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Angular topological superfluid and topological vortex in an ultracold Fermi gas
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We show that pairing in an ultracold Fermi gas under spin-orbital-angular-momentum coupling (SOAMC) can
acquire topological characters encoded in the quantized angular degrees of freedom. The resulting topological
superfluid is the angular analog of its counterpart in a one-dimensional Fermi gas with spin-orbit coupling, but
characterized by a Zak phase defined in the angular-momentum space. Upon tuning the SOAMC parameters,
a topological phase transition occurs, which is accompanied by the closing of the quasiparticle excitation
gap. Remarkably, a topological vortex state can also be stabilized by deforming the Fermi surface, which is
topologically nontrivial in both the coordinate and angular-momentum space, offering interesting potentials for
applications in quantum information and quantum control. We discuss how the topological phase transition and
the exotic vortex state can be detected experimentally.
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I. INTRODUCTION

Synthetic gauge fields such as spin-orbit coupling (SOC)
play a prominent role in quantum simulations using cold
atoms [1–9]. Under a synthetic SOC, for instance, different
hyperfine ground states of the atoms are coupled optically,
where a spin flip is accompanied by the change of the atom’s
center-of-mass momentum. The coupling thus modifies the
atom’s single-particle dispersion, which, while capable of in-
ducing exotic few- and many-body quantum states [10–18],
can also give rise to topological band structures [19–23].
The nontrivial band topology further lays the ground for
topological superfluids—for instance, a topological superfluid
emerges in a two-dimensional Fermi gas under the Rashba-
type SOC, aided by Zeeman fields and pairing interactions
[24–30]. Therein, the SOC and Zeeman fields mix different
spin species and open up a gap between dressed single-particle
bands, as a chiral p + ip pairing order is induced out of
an s-wave pairing interaction [24]. Notably, the topological
superfluid is characterized by non-Abelian quasiparticle exci-
tations that are potentially useful for quantum computation.
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Recently, an alternative type of synthetic gauge field,
spin-orbital-angular-momentum coupling (SOAMC), has at-
tracted considerable attention, where the atomic hyperfine
spins are coupled to the center-of-mass angular momentum
through a Raman process [31–36]. As the Raman lasers are
Laguerre-Gaussian beams with different orbital angular mo-
menta, this angular-momentum difference of light is imprinted
onto the hyperfine spins of each single atom, with profound
many-body implications [33–41]. For instance, while the
SOAMC-driven vortex formation and phase transitions have
been recently observed in Bose-Einstein condensates [31,32],
theoretical studies reveal that the interplay of SOAMC and
pairing interactions underlies a unique vortex-forming mecha-
nism in Fermi superfluids [42,43]. Here, a series of intriguing
questions arise, whether topological superfluids can also be
stabilized under SOAMC, and if so, in what form.

Naively, since the SOAMC is the angular analog of the con-
ventional SOC, one would expect that a topological superfluid
should be stabilized under similar conditions, with both pair-
ing order and topology emerging in the angular-momentum
space. The resulting angular topological superfluid should be
understood on the same basis as the topological superfluid in
a one-dimensional lattice gas under a one-dimensional SOC,
with quantized angular momenta in the former playing the
role of discretized linear momenta of the latter. However,
implementing SOAMC relies on the spatial dependence of the
Laguerre-Gaussian beams, such that the atomic gas must have
spatial dimensions higher than one, whereas it is known that
Fermi superfluids become gapless and lose their topological
features when the spatial dimension becomes higher than that
of the SOC [14,44]. Given the one-dimensional nature of the
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FIG. 1. (a) Schematic illustration of the level scheme. A pair
of copropagating Raman beams carrying different orbital angular
momenta (−l1 h̄ and −l2 h̄) couple different hyperfine states, and
transfer an angular momentum 2l h̄ = (l1 − l2)h̄. (b) Schematic il-
lustration of atomic potentials under Lagurre-Gaussian beams with a
ring geometry.

SOAMC (coupling only occurs along the azimuthal direction),
this imposes a stringent constraint on the stability of an angu-
lar topological superfluid.

