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Extended high-harmonic spectra through a cascade resonance in confined quantum systems
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The study of high-harmonic generation in confined quantum systems is vital to establishing a complete physi-
cal picture of harmonic generation from atoms and molecules to bulk solids. Based on a multilevel approach, we
demonstrate how intraband resonances significantly influence the harmonic spectra via charge pumping to the
higher subbands and thus redefine the cutoff laws. As a proof of principle, we consider the interaction of graphene
nanoribbons, with zigzag as well as armchair terminations, and resonant fields polarized along the cross-ribbon
direction. Here, this effect is particularly prominent due to many nearly equiseparated energy levels. In such a
scenario, a cascade resonance effect can take place in high-harmonic generation when the field strength is above
a critical threshold, which is completely different from the harmonic generation mechanism of atoms, molecules,
and bulk solids. We further discuss the implications not only for other systems in a nanoribbon geometry, but
also systems where only a few subbands (energy levels) meet this frequency-matching condition by considering
a generalized multilevel Hamiltonian. Our study highlights that cascade resonance has a fundamentally distinct
influence on the laws of harmonic generation, specifically the cutoff laws based on laser duration, field strength,
and wavelength, thus unraveling additional insights in solid-state high-harmonic generation.
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I. INTRODUCTION

High-harmonic generation (HHG), originally studied in
the gas phase for atoms and molecules [1–3], has led to
the creation of isolated attosecond pulse [4–7], thus vig-
orously promoting the development of ultrafast technology
[8–10]. Recently, the study of HHG has been extended to
condensed-matter systems [11–38]. Since the first experimen-
tal observation in 2011 [11], solid-state HHG has gained
immense interest due to potential applications, such as in
compact ultrafast light sources [39,40]. In addition, it may
serve as a tool to probe microscopic properties of matter, such
as band structures [37,41,42], valence electron potentials [43],
Berry curvatures [44,45], and phase transitions [46–49].

Depending on the intensity and frequency of the applied
electric field, together with details of the band structure, even
nonperturbative mechanisms can be responsible for solid-
state HHG [50]. In this case, solid-HHG is believed to have
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contributions from dynamical intraband and interband pro-
cesses involving a k-space motion of Bloch electrons,
typically described by a three-step model [12,13]. Neverthe-
less, a clear understanding of the underlying mechanism(s) for
solid-state HHG is still under debate [14,50,51].

For a confined quantum system, due to a lack of transla-
tional symmetry, the spectrum consists of only a discrete set
of energy levels instead of bands. It is known that the HHG
spectra in quantum dots can be influenced by confinement
conditions such as size and/or coupling parameters in coupled
quantum dots [52,53]. One of the distinct advantages of con-
fined quantum systems is the tunability of its energy spectra
and wave functions by tailoring its size [54,55], or by external
parameters, such as gate voltage or magnetic field [56–58].

A rather interesting situation is realized in partially con-
fined systems, such as quasi-one-dimensional (quasi-1D)
systems, which are confined in one dimension but periodic
in others, resulting in a series of subbands in the band struc-
ture [59]. Therefore, such systems possess properties of both
bulk and finite systems. The most notable example is perhaps
the graphene nanoribbon (GNR) [60–65]. Depending on the
polarization of the electric field, different aspects of HHG,
corresponding to bulk and/or confined quantum systems, can
be explored. Arguably, the phenomenology of HHG in such a
confined quantum system, therefore, forms a bridge between
atoms, molecules, and bulk solids. A detailed understanding
of the underlying mechanism in such quantum systems may
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not only shed light on the HHG phenomenology in bulk
solids, but it may also unravel new phenomenology and HHG
response in confined systems.

Understanding the HHG phenomenology in such systems
necessitates going beyond the two-level system (equivalent
to the commonly employed two-band studies of the bulk
solid-state HHG), thereby raising a number of conceptual
questions: For a laser field polarized along the confining
direction, what would happen if the laser frequency ω0 ap-
proximately matches the subband gap, i.e., ω0 ≈ �sg? Does
it cause a resonance resembling Rabi flopping in a two-level
system [66,67]? If many such (approximately) equiseparated
subbands are present, does the resonance involve multiple
subbands? If so, could this resonant excitation affect the har-
monic process remarkably? In addition, Hansen et al. indicate
that the observed cutoff law on HHG transits from atomic to
solid-state type with increasing system size in a model 1D
chain [68]. Does this phenomenon hold even in the presence
of resonance?

Here, by considering a multilevel model and solving the
time-dependent Schrödinger equations, we demonstrate that
subband resonance can lead to remarkable effects in the HHG
spectra. We find that this effect is especially prominent in
GNRs due to the presence of nearly equiseparated bands. To
this end, as a proof of principle, we consider GNRs inter-
acting with a resonant field polarized along the cross-ribbon
(confined) direction where it leads to cascade resonance, a
multilevel phenomenon involving almost all the valence and
conduction subbands, and enhanced HHG spectra well be-
yond the current cutoff laws.

Specifically, the plateaus of the harmonic spectra are
broadened significantly when the laser frequency matches the
subband gap. The cascade resonance effect causes the excited
electrons to gradually accumulate near the Dirac points also
in higher-energy subbands (charge pumping), eventually lead-
ing to the extended HHG spectra. Subsequently, we establish
the conditions for the occurrence of cascade resonance in
GNRs. Our analysis indicates that the occurrence of cascade
resonance requires a threshold field strength in addition to
satisfying the frequency-matching condition. In addition, we
formulate the dependence of a harmonic cutoff in GNRs on
laser duration, field strength, and wavelength when the cas-
cade resonance occurs. These dependencies are significantly
different from those of HHG in atoms, molecules, and bulk
solids currently studied. Finally, we discuss the possibilities
for cascade resonance in other materials by considering a
general multilevel model and implications for HHG spectra.

II. HHG IN GRAPHENE NANORIBBONS

GNR is a quasi-1D material extending in two directions—
ribbon (x) and cross-ribbon (y) directions [60–65]. GNR with
armchair edges (AGNR) on both sides is classified by the
number of dimer lines (Na) across the ribbon width, as shown
in Fig. 1(a). The unit cell of AGNR consists of two chains, P
and Q. Likewise, GNR with zigzag-shaped edges (ZGNR) on
both sides is classified by the number of the zigzag chains (Nz)
across the ribbon width [Fig. 1(b)]. The chain in the unit cell
of ZGNR is labeled by C. We refer to GNR with Na armchair
dimer lines as Na-AGNR, and GNR with Nz/2 zigzag chains

FIG. 1. (a),(b) Structure of graphene nanoribbons with (a) arm-
chair edges and (b) zigzag edges. Blue and orange cycles represent
the two nearest-neighbor carbon atoms. The boundary condition is
periodic in the x direction but is open in the y direction. (c),(d) Band
structure of (c) 10-AGNR and (d) 10-ZGNR. Red (blue) curves
stand for the subbands belonging to the conduction (valence) band.
�sg denotes the subband gap. Ka = 0 and Kz = 2π/3dz, 4π/3dz are
Dirac points, respectively, for the armchair and zigzag GNRs if the
boundary condition along the transverse (y) direction is periodic. wa

(wz) is the width of the armchair (zigzag) nanoribbon. da (dz) is the
distance of the armchair (zigzag) unit cell.

as Nz-ZGNR. A tight-binding model of GNR is presented in
Appendix A.

Since the ribbon is macroscopically large along the x
(longitudinal) direction, continuous band structure can be ob-
tained across the Brillouin zone (BZ), as shown in Figs. 1(c)
and 1(d). By contrast, in the y (transverse) direction, trans-
verse confinement gives rise to a discrete set of subbands,
which is one of the typical features for electronic structure of
nanoribbons. Following previous convention, we adopt J (s)
as the index notation for the ribbon subbands, see Figs. 1(c)
and 1(d), where J = 1, 2, . . . , N is the band number and s
is the band type, with “c” and “v” representing conduction
and valence bands, respectively. Different from subbands of
ZGNR, the subband indices of the AGNR in Fig. 1(c) are
classified into two groups labeled by {J} and {J ′}, respectively,
where subbands J (s) and J ′(s) merge at the boundaries of the
BZ. Atomic units (a.u.) are used throughout the paper unless
otherwise indicated.

