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Spin-resolved density response of the warm dense electron gas
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We present extensive ab initio path integral Monte Carlo (PIMC) results for the spin-resolved density response
of the uniform electron gas at warm dense matter conditions. This allows us to unambiguously assess the
accuracy of previous theoretical approximations, thereby providing valuable insights for the future development
of dielectric schemes. From a physical perspective, we observe a nontrivial manifestation of an effective electron-
electron attraction that emerges in the spin-offdiagonal static density response function at strong coupling, rs � 5.
All PIMC results are freely available online and can be used to benchmark approximations and simulation
schemes.
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I. INTRODUCTION

The uniform electron gas (UEG) [1–3], also known as
jellium or quantum one-component plasma (OCP) in the
literature, constitutes one of the most fundamental model sys-
tems in physics, quantum chemistry, and related disciplines.
Having originally been introduced as a simple model de-
scription of valence electrons in metals [4], the UEG offers
a wealth of exciting physical effects such as Wigner crys-
tallization [5–7], a roton feature in the dynamic structure
factor S(q, ω) [8–10], and an effective electronic attraction
without the mediation of the ionic component [11,12]. In
fact, the UEG has been of pivotal importance for a number
of ground-breaking developments such as the Fermi liquid
theory [13,14] and the BCS theory of superconductivity [15].
Furthermore, the possibly unrivaled success of density func-
tional theory (DFT) regarding the description of real materials
[16] has been facilitated by highly accurate numerical results
for the exchange–correlation properties of the UEG [17],
which have been employed as input for the construction of
widely used parametrizations [18–21].

Over the recent years, an additional interest has emerged
in the properties of matter at extreme densities and tem-
peratures. Such warm dense matter (WDM) conditions are
rather ubiquitous throughout our universe [22] and naturally
occur in a number of dense astrophysical objects, like the
interior of giant planets [23,24], brown dwarfs [25,26], and
the outer layer of neutron stars [27,28]. Moreover, WDM
plays an important role in cutting-edge technological appli-
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cations such as inertial confinement fusion [29,30], novel
material discovery and fabrication [31–33], and hot-electron
chemistry [34]. A topical overview of different experimen-
tal techniques for the study of WDM has been given by
Falk [35].

Naturally, the accurate theoretical WDM description re-
quires the extension of previous UEG studies to the relevant
density-temperature regime. With the exception of the sym-
metric spin-unpolarized case, the finite temperature UEG
should be considered as a two-component system of spin-up
(designation “u”) and spin-down (designation “d”) electrons.
Thus, its thermodynamic state requires three state variables to
be fully specified. The following three dimensionless param-
eters are typically employed: (1) the Wigner-Seitz radius or
quantum coupling parameter rs = a/aB with a and aB being
the mean distance to the nearest neighbor and the first Bohr ra-
dius; (2) the degeneracy temperature θ = kBT/EF with T the
temperature and EF = h̄2(ku

F)2/(2m) being the Fermi energy
defined with respect to the Fermi wave vector of the spin-
up electrons ku

F = (6π2nu)1/3 (under the convention that the
spin-up species is the highest density species [3]); and (3) the
spin polarization ξ = (nu − nd )/n, 0 � ξ � 1, with nu (nd)
the density of spin-up (spin-down) electrons, and with n =
nu + nd the total electron density. Specifically, in WDM con-
ditions, rs ∼ θ ∼ 1 [36–38], which implies that there exists no
small parameter to perform an expansion around [36]. In other
words, the rigorous theoretical WDM description must cover
the highly nontrivial interplay of moderate Coulomb correla-
tions with strong thermal excitations and quantum effects such
as diffraction and Pauli blocking.

These challenges have sparked a recent surge of activity
in the description of the UEG at WDM conditions [2,39–72],
which has led to the first accurate parametrizations of the
exchange-correlation free energy valid in the entire WDM
range [43,58]; see Refs. [2,44,53] for overviews of dif-
ferent aspects of these developments. More specific, such
parametrizations constitute the basis for thermal DFT [73]

2643-1564/2022/4(3)/033018(20) 033018-1 Published by the American Physical Society

https://orcid.org/0000-0001-7293-6615
https://orcid.org/0000-0001-5926-9192
https://orcid.org/0000-0002-9725-9208
https://orcid.org/0000-0001-9632-8104
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.033018&domain=pdf&date_stamp=2022-07-11
https://doi.org/10.1103/PhysRevResearch.4.033018
https://creativecommons.org/licenses/by/4.0/


TOBIAS DORNHEIM et al. PHYSICAL REVIEW RESEARCH 4, 033018 (2022)

WDM simulations that consistently treat the interplay of
thermal and exchange-correlation effects [74,75] on the level
of the local density approximation.