In this paper, we show that a fully gapped angular topo-
logical superfluid survives the constraint above, provided
the radial motion of the atoms is sufficiently suppressed
such that it does not close the topological gap. This can be
experimentally achieved, for instance, by imposing strong
Lagurre-Gaussian beams with a ring geometry, such that the
atoms are tightly confined in the radial direction. The topology
of the system can then be captured by an effective one-
dimensional topological model, where internal spin states are
coupled to the quantized modes of the angular momentum.
Under this configuration, we further demonstrate how exotic
topological vortices can be engineered, whose topological
features in both the coordinate and angular-momentum space
offer intriguing potentials for robust quantum control.

II. MODEL

As illustrated in Fig. 1, we consider a two-component
Fermi gas confined in the x-y plane, where the two ground
hyperfine states are labeled ↑ and ↓, respectively. The effec-
tive single-particle Hamiltonian can be written as

Hs = − h̄2

2M

1

r

∂

∂r

(
r

∂

∂r

)
+ (Lz − l h̄σz )2

2Mr2

+ χ (r) + �(r)σx + Vext(r) − hσz, (1)

where M is the atom mass, σi (i = x, y, z) are the Pauli ma-
trices, −l h̄Lzσz/(Mr2) is the SOAMC term, Lz = −ih̄∂/∂θ

is the atomic angular-momentum operator, and 2l h̄ is the
transferred orbital angular momentum from the copropagating
Raman beams. Here, the polar coordinate r = (r, θ ) is taken.
We also impose a hard-wall box potential Vext (r) with a radius
R, to provide a natural boundary. Note that a gauge transfor-
mation U = e−ilθσz [42] is imposed to derive Hamiltonian (1).

Consistent with previous experiments on SOAMC [31,32],
the Raman coupling and the ac Stark potential are written as
�(r) = �0I (r) and χ (r) = χ0I (r), respectively. Here, �0 is
the effective two-photon Rabi frequency, χ0 is the ac Stark
light shift, and I (r) = (

√
2r/w)2l e−2r2/w2

is the spatial inten-
sity profile of the Laguerre-Gaussian lasers, with w the beam

waist. As we show below, for a confinement that is sufficiently
tight along the radial direction, the radial degrees of freedom
of the atoms can be frozen, and the remaining quantized
angular motion can be well captured by an effective one-
dimensional model with discretized modes. Intuitively, such
a scenario occurs when the trap depth χ0 is large, so that the
radial excitation energy (∼

√
|χ0|h̄2/(mw2), see Appendix A)

becomes much larger than any other relevant energy scales of
the system. The atoms are then localized near r0 = √

l/2w

in the radial direction. Under typical experimental conditions
(taking 6Li atoms as an example), with a laser waist w ∼
7.5 μm and a relatively large l , we estimate the ac Stark shift
|χ0|/(2π h̄) to be on the order of hundreds of Hz, which is
experimentally achievable.

For the pairing physics, we consider an s-wave contact in-
teraction between different spin species. The full Hamiltonian
is written as H = H0 + Hint, with H0 = ∫

dr�†(r)Hs�(r)
and Hint = −g

∫
drψ†

↑(r)ψ†
↓(r)ψ↓(r)ψ↑(r). We write �(r) =

[ψ↑(r), ψ↓(r)]T, where ψσ (r) (σ =↑,↓) are the field opera-
tors for the two spin species. The bare interaction rate g is
renormalized by relating it to the two-body bound-state energy
EB in the same ac Stark potential but without the spin-mixing
Raman term �(r) (see Appendix B).