Recently, there has been a growing interest in studying
HHG from GNRs or similar nanoribbons [69–73] due to the
diverse electronic properties of GNRs, which arise particu-
larly from different edge geometries, viz., zigzag and armchair
edges. When the laser field is polarized along the ribbon direc-
tion, the bulk aspects of GNRs are reflected in the harmonic
spectra. For example, the edge states of ZGNR enhance the
emitting efficiency of low-order harmonics [70]; the on-site
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FIG. 2. (a),(b) Ratios of the driver frequency ω0 and subband
gaps �sg at Dirac points as a function of system size N for (a) AGNRs
and (b) ZGNRs. Lines with symbol ◦ (�) represent the variation
of the maximum (average) value of subband gaps. (c),(d) Harmonic
spectra vs number of sites N in (c) AGNRs and (d) ZGNRs, respec-
tively, using a driver with ncyc = 16, ω0 = 0.0152 a.u. (λ = 3 μm),
and E0 = 0.0012 a.u. (I0 = 5.04 × 1010 W/cm2). The color bar char-
acterizes the intensity of harmonics. The resonance peaks (p1, p2,
and p3) in (c) and (d) are marked in (a) and (b), respectively, in the
form of red stars.

potential, breaking mirror symmetry, causes the perpendicular
harmonic emission [72,73]. It is easy to know that the cutoffs
of longitudinal harmonic spectra scale linearly to the field
strength and wavelength, as shown in Appendix D, which is
similar to the HHG in bulk graphene. However, the finite-size
effects [68,74] in GNR along the cross-ribbon direction have
not yet been fully examined.

In GNRs, the HHG generated by a transverse field can
arguably be more interesting than that generated by a longi-
tudinal field. Quantum confinement effects reflect on HHG
when the applied laser field is polarized along the cross-ribbon
direction. Specifically, the nearly equal-energy spacing sub-
bands play a role and induce a resonance excitation over the
subbands. In general, however, optical transitions between
two subbands are not always allowed. The optical selection
rules for GNRs are a result of the wave-function parity factor
(−1)J , where J is the subband index that was mentioned
before. A detailed derivation and discussion of the optical
selection rules is outlined in Appendix B.

A. Size dependence of the transverse HHG spectra

The subbands near the Dirac points are approximately
equidistant. We denote the gap between nearest-neighbor sub-
bands as �sg, shown in Figs. 1(c) and 1(d). It is characterized
by �sg ∼ N−1. We can see in Figs. 2(a) and 2(b) that both
(�max

sg )−1 and (�ave
sg )−1 for AGNR and ZGNR are approxi-

mately linear with the number of sites N , where �max
sg is the

maximum subband gap, and �ave
sg is the average value of all

subband gaps. Both �max
sg and �ave

sg are presented since the
subband gaps at the Dirac points are not precisely equal.

Figures 2(c) and 2(d) display the size dependence of har-
monic spectra for AGNR and ZGNR, respectively, while
the driver field is polarized along the transverse direction.
The laser frequency and intensity are fixed at ω0 = 0.41 eV
(0.0152 a.u.) and I0 = 5.04 × 1010 W/cm2, respectively. In
the spectrum of AGNR-HHG as shown in Fig. 2(c), the
harmonic cutoff is drastically extended for widths Na = 40,
128, and 220 (ribbon width wa ≈ 4.8, 15.6, and 26.9 nm),
forming three peaks p1, p2, and p3, respectively. These three
peaks are depicted in Fig. 2(a) as red stars, whose abscissas
correspond to �sg = ω0, ω0/3 and ω0/5. For the first peak,
at Na = 40, it is found in Fig. 2(a) that �ave

sg (40) � ω0 �
�max

sg (40), i.e., the laser frequency matches the subband gap
[ω0 ≈ �sg(40)]. Therefore, the harmonic spectrum is affected
significantly when the resonance condition (ω0 = �sg) is met.
Two additional peaks at Na = 128 and 220 reveal that the
resonant excitation occurs not only when �sg(40) ≈ ω0, but
also when �sg(Na) ≈ ω0/3 and ω0/5. This can be understood
by the optical selection rule of AGNR in Appendix B when
subbands are from the same group. The intraband (interband)
transitions are permitted for two such subbands whose band
index difference �J = odd (�J = even). Their energy gaps
have such a relation: EJs − EJ ′s′ ≈ (2 j − 1)�sg, where j is an
integer. Thus the resonance condition for AGNR can be writ-
ten as �sg(Na) ≈ ω0/(2 j − 1). Since intraband (interband)
transitions are not permitted for �J = even (�J = odd), we
are finally not able to observe such peaks at Na = 84 and
172 satisfying �sg(Na) ≈ ω0/2 j. Moreover, from p1 to p3, the
peaks gradually widen and their cutoff progressively shrinks,
as shown in Fig. 2(c). The former can be attributed to the fact
that the subband gap is not very sensitive to the change in
system size when the size is large enough. The latter stems
from the increase in detuning between the driving frequency
ω0 and the excitation gap (2 j − 1)�sg, deviating from the
resonance condition. Analogous to AGNR-HHG, the ZGNR-
HHG spectrum shows similar features in Fig. 2(d) and can be
explained in the same way.

To gain deeper insights into the mechanism of cutoff ex-
tension on the harmonic output, we will study the electron
dynamics in the presence of the nearly resonant field. We will
show how the electrons are excited to the highest conduction
subbands emitting high-energy photons.

III. CASCADE RESONANCE

A. Electron dynamics in GNRs under cascade resonance

Taking 36-ZGNR as an example, we study the HHG pro-
cess combined with its electron dynamics under resonance.
To rule out the effect of pulse envelope on quantum paths, a
10-cycle trapezoid envelope with a one-cycle linear ramp is
applied. Figure 3(a) displays the harmonic spectrum when the
laser frequency matches the subband gap. It can be seen that
the cutoff can reach the 27th order, whereas such a high-order
harmonic cannot be observed if the laser is polarized along the
ribbon direction. The time-frequency distribution of the cor-
responding time-dependent current is presented in Fig. 3(b),
demonstrating the harmonic emission with subcycle temporal
resolution. The maximum order of the emitted harmonics
increases with the time evolution at the beginning 3.5 cycles
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FIG. 3. (a) Harmonic spectrum for 36-ZGNR interacting with
a resonant field. The intensity of the harmonic spectrum is in ar-
bitrary units (arb. units). The field strength is E0 = 0.0012 a.u.
(I0 = 5.04 × 1010 W/cm2), and the field wavelength is λ = 3 μm
(ω = 0.0152 a.u.). (b) Time-frequency distribution of the harmonic
emission. The red curve is the vector potential of the laser field. The
cyan line indicates the cutoff frequency. (c1)–(c3) Electron dynamics
in the conduction subbands for times ti marked in (b). T = 2π/ω is
the optical cycle. The color bar indicates the electron population.

(shadow area) and then stays at 27th order for the following
6.5 cycles. We thus refer to the first 3.5 cycles as the rise stage
and the next 6.5 cycles as the oscillation stage.

As shown in Figs. 3(c1)–3(c2), after being excited to the
conduction band, the electrons move further up to the higher
subbands with increasing vector potential |A(t )|. When |A(t )|
starts to decrease, however, the electrons near the Dirac points
seem not to deexcite to the lower subbands as those elec-
trons governed by Bloch acceleration theorem do. Most of
them tend to stay in place and wait for the next half-cycle
of the laser pulse. Once |A(t )| increases again, these (de-
posited) electrons will be excited to the higher subbands. As
the electrons are excited and then deposited, accumulation
zones are formed gradually near Kz and K ′

z . The rise region
of the harmonic emission in Fig. 3(b) is exactly ascribed to
the cascade excitation process near the Dirac points. When
all the subbands are involved (at about t = 3.5 T), see
Fig. 3(c3), the electrons are no longer excited to the higher
subbands, but they jump up and down in the accumulation
zones, thus leading to the oscillation region in Fig. 3(b). We
thus refer to it as cascade resonance. In AGNR, the resonant
dynamics is similar. We provide an animated image of the
conduction-band population of 40-AGNR and 36-ZGNR in
the Supplemental Material [75] so as to gain more insight into
the electron resonant dynamics. Note that the electron dynam-
ics in the valence band is not shown since the distribution of
the holes on the valence band is symmetric to the electron
distribution on the conduction band.

