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Ancilla-free implementation of generalized measurements for qubits embedded in a qudit space

Laurin E. Fischer ,* Daniel Miller , Francesco Tacchino, Panagiotis Kl. Barkoutsos, Daniel J. Egger ,† and Ivano Tavernelli‡

IBM Quantum, IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland

(Received 28 March 2022; accepted 14 June 2022; published 11 July 2022)

Informationally complete (IC) positive operator-valued measures (POVMs) are generalized quantum measure-
ments that offer advantages over the standard computational basis readout of qubits. For instance, IC-POVMs
enable efficient extraction of operator expectation values, a crucial step in many quantum algorithms. POVM
measurements are typically implemented by coupling one additional ancilla qubit to each logical qubit, thus
imposing high demands on the device size and connectivity. Here, we show how to implement a general class of
IC-POVMs without ancilla qubits. We exploit the higher-dimensional Hilbert space of a qudit in which qubits are
often encoded. POVMs can then be realized by coupling each qubit to two of the available qudit states, followed
by a projective measurement. We develop the required control pulse sequences and numerically establish
their feasibility for superconducting transmon qubits through pulse-level simulations. Finally, we present an
experimental demonstration of a qudit-space POVM measurement on IBM Quantum hardware. This paves the
way to making POVM measurements broadly available to quantum computing applications.
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I. INTRODUCTION

Steady progress in the field of quantum technology,
attested by continuing improvements in both quantum algo-
rithms [1–3] and hardware performance [4,5], suggests that
quantum computers may soon provide significant advantages
over their classical counterparts in fields such as optimization,
machine learning, finance, quantum physics, and chemistry.
In particular, ab initio computational studies of molecular
systems and materials represent natural areas of application
for quantum computers [6–11]. These prospects have also
attracted interest from the material and drug design industries
[12,13].

Proof-of-principle experiments for small molecular sys-
tems have been successfully demonstrated on various quan-
tum computing platforms [14–16]. Crucially, these applica-
tions should be extended to problem sizes of practical interest
to reach the scale at which quantum advantage can be in-
disputably claimed. On current noisy hardware without error
correction, the realizable circuit depths are limited by finite
gate fidelities and qubit coherence times. Variational algo-
rithms address these issues by leveraging classical resources
in combination with, e.g., adaptive quantum protocols and
effective sampling from parametrized quantum states [17,18].
For example, the variational quantum eigensolver (VQE) can
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be used, among other applications, to obtain the ground state
energy of molecules [19]. This is achieved by measuring the
expectation value of the Hamiltonian for a trial state prepared
with a parametrized ansatz circuit. By updating the param-
eters with a classical optimizer, the energy is minimized to
approach the true ground state, in the spirit of the variational
principle. A sufficiently good accuracy is only reached if the
ansatz circuit is expressive enough to closely approximate
the actual ground state. Moreover, the convergence of the
classical optimizer can be obstructed by vanishing gradients
and local minima, particularly under the influence of hardware
noise [20]. Overcoming these issues [10,21–23] still leaves the
large number of measurement shots needed to estimate the
target observables as a major bottleneck of VQE [24]. This
is commonly referred to as the measurement problem. For
example, the small-scale molecular calculations of H2, LiH,
and BeH2 reported in Ref. [14] required measuring O(109)
quantum circuits. On larger problem instances, these require-
ments can grow unsustainably large; e.g., an estimate for the
Fe2S2 complex predicts up to O(1013) required measurements
per energy evaluation [25]. Even with the high sampling rate
of superconducting quantum processors of up to 100 kHz, this
task would take decades to complete. Circuit execution speed
[26] and measurement number reduction are therefore crucial
to variational algorithms.

Known strategies to alleviate the measurement problem in-
clude Pauli groupings [14,27–31], classical shadows [32–34],
and machine learning [35]. Recent work suggests that in-
formationally complete positive operator-valued measures
(IC-POVMs) can also efficiently estimate quantum states and
observables; for example, they achieve a near optimal scal-
ing in the number of measurements for the reconstruction of
fermionic reduced density matrices [36,37]. In the context of
observable expectation value sampling, adapting the POVM
to the target observable reduces the measurement overhead by
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one order of magnitude compared to a standard Pauli grouping
in hydrogen chains with 14 qubits [38]. However, the experi-
mental realization of IC-POVMs requires coupling each qubit
representing the trial state to two additional quantum states
[39]. Traditionally, this is done by coupling each qubit to an
ancillary one before readout [38,40]. This approach doubles
the number of necessary qubits during the measurement stage,
and therefore halves the usable portion of a quantum chip.
Moreover, the limited connectivity of most quantum architec-
tures leads to a significant SWAP-gate overhead [41].

In this work, we conceptualize and implement a measure-
ment scheme for IC-POVMs, which does not require ancilla
qubits. Many quantum computing architectures encode qubits
in two levels of a larger Hilbert space, e.g., the energetically
lowest states of a transmon or two long-lived states of an
atom or ion [42–44]. We use two additional states in this
surrounding qudit space to realize programmable single-qubit
POVM measurements. This requires the ability to distinguish
four qudit states through projective measurements and a short
pulse sequence coupling to the qudit states at the very end of
a quantum circuit. As a result, the coherence and gate fidelity
requirements of these additional states are much less stringent
than for the qubit states.

Our paper is organized as follows. In Sec. II, we propose a
practical implementation of POVM measurements for qubits
embedded in a qudit space. In Sec. III, we demonstrate an
experimental implementation of our scheme on a supercon-
ducting qubit in IBM Quantum hardware. Finally, in Sec. IV,
we show how qudit-based POVMs implemented in supercon-
ducting transmon hardware can sample operators with low
variance through pulse-level numerical simulations.

II. THEORY

The POVM formalism describes general measurements
of a state ρS on a system Hilbert space HS. Formally, an
M-outcome POVM is a set of M positive-semidefinite Hermi-
tian operators �0, . . . ,�M−1 acting on HS which satisfy the
completeness relation

∑M−1
m=0 �m = 1, where 1 is the identity.

Each operator �m represents one possible outcome of the
measurement that occurs with a probability

pm = Tr(ρS�
m). (1)

Standard projective measurements of an orthonormal basis of
pure states |ψm〉 form a special case of POVM measurements,
where �m = |ψm〉〈ψm|. A POVM measurement is informa-
tionally complete (IC) if every Hermitian operator O can be
written as

O =
∑

m

cm�m, cm ∈ R. (2)

In this case, the probability distribution {pm} in Eq. (1) con-
tains the full information about the state ρS. In particular, {pm}
suffices to compute the expectation value of O as

〈O〉 = Tr(ρSO) =
∑

m

cm pm. (3)

This expectation value can thus be estimated from N sam-
ples drawn from the POVM outcome distribution as 〈̂O〉 =∑

m cmNm/N , where Nm denotes the number of times

outcome m was observed. The error ε on this estimator is the
standard error of the mean:

ε2(〈̂O〉) = Var(O)/N =
(∑

m

c2
m pm − 〈O〉2

)
/N . (4)

Tailoring the POVM operators to the specific observable O
and the state ρS considerably reduces the corresponding vari-
ance Var(O) [38].

General POVMs on HS can be implemented by coupling to
an extended space Hext either through a tensor product exten-
sion (TPE) Hext = HS ⊗ HA or a direct sum extension (DSE)
Hext = HS ⊕ HA [39]. To realize POVM measurements, a
specific unitary U is applied to Hext such that the probability
distribution of a subsequent M-outcome projective measure-
ment on Hext coincides with the POVM outcome distribution
{pm} for the original state ρS. Before applying U , the initial
state on Hext is of the form ρ = ρS ⊗ ρA in a TPE while in a
DSE it has no support on HA. In both cases, the existence of
U is guaranteed by Naimark’s dilation theorem [45].

We consider IC-POVM measurements on N-qubit systems,
specifically product POVMs where each global operator �m

is given by a tensor product of local single-qubit operators
with M = 4 linearly independent operators each [39]. Such
product POVMs are particularly suited for chemistry appli-
cations when using fermion-to-qubit mappings that lead to
Hamiltonians of limited Pauli weight, such as the Bravyi-
Kitaev mapping [36,46]. This guarantees that the variances
in Eq. (4) do not scale exponentially with the system size
[38]. The global POVM then consists of 4N product operators,
the minimal number required for informational completeness.
Such POVMs are typically implemented in a TPE by coupling
each of the N qubits to an ancilla qubit. The single-qubit
POVM operators then define a two-qubit unitary U acting
on the system and ancilla qubit. This can be accomplished
with three controlled-NOT (CNOT) gates and single-qubit gates
through Cartan’s decomposition [47,48], which can also be
improved by scaling pulses [49]. The relation between U and
the POVM operators �m is detailed in Appendix A 1.