We study the many-body pairing physics using the
Bogoliubov–de Gennes (BdG) formalism (see Appendix C),
where the BdG equation is given by HBdG
mn(r) =
εmn
mn(r), with εmn the Bogoliubov spectrum, and m and n
the angular and radial quantum number, respectively. Here,

HBdG =

⎡
⎢⎢⎣

K↑(r) �(r) 0 �(r)
�(r) K↓(r) −�(r) 0

0 −�∗(r) −K∗
↑ (r) −�(r)

�∗(r) 0 −�(r) −K∗
↓ (r)

⎤
⎥⎥⎦, (2)

and 
mn(r) = [u↑mn, u↓mn, v↑mn, v↓mn]T. The Bogoliubov co-
efficients uσmn and vσmn are now spatially dependent under
the ring geometry of the system. The pairing order pa-
rameter �(r) = −g〈ψ↓(r)ψ↑(r)〉 is expressed as �(r) =
g
2

∑
mn[u↑mnv

∗
↓mnϑ (εmn) + u↓mnv

∗
↑mnϑ (−εmn)] [ϑ (x) is the

Heaviside step function]. We also have Kσ (r) = Kσ − μσ ,
with μσ = μ + hτ and μ being the chemical potential,
and Kσ = − h̄2

2M [ 1
r

∂
∂r (r ∂

∂r ) + 1
r2 ( ∂

∂θ
− iτ l )2] + χ (r), with τ =

+1 (−1) for σ =↑ (↓).
To solve the many-body ground state, we write the or-

der parameter as �(r) = �(r)eiκθ , where the vorticity κ =
0 (κ 	= 0) indicates a vortexless superfluid state (vortex
state). Starting with different values of κ ∈ Z, we self-
consistently solve the BdG equation under the constraint N =∑

σ

∫
drnσ (r), where N is the total particle number, and

the density distribution nσ (r) = 1
2

∑
mn[|uσmn|2ϑ (−εmn) +

|vσmn|2ϑ (εmn)]. The ground state of the system is deter-
mined by comparing free energies F for different κ (see
Appendix D).

III. ANGULAR TOPOLOGICAL SUPERFLUID

We start by solving the Bogoliubov quasiparticle spec-
trum in a sufficiently deep ac Stark potential, with χ0/ε0 =
−8, where we take ε0 = π2h̄2/(2Mr2

0 ) as the unit of en-
ergy. For the case with h = 0, we find that the ground state
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FIG. 2. Bogoliubov spectra of the Fermi superfluid under
SOAMC, with a vanishing two-photon detuning h = 0, and an in-
creasing �0: (a) �0/ε0 = 0.15, (b) �0/ε0 = 0.18, and (c) �0/ε0 =
0.2. Other parameters are κ = 0, l = 5, R/w = 5, χ0/ε0 = −8, EB =
2Emin − 6ε0, where Emin is the ground-state energy of Kσ .

always lies with κ = 0. As illustrated in Fig. 2, by tuning
the SOAMC parameter �0, the Bogoliubov spectrum under-
goes a gap-closing and reopening process, reminiscent of
that of a topological phase transition. Specifically, the Bo-
goliubov quasiparticle excitation is fully gapped under small
�0 [Fig. 2(a)], becomes gapless at a critical �c

0/ε0 ≈ 0.18
[Fig. 2(b)], and is again fully gapped for �0 > �c

0 [Fig. 2(c)].
To provide a transparent picture of the topological

nature of the gap-closing transition, we adopt a single-
mode approximation ψσ (r) ≈ ∑

m φmσ (r)�m(θ )amσ , where
�m(θ ) = eimθ /

√
2π , and φmσ (r) is the normalized radial

ground-state wave function satisfying Kσ (r)φmσ (r)�m(θ ) =
Emσ φmσ (r)�m(θ ), with Emσ the single-particle eigenenergies.
As we confirm below, the single-mode approximation works
well, provided the atomic radial motion is frozen.

The effective one-dimensional Hamiltonian under the
single-mode approximation becomes

HMF =
∑
mσ

ξmσ a†
mσ amσ +

∑
m

(�ma†
m↑am↓ + H.c.)

+
∑

m

(�κ
ma†

m↑a†
−m+κ↓ + H.c.), (3)

where amσ (a†
mσ ) is the fermion annihilation (creation) opera-

tor for the corresponding spin species in the angular mode m,
ξmσ = Emσ − μσ , and �m = �0

∫
rdrφm↑I (r)φm↓. The pair-

ing order parameter �κ
m = ∑

m′ U κ
m,m′ 〈a−m′+κ↓am′↑〉, where

U κ
m,m′ = − g

2π

∫
rdrφm↑φ−m+κ,↓φ−m′+κ,↓φm′↑, and κ = 0 (κ 	=

0) denotes the superfluid (vortex) state. The bare interaction
rate g should be renormalized under the single-mode approxi-
mation (see Appendix B).