With a long enough laser pulse, it is not difficult to fore-
see that the electrons can be driven to the highest subbands,
generating high-order harmonics, the energy of which equals
the maximum band gap. This explains the significant cutoff

extension on the size-dependent harmonic spectra shown in
Figs. 2(c) and 2(d), when the resonance condition is satisfied.

B. Analysis of cascade resonance in simplified model

To analyze the cascade resonance near the Dirac points
of GNRs and generalize the conclusions to other confined
systems, we introduce an N-level model here that is widely
used to simulate electron dynamics and HHG in quantum dots
[52,76,77]. The Hamiltonian reads H = ∑N

i Ei|i〉〈i|, where
Ei is the energy of state |i〉. In the dipole approximation, the
time-dependent Hamiltonian of the laser field with the N-level
quantum dot is written as

H (t ) =
N∑
i

Ei|i〉〈i| + E(t ) ·
∑
i �= j

di j |i〉〈 j|, (1)

where electric field E(t ) = E0 cos(ωt )ŷ, and di j is the dipole
matrix element between states |i〉 and | j〉. Rabi frequency is
defined as �i j = E0dy

i j . In principle, the Hamiltonian Eq. (1)
can be used to simulate electron dynamics and HHG in any
confined system, including GNRs along the transverse direc-
tion, as long as the energy levels and dipole matrix elements
are known.

In our simulation, energy levels E1, E2, . . . , EN/2 are
involved as the initial state. Solving the time-dependent
Schrödinger equation, the dipole moment can thus be eval-
uated by d(t ) = ŷ

∑
i, j〈ψ (t )|i〉dy

i j〈 j|ψ (t )〉. By the Fourier
transformation of d(t ), the harmonic spectrum is obtained,
S(ω) = |FT[d(t )]|2.

1. Equispaced N-level model

First of all, we consider an ideal situation: the N-level
system with equal separations

Ei+1 − Ei = �sg, (2)

where i = 1, 2, . . . , N − 1, and �sg is the gap between energy
levels. The dipole matrix elements (in atomic unit) take the
form

di j = 1.0, |i − j| = 1,

di j = 0.3/|Ej − Ei|, |i − j|is odd but > 1,

di j = 0.0, |i − j|is even.

(3)

It is constructed based on the features of dipole matrix ele-
ments in GNRs, for example Eq. (B4).

For N = 2, the model is reduced to the classical Rabi
model, which has been investigated extensively. In the reso-
nant case, ω = �sg, the parameter

γR = �R

ω
(4)

is commonly adopted to identify different interaction regimes,
where �R = �12 = E0|d12|. In the weak-coupling regime,
γR 	 1, the Rabi flopping can be observed, showing that the
population inversion oscillates between −1 and 1 at frequency
�R periodically [66], and thus the area theorem is valid [78].
While transforming into the strong-coupling regime, γR � 1,
the area theorem breaks down [79–81]. A chaotic oscillation
mode displaces the periodic mode since the contribution of
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FIG. 4. Population dynamics of conduction states in an equis-
paced model with N = 20 in (a1) the weak-coupling regime (γR =
0.2) and (a2) the strong-coupling regime (γR = 2). Corresponding
plots for the 20-level ZGNR-like model are shown in (b1) and (b2).
The color bar identifies the conduction levels, and the black dashed
curve shows the total population of i = 11, . . . , 20 scaled by 1/5 in
all cases except (b1). Parts (a3) and (b3) show the HHG spectrum
for the equispaced and the ZGNR-like systems, respectively. The
red and blue curves represent harmonic spectra for γR = 0.2 and 2,
respectively.

counterrotating terms becomes prominent, which is known as
the carrier-wave Rabi flopping [82–84].

In a system with N > 2 we need to reanalyze its resonant
dynamics, because the electron dynamics of the two-level
system no longer applies. For comparison, the concepts of
weak coupling, strong coupling, and coupling parameter are
borrowed. In multilevel systems, we define the coupling pa-
rameter as

γR = �R

ω
= 〈|di j |〉E0

ω
, (5)

where 〈· · · 〉 denotes the average value, di j is the dipole ma-
trix element between the two energy levels, which meet the
resonance condition in frequency, and the Rabi frequency
�R = 〈|di j |〉E0. We focus on the case ω = �sg in the follow-
ing because other resonance cases [ω = (2 j − 1)�sg, j > 1]
are similar.

Taking N = 20 as an example, the resonant dynamics on
conduction levels is shown in Figs. 4(a1) and 4(a2). We
set the energy separation �sg = 1 a.u., and the driver fre-
quency ω = 1 a.u.. The valence population is not shown
because it is symmetric to the conduction population and
satisfies |Ci|2 + |CN+1−i|2 = 1, where |Ci|2 represents the

population on the energy level Ei. In the weak-coupling
regime γR = 0.2 (E0 = 0.2 a.u., 〈di,i+1〉 = 1.0 a.u.), see
Fig. 4(a1), the excitation process can be divided into two
stages: rise and oscillation, similar to what has occurred in the
laser-driving GNR. In the rise region (shadow area), we can
find that the electrons are excited to the conduction subbands
in a cascaded way. Correspondingly, the total conduction pop-
ulation (Pc = ∑N

i=N/2+1 |Ci|2) exhibits a monotonous increase
shown by the black dashed line in Fig. 4(a1). Thus the rise
time (Tr) is defined as the period from the beginning of the
evolution to the first time that Pc reaches the maximum. After
entering in the oscillation region, the population of conduc-
tion levels starts to collectively oscillate up and down with a
roughly uniform period Tosc ≈ 35 T, where T = 2π/ω. Nev-
ertheless, this periodicity is not strict and the population does
not return to the initial value even for long enough pulses.
Hence the area theorem fails for cascade resonance even in the
weak-coupling regime. For strong coupling γR = 2 (E0 = 2
a.u.), the population dynamics is unaltered compared to the
case of γR = 0.2 a.u., as shown in Figs. 4(a2). The only
significant change is that the oscillation period Tosc becomes
3.5 T. Therefore, the regime transformation in the equispaced
system does not fundamentally shift the behavior of resonant
excitation. This is completely different from the two-level
resonance.

Based on the above analysis, it is found that the cascade
resonance can take place in equispaced N-level systems as
long as the frequency conditions are met, no matter how weak
the electric field is. Because all the energy levels are involved
in the cascade resonance, the cutoffs of harmonic spectra can
thus extend to the maximum energy gap (E20 − E1). There-
fore, we can see from Fig. 4(a3) that the harmonic cutoffs
reach 19th order [(E20 − E1)/ω = 19] for both γR = 0.2 and
2, and the intensities of the corresponding harmonic spectra
are comparable.

Moreover, the rise time Tr is a continuous function of the
Rabi frequency �R and the number of energy levels N . In
Appendix C, Figs. 9(a) and 9(b) clearly show that the rise time
exhibits a linear dependence of �−1

R and N . Mathematically,
we describe it by

Tr ≈ δN/�R = δN/(〈|di j |〉E0), (6)

where δ is the scale factor. This equation indicates that the
weaker the field strength is and the more energy levels there
are, the longer is the rise time. Reflected in the HHG process
of the GNR, this implies that the larger the size and the weaker
the field strength, the longer the rise region in harmonic emis-
sion.