The overhead of ancilla-based POVM implementations in
a TPE, which doubles the qubit count, can be avoided if the
qubit states |0〉 and |1〉 are encoded in the higher-dimensional
Hilbert space of a qudit. Instead of an ancilla, we use two
additional states of the qudit space, denoted |2〉 and |3〉, which
are not populated during the quantum circuit to realize a
single-qubit POVM through a DSE (see Fig. 1). The states
|2〉 and |3〉 may be higher-excited states of a superconducting
transmon qubit [42] or additional states of the level structure
in trapped ions [43] and neutral atoms [44]. We implement
the POVM-encoding unitary U on the qudit space through a
sequence of pulses that couple adjacent levels. This approach
is suitable to architectures where an external drive with a
dipole coupling is available, e.g., through microwave or laser
pulses.

We now review the action of individual pulses and then de-
compose U into rotations generated by such pulses. Let H lf

0 =∑d−1
n=0 En|n〉〈n| denote the qudit Hamiltonian in its eigenbasis

in the laboratory frame (lf). An external drive

ε(t ) = �(t ) cos (ωDt − φ) (5)
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(a) (d)

(c)(b)

FIG. 1. Schematic of a POVM implementation in qudit space.
(a) The M = 4 rank-one, single-qubit POVM operators, represented
on a Bloch sphere, define a four-dimensional unitary U which en-
codes the POVM operators. (b) We realize this unitary on the qudit
space in which the qubit state |ψ〉 is encoded. (c) This can be
achieved by a sequence of ten π/2 pulses that couple adjacent levels.
(d) Finally, a projective measurement of the four states yields the
outcome probabilities of the four POVM operators.

with envelope �(t ), drive frequency ωD, and phase φ leads to
an interaction Hamiltonian

H lf
int(t ) = ε(t )

d−2∑
n=0

gn|n〉〈n + 1| + H.c. (6)

Here, gn denotes the coupling strength to the n↔n + 1 transi-
tion and we set h̄ = 1. By transforming into the rotating frame
(rf) of the drive, and applying the rotating wave approximation
(dropping terms rotating at 2ωD), these Hamiltonians become

H rf
0 =

d−1∑
n=0

(En − nωD)|n〉〈n| and (7)

H rf
int(t ) = �(t )

2

d−2∑
n=0

gneiφ |n + 1〉〈n| + H.c. (8)

Setting ωD = En+1 − En, i.e., on resonance with the n↔n + 1
transition, and evolving H rf

0 + H rf
int(t ) for a duration T results

in the qudit unitary

Rn↔n+1(θ, φ) = Gn↔n+1(θ, φ)

× diag
(
e−iE0T , . . . , e−i(Ed−1−(d−1)ωD )T

)
. (9)

Here, we assume that other transitions are far detuned. The
qudit operator Gn↔n+1(θ, φ) applies a Givens rotation

G(θ, φ) =
(

cos(θ/2) −i sin(θ/2)e−iφ

−i sin(θ/2)eiφ cos(θ/2)

)
(10)

to the subspace spanned by |n〉 and |n + 1〉 and acts as the
identity everywhere else. G(θ, φ) is a rotation of angle θ ∼
gn

∫ T
0 �(t ) dt around an axis in the xy plane with a polar angle

given by the drive phase φ. The diagonal matrix in Eq. (9)
imprints phases on all nonresonant states.

We further define generalized Zn↔n+1(ϕ) rotations, that act
as diag(e−i ϕ

2 , ei ϕ

2 ) on the states |n〉 and |n + 1〉 and as the iden-
tity elsewhere. Such generalized Z gates can be engineered
from two Givens rotations [43]. For qubits, it is common to
implement z rotations virtually by adjusting the phases φ of
subsequent drive pulses [50,51]. We generalize this concept
to virtually implement qudit-space Z gates, as detailed in
Appendix A 3.

We construct the POVM-encoding unitary U from R ro-
tations as in Eq. (9) by adapting an algorithm presented in
Ref. [52] that decomposes U (up to remaining phases on the
diagonal) into a sequence of Givens rotations Gn↔n+1(θ, φ),
following a strategy similar to a QR decomposition [53]. We
extend this algorithm in two ways. First, we add Z gates to the
sequence to fully decompose U (including all relative phases)
without increasing the number of pulses. Second, we replace
the inaccessible G rotations in the decomposition of U with
the realistic R rotations in Eq. (9), that include additional
phases acquired by idle levels. We absorb these phases into the
angles φ of the subsequent R pulses. The details of the decom-
position algorithm of U into R gates are given in Appendix A.
Here, we only quote our main result: The target unitary U can
always be realized as a sequence of five R rotations:

U = R1↔2(θ5, φ5)R2↔3(θ4, φ4) (11)

× R0↔1(θ3, φ3)R1↔2(θ2, φ2)R0↔1(θ1, φ1).

The specific choice of the targeted POVM operators �m enters
through the angles θi and φi, while the order in which the
transitions are driven is fixed and independent of the POVM.

Finally, let
√
X n↔n+1 denote a π/2 pulse around the x

axis between the states |n〉 and |n + 1〉. Any R rotation can
be realized by two

√
X pulses and three virtual Z gates (see

Appendix A 2). This has the great practical benefit that only
the three pulses

√
X 0↔1,

√
X 1↔2, and

√
X 2↔3, rather than a

parametrized family of pulses, require calibration. It is thus
helpful to decompose the pulse sequence in Eq. (11) into√
X gates, shifting all angular dependencies into near-perfect

virtual Z gates. Common calibration techniques applicable to
the qudit-space pulses are readily available [54]. The resulting
pulse sequence for the implementation of U requires a total of
ten

√
X pulses; see Fig. 1(c) for an example where each pulse

is depicted with a Gaussian envelope.

III. IMPLEMENTATION IN SUPERCONDUCTING QUBITS

We now present and discuss experimental results of a
qudit-space POVM measurement in a superconducting trans-
mon qubit. Transmons are a popular qubit architecture as they
enjoy long coherence times relative to the duration of their
gates [4] and can gather measurements at elevated trigger
rates, typically around 1–100 kHz [26]. They are built from
a nonlinear resonance circuit created by a Josephson junction
shunted by a capacitor and are characterized by the ratio of
the Josephson energy EJ to the charging energy EC, with
EJ/EC 
 1 [55]. The spectrum of a transmon is described
by an anharmonic oscillator, with the qubit encoded in the
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ground state |0〉 and the first excited state |1〉. For details on
this architecture see Appendix B.

A. Qudit control of transmons

We propose to use the energetically next-highest states
|2〉 and |3〉 in addition to the qubit states |0〉 and |1〉 to
implement qudit-based POVM measurements. With the de-
composition in Eq. (11), we only need to drive transitions
between adjacent states. In existing experimental setups, these
states are accessed by switching the carrier frequency of
the microwave drive pulses. Current IBM Quantum systems
employ qubits with 0↔1 transition frequencies of ∼5 GHz
and anharmonicities of ∼ − 300 MHz. Drive pulses are gen-
erated by an arbitrary waveform generator with a sampling
rate of 4.5 × 109 s−1 [56]. We can thus apply modulations
to the carrier frequency of up to approximately ±1 GHz (still
oversampling by a factor of 4.5). The carrier frequencies of
∼4.7 and ∼4.3 GHz required to address the 1↔2 and 2↔3
transitions, respectively, are thus well within the capabilities
of our control hardware. Coherent control of the |2〉 state
following this procedure has already found applications in
excited state promotion readout [5,57], entanglement studies
[58], gate decompositions [59,60], fast resets [61], and entan-
gling operations [62].

Qudit-based POVM measurements require sufficient life-
times of the higher-excited states. On typical transmon qubits,
we observe that the decay from |3〉 occurs predominantly
sequentially as |3〉→|2〉→|1〉→|0〉, while transitions such
as |3〉→|1〉 are strongly suppressed (see Appendix B 2). This
is in agreement with theory [63], and previous experiments
[42]. For our purposes, coherence in |2〉 and |3〉 is only re-
quired during the POVM pulse sequence, which lasts a total
of O(100 ns) using at most ten

√
X pulses. With measured

lifetimes of >25 μs for the |3〉 and |2〉 states, we do not expect
the decay of higher-excited states to be a limiting factor.

Transmons are dispersively measured by coupling them
to a readout resonator [64]. Extracting the in-phase (I) and
quadrature (Q) component of the transmitted signal results in a
point in the IQ plane, which is then discriminated into |0〉 and
|1〉. Dispersive readout can be extended to distinguish between
the four qudit states [60]. Recently, separation of the lowest
three states with fidelities >95% has been demonstrated ex-
perimentally [65].