The effective Hamiltonian Eq. (3) allows for a much sim-
plified solution of the many-body ground state. Formally, the
BdG Hamiltonian is now

Hm =

⎡
⎢⎣

ξm↑ �m 0 �κ
m

�m ξm↓ −�κ
−m+κ 0

0 −�κ
−m+κ −ξ−m+κ↑ −�−m+κ

�κ
m 0 −�−m+κ −ξ−m+κ↓

⎤
⎥⎦, (4)

and one may proceed to solve the BdG equation Hm
ms =
εms
ms, by writing 
ms = [u↑

ms, u↓
ms, v

↑
ms, v

↓
ms]

T and following
the same self-consistent approach as before. Here, uσ

ms and
vσ

ms are the Bogoliubov coefficients under the single-mode
approximation.
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FIG. 3. Bogoliubov spectra from the full BdG calculation (blue
symbols) and the single-mode approximation (red lines), with
�0/ε0 = 0.15, for (a) χ0/ε0 = −3 and (b) χ0/ε0 = −8, respectively.
(c) Variation of the quasiparticle excitation gap with increasing �0,
where the blue symbols and the red line respectively denote results
from the full BdG calculation and the single-mode approximation.
We take χ0/ε0 = −8 here, while we take χ0/ε0 = −3 for the inset.
(d) Topological transition revealed through the Zak phase of the
effective Hamiltonian (4). The black dashed line indicate the gap-
closing point. Other parameters are the same as those in Fig. 2.

To demonstrate the validity of the single-mode approxi-
mation, we compare the Bogoliubov spectrum between the
full BdG results from Hamiltonian (2) with those from (4).
As shown in Fig. 3(a), when the ac Stark potential is only
moderately deep (with χ0/ε0 = −3), there still appears to be
an appreciable difference between the low-lying quasiparticle
spectra. The difference is essentially gone for χ0/ε0 = −8
[see Fig. 3(b)]. We further show the quasiparticle excitation
gap in Fig. 3(c), where only a small shift in the gap-closing
point is observed for χ0/ε0 = −8, while a more significant
shift is observed under χ0/ε0 = −3 [inset of Fig. 3(c)]. Hence,
while the single-mode approximation provides a satisfactory
description for a deep ac Stark potential, topological phase
transitions persist beyond the approximation.

The mean-field Hamiltonian Eq. (3) is equivalent to
the Bardeen-Cooper-Schrieffer Hamiltonian for a one-
dimensional lattice gas under SOC, with the quantized
angular-momentum modes corresponding to discrete lattice
momentum of the latter. The topological invariant is given by
the Zak phase [45,46]

γ = i
∑

m


∗
msDm
ms, (5)

with Dm
ms = 
m+1,s − 
ms for m. The summation in
Eq. (5) runs over the occupied states with εms < 0.

In Fig. 3(d), we plot the Zak-phase variation with in-
creasing �0. A topological phase transition is identified at
the critical �c

0 where γ changes from zero (topologically
trivial) to π (topologically nontrivial), where �c

0 agrees with
the gap-closing point in Fig. 2 under the same parameters.
The system is therefore in an angular topological superfluid
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FIG. 4. (a)–(c) Free energies of pairing states as functions of κ ,
with a fixed two-photon detuning h/ε0 = 0.8. The insets show the
phase of the order parameter. Here, F0 denotes the ground-state free
energy. (d)–(f) Bogloliubov spectra of the ground pairing state with
increasing �0. (g)–(i) Density distribution of the ground state in
the angular-momentum space, where we define n0 = N/(πr2

0 ). Here,
the blue solid (red dashed) curve denotes the density distribution of
spin-up (spin-down) component. (a), (d), (g) and (b), (e), (h) are the
vortexless superfluid state with �0/ε0 = 0.1 and 0.16, respectively.
(c), (f), (i) is a topological vortex state with �0/ε0 = 0.18. Other
parameters are the same as those in Fig. 2. All results here are from
the full BdG calculations.

for �0 > �c
0, reminiscent of the topological superfluid under

SOC and s-wave pairing interaction [46,47].