2. ZGNR-like N-level model

Now we turn to a more realistic situation, taking into
account the detuning between the driver frequency and the
energy separation. Simulating the subband structure of ZGNR
at the Dirac points, energy levels have the form

Ei+1 − Ei = �sg

[
f − g

(
i − N/2

N/2

)2]
, (7)

where f and g are the parameters that determine the nearest-
neighbor energy difference. In the following simulation, we
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set N = 20, ω = �sg = 1 a.u., f = 1.15, and g = 1.1. The
energy difference near the Fermi level is E11 − E10 = 1.15 ω,
slightly deviating from the driver frequency. The dipole matrix
elements we used are the same as in Eq. (3).

In this ZGNR-like system, we focus on the population
dynamics in different coupling regimes as before. In the
weak-coupling regime (γR = 0.2), see Figs. 4(b1), the cascade
resonance disappears but is displaced by a behavior close to
the classical Rabi flopping. This is called near resonance. Only
four of conduction levels near the Fermi level are involved,
which implies that only a small proportion of the electrons
can be driven to the highest energy level. Therefore, the cor-
responding HHG spectrum (red dashed curve) in Fig. 4(b3)
terminates at seventh order, the energy of which is much lower
than the maximum gap [(E20 − E1)/ω = 15.37]. However, in
the strong-coupling regime (γR = 2), the collective resonance
reappears in the ZGNR-like system, as shown in Fig. 4(b2).
The rise and oscillation stages constitute the entire excitation
process again. Correspondingly, the cutoff of the harmonic
spectrum can thus extend to 15th order, shown as the blue
curve in Fig. 4(b3). Therefore, the cascade resonance takes
place merely for γR � 1 when field detuning exists. This is
different from the population dynamics in the equispaced
model.

C. Resonance conditions for laser-driving GNRs

Combining the analyses of resonant dynamics in the 36-
ZGNR (Sec. III A) and in the simplified models (Sec. III B)
together, it is natural to infer that one of the conditions for the
occurrence of cascade resonance in the laser-driving GNRs is
γR � 1. We verify the coupling parameter at p1 in the ZGNR-
HHG spectrum [Fig. 2(d)], and we find that γR(Nz = 36) ≈
1.3 > 1 at the Dirac points.

Thereby, the resonance conditions for a laser-driving GNR
can be summarized as

�sg(N ) ≈ ω/(2 j − 1), (8a)

γR(N ) = E0
〈∣∣dy

�J (N )
∣∣〉/ω � 1, (8b)

where j is an integer, and �J is the index difference of
resonant subbands. Equation (8a) is the frequency condition
we have obtained in Sec. II A. It determines which driver
frequency can lead to cascade resonance in a GNR with a
size of N . Then Eq. (8b) states that the occurrence of cascade
resonance requires the laser-driving GNR to be in the strong-
coupling regime, and γR = 1 is the critical point. Further, we
define a concept—critical field strength, as

Ecri(�J, N ) = ω/
〈∣∣dy

�J (N )
∣∣〉, (9)

which is the minimum field strength resulting in the cascade
resonance in N-GNR. Substituting Eq. (8a) into Eq. (9), the
critical field strength can be evaluated by

Ecri(�J, N ) = (2 j − 1)�sg(N )
/〈∣∣dy

�J (N )
∣∣〉. (10)

When j = 1, �sg including �max
sg and �ave

sg is a linear func-
tion of N−1 [Figs. 2(a) and 2(b)], and 〈|dy

�J=1(N )|〉 is linear
with N (Fig. 8). Substituting the linear fitting results of �max

sg

and 〈|dy
�J=1(N )|〉 into Eq. (10), we finally obtain Ecri(N ) as a

FIG. 5. (a) Harmonic spectrum for 80-ZGNR. The field strength
is E0 = 0.0012 a.u. (I0 = 5.04 × 1010 W/cm2), and the field
wavelength is λ = 3 μm (ω = 0.0152 a.u.). (b) Time frequency
distribution of the harmonic emission. The red curve is the vector
potential of the external field. The cyan line indicates the cutoff
frequency. (c1)–(c3) Electron dynamics in the conduction subbands
for the times ti marked in (b).

function of N ,

Ea
cri(Na) = (αaN2

a + βaNa + γa)−1, AGNR,

Ez
cri(Nz ) = (αzN2

z + βzNz + γz )−1, ZGNR,
(11)

where (αa, βa, γa) ≈ (0.025, 0.039, 0.014), and
(αz, βz, γz ) ≈ (0.021, 0.04, 0.014). It exhibits a dependence
of Ecri(N ) ∼ N−2 in the large-N limit. It clearly indicates that
the cascade resonance induced harmonic cutoff extension is
more easily observed in large size GNRs.

D. Electron dynamics and HHG away
from the resonance condition in GNRs

A natural question at this stage is how sensitive is the cas-
cade resonance to the frequency-matching and field-strength
conditions.

To examine the frequency-matching condition, we choose
the 80-ZGNR (�sg ≈ 0.2 eV), but we use the laser field with
a wavelength of 3 μm (ω ≈ 0.41 eV), which causes cascade
resonance in 36-ZGNR (Nz = 36) to study the HHG process.
In Figs. 5(a) and 5(b), the plateau of the harmonic spectrum
merely extends to 17th order, which is evidently shorter than
that in 36-ZGNR (27th order). In Figs. 5(c1)–5(c3), it is found
that the electron dynamics is far from the cascade resonance.
On the subbands with energies above 3.5 eV, the population
is not as significant as in the case of a cascade resonance.
This is because the relation between subband gap and laser
frequency (�sg ≈ ω/2) does not agree with the frequency
condition in Eq. (8a). Nevertheless, the subband gaps are not
uniform. The gaps near the Fermi energy are larger than those
that are higher, which can satisfy the frequency condition to
some extent. Therefore, we observe that subbands close to the
Fermi energy are involved in a near resonance. The cascade
resonance for 80-ZGNR, however, appears if we employ a
laser with wavelength λ = 6 μm (ω ≈ 0.21 eV) satisfying the
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frequency condition (�sg ≈ ω). The accumulation zones of
electrons span from 0 to 6.5 eV, and a harmonic cutoff exceeds
11 eV (not shown).

When the laser field does not reach the threshold strength
[Eq. (10)], the electron dynamics in GNRs is similar to what
has been explored in the ZGNR-like model; see Sec. III B. The
electrons are not able to be excited to high-energy subbands,
such as that presented in Figs. 5(c1)–5(c3). The intensity of
the harmonic spectrum is lower and the plateau is shorter than
those in the strong laser field. In the next section, the study
of cutoff law on the field strength systematically shows the
variation of the harmonic spectrum from the weak-coupling
regime to the strong-coupling regime.

IV. CUTOFF LAW OF HHG IN GRAPHENE NANORIBBONS

The cutoff law of HHG is a fundamental issue in strong-
field physics. In GNRs, it has been shown that the energy
cutoff increases linearly with increasing field strength and
wavelength for fields along the ribbon direction, as also shown
in Appendix D. This is consistent with the generic obser-
vations in bulk solids. When the laser polarization turns to
the cross-ribbon direction, however, the accelerated motion of
electrons on the energy bands switches to the electron dynam-
ics for finite systems like cascade resonance, thus leading to
the alteration of the cutoff law as well. In the following, we
explore the cutoff law of GNR-HHG on the laser duration,
field strength, and wavelength.

Duration. Figure 6(a) shows the HHG spectra in 80-AGNR
subjected to resonant laser pulses with different durations.
In the calculation, laser pulses in the form of Eq. (A10)
are employed, so the number of laser cycles (ncyc) can be
used to indicate pulse duration. We note that the plateau of
the harmonic spectrum is gradually stretched with increasing
laser duration. In Fig. 6(b), the harmonic cutoff clearly ex-
hibits linear scaling with pulse duration for ncyc � 5, and it
reaches the maximum attainable energy at ncyc = 11. Between
ncyc = 6 and 10, the cutoff varies slowly with increasing laser
duration. This cutoff law can be interpreted qualitatively by
the two-stage excitation process in GNRs under the cascade
resonance, as elaborated in Secs. III A and III B. The linear
increase and the slow variation of the cutoff corresponds to
the rise and oscillation stages in the resonant excitation, re-
spectively.