While being an important milestone in the right direction,
a more thorough WDM theory requires additional informa-
tion. In this context, a key concept is the UEG response to
external perturbations; information that is indispensable for
the interpretation of state-of-the-art x-ray Thomson scatter-
ing experiments [65,76,77], which constitutes the de-facto
diagnostic at these extreme conditions. Other applications
include the estimation of the electronic stopping power [78],
construction of effective ion-ion potentials [79–81] and de-
velopment of advanced exchange-correlation functionals for
DFT [82,83].

Consequently, the UEG density response has been exten-
sively studied using semi-analytical theories [21,40,84–89]
and numerical methods [55,56,62,63,90–92]. In the ground
state, the first accurate results have been obtained by Mo-
roni et al. [90,91], who carried out quantum Monte Carlo
(QMC) calculations of a harmonically perturbed UEG (see
also Ref. [92]). Subsequently, these data were used as input
for the widely used parametrization by Corradini et al. [93].
Recently, Chen and Haule [94] presented diagrammatic QMC
results at metallic densities, which substantiated previous re-
sults at T = 0.

The first finite temperature QMC results have been pre-
sented by Dornheim, Groth, and coworkers [55,56], although
the studies were limited to a few temperature-density combi-
nations. A more extensive data set was presented in Ref. [63]
based on imaginary-time correlation functions [95], which al-
low estimates of the full wave number static density response
dependence from a single simulation of the unperturbed sys-
tem. In combination with the ground-state Corradini et al.
parametrization [93], the data were used to train a neural-
network representation of the static local field correction [cf.
Eq. (5) below], which covers the entire relevant range of
WDM parameters. For completeness, we note that highly
accurate UEG results at WDM conditions have even become
available for dynamic properties such as S(q, ω) [8,96,97] and
for the nonlinear density response [95,98–101].

In the present work, we extend previous studies of the
linear response of the warm dense UEG by presenting the first,
highly accurate ab initio path integral Monte Carlo (PIMC)
[102,103] results for the spin-resolved components of density
response function, and the static local field correction. First
and foremost, we note that this constitutes an indispensable
basis for the study of WDM in the presence of an external
magnetic field [104,105], for example, in the vicinity of a
neutron star [27]. Moreover, we gain insights into dielectric
theories such as the celebrated scheme by Singwi et al. [85,86]
(STLS), which is often remarkably accurate in the description
of the full electronic density response, but considerably less
accurate regarding the individual spin-resolved components.
From a physical perspective, our analysis reveals the inter-
esting and nontrivial manifestation of the recently reported
effective electronic attraction within the UEG [12] onto the
spin-offdiagonal components of the static density response
function. All the PIMC results are freely available online
[106] and can be used to benchmark approximations and
simulation schemes.

The article is organized as follows: In Sec. II we introduce
the required theoretical background, including the general-
ized Hamiltonian and its relation to spin-resolved density
responses (Sec. II A), the concept of imaginary-time inter-
mediate scattering functions (Sec. II B), and the definition of
spin-resolved local field corrections (Sec. II C). Section III is
devoted to our extensive simulation results, starting with a
brief discussion of the intermediate scattering function eval-
uated at imaginary-time arguments (Sec. III A). In Sec. III B
we discuss in detail the spin-resolved density response of
the UEG both at a metallic density (Sec. III B) and in the
strongly coupled electron liquid regime (Sec. III C). Finally,
we consider the density response at the intermediate spin-
polarization of ξ = 1/3 (Sec. III D). The paper is concluded
by a brief summary and outlook in Sec. IV.

