposition of the circuit in (b) in terms of the native gateset
utilizing a CS† instead of a CZ . (f) Logically equivalent decomposition of the circuit in (e).

delities [P(0|0) and P(1|1)] are determined by performing
ensemble measurements of the qubits prepared in |0〉 and |1〉
and classifying the results using a Gaussian mixture model

fit to the in-phase (I) and quadrature (Q) heterodyne voltage
signals. Error rates for single-qubit gates are measured using
randomized benchmarking (RB) and simultaneous (Sim.) RB.
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TABLE III. Single-qubit parameters.

Q4 Q5 Q6 Q7

Qubit freq. (GHz) 5.254275 5.331004 5.490952 5.661671
Anharm. (MHz) −275 −275 −271.35 −269
T1 (μs) 60(5) 62(5) 52(4) 55(8)
T ∗

2 (μs) 36(5) 37(6) 36(6) 33(6)
T echo

2 (μs) 62(5) 73(7) 68(7) 54(6)
Readout P(0|0) 0.999 0.995 0.995 0.995
Readout P(1|1) 0.990 0.989 0.979 0.974
RB (10−3) 0.68(2) 1.01(2) 0.95(5) 0.67(1)
Sim. RB (10−3) 1.49(8) 2.5(2) 3.1(2) 2.4(2)

All error rates are defined in terms of the process infidelity
eF = 1 − p, where p is the exponential fit parameter in Apm

for a sequence depth of m and SPAM parameter A. This is
equivalent to the average gate infidelity r(E ),

eF (E ) = r(E )
d + 1

d
, (A1)

where d = 2n is the system dimensionality (n qubits).

APPENDIX B: TWO-QUBIT GATE PARAMETERS

Table IV lists the parameters for the individual CZ , CS,
and CS† gates used in this work. All two-qubit gates are
composed of square pulses with cosine ramps. The total gate
duration of each pulse (including the ramps) are listed in
Table IV; the fraction of the total gate duration for the ramp
up and ramp down (individually) are specified under “Ramp
fraction.” Although the CS and CS† gates can nominally be
performed in half the duration of the CZ gates, the cosine
ramps limit the minimum duration of the gates. Instead, the
CS and CS† gates are constructed to contain approximately
half the total integrated area under the curve as the CZ gates,
thus performing half of the conditional rotation as the CZ .
This is only approximate since the conditional stark shift on
each qubit will differ depending on the drive frequencies and
amplitudes.

The choice of CS versus CS† for each qubit pair was
determined depending on the sign of the Stark-induced ZZ
interaction (cf. Refs. [20,21]); it is more efficient (i.e., requires
a smaller amplitude) to drive the CS rotation in one direction
for some qubits, and in the opposite direction for other qubits,
depending on the detuning of the drive signal. While the CZ
can be benchmarked using RB, the CS and CS† gates are non-

TABLE IV. Two-qubit gate parameters.

�������Gate
Qubits:

(Q4, Q5) (Q5, Q6) (Q6, Q7)

CZ Duration (ns) 200 200 200
Ramp fraction 0.3 0.3 0.3
RB eF (10−2) 1.9(1) 2.04(8) 1.95(6)
CB eD (10−2) 1.09(1) 1.05(1) 1.26(1)
CB eT (10−3) 5.8(1) 4.8(1) 5.9(2)

CS Duration (ns) 150
Ramp fraction 0.4
CB eD (10−2) 0.98(1)
CB eT (10−3) 4.3(1)

CS† Duration (ns) 150 150
Ramp fraction 0.4 0.4
CB eD (10−2) 0.98(1) 0.91(1)
CB eT (10−3) 5.0(1) 3.3(1)

Ref. CB eI (10−3) 3.24(5) 4.12(8) 4.8(1)

Clifford, and therefore require either non-Clifford RB [22,54]
or cycle benchmarking [25] (CB) with refocusing pulses (used
in this work). Table IV lists the average process infidelity eD of
the dressed cycle (target gate plus Pauli twirling gates), as well
as the inferred process infidelity eT of the target gate alone [cf.
Eq. (17)] using the measured CB process infidelity eI of the
“all-identity” reference cycle for each qubit pair. Two-qubit
RB process infidelities eF are also included for the CZ gates.
While the fidelities of the individual two-qubit gates are useful
for determining the quality of the gates in general, the process
infidelities of the distinct parallel four-qubit cycles are more
relevant to the application circuits presented in the body of
this work. These values are listed in Table II of the main text.

APPENDIX C: EXAMPLE QAOA SWAP NETWORK
CIRCUITS

Example circuits for the QAOA SWAP networks presented
in the main text can be seen in Fig. 5. This includes the sym-
bolic representation of the two- and four-qubit QAOA SWAP
networks of depth p = 1 and the four-qubit SWAP network
of depth p = 2. An example two-qubit circuit is presented in
Fig. 5(b) for a random choice of the two classical parameters γ

and β. Additionally, the exact decompositions for this circuit
in terms of CS and CS† gates are included, as well as logically
equivalent variants of each.
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