Field strength. In Fig. 6(c), we study the field strength
dependence of harmonic emissions in 40-AGNR interacting
with resonant pulses. The blue line represents the critical field
strength for 40-AGNR in which Ecri = 8 × 10−4 a.u. (i.e.,
Icri = 2.24 × 1010 W/cm2), and the red line is located at the
field strength (Esec = 4 × 10−4 a.u.) in which the harmonic
spectrum starts to possess a marked second plateau. Given
these two lines, the spectrum is intuitively divided into three
regions: (i) γR 	 1, (ii) γR � 1, and (iii) γR > 1. (i) In the
weak-coupling regime (γR 	 1), the energy cutoff presents
a linear dependence on the field strength; see Figs. 6(c) and
6(d). (ii) When entering the transition regime (γR � 1), we
can observe two-plateau structures on HHG spectra, such as
the red dashed curve in Fig. 6(e), which result from the differ-
ence of population on lower and higher subbands. This differ-
ence can be understood by the similar electron dynamics in

FIG. 6. (a) Harmonic spectra vs number of cycles (ncyc) in
80-AGNR. The field strength is E0 = 5 × 10−4 a.u. (I0 = 8.75 ×
109 W/cm2), γR ≈ 1.25, and the frequency is ω0 = 0.0076 a.u. (λ =
6 μm). (b) The cutoff as a function of ncyc corresponding to the
harmonic spectra in (a). (c) Harmonic spectra vs field strength in
40-AGNR, using a driver with ncyc = 16, and ω0 = 0.0152 a.u. (λ =
3 μm). The color bar indicates the intensity of harmonics. (d) The
cutoff as a function of field strength, corresponding to the har-
monic spectra in (c). (e) Harmonic spectra extracted from (c) for
Esec = 4 × 10−4 a.u. and Ecri = 8 × 10−4 a.u. (f) Harmonic spectra
vs wavelength in 40-AGNR, using a driver with ncyc = 16, and E0 =
0.0012 a.u. (I0 = 5.04 × 1010 W/cm2). The white line represents the
onset of cascade resonance.

the ZGNR-like system, that is, the lower subbands participate
in collective resonance, whereas the higher subbands are in
near resonance or even in nonresonance. As Fig. 6(d) shows,
the cutoff of the first plateau (E (1)

cut ) preserves the linear depen-
dence in region (i), but the second cutoff (E (2)

cut ) approaches
the attainable maximum tardily. (iii) As the field strength
increases up to Ecri, the blue curve in Fig. 6(e) shows that the
first and the second plateaus merge together since all subbands
are involved in the collective resonance. For this reason, the
energy cutoff in the strong-coupling regime (γR > 1) tends to
saturate and remains at the maximum band gap. We have thus
revealed that the cutoff law of HHG in GNRs depends strongly
on the interaction regime to which the system is subjected, the
cutoff neither following the linear scaling in the electric field
of the bulk solids nor the quadratic dependence in the electric
field of gas.

Wavelength. Figure 6(f) shows the HHG spectrum as a
function of driver wavelength in 40-AGNR (�sg ≈ 0.4 eV).
It can be found that the cutoff frequency is extended abruptly
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around a wavelength λ = 3 μm (ω ≈ 0.41 eV), where the
frequency condition is satisfied exactly. This is because the
cascade resonance appears as the wavelength approaches
3 μm. When the driver wavelength increases away from
3 μm, the laser-driving AGNR begins to deviate from the res-
onance point, and thus the plateau of the harmonic spectrum
shrinks drastically.

V. DISCUSSION OF CASCADE RESONANCE
IN GENERAL CONFINED SYSTEMS

We now turn our attention to the possibility of observ-
ing the cascade resonance induced HHG spectra in general
confined systems. The key ingredients for cascade resonance,
viz., the frequency-matching and field strength conditions, can
be approximately met in a variety of systems in a nanoribbon
geometry [59], for example in the kagomé lattice [85] and
α-T3 lattice [86,87] systems. Additionally, quantum dots offer
a high degree of tunability in terms of the energy spectra via
the synthesis route, size dependence, and/or the external pa-
rameters. In general, however, for most materials/systems, not
only is the frequency-matching condition over a large number
of subbands potentially not possible, but also the fundamental
gap (Eg) could be significantly different from the (average)
subband gap (�sg).

To explore such systems for possible cascade resonance
induced HHG phenomena, we resort to the simplified models
akin to the ones introduced in Sec. III B, but the dipole matrix
element takes the form

di j = 1.0/|Ej − Ei|, |i − j|is odd,

di j = 0.0, |i − j|is even.
(12)

We consider Eg �= �sg and laser frequency matched to either
the fundamental gap or the average sub(band) gap. Therefore,
we need two parameters,

γE = dEg E0/ω = E0/(ωEg), (13)

γ� = 〈di,i+1〉E0/ω = E0/(ω〈�sg〉) (14)

denoting the coupling strength for the fundamental gap and
the sub(band) gap, respectively. We additionally consider
cases in which �sg is nonuniform. To illustrate these cases,
we also consider a 20-level model.

Case I: Eg < �sg. For brevity, we consider the fundamen-
tal gap Eg = 1 a.u. while all other energy levels are equally
spaced in energy with a larger gap:

Ei+1 − Ei = Eg = 1 a.u. for i = N/2, (15a)

Ei+1 − Ei = �sg = 4 a.u. otherwise. (15b)

When the laser frequency matches the fundamental gap Eg,
the system exhibits near resonance irrespective of the cou-
pling strength. The electron dynamics in the strong coupling
(E0 = 2 a.u., γE = 2) is shown in Fig. 7(a1). Significant elec-
tron population and oscillation merely occur at the energy
levels close to the Fermi energy. On the other hand, when the
laser frequency matches the sub(band) gap �sg, the cascade
resonance can be achieved, in principle, even for the weak
coupling between the sub(band) levels, as shown in Fig. 7(a2)

for γ� = 0.125 (E0 = 2 a.u.). The population on each energy
level is comparable.

The corresponding HHG spectra for different tuning of the
laser frequency are shown in Fig. 7(a3) We clearly see that
the HHG spectrum for the cascade resonance when ω = �sg

is much more intense than for the near resonance when ω =
Eg. The frequency cutoff of the resonant harmonic spectrum
reaches 72 a.u., which is close to the maximum band gap (73
a.u.).

Case II: Eg > �sg. We set the fundamental gap and the
sub(band) gap as

Ei+1 − Ei = Eg = 4 a.u. for i = N/2, (16a)

Ei+1 − Ei = �sg = 1 a.u. otherwise. (16b)

Figure 7(b1) shows the population dynamics for the
laser frequency matching the fundamental gap Eg. The field
strength is set by E0 = 1.0 a.u. (γE = 0.625). The near res-
onance which has been observed in Fig. 7(a1) occurs in the
energy levels near the Fermi level. Therefore, in the cor-
responding HHG spectrum, see Fig. 7(b3), the intensity is
relatively lower and the plateau structure is not clear. On the
other hand, when the laser frequency matches the sub(band)
gap, a cascade resonance can occur only when γ� � 1. Fig-
ure 7(b2) shows the electron dynamics when E0 = 2 a.u.
(γ� = 2). The cascade resonance takes place. The harmonic
cutoff, blue curve in Fig. 7(b3), can thus reach the maximum
energy gap at 22 a.u. (E20 − E1).

We further note that the cascade resonance depends cru-
cially on the ratio of Eg/�sg. For much larger fundamental gap
values, the electron density in the higher subbands decreases
as the excitation of electrons to the first conduction level is
probabilistically low. The cascade resonance then cannot take
place. In the specific context of GNRs, this can be achieved by
adding staggered on-site potentials which open or enlarge the
fundamental gap. In Appendix E, we show the HHG spectrum
and population dynamics in 36-ZGNR with a 1.0 eV gap. We
can still observe the cascade resonance near the Dirac points,
but there is a lower conduction population in comparison to
that of gapless 36-ZGNR. The intensity of the corresponding
HHG spectrum is lower than that of the gapless ZGNR-HHG
spectrum. However, the cascade resonance disappears when
the fundamental gap is larger than 1.5 eV (not shown).