A challenge for qudit control of transmons is the charge
dispersion of higher-excited states. The exact eigenenergies
of all transmon states fluctuate under charge noise of the
environment (see Appendix B 1). This effect increases expo-
nentially for the energetically higher states posing a threat
for high-fidelity pulses on the 1↔2 and especially on the
2↔3 transition. As a result, transition frequencies fluctuate
considerably from one experimental run to another. For IBM
Quantum hardware with EJ/EC ∼ 40, we observe that the
2↔3 transition frequency varies by 15 to 20 MHz (see Ap-
pendix B 3). To ensure a resonant driving of the transition, the
corresponding drive pulses thus need to cover a broad spectral
range. This can be achieved by shortening the pulses, which
typically increases phase errors and leakage to neighboring
levels. Pulse shaping techniques such as Derivative Removal
by Adiabatic Gate (DRAG) and advanced optimal control help

alleviate this issue [66–68]. Furthermore, applying the POVM
pulse sequence requires tracking the phases of idle levels.
The acquired phases depend on the eigenenergies of each
level, which are subject to charge dispersion. Conveniently,
the unitary that encodes the POVM requires a single drive
of the 2↔3 transition [see Eq. (11)]. Hence, the |3〉 state is
only populated once during the sequence, so that any phase
uncertainty after the 2↔3 pulse becomes irrelevant upon
measurement in the qudit basis. Thus, whereas full coherent
control of the |3〉 state is difficult to achieve, the relatively
simple pulse sequence required for the POVM measurement
is particularly robust to phase uncertainties of this state.

B. Experimental demonstration

As a proof-of-principle demonstration on IBM Quantum
hardware, we implement a single-qubit IC-POVM which con-
sists of the target POVM operators

�0 = 3
4 |ψ0〉〈ψ0|, �1 = 1

2 |+〉〈+|,
�2 = 1

2 |0〉〈0|, �3 = 1
4 |−i〉〈−i|,

(12)

with |ψ0〉 = (|0〉 + (i − 2)|1〉)/
√

6. Three of the operators
(�1, �2, and �3) point along the Cartesian axes of the Bloch
sphere, while �0 points into the octant which lies opposite
of all other vectors [see Fig. 2(a)]. The unitary that encodes
this POVM is realized with a sequence consisting of two√
X 0↔1 gates, two

√
X 1↔2 gates, and one

√
X 2↔3 gate (see

Appendix B 4). We use the standard single-qubit SX gate that
comes with a highly calibrated DRAG pulse exposed to the
user by IBM Quantum systems as the

√
X 0↔1 pulse. All

further pulse-level calibrations and the POVM measurements
are implemented through QISKIT’s pulse module [69,70]. For
the 1↔2 and 2↔3 transitions, we first calibrate the transi-
tion frequency with spectroscopy after preparing the initial
states |1〉 and |2〉, respectively. For simplicity, we implement
the

√
X gates on these transitions with Gaussian pulses. We

choose a duration of 32 ns for the
√
X 1↔2 and 14 ns for

the
√
X 2↔3 pulse. These durations are shorter than the 36-ns

standard single-qubit pulse to mitigate charge dispersion in
higher-excited states by an increased spectral width. Simu-
lations suggest that even shorter pulses are beneficial (see
Appendix E). However, we find it more difficult to calibrate
them. After fixing the pulse duration, we calibrate the angle of
the rotations through sinusoidal fits to Rabi oscillations with
varying pulse amplitudes. To calibrate the readout, we prepare
and measure the states |0〉, |1〉, |2〉, and |3〉 separately through
a sequence of appropriate

√
X gates and use these data to

perform a quadratic discriminant analysis leading to decision
boundaries shown in Fig. 2(b). We find that this performs
slightly better than a linear discriminant analysis. For each
state, we obtain a characteristic signal that clusters in different
regions of the IQ plane.

We investigate how well our pulse sequence along with
the calibrated measurement implements the desired POVM
with quantum detector tomography (QDT) [71,72], which
characterizes the realized POVM operators. Hereby, a set
of reference states is prepared and measured by our POVM
implementation. We choose the set of single-qubit states
|0〉, |1〉, |+〉, |−〉, |i〉, and |−i〉 for this purpose. From the
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(a) (c) (d)

(b)

FIG. 2. Experimental realization of a single-qubit informationally complete POVM in the qudit space of a transmon qubit. (a) Target POVM
operators on the Bloch sphere. (b) Calibration of measurement discrimination in the IQ plane. Shaded regions show the decision boundaries
of the classifier and large circles denote the average over all shots. (c) Raw data of POVM measurement outcomes for the six single-qubit
stabilizer states. (d) Characterization of the experimentally realized POVM operators �i plotted as matrix histograms. The top row shows
the theoretical target operators, the middle row shows the POVM operators obtained from a maximum-likelihood detector tomography of the
experimental data after applying readout error mitigation, and the bottom row shows their difference. Data taken on qubit 0 of ibmq_lima with
EJ/EC ∼ 45.

obtained outcome distributions, shown in Fig. 2(c), the under-
lying experimental POVM operators can be estimated with a
maximum-likelihood (ML) procedure, which guarantees that
they form a valid POVM [73] (see Appendix D). Note that, on
the Bloch sphere, the tomography states |−〉, |1〉, and |i〉 lie
opposite the POVM operators �1, �2, and �3, respectively.
They should thus have zero measurement probability of the
corresponding outcomes, which is attested by a noticeable
lack of counts in the respective regions of the IQ plane in the
raw data of Fig. 2(c). As a result, the operators obtained from
the maximum-likelihood detector tomography are in good
qualitative agreement with the theoretical target operators [see
Fig. 2(d)].

We quantify the fidelity through the operational distance
DOD [74,75], a measure on the POVM space, between the ex-
perimentally realized and the target POVM with 0 � DOD � 1
and DOD = 0 for coinciding POVMs (see Appendix C). The
raw measurement data presented in Fig. 2(c) yield DOD =
0.22. We identify the overlap of the detection regions in the
IQ plane between |1〉 and |2〉 and especially |2〉 and |3〉 as the
main experimental limitation for qudit-based POVM measure-
ments. Specifically, in our experiments, around one-quarter of
the prepared states in |3〉 are identified as |2〉 and vice versa
(see Table I). To mitigate misassignment errors, we apply
readout error mitigation based on the inversion of the mis-
assignment matrix, constrained to non-negative probability
vectors [74]. Thereby, we can partially correct the measured
raw data and achieve an improved DOD of 0.15 between the
theoretical and the ML-estimated experimental POVM.

The difficulty to reliably distinguish the states |2〉 and |3〉
complicates the calibration of the average 2↔3 transition
frequency. At the moment, this renders the implementation of
POVMs that require virtual Z2↔3 gates infeasible. This mo-
tivates the choice of the POVM operators in Eq. (12) for our
experiments, which are achievable with a slightly simplified

pulse sequence, compared to the most general case of Eq. (11)
(see Appendix B 4). The measurement pulses used in our
experiment are the default pulses provided by the back end,
which are optimized for maximal separation of the |0〉 and
|1〉 states. A large-scale implementation of qudit-space POVM
measurements would require a more careful calibration of
the readout pulses, which optimizes the separation of all four
involved basis states. This would make the virtual Z2↔3 gates
feasible and improve the

√
X 2↔3 gate.

C. Optimal transmon parameter regime

In the previous section, we demonstrated a qudit-based
POVM measurement on a quantum device with an EJ/EC ratio
of ∼45. This value was chosen for optimal qubit operation.
However, the substantial charge dispersion in states |2〉 and
|3〉 of the transmon suggests that larger EJ/EC ratios may be
advantageous for qudit POVMs. This would sacrifice some
anharmonicity to decrease the charge noise. We now quan-
titatively assess this trade-off through numerical pulse-level
simulations, which account for both leakage errors due to
finite anharmonicity and phase errors due to charge noise, but
neglect readout misassignment errors.

TABLE I. Measured readout assignment error probabilities when
preparing the four qudit states of a transmon.

Prepared

Measured |0〉 |1〉 |2〉 |3〉
|0〉 98.3 % 4.2 % 0.6 % 0.2 %
|1〉 0.5 % 88.8 % 8.8 % 2.1 %
|2〉 0.8 % 6.9 % 59.3 % 22.8 %
|3〉 0.4 % 0.1 % 31.3 % 74.9 %
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FIG. 3. Simulations of a pulse schedule implementing a SIC-
POVM under charge noise for different ratios EJ/EC of a transmon
qubit with a frequency of 5 GHz. (a) Operational distance DOD

between theory and simulated POVMs for different maximal dura-
tions tmax of the pulse schedules. (b) Optimal total durations topt of
the POVM pulse schedules that reach the best operational distance.
(c) Average gate error of a single-qubit SX gate realized through
Gaussian pulses with a fixed duration of 36 ns.