IV. TOPOLOGICAL VORTEX STATE

Building upon the topological superfluid state above, we
now show that an exotic topological vortex state can be in-
duced by turning on the two-photon detuning h which deforms
the Fermi surface.

As illustrated in Figs. 4(a)–4(c), under a finite h, the free
energy is generically asymmetric with respect to κ = 0. The
asymmetry becomes more apparent with increasing �0, until
the ground-state order parameter eventually acquires a finite
phase with κ 	= 0. Intriguingly, the transition into the vortex
state is topological. As demonstrated in Figs. 4(d)–4(f), while
the Fermi-surface deformation is reflected as the asymmetric
spectral shape with respect to m = 0, the closing and reopen-
ing of the energy gap persist. Indeed, after the gap is reopened,
the angular momentum of the ground state changes from
κ = 0 to κ = 1, and the ground state simultaneously becomes
topological, which is confirmed by the Zak-phase calculation.
Conceptually, such an exotic topological vortex state is the
angular version of the topological Fulde-Ferrell state under
the conventional SOC [15–18].
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FIG. 5. (a)–(c) Contour plots of the angular-momentum-resolved
radio-frequency spectroscopy A(m, ω), when �0 increases under
zero two-photon detuning. (d)–(f) The corresponding transition rate
�(ω). Parameters for (a), (d), and (b), (e), and (c), (f) are �/ε0 =
0.15, 0.18, and 0.21, respectively. Here, �ω = ω − El . Other param-
eters are the same as those in Fig. 2.

The topological vortex leaves a direct signature in the
angular-momentum-space density profile, which is illustrated
in Figs. 4(g)–4(i). In the only topological vortex state of
Fig. 4(i), the density profile of the minority spin species
exhibits a dip close to κ/2. Similar signatures have been
identified in the topological Fulde-Ferrell state under SOC.
Note that the spin polarization in the vortex state is a direct
result of the two-photon detuning, which plays the role of an
effective Zeeman field.

V. DETECTING TOPOLOGICAL TRANSITION

The topological transition into the angular topological su-
perfluid state can be detected through radio-frequency (rf)
spectroscopy, by coupling one of the hyperfine states in the
pairing superfluid (say |↑〉) to a spectator state |3〉. The cou-
pling Hamiltonian is V (t ) = V0

∫
dre−iωtψ

†
3 (θ )e−ilθψ↑(r),

where V0 is the coupling strength, ψ
†
3 is the creation oper-

ator of state |3〉, ω is the detuning of the rf pulse relative
to the |↑〉 → |3〉 transition, and the phase e−ilθ comes from
the gauge transformation under Eq. (1). From the Fermi’s
golden rule, the transition rate to the spectator state is �(ω) =∑

m A(m, ω), where

A(m, ω) = 2πV 2
0

h̄

[∑
n

∫
drv↑

mn(r)

]2

δ(h̄ω − εmn − Em+l ).

(6)

Here, v↑
mn(r) is the radial part of v↑mn(r), with v↑mn(r) =

v↑
mn(r)�m−κ (θ ), and Em = m2ε0/π

2. We assume that atoms
in state |3〉 remain trapped close to r0, which is a good ap-
proximation given a sufficiently strong potential. In Fig. 5,
we show both the angular-momentum-resolved rf spectrum
A(m, ω) and the full spectrum �(ω). As the SOAMC strength
�0 is tuned, the gap-closing and reopening process is clearly
identified, with Figs. 5(b) and 5(e) corresponding to the gap-
closing point.
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VI. DISCUSSION AND OUTLOOK