A more realistic scenario in materials is when the
sub(band) gaps are nonuniform. To account for these effects,
we consider a model where �sg is chosen randomly (uniform
probability distribution) in a given energy range, while Eg >

〈�sg〉, where 〈· · · 〉 denotes the average value. The energy
levels are

Ei+1 − Ei = Eg = 4 a.u. if i = N/2, (17a)

Ei+1 − Ei = �sg = � Ran(0.5, 1.5) otherwise, (17b)

where Ran(n, m) means a random number between n and m.
The laser frequency matches the average sub(band) gap (ω =
� = 1 a.u.).

Figure 7(c1) shows the electron dynamics in the weak-
coupling regime, where E0 = 0.2 a.u. (γ� ≈ 0.2). Because
of the large fundamental gap (Eg = 4 a.u.), the electrons can
hardly be excited to conduction levels. The population of the
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FIG. 7. Population dynamics and HHG spectrum depending on energy-level structure. (a1),(a2) Population dynamics for Eg < �sg. (a1)
Laser frequency matches fundamental gap (ω = Eg = 1 a.u.). (a2) Laser frequency matches sub(band) gap (ω = �sg = 4 a.u.). (a3) Harmonic
spectra in red and blue correspond to the electron dynamics in (a1) and (a2), respectively. (b1),(b2) Population dynamics for Eg > �sg. (b1)
Laser frequency matches fundamental gap (ω = Eg = 4 a.u.). (b2) Laser frequency matches sub(band) gap (ω = �sg = 1 a.u.). (b3) Harmonic
spectra in red and blue correspond to the electron dynamics in (b1) and (b2), respectively. (c1),(c2) Population dynamics for a system with
random sub(band) gap in (c1) the weak-coupling regime (E0 = 0.2 a.u.) and (c2) the strong-coupling regime (E0 = 2 a.u.). The laser frequency
matches the average sub(band) gap. (c3) Harmonic spectra in red and blue correspond to the electron dynamics in (c1) and (c2), respectively.

first conduction level is even less than 0.01. In comparison, in
the strong-coupling regime (E0 = 2 a.u.), shown in Fig. 7(c2),
all the higher-lying energy levels have a sizable population.
The details of the energy-level distribution seem immaterial
to the cascade resonance phenomena. These features are also
clearly reflected in the HHG spectra. In Fig. 7(c3), the inten-
sity of the harmonic spectrum in the strong-coupling regime
is much higher than that in the weak-coupling regime.

Consequently, the cascade resonance can be anticipated in
real nanoribbon materials where a few subbands are nearly
equispaced in energy while other bands are randomly dis-
tributed. When the laser frequency matches the subband gap,
the resonant excitation allows more electrons to occupy higher
conduction subbands, which eventually enhances and broad-
ens the harmonic spectra in experimental measurements.

VI. CONCLUSION AND OUTLOOK

In conclusion, we demonstrated theoretically that the cas-
cade resonance provides a systematic way to extend and
enhance the harmonic spectrum of a confined quantum sys-
tem. The cascade resonance can pump electrons to higher
subbands, resulting in enhanced higher-order harmonic emis-
sions, which is, therefore, fundamentally distinct from the

high-harmonic generation mechanism of atoms, molecules,
and bulk.

Based on the study of size-dependent GNR-HHG and dy-
namic analysis in a multilevel model, the resonance conditions
for laser parameters such as frequency and field strength are
established. The cascade resonance occurs when the laser
frequency matches the subband gap and the field exceeds
the threshold strength. While large deviations from the ideal
frequency-matching condition lead to the disappearance of the
cascade resonance, for small deviations strong field strengths
can still induce cascade resonance, although the strength of
the HHG spectra becomes relatively weak.

These predictions are well within experimental reach, and
they are relatively straightforward to verify in the present
experimental setups. These ideas can also be applicable to
other confined materials/systems that, in general, may not
meet the frequency-matching condition perfectly. Perhaps the
most interesting situation is when only a part of the subbands
meets the frequency-matching condition, where the cascade
resonance of a few levels may take place by carefully tun-
ing the laser frequency and intensity, for example in other
two-dimensional materials in a stable nanoribbon geometry,
or in quantum dots. Among these, nanoribbons based on the
kagomé lattice and α-T3 lattice systems are particularly ap-
pealing due to the presence of a flat band together with the
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linearly dispersing Dirac bands. A detailed study of HHG
phenomena in such a system is, however, beyond the scope
of this work.

Looking forward, our theoretical framework for at-
tosecond physics of confined systems establishes cascade
resonance as a powerful tool for obtaining intense sim-
ple ultraviolet/extreme-ultraviolet x-ray sources. Attosecond
technology has previously focused on the modulation of ul-
trafast processes by the intensity, wavelength, polarization,
and time delay (two pulses) of the incident laser. The reso-
nance mechanism will provide a more diverse manipulation
approach because of the sensitivity to material size and drive
duration, which may finally allow the establishment of highly
tunable solid-state XUV sources. Furthermore, the relation
between HHG and cascade resonance in the nanoribbon sys-
tem will provide a new platform and idea for the study of
carrier-wave Rabi flopping.
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APPENDIX A: METHODS

The atomic structures of GNRs with armchair edges and
zigzag edges are presented in Figs. 1(a) and 1(b), respectively.
The distances of the unit cell for AGNR and ZGNR are da =√

3a and dz = a, respectively, where the lattice constant a =
2.46 Å.

1. Tight-binding model for graphene nanoribbon

The tight-binding Hamiltonian for AGNR takes the form

Ĥa = − γ

Nx∑
i=1

Na/2∑
j=1

(
p̂†

i,2 j p̂i,2 j−1 + p̂†
i,2 j p̂i,2 j+1

+ q̂†
i,2 j−1q̂i,2 j + q̂†

i,2 j−1q̂i,2 j−2 + p̂†
i,2 j q̂i,2 j

+q̂†
i,2 j−1 p̂i+1,2 j−1

) + H.c., (A1)

where p̂† (q̂†) and p̂ (q̂) are creation and annihilation operators
corresponding to the chain P (Q), i ( j) labels the site of an
atom in the x (y) direction, γ = 3.03 eV is the hopping inte-
gral, and Nx is the number of unit cells in the x direction. Using
a similar method, the ZGNR Hamiltonian can be expressed by

Ĥ z = −γ

Nx∑
i=1

Nz/2∑
j=1

(
ĉ†

i,2 j ĉi,2 j−1 + ĉ†
i,2 j ĉi,2 j+1

+ĉ†
i,2 j ĉi+1,2 j−1

) + H.c. (A2)

Since we have periodic boundary conditions in the x direc-
tion, the Fourier transform can be made by

ĉ†
i, j = 1√

Nx

∑
kx∈BZ

e−ikxxi ĉ†
kx, j, (A3a)

ĉi, j = 1√
Nx

∑
kx∈BZ

eikxxi ĉkx, j, (A3b)

where kx is the quasimomentum of the x direction, xi is the
atomic position in the x direction, and

∑
kx∈BZ is the sum-

mation over the Brillouin zone (BZ). Then Hamiltonians of
AGNR and ZGNR can be written by

Ĥa =
∑

kx∈BZ

Na/2∑
j=1

[
γ a

1 ( p̂†
kx,2 j p̂kx,2 j−1

+ p̂†
kx,2 j p̂kx,2 j+1 + q̂†

kx,2 j−1q̂kx,2 j−2

+ q̂†
kx,2 j−1q̂kx,2 j ) + γ a

2 ( p̂†
kx,2 j q̂kx,2 j

+q̂†
kx,2 j−1 p̂kx,2 j−1)

] + H.c., (A4)

Ĥ z =
∑

kx∈BZ

Nz/2∑
j=1

(
γ zĉ†

kx,2 j ĉkx,2 j−1

−γ ĉ†
kx,2 j ĉkx,2 j+1

) + H.c., (A5)

where hopping integrals γ a
1 = −γ e−i kx a

2
√

3 , γ a
2 = −γ ei kx a√

3 , and
γ z = −2γ cos(kx

a
2 ). We obtain the AGNR Hamiltonian in

the form of Ĥa = ∑
kx

�a†
kx

Ha
kx
�a

kx
using bases of �a

kx
=

( p̂kx,1, q̂kx,1, p̂kx,2, q̂kx,2, . . . , p̂kx,Na , q̂kx,Na )T, where the matrix
notation of AGNR Hamiltonian Ha

kx
reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ a∗
2 γ a∗

1

γ a
2 0 0 γ a

1

γ a
1 0 0 γ a

2 γ a
1

γ a∗
1 γ a∗

2 0 0 γ a∗
1

. . .
. . .