II. THEORY

A. Hamiltonian perturbation and spin-resolved
static density responses

Throughout this work, we consider a Hamiltonian operator
of the form

Ĥ =
∑

s∈{u,d}
K̂s + 1

2

∑
s,t∈{u,d}

Ŵs,t +
∑

s∈{u,d}
2As

Ns∑
k=1

cos(q · r̂k ),

(1)

with K̂s being the kinetic energy operator of the species s,
and Ŵs,t taking into account the full two-body interaction
between all particles from species s and t . In the UEG case,
the different species are given by the two spin-orientations,
and the interaction is given by the usual Ewald sum as it
has been introduced in detail, e.g., in Ref. [107]. The final
term in Eq. (1) corresponds to an external static harmonic
perturbation [55,56,90–92,98,108] with a species-dependent
amplitude As. It is important to note that, although Eq. (1) can
technically depend on the spin orientation of the respective
electrons, our PIMC setup is strictly spin restricted; changes
in the spin and the associated problem of spin contamination
[109] are not considered in this work. At the same time, we
note that, by definition, such a setup is not required to estimate
the spin species resolved linear density response functions [3]
on which we primarily focus here.

Within linear response theory, i.e., in the limit of infinites-
imal perturbations, the static density response of species s is
given by [84]

δ 〈ρ̂s(k)〉 =
∑

t∈{u,d}
χst (k)Atδk,q, (2)

with χst (k) the spin-resolved density response function that
describes the impact of a perturbation of species t on the
(unperturbed) species s [i.e., At > 0 and As = 0 in Eq. (1)].
In that case, Eq. (2) can be simplified to

δ 〈ρ̂s(k)〉 = χst (k)Atδk,q. (3)

Equation (2) directly implies that the density response at-
tains only nonzero values at the wave vector of the original
perturbation, k = q. As a consequence, the excitation of
higher-order harmonics constitutes a purely nonlinear phe-
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nomenon; see Refs. [95,99–101,110] for a recent investigation
of such effects in the UEG. The estimation of the l.h.s. of
Eq. (3) is straightforward in our PIMC simulations,

δ 〈ρ̂s(k)〉 = 1

V

〈
Ns∑

l=1

e−ik·r̂l

〉
{At },q︸ ︷︷ ︸

〈ρ̂s (k)〉

− 1

V

〈
Ns∑

l=1

e−ik·r̂l

〉
{At =0},q︸ ︷︷ ︸

=0

.

(4)

We point out that the second term on the r.h.s. of Eq. (4) cor-
responds to the expectation value of the density in reciprocal
space in the unperturbed limit, which vanishes in the case of a
uniform system [3].

From a theoretical perspective, within the polarization po-
tential approach, it is very convenient to express the density
response of species s in terms of the density response of an
ideal (noninteracting) Fermi gas χ (0)

ss (k), which leads to [84]

δ 〈ρ̂s(k)〉

= χ (0)
ss (k)

(
Asδk,q + 4π

k2

∑
t∈{u,d}

[1 − Gst (k)]δ 〈ρ̂t (k)〉
)

.

(5)

For completeness, we note that there exist no cross terms in
the ideal Fermi case, i.e., χ

(0)
st (k) = δstχ

(0)
st (k), as different

noninteracting species cannot be correlated with each other.
The complete wave-number-resolved information about elec-
tronic exchange-correlation effects is now fully encoded into
the static local field corrections (LFCs) Gst (k), which are
a priori unknown. In the present investigation, we present
accurate results for all the spin-resolved LFC components that
we extract from our ab initio PIMC data for the static density
response; see Eqs. (19) and (20) below.

B. Spin-resolved imaginary-time intermediate
scattering functions

In the previous section, we have introduced a straight-
forward way to obtain the spin-resolved density response of
the UEG from PIMC simulations of the harmonically per-
turbed system. While being formally exact, this procedure
requires individual PIMC simulations for multiple values of
the respective perturbation amplitude At to obtain the den-

sity response χst (k) for a single wave vector at one specific
density–temperature combination [55,56]. In practice, one can
never really know when the perturbation amplitude is suffi-
ciently small for linear response theory to be truly valid and
one cannot employ too small perturbation amplitudes due to
noise issues. A more convenient way is given by the esti-
mation of imaginary-time correlation functions, which give
us access to the full k dependence of the density response
from a single simulation of the unperturbed system [95]. For
example, the total, spin-unresolved imaginary-time version of
the intermediate scattering function (IT-ISF) is given by

Ftot(q, τ ) = 1

N
〈n̂tot(q, τ )n̂tot(−q, 0)〉0 , (6)

with the definition of the (unnormalized) single-particle den-
sity operator

n̂tot(q, τ ) =
N∑

k=1

e−iq·r̂k,τ ; (7)

here r̂k,τ denotes the coordinate of particle k at the imaginary
time τ . The utility of Eq. (6) is demonstrated by its relation to
the dynamic structure factor S(q, ω), which reads as