We start by probing how the achievable DOD depends on
EJ/EC, using a single-qubit symmetric, informationally com-
plete (SIC) POVM �SIC as an example of a generic POVM. It
consists of four operators �m

SIC = 1
2 |ψm〉〈ψm| with |ψ0〉 = |0〉

and |ψm〉 = (|0〉 + √
2e2π i(m−1)/3|1〉)/

√
3 with m ∈ {1, 2, 3}

that point towards the corners of a regular tetrahedron [see
Fig. 1(a)]. In contrast to the experimentally demonstrated
POVM in Eq. (12), �SIC requires implementing the pulse
sequence from Eq. (11) in its full generality. We simulate this
sequence with Gaussian pulse envelopes on a single transmon
by numerically integrating the time-dependent Schrödinger
equation. For details on how we model charge dispersion and
calibrate pulses see Appendix E. As the EJ/EC ratio increases
and charge noise becomes less prevalent, DOD(�SIC,�sim)
decreases [see Fig. 3(a)]. While the DOD is limited to 0.1
for EJ/EC ∼ 40, it improves to 0.01 for EJ/EC ∼ 80. The
change in anharmonicity with EJ/EC affects the duration of
the pulse sequence that achieves the optimal DOD, as plot-
ted in Fig. 3(b). In the low-EJ/EC regime, short pulses are
favored as a broad spectral width is required to cover the large
spread of the charge noise, and leakage is minimal due to
the large anharmonicity. Conversely, with increasing EJ/EC,
the anharmonicity of the transmon is reduced, which amplifies
leakage. The optimal pulse durations thus increase with the
ratio EJ/EC.

The longer the pulse sequence, the more it is subject to
nonunitary processes like decoherence, which are not con-
sidered in our simulation. Consequently, there is a trade-off
between the optimal durations of the pulses under unitary

dynamics and noise induced by finite coherence times. We
therefore limit the total duration of the POVM-encoding pulse
sequence to different maximally allowed durations tmax [see
Fig. 3(a)]. We find that, for fixed tmax, the DOD improves
with increasing EJ/EC until an optimal ratio is reached after
which the DOD gradually increases. In the parameter regime
of current IBM Quantum hardware (EJ/EC ∼ 35–45), the
optimal POVM pulse sequence time is ∼100 ns. On this
timescale, we do not expect decoherence to be significant (see
Appendix B 2). For reference, single-qubit gates typically last
36 ns [56]. Finally, changing the transmon parameters also
affects the conventional gates run in the quantum circuit prior
to the POVM measurement. This is exemplified by the average
gate fidelity F of a single-qubit 36-ns SX gate, which is shown
in Fig. 3(c). As EJ/EC increases from 20 to 120 the gate
fidelity decreases by roughly one order of magnitude due to
the reduced anharmonicity.

The trade-off between anharmonicity and charge noise in
a transmon qubit is a complex interplay of many factors,
including coherence times, gate fidelities, and gate speed
[55]. Our simulations suggest that, when taking qudit POVM
fidelities into account, the optimal hardware regime shifts
towards higher EJ/EC ratios. While this improves the quality
of qudit-space POVM measurements, it comes at the expense
of either slightly worse gate fidelities or slightly slower gate
speeds, whose severity ultimately depends on the available
coherence times. Optimal control methods may alleviate such
issues [68].

IV. APPLICATION TO OPERATOR SAMPLING

Our experimental realization is currently limited by misas-
signment errors in the readout due to insufficient separation
in the IQ plane. However, even with perfect readout fidelities,
the considerable charge noise of current-generation transmon
qubits still raises the question whether qudit POVMs with
ODs of ∼0.1 are sufficient for practical applications. Here,
we address this question through numerical simulations of
optimized IC-POVMs for estimating the expectation value of
an observable O as developed in Ref. [38].

A. Device noise mitigation through detector tomography

We denote the optimized (theoretical) target POVM by
�theo, which defines a target unitary in the qudit space of
each transmon with corresponding outcome probabilities ptheo

m
according to Eq. (1). However, due to device noise, the ef-
fective (experimental) channel that is applied to the qudits
encodes a different POVM, denoted by �expt, which slightly
deviates from the theoretical one. In practice, �expt defines
the experimental measurement probabilities of the outcomes
pexpt

m , while �theo is used to obtain the decomposition of O
with coefficients ctheo

m , as defined in Eq. (2). The combined es-
timator converges to 〈̂O〉 = ∑

m ctheo
m pexpt

m , which differs from
the theoretical expectation value due to the imperfections in
the device, leading to a bias

∑
m ctheo

m (pexpt
m − ptheo

m ).
To estimate the impact of this bias on practical applica-

tions, we study its effects on energy measurements of trained
VQE ansatz states for small molecular Hamiltonians mapped
onto four to eight qubits. As the target operators �theo, we
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FIG. 4. Error mitigation through detector tomography on qudit-
space POVM measurements. (a) Simulations of energy measure-
ments with optimized POVMs for trained VQE states of small
molecular Hamiltonians (H2, LiH, and H2O) obtained from parity
and Bravyi-Kitaev (B-K) fermion-to-qubit mappings. Charge noise
leads to a bias in the POVM estimator (red). Detector tomography
with a total of 105 shots reduces this bias (blue). (b) Operational dis-
tance between the experimental POVM �expt simulated under charge
noise and its tomographic reconstruction �tomo for the standard SIC-
POVM (blue) and a SIC-POVM defined in Ref. [36] (yellow) as a
function of the total shots used for the detector tomography Ntomo. A
power-law fit yields a scaling of DOD ∼ N−0.45

tomo .

use POVMs that minimize the variance for the respective
Hamiltonians over the trial states as reported in Ref. [38].
These POVMs are simulated under charge noise for a device
with EJ/EC = 45 (see Appendix E). The biases that arise from
the device noise are shown in Fig. 4(a) (red bars). In most
cases, we observe that charge noise creates biases that prevent
energy estimations down to chemical accuracy.

To attenuate the large biases induced by the hardware
noise, we propose an efficient error mitigation strategy in
which the mismatch between �theo and �expt is reduced by
means of quantum detector tomography [71,72]. This process
allows an accurate estimation of the POVM operators that
are actually implemented in the device, denoted by �tomo.
With this procedure, we first compute the decomposition of
O into the operators of �tomo, i.e., O = ∑

m ctomo
m �m

tomo, and
then use the new coefficients ctomo

m to estimate the expectation
value as 〈̂O〉 = ∑

m ctomo
m pexpt

m . With an increasing number of
tomography shots, the OD between �expt and �tomo can be
arbitrarily decreased (see Fig. 4). In turn, the systematic bias∑

m ctomo
m (pexpt

m − ptomo
m ) converges to zero for infinitely many

tomography shots. The desired accuracy in a given application
thus defines how many measurements should be dedicated
to the detector tomography. Crucially, since the POVMs we
consider are always products of single-qubit POVMs, the to-
mographic reconstruction can be carried out on all qubits in
parallel. Thus, the overhead in the shot budget is constant,
and we do not expect this process to hamper the scalabil-
ity of qudit-based POVMs. Our simulations indicate that,
even for current transmon hardware with EJ/EC ∼ 45, qudit-
space POVM measurements characterized through detector
tomography are sufficiently accurate for quantum chemistry
applications.

B. Qudit-based POVMs for variance reduction

Finally, we discuss whether the qudit POVM measure-
ments in noisy conditions can be utilized to reduce the
variance of an estimator of 〈O〉. As an example, we consider
the six-qubit Hamiltonian OLiH of a LiH molecule in the
STO-3G basis obtained from the Bravyi-Kitaev mapping and
investigate the number of shots needed to estimate the energy
of a trained VQE state |ψ〉VQE within chemical accuracy (in
the chosen basis set). We compare two situations where first,
each qubit is measured using a SIC-POVM, and second, the
qubits are measured by means of a product POVM that min-
imizes the variance of OLiH in the state |ψ〉VQE. In practice,
such an optimized POVM can be efficiently obtained from an
adaptive scheme [38], even if there is no prior knowledge of
the state |ψ〉 available. For a given POVM, the variance of a
specific observable is determined by its decomposition coeffi-
cients cm and the measurement probability distribution pm of
the state [see Eq. (4)]. Namely, the second moment

∑
m c2

m pm

determines the accuracy ε of the POVM-based estimator. In
particular the outcomes m with both high absolute value of cm

and high measurement probability pm contribute to ε. For the
outcome distribution of the SIC-POVM, due to the symmetry
of the POVM operators, the data are highly structured [see
Fig. 5(a)]. The outcomes with highest probability attain high
values of |cm|, which results in a large second moment of
80.86 hartree2. By measuring in an optimized POVM, even
under charge noise, the second moment is considerably re-
duced to 1.59 hartree2. This approaches the optimum set by
the squared first moment 〈O〉2 = 1.12 hartree2. This effect
can be explained by inspecting the shape of the the distribution
in Fig. 5(b), which shows a “squeezing” such that the most
probable outcomes are associated with low absolute values of
cm. This in turn leads to very large absolute coefficients for
other outcomes, which, in contrast, have negligible measure-
ment probability and thus hardly contribute to the variance.