. . .
. . .

. . .

γ a∗
1 0 0 γ a∗

2 γ a∗
1

γ a
1 γ a

2 0 0 γ a
1

γ a
1 0 0 γ a

2

γ a∗
1 γ a∗

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A6)

Likewise, we can write the ZGNR Hamiltonian in terms
of �z

kx
= (ĉkx,1, ĉkx,2, . . . , ĉkx,Nz )T in the form of Ĥz =∑

kx
�z†

kx
Hz

kx
�z

kx
, where Hz

kx
is written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ z

γ z 0 −γ

−γ 0 γ z

. . .
. . .

. . .

γ z 0 −γ

−γ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A7)

The Hamiltonian Ha
kx

is a 2Na × 2Na matrix because the
AGNR contains 2Na sites per unit cell. For the ZGNRs, how-
ever, the Hamiltonian Hz

kx
only has Nz orthogonal eigenstates,

because each unit cell is composed of Nz sites.
We solve time-independent Schrödinger equation

H(kx )φnkx
= En(kx )φnkx

, (A8)
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obtaining the eigenstates φnkx
and eigenvalues En(kx ) of the

system. In Figs. 1(c) and 1(d), we show the energy bands of
AGNR and ZGNR in the case of Na = 10 and Nz = 10, which
are calculated by plugging Eqs. (A6) and (A7) into Eq. (A8),
respectively.

2. Coupling to an external laser field and numerical calculations

To simulate the interaction of a laser field and GNR, we
use the time-dependent Schrödinger equation

i
∂

∂t
�(t ) = H(t )�(t ), (A9)

where H(t ) is the matrix form of the time-dependent Hamil-
tonian, which has been coupled to the external field A(t ).

Here, the vector potential A(t ) = (0, Ay)T reads

Ay(t ) = E0

ω
sin2

(
ωt

2ncyc

)
sin(ωt ) (A10)

in the domain 0 � t � ncycT , where E0 is the amplitude of the
electric field, ω is the fundamental frequency, T = 2π/ω is
the time period, and ncyc is the total number of laser cycles.

For a tight-binding GNR, the driving fields shift the quasi-
momentum kx like

kx → kx(t ) = kx + Ax(t ), (A11)

because of the periodic boundary condition in the x direction
[88]. The y component of the drivers will induce phase factors
on the hopping terms, which makes the replacement of

γi j → γi je
−iAy (t )(y j−yi ), (A12)

where γi j represents the hopping integral between site i and
site j [88].

Thereby, according to the above statement, the matrix el-
ements of the time-dependent AGNR Hamiltonian Ha(t ) are
expressed by

Ha
i,i+1[kx(t )], i = 1, 2, . . . , 2Na − 1,

γ a
y (t ) · Ha

i,i+2[kx(t )], i = 1, 2, . . . , 2Na − 2,

0, otherwise,
(A13)

where the phase factor γ a
y (t ) = eiaAy (t )/2 and Ha

i j (kx ) corre-
spond to the elements in Eq. (A6). Similarly, the elements of
ZGNR Hamiltonian Hz(t ) read

γ z
y,1 · Hz

2i−1,2i[kx(t )], i = 1, 2, . . . , Nz/2,

γ z
y,1 · Hz

2i,2i+1[kx(t )], i = 1, 2, . . . , Nz/2 − 1,

0 otherwise,
(A14)

where γ z
y,1(t ) = ei

aAy
2
√

3 , γ z
y,2(t ) = ei

aAy√
3 , and Hz

i j (kx ) correspond
to the elements in Eq. (A7). It is important to note that only the
upper triangular elements of H(t ) are given in Eqs. (A13) and
(A14), and one can easily obtain the values of lower triangular
elements by using H ji = (Hi j )∗.

In this simulation, the initial states �nkx (t = 0) are
determined by the lowest N/2 eigenstates φnkx

from
Eq. (A8), where N indicates the total number of eigenstates.
The wave functions are numerically propagated with the
Crank-Nicolson method [89]:

�(t + �t ) �
[

I − H(t )�t

2i

]−1[
I + H(t )�t

2i

]
�(t ), (A15)

where I is the identity matrix, and �t is the discrete time step
for temporal evolution. Then we can calculate the value of
induced electric current as

Jα (t ) = −
N/2∑
n=1

∑
kx∈BZ

�†
nkx

(t )

(
∂H
∂Aα

)
�nkx (t ), (A16)

where n labels the state, N is the size of the Hamiltonian ma-
trix, α = x, y, and �†

nkx
= (�∗

nkx
)T. Ultimately, the harmonic

spectrum along the α direction can be evaluated from the
current by

Sα (ω) =
∣∣∣∣FT

[
d

dt
Jα (t )

]∣∣∣∣
2

. (A17)

Note that the derivative of current is multiplied by a Blackman
window before the Fourier transform.

APPENDIX B: OPTICAL SELECTION RULES IN GNRs

Since the selection rules of GNR subbands [90–94] are
crucial for understanding the size-dependent HHG spectra
in Sec. II A, it is necessary for us to clarify them in this
Appendix.

In general, the dipole matrix element of eigenstates φa and
φb is written as

dα
ab = 〈φa|r̂α|φb〉 = −i

〈φa| p̂α|φb〉
Ea − Eb

, (B1)

where r̂α is the position operator along the α direction, p̂α is
the momentum operator along the α direction, and Ea and Eb

are the eigenenergies of states φa and φb. In the nanoribbon
model, the eigenvector φnkx

is just a function of kx and y
because the Fourier transformation is made in the x direction.
Thus the dipole matrix elements between subbands J1(s) and
J2(s′) are written as

dx
J1s,J2s′ (kx ) = iφs†

J1
∂kx φ

s′
J2

= −i
φs†

J1

∂H
∂kx

φs′
J2

EJ1 − EJ2

, (B2)

dy
J1s,J2s′ (kx ) = φs†

J1
yφs′

J2
= −i

φs†
J1

pyφ
s′
J2

EJ1 − EJ2

, (B3)

where s and s′ are the indices of band type, J1 and J2 are
the subband numbers, EJ is the band dispersion of sub-
band J , φs

J is the eigenvector obtained from Eq. (A8), y =
diag{y1, y2, . . . , yN } is the matrix form of the position operator
in the y direction, y1, y2, . . . , yN are the coordinates of atom
sites on the y axis, and py = −i[y, H].

In what follows, only the y component of the dipole matrix
element dy

J1s,J2s′ is discussed, because we focus mainly on the
optical transition while the GNR is driven by y-polarized light.
In Eq. (B4), we give an example of a dipole matrix (modulus)
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of 10-ZGNR at Dirac point Kz,

∣∣dy
J1s,J2s′ (Kz )

∣∣ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0 3.99 0.0 0.32 0.0 0.084 0.0 0.03 0.0 0.33
3.99 0.0 4.30 0.0 0.40 0.0 0.113 0.0 0.297 0.0
0.0 4.30 0.0 4.39 0.0 0.43 0.0 0.213 0.0 0.03
0.32 0.0 4.39 0.0 4.42 0.0 0.103 0.0 0.114 0.0
0.0 0.40 0.0 4.42 0.0 4.09 0.0 0.43 0.0 0.084

0.084 0.0 0.43 0.0 4.09 0.0 4.42 0.0 0.40 0.0
0.0 0.113 0.0 0.103 0.0 4.42 0.0 4.39 0.0 0.32
0.03 0.0 0.213 0.0 0.43 0.0 4.39 0.0 4.30 0.0
0.0 0.297 0.0 0.114 0.0 0.40 0.0 4.30 0.0 3.99
0.33 0.0 0.03 0.0 0.084 0.0 0.32 0.0 3.99 0.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

in the basis (|5v〉, |4v〉, ...|1v〉, |1c〉, ...|5c〉)T. We can see some
zero matrix elements that result in the interesting selection
rule in ZGNRs.