Ftot(q, τ ) =
∫ ∞

−∞
dω S(q, ω) e−τω. (8)

This constitutes the basis for an analytic continuation, i.e.,
the numerical solution of Eq. (8) for S(q, ω). Such an inverse
Laplace transform is a notoriously hard problem, that is, un-
fortunately, ill-conditioned with respect to the Monte Carlo
error bars [111,112]. For the UEG, this problem has recently
been overcome by Dornheim and coworkers [8,96,97,113]
who have presented the first highly accurate results for S(q, ω)
(and related properties) based on the stochastic sampling of
the frequency-dependent LFC G(q, ω).

In the context of the present work, the central utility of
F (q, τ ) is captured in the imaginary-time version of the
fluctuation-dissipation theorem [92],

χtot(q) = −N

V

∫ β

0
dτ F (q, τ ), (9)

which gives us direct access to the full static density response
of the UEG. In addition, it is straightforward to decompose
Eq. (9) into separate, spin-resolved contributions

χtot(q) = −N

V

∫ β

0
dτ

⎛⎜⎜⎝ 1

N
〈n̂u(q, τ )n̂u(−q, 0)〉0︸ ︷︷ ︸

Fuu(q,τ )

+ 1

N
〈n̂d(q, τ )n̂d(−q, 0)〉0︸ ︷︷ ︸

Fdd (q,τ )

+2
1

N
〈n̂u(q, τ )n̂d(−q, 0)〉0︸ ︷︷ ︸

Fud (q,τ )=Fdu(q,τ )

⎞⎟⎟⎠, (10)

where the spin-resolved single-particle density operator in
reciprocal imaginary time space is defined as

n̂s(q, τ ) =
Ns∑

k=1

e−iq·r̂k,τ . (11)

Splitting the integral in Eq. (10) into its individual constituents
leads to the relation

χst (q) = −N

V

∫ β

0
dτ Fst (q, τ ), (12)
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which is employed throughout this work. Furthermore, the
spin-resolved static structure factor is defined as the τ → 0
limit of the corresponding IT-ISF,

lim
τ→0

Fst (q, τ ) = Sst (q). (13)

C. Spin-resolved static local field corrections

In previous works [2,62,63,96,114], we considered the to-
tal LFC of the spin-unpolarized UEG, which describes the
impact of all electronic exchange–correlation effects on the
density response of the full electronic density,

χtot(q) = χ
(0)
tot (q)

1 − 4π
q2 [1 − Gtot(q)]χ (0)

tot (q)
. (14)

It is apparent from Eq. (10) that the connection between the
total density response functions and the spin-resolved density
response functions is simply given by [3,115]

χtot(q) =
∑

s,t∈{u,d}
χst (q), (15)

χ
(0)
tot (q) =

∑
s∈{u,d}

χ (0)
ss (q),

where we note the reciprocity relation χud(q) = χdu(q) that
is valid regardless of the UEG spin polarization ξ . Within
linear response theory and the polarization potential approach
for a two-component system, employing a tilde operator that
inverts the spin state (̃d = u, ũ = d), the spin-resolved gener-
alization of Eq. (14) can be compactly written as [84,115]

χst (q) = χ
(0)
tt (q)

δst + (−1)δst �t̃̃ s(q)

D(q)
, (16)

with the definitions

D(q) = [1 − �uu(q)][1 − �dd(q)] − �ud(q)�du(q), (17)

�st (q) = 4π

q2
[1 − Gst (q)]χ (0)

ss (q). (18)

Naturally, Eq. (16) can be straightforwardly inverted for the
individual spin-resolved LFCs leading to

�st (q) = δst + (−1)δst
χ (0)

ss (q)χ̃t̃ s(q)

det[χst (q)]
, (19)

where det[χst (q)] denotes the determinant of the spin-resolved
density response matrix. The final result for the LFC of an
arbitrary spin component is then given by

Gst (q) = 1 − q2

4π

�st (q)

χ
(0)
ss (q)

, (20)

where we note the reciprocity relation Gud(q) = Gdu(q) that
is valid regardless of the UEG spin polarization ξ . In practice,
we perform extensive PIMC simulations of the unperturbed
UEG in order to estimate Fst (q, τ ) over the entire relevant
range of wave numbers. These results are then inserted into
Eq. (12) to compute χst (q), which is used to calculate �st (q)
via Eq. (19), which, in turn, is used to estimate Gst (q) via
Eq. (20).