We observe that with the generic SIC-POVM scheme about
3.5 × 107 shots are required to estimate 〈OLiH〉 to within
chemical accuracy. In contrast, only 3.1 × 105 shots are re-
quired when using the optimized POVM in a qudit-based
scheme using a transmon affected by state-of-the-art charge
noise. This number already includes 105 shots devoted solely
to the detector tomography used for the bias mitigation dis-
cussed in Sec. IV A. With a circuit execution rate of 10 kHz,
the optimized POVM reduces the measurement time from 1 h
down to 30 s. It is important to note that in this application the
mitigated bias lies well within chemical accuracy, as shown
in Fig. 4. Based on this example, we conclude that qudit-
space POVM measurements constitute a valid, shot-efficient
approach to estimate observables with high precision.

V. DISCUSSIONS AND CONCLUSIONS

We introduced a method to perform general POVM mea-
surements for qubits via a Naimark dilation construction,
which extends the qubit space into a qudit space through
the addition of two extra levels, rather than coupling to an
additional ancilla qubit. Our strategy makes optimal use of
the available quantum resources in a system without requiring
full qudit control—a challenging task in general. We couple
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FIG. 5. Variance reduction through an optimized POVM for a six-qubit LiH Hamiltonian OLiH with a trained VQE state |ψ〉VQE. Each
scatter point represents the probability pm of obtaining outcome m for the state |ψ〉VQE and the corresponding coefficient cm of the observable
OLiH in the global IC-POVM basis [see Eqs. (1) and (2)]. There are M = 46 POVM outcomes and m ∈ {0, . . . , M − 1}. The histograms
show the marginal distributions of c and p, while color indicates how much each data point (cm, pm ) contributes to the variance. Only the few
outcomes circled in red contribute significantly. (a) Exact theoretical distribution where each qubit is measured in a SIC-POVM. (b) Distribution
of a POVM which was optimized to reduce the variance for this observable and state. The probabilities pm are obtained from a simulation of
the qudit-space POVM scheme under noisy conditions in transmon hardware with EJ/EC = 45. The coefficients cm are computed following
the error mitigation strategy with Ntomo = 105 tomography shots.

the qubit states to the two additional levels of the surround-
ing qudit for only a short duration at the measurement stage
of the quantum circuit. Therefore, only modest coherence
and pulse fidelities are required. Compared to ancilla-based
POVM implementations, we circumvent the doubling of the
quantum register size and thus save half of the qubits on the
chip, while also avoiding a considerable SWAP-gate overhead
in case of limited device connectivity. The result is a proto-
col that is applicable to various qubit architectures including
super- and semiconducting qubits, trapped ions, and cold
atoms.

For a superconducting transmon qubit, we detailed an im-
plementation of qudit-space POVM measurements, including
a description of the decomposition into suitable elementary
pulses between adjacent levels, and of the required calibra-
tions. Specifically, we proposed ways to operate the necessary
frame changes by tracking advances in relative phases, as well
as generalizing the concept of virtual Z gates to the qudit
space. Compared to the standard qubit setting, our proposal
admittedly requires further calibrations involving the addi-
tional states. However, these calibrations can be performed on
all qudits in parallel and are typically faster than two-qubit
gate calibrations.

Exploiting the functionalities of QISKIT PULSE [69], we suc-
cessfully performed a proof-of-principle experiment using the
four lowest levels of a transmon in IBM Quantum hardware.
We found that measurement misassignments are currently the
main limitation of the proposed qudit-based POVMs, which
prevents the scaling up to multiqubit implementations. This
calls for a more thorough design and optimization of the
shape and frequency of measurement pulses with the aim
of obtaining a sufficient dispersive shift for all four qudit
levels. Moreover, the importance of choosing the readout
resonator frequency appropriately, such that no transitions

between higher-excited states are accidentally resonant to the
resonator frequency, has also been pointed out [42].

From preliminary pulse-level simulations, we conclude
that tuning the qubits deeper into the transmon regime would
be beneficial to achieve optimal POVM fidelities, as this lim-
its the impact of charge noise in the higher-excited states.
Nonetheless, our results indicate that the implementation of
qudit-based POVMs in state-of-the-art IBM Quantum hard-
ware can significantly reduce the number of measurements
required to estimate expectation values. To achieve this goal,
we designed a shot-efficient strategy based on detector tomog-
raphy to mitigate systematic errors arising from experimental
imperfections.

In addition to operator averaging, informationally com-
plete POVMs can be employed for other paradigmatic
quantum information tasks, including state tomography [76]
and the extraction of classical shadows [77]. In all these cases,
our strategy offers a resource-effective route towards their
implementation in state-of-the-art quantum processors. On a
broader perspective, our results open up new opportunities to
exploit the multilevel structure available on many different
qubit architectures, thus contributing to the development of
a richer operational toolbox, and extending the native capabil-
ities of current quantum computing architectures.
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APPENDIX A: DETAILS ON POVM IMPLEMENTATIONS

1. Naimark construction for single-qubit POVMs

Here, we detail the connection between a unitary U ap-
plied to a four-dimensional extended Hilbert space Hext and
the POVM operators realized on the single-qubit space HS

through a Naimark dilation construction. In a tensor product
extension (TPE), the four basis states of Hext are formed with
an ancilla qubit as |0〉ext = |0〉S ⊗ |0〉A, |1〉ext = |1〉S ⊗ |0〉A,
|2〉ext = |0〉S ⊗ |1〉A, and |3〉ext = |1〉S ⊗ |1〉A. In contrast, in a
direct sum extension (DSE), the four states |i〉ext form a qudit
space, where the qubit is encoded in the states |0〉ext ≡ |0〉S
and |1〉ext ≡ |1〉S.

For simplicity, we assume a pure state of the system qubit
|ψ〉S = α|0〉S + β|1〉S. A Naimark construction for both a
TPE and a DSE applies a unitary U to the initial state |ψ〉init =
α|0〉ext + β|1〉ext, to create the final state

U |ψ〉init =
3∑

m=0

(αUm,0 + βUm,1)|m〉ext. (A1)

Measuring U |ψ〉init in Hext produces an outcome m ∈
{0, 1, 2, 3} with a probability pm = |Um,0α + Um,1β|2. This is
equal to the probabilities pm = Tr(�m|ψ〉S〈ψ |S) associated
with a POVM of four rank-one operators

�m = �m|πm〉〈πm| (A2)

acting on HS, which are proportional to projectors along the
states

|πm〉 = 1√
�m

(
U ∗

m,0|0〉S + U ∗
m,1|1〉S

)
(A3)

with normalization factors �m = |Um,0|2 + |Um,1|2. Through
Eqs. (A2) and (A3), the unitary U applied to Hext can emulate
the measurement of any POVM with four rank-one operators
on HS.

Since the desired POVM only defines the first two columns
of U , i.e., Um,0 and Um,1, we find the remaining columns with a
Gram-Schmidt procedure to ensure U is unitary. Without loss
of generality, for the decomposition algorithm presented in
Appendix A 2, it is convenient to choose the top right element
of U to vanish, i.e., U0,3 = 0.

2. Pulse decomposition for qudit-space POVMs

Here, we review the decomposition algorithm that we use
to realize the unitary U with Givens rotations G and Z gates,
as defined in the main text. Since this algorithm decomposes
special unitary operators, we first define the SU(4) operator
U (0) = U det(U )−1/4, which encodes the same POVM as U .
The decomposition routine iteratively reduces U (0) to the iden-
tity matrix through a sequence of gates. We denote the unitary
after the ith gate is applied to U (0) by U (i+1).

The reduction to the identity matrix is accomplished by
creating zeros in the off-diagonal entries starting from the top
entry in the fourth column [52]. Since by choice, the first
entry U (0)

0,3 is already zero, we create a second zero in the

fourth column of U (1) with a Givens rotation G (0)
1↔2(θ1, φ1) that

must satisfy G (0)
1↔2(0,U (0)

1,3,U
(0)
2,3,U

(0)
3,3 )

T = (0, 0,U (1)
2,3,U

(1)
3,3 )

T
.