We show that an exotic angular topological superfluid can
be stabilized in a Fermi superfluid under SOAMC, provided
the atomic radial motion is suppressed. As topological super-
fluids are known to host Majorana zero modes at boundaries,
similar zero modes should be observed in an angular topo-
logical superfluid, once a boundary is created, for instance,
by shining a strong laser beam to break the ring geometry
of the ac Stark potential. It would be even more interesting
to generate such non-Abelian quasiparticle excitations in a
topological vortex state whose simultaneous topology in the
coordinate and angular-momentum space would make the
zero modes doubly robust, and easier to control, for instance,
through lasers generating the SOAMC. Our work thus offers
an interesting alternative for the generation and control of
Majorana zero modes in cold atoms.
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APPENDIX

In these Appendixes, we provide details on the radial exci-
tation energy, renormalization of the bare interaction strength,
the BdG formalism, and the expression of the free energy.

APPENDIX A: RADIAL EXCITATION ENERGY

To estimate the radial excitation energy, we expand the ac
Stark potential χ (r) around its minimum at r0 to the quadratic
order

χ (r) ≈ χ0

[
e−l l l − 4

w2
(e−l l l )(r − r0)2

]
. (A1)

The harmonic trapping frequency can then be written as ωho =
[8e−l l l |χ0|/(mw2)]1/2, so that the radial excitation energy is
given by

h̄ωho =
√

8e−l l l
|χ0|h̄2

mw2
∝

√
|χ0|h̄2

mw2
. (A2)

APPENDIX B: RENORMALIZATION OF FULL
HAMILTONIAN

The renormalization relation can be obtained by solving a
two-body problem in the absence of SOAMC, but within the
same ac Stark potential. The corresponding Hamiltonian reads

H =
∑

σ

∫
drψ†

σ (r)Kσ (r)ψσ (r)

− g
∫

drψ†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r), (B1)

where Kσ (r) is shown in the main text.
We expand the field operator ψσ (r) as ψσ (r) =∑
nm φnmσ (r)�m(θ )anmσ . Here, φnmσ (r)�m(θ ) is the

eigenstate wave function of the operator Kσ (r), with
Kσ (r)φnmσ (r)�m(θ ) = Enmσ φnmσ (r)�m(θ ), and Enmσ the
eigenvalue. The Hamiltonian is then

H =
∑
nmσ

Enmσ a†
nmσ anmσ − g

2π

∑
nn′n′′n′′′

∑
mm′m′′

f n,n′,n′′,n′′′
m,m′,m′′ a†

n′′′,m+m′−m′′↑a†
n′′m′′↓an′m′↓anm↑, (B2)

with f n,n′,n′′,n′′′
m,m′,m′′ = ∫

rdrφn′′′,m+m′−m′′↑φn′′m′′↓φn′m′↓φnm↑ the
overlap of radial wave functions.

To solve the two-body problem, we write the two-body
bound state as |
2B〉 = ∑

nm 
nma†
nm↑a†

n,−m,↓|vac〉. In doing
so, we have neglected pairing between different radial modes,
indexed by n. This should be a fair approximation, as dif-
ferent radial modes have distinct symmetries and hence a
smaller overlap compared to that between the same modes.
Hence pairing between different radial modes is suppressed
due to the limited phase space. From the Schrödinger equa-
tion H|
2B〉 = EB|
2B〉, we have

∑
nm

(2Enm↑ − EB)
nma†
nm↑a†

n,−m↓|vac〉

= g

2π

∑
nm

βnma†
nm↑a†

n,−m↓|vac〉, (B3)

where EB is the bound-state energy. It follows that


nm = g

2π

βnm

2Enm↑ − EB
, (B4)

where

βnm =
∑
n′m′

∫
rdr|φnm↑|2|φn′m′↑|2
n′m′ . (B5)

Equation (B4), together with Eq. (B5), constitute a set of
linear equations for 
nm. A relation between EB and g can be
numerically established, by sending the determinant of the co-
efficient matrix to zero. This is the renormalization condition
for the full BdG calculation.