It is worth pointing out that the longitudinal spin-spin
response function χS, which gives the response of the z

component of the spin density to a static magnetic field per-
turbation parallel to the z axis, is given by [3]

χS(q) =
∑
s,t

sgn(s)sgn(t )χst (q) =
∑
s,t

(2δst − 1)χst (q),

where s, t ∈ {u, d} with the spin sign convention sgn(u) = 1
and sgn(d) = −1.

In the spin-unpolarized (paramagnetic) case of ξ = 0, in
addition to the reciprocity relations, one also has the spin
symmetry relations χ (0)

uu (q) = χ
(0)
dd (q) = χ

(0)
tot (q)/2, χuu(q) =

χdd(q) and Guu(q) = Gdd(q). These relations lead to [3]

χ
ξ=0
tot (q) = χ

(0)
tot (q)

1 − 4π
q2 [1 − G+(q)]χ (0)

tot (q)
, (21)

χ
ξ=0
S (q) = χ

(0)
tot (q)

1 + 4π
q2 G−(q)χ (0)

tot (q)
, (22)

where G+(q) and G−(q) are the symmetric and antisymmetric
static LFC combinations that are defined by

G+(q) = Guu(q) + Gud(q)

2
, (23)

G−(q) = Guu(q) − Gud(q)

2
. (24)

III. RESULTS

All the PIMC simulations are carried out using an imple-
mentation of the extended ensemble approach introduced in
Ref. [71], which can be viewed as a canonical adaption of the
seminal worm algorithm by Boninsegni et al. [116,117]. Since
detailed introductions to PIMC have been presented elsewhere
[102,116], here we only summarize the main technical aspects
of our investigation. In particular, we do not impose any re-
strictions on the nodal structure of the thermal density matrix
[118]. Therefore, our simulations are exact within the given
Monte Carlo error bars, but they are afflicted by the notorious
fermion sign problem [103,119]. The latter manifests as an
exponential increase in the required compute time with re-
spect to system parameters like the number of electrons N , or
the inverse temperature β = 1/kBT . Indeed, the sign problem
constitutes the central practical bottleneck in our simulations
and limits their application to the temperature range 0.75 � θ .
For lower temperatures, the increase in compute time with
respect to PIMC simulation without the sign problem exceeds
four orders of magnitude; see Ref. [103] for a comprehensive
practical review of the sign problem in PIMC. For complete-
ness, we note that we employ the primitive high-temperature
factorization e−βĤ/P ≈ e−βK̂/Pe−βV̂ /P [with K̂ and V̂ being
the kinetic and potential contributions to the full Hamiltonian
Eq. (1), respectively], and the convergence with the number
of factors P has been carefully checked. Higher-order de-
compositions of e−βĤ/P have been studied in the literature
[120,121] but are not required for the conditions studied in
the present work. All PIMC results are freely available online
[106] and can be used as a benchmark for approximations and
developments.

033018-4



SPIN-RESOLVED DENSITY RESPONSE OF THE WARM … PHYSICAL REVIEW RESEARCH 4, 033018 (2022)

 0  1  2  3  4  5  6

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

q/qF

/

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

Ftot(q, )

 0  1  2  3  4  5

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

q/qF

/

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

Ftot(q, )

 0  1  2  3  4  5  6

 0
 0.1
 0.2
 0.3
 0.4
 0.5

-0.1

-0.05

 0

 0.05

q/qF

/

-0.1

-0.05

 0
Fud(q, )

 0  1  2  3  4  5

 0
 0.1
 0.2
 0.3
 0.4
 0.5-0.25

-0.2
-0.15

-0.1
-0.05

 0
 0.05

q/qF

/

-0.25
-0.2
-0.15
-0.1
-0.05
 0
 0.05

Fud(q, )

 0  1  2  3  4  5  6

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0

 0.2

 0.4

 0.6

q/qF

/

 0

 0.2

 0.4

 0.6

Fuu(q, )

 0  1  2  3  4  5

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0

 0.2

 0.4

 0.6

q/qF

/

 0

 0.2

 0.4

 0.6

Fuu(q, )

FIG. 1. PIMC results for the spin-resolved components of the imaginary-time intermediate scattering function of the unpolarized UEG
at the electronic Fermi temperature (θ = 1) and two quantum coupling parameters: rs = 2, N = 14 (left) and rs = 20, N = 66 (right). Top
row: the total IT-ISF Ftot (q, τ ); center: the spin-offdiagonal IT-ISF element Fud(q, τ ) = Fdu(q, τ ); bottom: the spin-diagonal IT-ISF element
Fuu(q, τ ) = Fdd(q, τ ).