If U (0)
1,3 = r1eiδ1 and U (0)

2,3 = r2eiδ2 then the angles of the Givens
rotation must be [52]

θ1 = 2 arctan
( r1

r2

)
and φ1 = π

2
− δ1 + δ2. (A4)

In the next iteration, we similarly apply another Givens rota-
tion such that G (1)

2↔3(0, 0,U (1)
2,3,U

(1)
3,3 )

T = (0, 0, 0,U (2)
2,3 )

T
. Due

to unitarity, the remaining nonzero entry is a phase factor
U (2)

2,3 = eiβ . A rotation Z (2)
2↔3 with an angle ϕz = −2β sets the

phase β to zero. This finally results in the matrix

U (3) = Z (2)
2↔3U (2) =

⎛⎜⎜⎝
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

0
0
0

0 0 0 1

⎞⎟⎟⎠ (A5)

that has been reduced to a 3×3 block. The above procedure is
now repeated for the third column. This requires two Givens
rotations and one Z rotation such that

Z (5)
1↔2G

(4)
1↔2G

(3)
0↔1

(
U (3)

0,2,U
(3)
1,2,U

(3)
2,2, 0

)T = (0, 0, 1, 0)T . (A6)

Finally, applying the same strategy once more to the second
column results in the identity matrix. Our initial choice of an
SU(4) matrix ensures that the final phase of the top left entry
vanishes.

As a result, applying the inverse of all gates in reverse
order gives a decomposition (up to an irrelevant global phase)
of the target unitary U into elementary operations of Givens
rotations and (potentially virtual) Z gates:

U = G (0)†
1↔2 G (1)†

2↔3 Z (2)†
2↔3

× G (3)†
0↔1 G (4)†

1↔2 Z (5)†
1↔2 G (6)†

0↔1 Z (7)†
0↔1. (A7)

To simplify pulse calibrations, we restrict the gate set to
virtual Z gates and the gates

√
X = G(θ = π

2 , φ=0) which
describe a π/2 rotation around the x axis between the states
|n〉 and |n + 1〉. A general Givens rotation G(θ, φ) can be
exactly realized by a sequence of two

√
X and three Z gates,

G(θ, φ) = Z(φ − π

2
)
√
X Z(π − θ )

√
X Z(−φ − π

2
),

(A8)

where we have omitted the subscripts n↔n + 1 [50]. Re-
placing every G gate in Eq. (A7) with the decomposition in
Eq. (A8) results in a decomposition of U that only contains
10

√
X and 11 Z gates.

For a qudit-space POVM realization in realistic hardware
we need to apply the sequence of G or

√
X and Z gates

through the hardware-native rotations R derived in Eq. (9)
of the main text. It is sufficient to implement a unitary Ũ
equivalent to the target unitary U as long as the same mea-
surement probabilities for any initial qubit state are recovered.
In Appendixes A 3 and A 4, we detail how to realize such an
equivalent unitary Ũ with realistic R rotations.
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3. Generalized virtual Z gates

Each pulse as defined in Eq. (5) in the main text is played
in a frame that consists of a carrier frequency ω and a phase
φ. For our implementation of the qudit-space unitary, three
frames are relevant, which correspond to the three driven
transitions, i.e., 0↔1, 1↔2, and 2↔3. While the frequen-
cies of the drives in these frames always remain fixed to the
transition energies of the system such that ωn = En+1 − En,
the phases of the frames need to be adjusted to account for
phase advances during R rotations and to virtually implement
Z gates.

As an example of a Z rotation in qudit space, consider the
gate

Z1↔2(ϕ) =

⎛⎜⎜⎝
1 0 0 0
0 e−i ϕ

2 0 0
0 0 ei ϕ

2 0
0 0 0 1

⎞⎟⎟⎠, (A9)

which applies a relative phase of −ϕ between states |1〉 and
|2〉. Therefore, an angle ϕ needs to be subtracted from the
phase of all subsequent pulses played in the 1↔2 frame.
However, while the above gate leaves the levels |0〉 and |3〉
unchanged, it applies a relative phase of ϕ/2 between the
levels |0〉 and |1〉, as well as between |2〉 and |3〉. Hence, in
addition to affecting all following phases in the 1↔2 frame,
an angle ϕ/2 must be added to all drive phases in the 0↔1
and 2↔3 frames. In general, Zn↔n+1(ϕ) gates can be virtu-
ally implemented by adding ϕ/2 to all subsequent pulses in
the n + 1 ↔ n + 2 and n − 1 ↔ n frames while deducting a
phase ϕ from the following pulses in the n ↔ n + 1 frame.

4. Correcting phase advances during R pulses

While playing a pulse of a total duration T in the n↔n +
1 frame, the uncoupled levels acquire nontrivial phases [see
Eq. (9) of the main text]. It is instructive to look at an example

of a drive in the 1↔2 frame which implements the unitary

R1↔2(θ, φ) = ei(ω1−E1 )T

×

⎛⎜⎜⎝
e−i(ω1−ω0 )T 0 0 0

0
0 G(θ, φ)

0
0

0 0 0 e−i(ω2−ω1 )T

⎞⎟⎟⎠.

(A10)

Let αn = ωn − ωn−1 for n > 0, such that for an anharmonic
oscillator, α1 would simply denote the anharmonicity. The
above unitary results in a relative phase of �φ0↔1 = −α1T
between the states |0〉 and |1〉 and a relative phase of �φ2↔3 =
α2T between the states |2〉 and |3〉. To correct these phases,
�φ0↔1 and �φ2↔3 have to be subtracted from the phases φ of
all subsequent pulses in the 0↔1 and 2↔3 frames, respec-
tively. Generalizing from this example, under a drive Rn↔n+1,
the mth level acquires a phase (ignoring global phases) of
φm↔m+1 = ((m − n)ωn + En − Em)T which results in a phase
difference of

�φm↔m+1 = (ωm − ωn)T . (A11)

This defines the necessary phase shift of all following pulses
in the m ↔ m + 1 frame.

In summary, a sequence of gate instructions consisting of
Givens rotations G(θG, φG ) and phase gates Z (ϕZ ) can be
implemented in the qudit space through pulses R(θR, φR)
where the rotation angles remain unchanged (θR = θG) and
the phases of the pulses φR depend on the phases φG and
ϕZ of all previously implemented gates of the sequence.
This procedure is summarized as a pseudocode algorithm in
Algorithm 1.

Algorithm 1. Implementation of a sequence of Givens rotations G and phase gates Z via
hardware-native pulses R achieved by keeping track of all necessary phase shifts.

levels ← number of levels in qudit space
phases ← [0, . . . , 0] � list of length levels−1
gates ← sequence of Gn↔n+1(θ, φ) and Zn↔n+1(ϕ) gates
for gate in gates do

if gate is of type Gn↔n+1 then
θ ← rotation angle of gate
φ ← phase of gate
T ← duration of gate
for m in [0, ..., n − 1, n + 2, ..., levels] do
phases[m] ← phases[m] – (ωm − ωn)T

end for
play pulse Rn↔n+1(θ, phases[n] + φ)

else if gate is of type Zn↔n+1 then
ϕ ← rotation angle of gate
phases[n] ← phases[n] – ϕ

phases[n − 1] ← phases[n − 1] + ϕ

2
phases[n + 1] ← phases[n + 1] + ϕ

2
end if

end for

033027-10



ANCILLA-FREE IMPLEMENTATION OF GENERALIZED … PHYSICAL REVIEW RESEARCH 4, 033027 (2022)

−1.0 −0.5 0.0 0.5 1.0
ng

0

10

20

30

(E
m
−

E
0| n

g
=

0)
/E

C

ω0

ω1 = ω0 + α1

ω2 = ω1 + α2

ε3

|1〉
|3〉

|0〉
|2〉

EJ/EC

−2.0

−1.5

−1.0

α
n
/E

C
α1

α2

20 40 60 80 100
10−12

10−9

10−6

10−3

100

ε m
/ω

0

(a) (b)

(c)

FIG. 6. Properties of the lowest energy eigenstates |m〉 of a trans-
mon obtained from numerical diagonalization of the Hamiltonian in
Eq. (B1). (a) Fluctuations of the eigenenergies with the offset charge
ng at EJ/EC = 15, which become exponentially stronger for higher
levels. The excitation energies ωn = En+1 − En and the anharmonic-
ities αn are defined with respect to the average value of En over ng.
(b) Reduction of the charge dispersion εn with increasing EJ/EC.
(c) Anharmonicities αn as a function of EJ/EC.