Under the single-mode approximation, βnm, 
nm, and Enmσ

reduce to βm, 
m, and Emσ (as defined in the main text),
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respectively. We then have


m = g

2π

βm

2Em↑ − EB
, (B6)

βm =
∑

m′

∫
rdr|φm′↑|2|φm↑|2
m′ . (B7)

A relation between EB and g can be similarly established by
sending the determinant of the coefficient matrix of Eq. (B6)
to zero. This is the renormalization relation under the single-
mode approximation. Note that, in the limit of a very deep ac
Stark potential, βm in Eq. (B7) becomes independent of m, and
a closed form of the renormalization relation can be obtained.

APPENDIX C: DETAILS OF THE BDG FORMALISM

As discussed in the main text, we assume �(r) = �(r)eiκθ

with κ an integer. The Bogoliubov coefficients uσmn and vσmn

can be expanded as

uσmn =
∑

n′
c(n′ )
σmnRn′,m−lτ (r)�m(θ ), (C1)

vσmn =
∑

n′
d (n′ )

σmnRn′,m+lτ−κ (r)�m−κ (θ ), (C2)

where Rnm(r) is the radial wave function of a two-
dimensional system with a hard-wall potential, with Rnm(r) =√

2Jm(αnm
r
R )/RJm+1(αnm). Here, Jm(x) is the Bessel function

of the first kind, whose zeros are given by αnm.
Substituting Eqs. (C1) and (C2) into the BdG equation, we

determine c(n′ )
σmn and d (n′ )

σmn. For each m, we have

∑
n′′

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kn′n′′
↑,m−l �n′′,m+l

n′,m−l 0 �n′′,m−l−κ
n′,m−l

�n′′,m−l
n′,m+l Kn′n′′

↓,m+l −�n′′,m+l−κ
n′,m+l 0

0 −�n′′,m+l
n′,m+l−κ

−Kn′n′′
↑,m+l−κ −�n′′,m−l−κ

n′,m+l−κ

�n′′,m−l
n′,m−l−κ

0 −�n′′,m+l−κ
n′,m−l−κ

−Kn′n′′
↓,m−l−κ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(n′′ )
↑mn

c(n′′ )
↓mn

d (n′′ )
↑mn

d (n′′ )
↓mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= εmn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(n′ )
↑mn

c(n′ )
↓mn

d (n′ )
↑mn

d (n′ )
↓mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C3)

where

Kn′n′′
σ,p =

[
h̄2α2

n′,p

2MR2
− μσ

]
δn′n′′ + χ0

∫
rdrRn′,pI (r)Rn′′,p, (C4)

�
n′′,q
n′,p = �0

∫
rdrRn′,p(r)I (r)Rn′′,q(r), (C5)

�
n′′,q
n′,p =

∫
rdrRn′,p(r)�(r)Rn′′,q(r). (C6)

The order parameter along the radial direction is therefore

�(r) = g

2

1

2π

∑
mnn′n′′

[
c(n′ )
↓mnRn′,m+l d

(n′′ )
↑mnRn′′,m+l−κϑ (−εmn) + c(n′ )

↑mnRn′,m−l d
(n′′ )
↓mnRn′′,m−l−κϑ (εmn)

]
. (C7)

APPENDIX D: FREE ENERGY

The free energy can be obtained straightforwardly
from the standard Bardeen-Cooper-Schrieffer pairing theory,
with

F =1

2

∑
mn

εmn

[
ϑ (−εmn) −

∑
σ

∫
dr|vσmn(r)|2

]

+
∫

dr
|�(r)|2

g
+ μN, (D1)

When �(r) and μ are self-consistently determined, the free
energy can be evaluated straightforwardly.

Figure 6 shows the comparison between free energies of
pairing states with different κ . For a finite two-photon detun-
ing h, we can clearly see that the ground state changes from

κ = 0 to κ = 1 when �0 becomes large enough, which means
the system enters a vortex state.

−157

−156

0 0.1 0.2

F
/(

N
ε 0

)

Ω/ε0

FIG. 6. Free energies for states with different κ . The blue solid
(red dotted) curve denotes κ = 0 (κ = 1), and the black dashed line
represents the normal state with � = 0. Here, h/ε0 = 0.8. Other
parameters are the same as those in Fig. 2 of the main text.
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