First, let us examine the selection rule in AGNRs. Ac-
cording to the analytical derivations in Refs. [92–94] and
our numerical calculations, the dipole matrix elements of the
intraband from the same group, i.e., s′ = s, and (J1, J2) ∈ {J}
or {J ′}, possess the following feature:

dy
J1s,J2s = 0, �J = J2 − J1 ∈ even,

dy
J1s,J2s �= 0, �J = J2 − J1 ∈ odd.

(B5)

For the interband transition (s �= s′), dipole matrix elements
from the same group show

dy
J1s,J2s′ �= 0, �J = J2 − J1 ∈ even,

dy
J1s,J2s′ = 0, �J = J2 − J1 ∈ odd.

(B6)

That is to say, the intraband (interband) transition between
those two subbands is forbidden whenever the difference
in the corresponding indices (�J) is an even (odd) number.
Then let us move to another case, considering the transition
between the subbands in different groups, that is, J1 ∈ {J} and
J ′

2 ∈ {J ′}. The intraband (s = s′) dipole moments are shown as

dy
J1s,J ′

2s �= 0, �J = J ′
2 − J1 ∈ even,

dy
J1s,J ′

2s = 0, �J = J ′
2 − J1 ∈ odd.

(B7)

For the interband transition (s �= s′), the situation is just op-
posite to Eq. (B7), that is, the optical transition is forbidden
whenever the index difference �J is even, shown as

dy
J1s,J ′

2s′ = 0, �J = J ′
2 − J1 ∈ even,

dy
J1s,J ′

2s′ �= 0, �J = J ′
2 − J1 ∈ odd.

(B8)

Secondly, we consider the selection rule of ZGNR, which
is simpler than that of AGNR, because the ZGNR only has
one group of subbands. Based on a similar calculation and
analysis, we find that the features of dipole matrix elements
for intraband and interband transitions are just the same as
that shown in Eqs. (B5) and (B6). The intraband transition
is allowed when the index difference �J is odd, whereas the
interband transition is allowed when the index difference �J
is even.

Focusing on the intraband transitions near the Dirac points,
we compute the dipole matrix elements dy

J,J+1 for AGNR
and ZGNR of nearest-neighbor subbands at Dirac points us-
ing Eq. (B3). It shows an interesting characteristic that the
moduli of dy

J,J+1(K ) are almost the same with different band

numbers J , for example dy
�J=1(Kz ) in Eq. (B4). So we plot

〈|dy
�J=1(Ka)|〉 and 〈|dy

�J=1(Kz )|〉, the average values of dipole
matrix elements of nearest-neighbor subbands at Dirac points,
in Figs. 8(a) and 8(b), respectively. For AGNR, the results of
matrix elements from the second group {J ′} are not presented
in Fig. 8(a). We can see clearly that the dipole matrix elements
〈|dy

�J=1|〉, for both AGNR and ZGNR, vary linearly with the
number of sites:

〈∣∣dy
�J=1(Ka)

∣∣〉 = 0.47Na + 0.26, (B9a)〈∣∣dy
�J=1(Kz )

∣∣〉 = 0.41Nz + 0.20. (B9b)

This indicates that the coupling between nearest-neighbor
subbands becomes stronger while increasing the ribbon width.

FIG. 8. Dipole matrix elements 〈|dy
�J=1(Kl )|〉 with respect to the

ribbon widths Nl for (a) AGNRs (l = a) and (b) ZGNRs (l = z). The
open circles are data points, and orange lines are the linear fit of the
data points.
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FIG. 9. (a) Linear rise time as a function of �−1
R for N = 20. The

dipole matrix elements are the same as in Eq. (3). Laser frequency is
set to ω = �sg = 1 a.u. (b) Linear rise time as a function of N . We fix
field strength E0 at 0.4 a.u., and thus �R = E0di,i+1 = 0.4 a.u. Laser
frequency is set to ω = �sg = 1 a.u. Green open circles represent
data points, and blue lines are linear fitting results for data points.

APPENDIX C: RISE TIME DEPENDING ON THE TOTAL
NUMBER OF ENERGY LEVELS AND COUPLING

STRENGTH IN THE EQUISPACED MODEL

We know that in the equispaced model, the cascade res-
onance occurs when the frequency condition is satisfied no
matter how weak the electric field is. The electrons are excited
to conduction levels in a cascade way from lower to higher.
We can foresee that the weaker the field strength and the more
energy levels there are, the longer it takes for the electrons to
be excited to the highest energy level. Therefore, the rise time
should depend on the total number of energy levels and the
coupling strength. Figures 9(d) and 9(e) clearly show that the
rise time exhibits a linear dependence of �−1

R and N . We can
describe it by

Tr ∝ N/�R. (C1)

From the perspective of HHG, this relation indicates that the
manipulation of the harmonic cutoff using laser duration is
easier to achieve in a large-size nanoribbon material.

APPENDIX D: HHG IN GNRs BY APPLYING DRIVING
FIELDS ALONG THE RIBBON DIRECTION

We study the harmonic generation in GNRs by applying
the driver field to the ribbon direction. Figures 10(a) and
10(b), respectively, show the harmonic spectra for 40-AGNR
and 40-ZGNR as a function of the field strength, and the
wavelength is 3 μm. It is found that the cutoffs of harmonic

FIG. 10. (a),(b) Harmonic spectra vs field strength in 40-AGNR
and 40-ZGNR, respectively, when the field is polarized along the rib-
bon direction. The laser frequency is fixed at ω0 = 0.0152 a.u. (λ =
3 μm). (c),(d) Harmonic spectra vs wavelength in 40-AGNR and
40-ZGNR, respectively. The field strength is E0 = 0.0012 a.u. (I0 =
5.04 × 1010 W/cm2).

spectra for both AGNR and ZGNR scale linearly with the field
strength; see the white lines. This is because the dispersion of
subbands of GNRs near the Fermi level is almost linear with
kx. In Figs. 10(c) and 10(d), we also see the linear dependence
between the cutoff energy and the laser wavelength, which

FIG. 11. (a) Harmonic spectrum for a 36-ZGNR with Eg =
1.0 eV. The field strength is E0 = 0.0012 a.u. (I0 = 5.04 × 1010

W/cm2), and the field frequency matches a subband gap ω = 0.0152
a.u. (λ = 3 μm). (b) Time-frequency distribution of the harmonic
emission. The red curve is the vector potential of the laser field. The
cyan line indicates the cutoff frequency. (c1)–(c3) Electron dynamics
in the conduction subbands for the times ti marked in (b).
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agrees well with the general behavior of HHG in bulk solids.
The reason is also attributed to the linear band dispersion.

APPENDIX E: HHG IN GNRs WITH ON-SITE POTENTIAL

In principle, we can open a fundamental gap in GNRs by
adding staggered on-site potential on the two nearest-neighbor
sites, respectively. Figure 11 shows the HHG spectrum and
conduction dynamics in 36-ZGNR with a 1.0 eV gap. Because

there is a large fundamental gap between valence and conduc-
tion bands, the excitation rate decreases, and fewer electrons
are excited to the first conduction band in Figs. 11(c1)–11(c3).
However, one can still observe the cascade resonance, and
the electrons still accumulate near the Dirac points, although
the total population becomes lower in comparison to that
of gapless 36-ZGNR. Correspondingly, the intensity of the
HHG spectrum in Figs. 11(a) and 11(b) is lower than that in
Figs. 3(a) and 11(b).
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