APPENDIX B: DETAILS ON EXPERIMENTS IN
SUPERCONDUCTING HARDWARE

1. The transmon qubit

A transmon qubit consists of a Josephson junction with
Josephson energy EJ shunted by a large capacitance whose
single-electron charging energy is denoted as EC, with EC �
EJ. The Hamiltonian of the circuit is

ĤTM = 4EC(n̂ − ng)2 − EJ cos(φ̂), (B1)

where n̂ and φ̂ are dimensionless conjugate variables describ-
ing the number of Cooper pairs on the capacitor and the
superconducting phase across the Josephson junction, respec-
tively [79]. The offset charge ng is a constant that results
from capacitive coupling of undesired voltage sources due to
imperfect isolation from the environment.

We denote the Hamiltonian in its eigenbasis by ĤTM =∑
n En|n〉〈n|, where the qubit is encoded in the lowest-lying

eigenstates |0〉 and |1〉. Through the expansion cos φ̂ = 1 −
φ̂2

2 + φ̂4

24 − · · · , we see that, for small φ̂, the transmon re-
sembles a harmonic oscillator. However, the higher powers
of φ̂ create an anharmonic spectrum where the spacing
of the eigenenergies is not equidistant, but decreases with
higher levels. With the excitation energies ωn = En+1 − En

between adjacent levels, we define the anharmonicity αn =
ωn − ωn−1, n � 1, as the difference in adjacent transition
frequencies.

In a realistic experimental setting, ng is subject to fluc-
tuations called charge noise. This causes changes of the
eigenenergies En which are periodic in ng [55] [see Fig. 6(a)].
The maximal difference in eigenenergies of

εn = |En(ng = 0) − En(ng = 1/2)| (B2)

is commonly called the charge dispersion. Thus, under charge
noise, the exact transition frequencies ωn fluctuate, which
creates phase errors [80]. Transmons mitigate this by increas-
ing the ratio of EJ/EC, which decreases charge dispersion,
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FIG. 7. Decay of state |3〉 in a transmon. At each time step,
1000 measurements are taken which then undergo readout error
mitigation to estimate the state populations. Fits are performed with
a multichannel exponential decay model. Data taken on qubit 24 of
ibmq_manhattan.

as shown in Fig. 6(b). However, the charge dispersions in
the |2〉 and |3〉 states remain at least one and two orders of
magnitude larger than in the |1〉 state, respectively. As EJ/EC

increases, the absolute value of the anharmonicity decreases
[see Fig. 6(c)], which complicates driving the individual tran-
sitions due to leakage into adjacent levels and phase errors.
The transmon relies on the fact that the charge dispersion
decreases exponentially with EJ/EC while the anharmonic-
ity is only reduced with a weak power law, making control
at high EJ/EC favorable [55]. Therefore, IBM Quantum de-
vices currently employ transmon qubits with EJ/EC ∼ 35–45,
ω0/(2π ) ∼ 5 GHz, and α1/(2π ) ∼ 300 MHz [56].

2. Decay of higher-excited states

Sufficient coherence of all involved states is required
to perform qudit operations acting on higher-excited states.
Here, we experimentally probe the T1 times of the four lowest
levels of a transmon in IBM Quantum hardware. We prepare
the state |3〉 by a ladder sequence of π pulses X0↔1,X1↔2,
and X2↔3. The system is left to decay for a time t prior to
a projective measurement which extracts the populations �p(t )
from 1000 measurements at each time step (see Fig. 7).

To estimate the T1 times, we fit a model based on a multi-
channel rate equation d �p(t )/dt = �T �p(t ). � is a 4 × 4 matrix
that contains the decay rates �i j associated with the decay
from |i〉 to | j〉 and diagonal entries �ii = −∑i−1

j=0 �i j . We
consider only the possible “downward” transitions |3〉→|2〉,
|3〉→|1〉, |3〉→|0〉, |2〉→|1〉, |2〉→|0〉, and |1〉→|0〉, so
�i j = 0 for i < j. The T1 times arise from all possible decay
channels, e.g., T |3〉

1 = 1/(�32 + �31 + �30). The obtained fit
parameters are summarized in Table II. We find that the non-
sequential transitions are strongly suppressed and the qudit
mainly decays sequentially, i.e., |3〉→|2〉→|1〉→|0〉. Im-
portantly, the ∼30 μs lifetimes of |2〉 and |3〉 leave plenty
of coherence time to implement the POVM pulse schedule,
which lasts ∼100 ns.

The fit in Fig. 7 accurately captures the population of the
|0〉 state but deviates slightly for the other states. We attribute
this to the significant misassignment errors present in the read-
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TABLE II. Experimentally measured decay constants �i j and T1

times for a transmon qudit extracted from Fig. 7.

|3〉 |2〉 |1〉
�i j |3〉→|2〉 |3〉→|1〉 |3〉→|0〉 |2〉→|1〉 |2〉→|0〉 |1〉→|0〉
(μs−1) 0.029 0.00 0.00 0.030 0.004 0.013
T1 (μs) 34.3 29.7 74.5

out stage, which, even after readout error mitigation, remain
significant (see Sec. III B).

3. Measurement of charge dispersion in state |3〉
Here, we present a direct measurement of the charge dis-

persion of the |3〉 state by performing a Ramsey interference
experiment on the 2↔3 transition. The experimental se-
quence consists of a preparation of the |2〉 state, followed by
a π/2 pulse around the x axis of the 2↔3 transition, a delay
time tRamsey, and finally a −π/2 pulse around the x axis of
the same transition. We measure the signal in the IQ plane
as tRamsey is increased. This results in oscillations at the differ-
ence between the drive frequency and the true 2↔3 transition
frequency [see Fig. 8(a)]. Transforming the signal into Fourier
space reveals that the oscillation is a beating between two
contributing frequencies f1 and f2 [see Fig. 8(b)]. This can be
attributed to quasiparticle tunneling across the qubit junction
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FIG. 8. Measurement of charge dispersion in the |3〉 state.
(a) Ramsey oscillations between states |2〉 and |3〉 with a fit of two
sinusoidals forming a beating pattern. Each data point is averaged
over 1000 shots. (b) Fourier transform of the signal in (a) with
two contributing frequencies. (c) Symmetrical fluctuations of the fit
frequencies around a mean frequency when repeating the procedure
over time. The vertical black line indicates data from (b). Data taken
on qubit 0 of ibm_lagos.
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FIG. 9. Pulse sequence of five
√
X gates encoding the experi-

mentally demonstrated POVM operators from Eq. (12). The 0↔1
drives are DRAG pulses, while the 1↔2 and 2↔3 transitions are
driven with Gaussian pulses. Amplitudes of the real and imaginary
parts of the pulse envelopes are depicted in arbitrary units.

[42,81]. While repeating the Ramsey sequence 50 times, the
two frequency components f1 and f2 fluctuate symmetrically
around a center frequency f of ∼13 MHz [see Fig. 8(c)]. This
represents the average detuning of the applied drive pulses.
In total, these data suggest that the true frequency of the
2↔3 transition fluctuates by as much as 15–20 MHz. For this
particular qubit with a frequency of ω0/(2π ) = 5.2 GHz and
an anharmonicity of α1/(2π ) = −340 MHz, a direct diago-
nalization of the Hamiltonian from Eq. (B1) predicts a charge
dispersion of ε3 = 13.9 MHz. Our measurements are thus in
reasonable agreement with theory.

4. Experimental POVM pulse sequence

In Sec. III B of the main text, we present an experimental
implementation of a single-qubit POVM measurement that
consists of the operators given in Eq. (12). Here, we motivate
the choice of this POVM and provide further details on the
corresponding pulse sequence.

The average 2↔3 transition frequency is difficult to cal-
ibrate due to the significant measurement misassignments
between the involved states. This renders high-fidelity imple-
mentations of virtual Z2↔3 gates problematic, as the necessary
phase updates to the drive frames depend on the transition
frequency (see Appendix A 3). We have thus chosen a POVM
which does not require Z2↔3 gates. Instead, the qudit-space
unitary U that encodes our chosen POVM is built up from the
gate sequence

U =
√
X 1↔2

√
X 2↔3

√
X 0↔1

× Z1↔2(π/2)
√
X 1↔2

√
X 0↔1. (B3)

The resulting POVM operators have a simple geometrical
interpretation: three of the four operators point along the x,
y, and z axes of the Bloch sphere, Fig. 2(a).

The pulse sequence that implements the unitary from
Eq. (B3) is shown in Fig. 9. The nontrivial phases of the
pulses, manifested in nonzero imaginary parts, arise from both
the Z1↔2 gate in the sequence as well as from phases acquired
during frame changes between different transitions. With the
lack of Z2↔3 gates in the sequence, this POVM does not
represent the most general case from Eq. (A7). Besides this
simplification, it exhibits all features of our proposed scheme,
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thus constituting a reasonable compromise between practical
feasibility on hardware that is not tailored for qudit operation
and generality of the proof of principle.