A. Spin-resolved imaginary-time intermediate
scattering function

Let us start our investigation of the spin-resolved density
response of the warm dense electron gas by considering the
imaginary-time density-density correlation function F (q, τ ),
which constitutes the basis for most results obtained in this
work. In Fig. 1 we plot its different components at the elec-
tronic Fermi temperature θ = 1 for rs = 2 (left column) and
for rs = 20 (right column). More specifically, rs = 2 cor-
responds to a typical metallic density that can be realized
experimentally for example in aluminum [122,123]. The top
left panel of Fig. 1 concerns PIMC results for the total IT-ISF
F (q, τ ); cf. Eq. (6). First, it should be noted that all IT-
ISF components are symmetric around τ = β/2, F (q, τ ) =
F (q, β − τ ), thus it is sufficient to analyze this quantity in

the halved domain of 0 � τ � β/2. In addition, it converges
towards the static structure factor S(q) in the limit of τ → 0;
see Eq. (13) above. An additional feature of the full IT-ISF
depicted in the top panel concerns the monotonic decay along
the τ direction, which is a direct consequence of the kernel
e−τω of the Laplace transform Eq. (8) discussed in Sec. II B. In
fact, it can be shown that the steep decay of F (q, τ ) along the
imaginary time for large q directly reflects the single-particle
limit of the dispersion relation, which scales as ω(q) ∼ q2.

We next consider the spin-resolved contributions to the IT-
ISF, starting with the spin-offdiagonal component Fud(q, τ ) =
Fdu(q, τ ) shown in the center-left panel of Fig. 1. Evidently,
there are hardly any imaginary-time dependent correlations
between particles of different species, and it holds Fud(q, τ ) ≈
Sud(q) in good approximation. This reflects the near absence
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FIG. 2. Decay along the τ direction of the imaginary-time intermediate scattering function quantified by �Fτ (q) = F (q, 0) − F (q, β/2) at
rs = 2 and θ = 1. Left: PIMC results for different N for Ftot (green) and its spin-offdiagonal component Fdu (blue). Right: Magnified segment
around Fdu for different N .

of the imaginary-time diffusion processes in this case. In other
words, there certainly exist substantial correlations between
particles of different spin orientations, but they almost do not
depend on the τ argument in the spin-resolved single-particle
density operator n̂s(q, τ ) defined in Eq. (11).

To further investigate this remarkable observation, we rig-
orously quantify the τ dependence of both Ftot(q, τ ) (green
data points) and Fud(q, τ ) (blue data points) in Fig. 2.
Specifically, we consider the overall decay along τ , which
we quantify as �Fτ (q) = F (q, 0) − F (q, β/2). The bars,
crosses, and circles depict our PIMC results for N = 34, N =
20, and N = 14 unpolarized electrons. Clearly, no dependence
on the system size can be resolved within the given error bars,
which is consistent to previous investigations of the IT-ISF
of the UEG at similar parameters [113]. The green points
again show the substantial τ dependence of the total func-
tion Ftot(q, τ ) for all wave numbers, and the decay increases
with q. In the large-q limit, it holds F (q, 0) = S(q) = 1 and
F (q, β/2) = 0, which means that limq→∞ �Fτ (q) = 1. On
the other hand, no τ dependence can be seen in the spin-
offdiagonal IT-ISF on the depicted scale. To decisively resolve
the possible τ dependence of this function, we show a mag-
nified segment around the up-down component of �Fτ in the
right panel of Fig. 2, with the different symbols corresponding
to different numbers of electrons N . On this scale, we can
clearly resolve a small, though statistically significant depen-
dence on τ independent of N ; we note that the comparably
large error bars for N = 34 are a direct consequence of the
exponential increase in compute time with the system size due
to the fermion sign problem [103]. In other words, imaginary-
time diffusion between electrons of different species does play
a role, but orders of magnitudes smaller than the effects of
self-diffusion in Ftot(q, τ ).

The IT-ISF that measures the imaginary-time density cor-
relations between electrons of the same spin orientation
Fuu(q, τ ) = Fdd(q, τ ) is plotted at the bottom of Fig. 1 and
qualitatively resembles the full IT-ISF F (q, τ ) shown at the
top.