APPENDIX C: OPERATIONAL DISTANCE

To compare the fidelity between two POVMs, such as the
experimentally implemented POVM and the theoretical target
POVM, a suitable distance measure is needed. In this work
we use the operational distance (OD) [74,75]. For two M-
outcome POVMs � = {�m} and � = {�m} the OD is defined
as

DOD(�,�) = max
ρ

1

2

M−1∑
m=0

|Tr(ρ�m) − Tr(ρ�m)|. (C1)

The OD is thus the worst-case total variation between the
probability distribution of measurement outcomes obtained
with the two POVMs. Importantly, 0 � DOD(�,�) � 1
where DOD(�,�) = 0 if and only if the two POVMs coincide.
The OD can be calculated directly from the POVM operators
through

DOD(�,�) = max
I ′⊂I

∥∥∥∥∥∑
m∈I ′

�m − �m

∥∥∥∥∥
∞

, (C2)

where I is the set of all outcomes I = {0, . . . , M − 1}.

APPENDIX D: QUANTUM DETECTOR TOMOGRAPHY

In an experiment that performs a quantum measure-
ment, the implemented POVM operators can be characterized
through quantum detector tomography (QDT) [71,73]. In
combination with the better known quantum state tomography
(QST) and quantum process tomography (QPT), QDT is re-
quired for a full specification of a quantum experiment [72]. In
QST an unknown state ρ is estimated from measurements in
a known set of reference POVM operators {�m

ref}. By contrast,
in QDT the unknown POVM operators {�m} are estimated
from a known set of prepared reference quantum states {ρ i

ref}.
As in QST, there is the concept of informational complete-
ness: For a full characterization of {�m} through QDT, the
reference states {ρ i

ref} need to span the operator space of
�m [72]. One possible set of such states for single-qubit
POVMs are projectors on the six single-qubit stabilizer states
{|0〉, |1〉, |+〉, |−〉, |+i〉, |−i〉} which are the eigenstates of
σz, σx, and σy, respectively. This is a convenient choice since
the initialization in |0〉 and subsequent single-qubit rotations
to either of these states can be implemented with high fidelity
on existing quantum processors. The POVM measurement
is carried out on each such reference state, sampling from
the probability distributions p( j)

m = 〈ψ j |�m|ψ j〉. Let N ( j)
m be

the number of times outcome m ∈ {0, 1, 2, 3} is recorded for
initial state |ψ j〉. One way to obtain an estimator for the un-
derlying single-qubit POVM operators is to invert the system
of linear equations

〈ψ j |�m|ψ j〉 ∼ N ( j)
m∑

m′
N ( j)

m′
(D1)

to obtain the entries of �m. This approach suffers from the
fact that the obtained POVM operators might be nonphysical,
as they are not necessarily positive. An analogous issue exists
for QST through linear inversion of Eq. (D1) [82]. Positivity
can be enforced with a maximum-likelihood (ML) estimation
by maximizing the likelihood functional

L
(
�0,�1,�2,�3) =

∏
m, j

(〈ψ j |�m|ψ j〉)N
( j)
m (D2)

under the constraint that the operators �m form a valid POVM
[73]. As laid out in Ref. [83], the optimization can be per-
formed with an iterative algorithm that converges to the ML
estimator. This procedure has recently been demonstrated ex-
perimentally on IBM hardware as a means to mitigate readout
noise [74,84]. In this work, we make use of ML quantum
detector tomography to reconstruct the implemented POVM
operators both for the verification of the experimental proof
of principle in Sec. III B and for the simulations of our error
mitigation scheme in Sec. IV A.

APPENDIX E: DETAILS ON PULSE-LEVEL SIMULATIONS

In this Appendix, we summarize the technical details of the
numerical simulations from Secs. III C and IV. Transmons are
modeled by the Hamiltonian in Eq. (B1). This Hamiltonian is
diagonalized in the charge representation after truncating to
20 Fourier modes in the superconducting phase φ̂ to obtain the
low-energy spectrum [79]. The parameters EJ and EC are then
adjusted to fix the base frequency of the qubit (at ng = 0) at
5 GHz. The dynamics of the system under a drive as defined
in Eq. (5) are modeled by the interaction Hamiltonian from
Eq. (8), where we assume the relative coupling of a harmonic
oscillator, i.e., gn ∝ √

n + 1, and truncate the system at d = 5
levels.

To implement a desired POVM, we decompose the cor-
responding target unitary into a sequence of

√
X pulses

with virtual Z gates. For simplicity, we employ Gaussian
pulse envelopes with a standard deviation of one-quarter of
the pulse duration. The pulses feature a piecewise constant
envelope with a sample duration of 222 ps, matching IBM
control hardware [56]. The transition frequencies depend on
ng, whose exact value fluctuates from one experimental run to
another. We model ng to be uniformly distributed as p(ng) ∼
Uni([0, 1]), which is sufficient due to the periodicity of the
eigenenergies with ng (see Fig. 6). Each pulse is played
at the average transition frequency ωn = ∫ 1

0 p(ng)ωn(ng) dng.
The pulse amplitudes are chosen such that the resulting rota-
tion angles for the average transition frequency are π/2.

We model the quantum dynamics of a state ρ under a pulse
sequence by an effective channel

E : ρ �−→
∫ 1

0
p(ng)U (ng)ρU (ng)† dng, (E1)

where U (ng) are the unitary dynamics for a fixed offset charge
ng. We obtain U (ng) under a sequence of pulses with an inte-
grator of the time-dependent Schrödinger equation provided
by QUTIP [85]. The channel E is numerically approximated by
computing U (ng) for 20 values of ng equally spaced between
0 and 1.
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To calibrate
√
X pulses in the simulation, we keep the

amplitude fixed while varying the duration of the pulses. The
target unitary of such a pulse is given by the implemented
rotation U tar = R(ϕ = π/2, γ = 0), defined in Eq. (9), which
includes phases that are accumulated in the idle levels. As
a figure of merit, we compute the average gate fidelity
F (E,U tar ) between the target unitary and the channel of the
simulated unitary under charge noise [86]. We hereby re-
strict the computation of F (E,U tar ) to the subspace that is
relevant for the POVM pulse sequence. Recall that the POVM-
encoding unitary is always realized with pulses that couple
adjacent levels in the order 0↔1, 1↔2, 0↔1, 2↔3, and
finally 1↔2. Since the |3〉 state is only populated once prior
to measurement, the phases acquired by |3〉 during a 0↔1
and 1↔2 gate do not affect the encoded POVM operators.
The fidelities of

√
X 0↔1 and

√
X 1↔2 are thus only computed

over the subspaces spanned by |0〉, |1〉, and |2〉. Similarly,
only the |1〉, |2〉, |3〉 subspace is considered for the fidelities
of

√
X 2↔3 since no 0↔1 pulses are applied after the 2↔3

pulse.
The average gate fidelities for different hardware parame-

ters as a function of the pulse duration are shown in Fig. 10.
For short durations, the broad spectral range of the pulse
leads to leakage errors. In contrast, for long pulse durations,
the phases accumulated over time by the idle levels become
difficult to track due to charge noise. The infidelities 1 −
F (

√
X ) thus typically show a distinct minimum where these

two effects are traded off optimally. As EJ/EC increases, this

optimum shifts towards longer gate durations [see Fig. 10(d)].
For reference, the default single-qubit SX gate in current
IBM Quantum hardware is carried out with DRAG pulses of
a duration of 36 ns. We find that it is important to employ
much shorter pulses when including the phase uncertainty of
a neighboring state, despite our use of simple Gaussian pulse
envelopes, which are not specifically designed to correct for
leakage errors (especially for the

√
X 2↔3 gate). This suggests

that phase uncertainties in higher-excited states have an over-
all bigger impact on the qudit gate fidelities than leakage.
The remaining leakage errors could be further reduced by
a careful calibration of DRAG pulses. For current hardware
(EJ/EC ∼ 35–45), our simulations suggest achievable gate fi-
delities in the relevant qudit spaces that reach up to 99.9% for
the

√
X 0↔1 and

√
X 1↔2 gates, and 98% for

√
X 2↔3. This can

be improved by over an order of magnitude by tuning deeper
into the transmon regime (e.g., EJ/EC ∼ 60), at the expense
of increased gate durations.

For our simulation of the full POVM pulse sequences in
Secs. III C and IV, we employ the durations of the

√
X n↔n+1

pulses that maximize their respective fidelities. When limiting
the total duration of the sequence as in Fig. 3(a), we incremen-
tally shorten those pulses whose fidelity is affected the least.
This is repeated until a pulse sequence is obtained which is at
most as long as the desired total length. From the implemented
channel E of the pulse sequence, we finally obtain an effective
POVM �sim as the average over the POVM operators encoded
by the unitaries U (ng).
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