We shall conclude this analysis by considering the substan-
tially decreased density, rs = 20, that is plotted in the right

column of Fig. 1. This corresponds to a substantially more
strongly coupled system (the classical coupling parameter is
now � ≈ 0.54rs/θ ≈ 10 [38]) that belongs to the electron liq-
uid regime [3,88,114]. Since the basic behavior of all IT-ISFs
is the same compared to rs = 2, we restrict ourselves to a brief
discussion of the main differences due to the increased cou-
pling strength. First and foremost, we find a more pronounced
structure in all IT-ISFs, with a distinct, correlation-induced
peak located around twice the Fermi wave number, q ∼ 2qF.
The physical origin of this effect can be traced back to the
spontaneous excitation of aligned pairs of electrons [9], which
have a reduced interaction energy in the presence of the
UEG [12]. This peak exists throughout the entire τ domain,
and in all individual components of F (q, τ ). In addition, we
point out that the observed structure of the IT-ISF at rs = 20
shown in Fig. 1 leads to a roton-like feature in the dynamic
structure factor S(q, ω), which is discussed in detail in the
recent Ref. [9].

B. Spin-resolved density response at metallic densities

We proceed with the central task of the present investi-
gation, which is the accurate estimation of the spin-resolved
density response χst (q) to an external static harmonic pertur-
bation. More specifically, the latter may affect either both, or
only a single electron species. In the left panel of Fig. 3, we
show our PIMC results that have been obtained by integrating
the respective IT-ISF along the τ direction at rs = 2 and θ =
1. In particular, the different symbols depict our PIMC data
for N = 34 (bars), N = 20 (crosses), and N = 14 (circles)
unpolarized electrons, and the red, blue, and green colours
correspond to the up-up component, the down-up component,
and the full density response function, respectively. First and
foremost, we find no significant dependence of our results
on the system size for as few as N = 14 particles. This
is consistent with previous studies of wave-number-resolved
properties of the UEG [52,113,124–128], and only changes
for considerably lower temperatures when momentum-shell
effects start to become important. Physically, the response
of the spin-down electrons to a perturbation of the spin-up
electrons, χdu(q), has the opposite sign of the spin-diagonal
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harmonically perturbed UEG; cf. Fig. 4. Right: The corresponding results for the spin-resolved LFCs; see Eq. (20).

response function χuu(q), and the two exactly cancel in the
limit of q → 0. The former can be understood as follows:
the spin-up electrons will, on average, move to the minima
of the applied external potential. Therefore, their response
has a negative sign, χuu(q) < 0. This, in turn, induces the
unperturbed spin-down electrons to move away from the other
species, and to occupy the now less populated space where the
external field on the spin-up electrons is large. Consequently,
the corresponding response function has a positive sign. The
latter can be understood in view of the exact long wavelength
behavior of the UEG total static density response, that is given
by [129]

lim
q→0

χtot(q) = − q2

4π
, (25)

which is a direct consequence of the perfect screening in the
UEG. A second notable difference between χuu(q) and χdu(q)
is given by the fact that χdu(q) already decayed close to zero
for q � 2qF, whereas χuu(q) remains significant for substan-
tially larger values of q. The physical origin of this effect can
be understood by considering the role of the wavelength λ =
2π/q on both response functions; this is explained in detail in
the discussion of Fig. 8 below. In short, the spin-up electrons
are induced to react to the external potential even on small
length scales, i.e., at large q. In contrast, the unperturbed spin-
down electrons are increasingly less affected by such small
displacements of the spin-up electrons. As a consequence,
χdu(q) converges to zero when λ � rs, which also implies that
the total density density response and the longitudinal spin-
spin response become nearly indistinguishable for q � 2qF.
Concerning the χS(q) spin response function, it is important
to point out that its long wavelength limit is not zero but neg-
ative, in accordance with the spin susceptibility sum rule and
the positive static paramagnetic susceptibility [115]. Notice

that the nonpositivity of χS(q) is guaranteed in nearly the
entire wave number range by the earlier discussed χdu(q) > 0
and χuu(q) < 0, since χS(q) = 2[χuu(q) − χdu(q)] in the un-
polarized UEG.

The dashed lines show the widespread random phase ap-
proximation (RPA), which describes the density response of
the UEG to an external perturbation on the mean-field level
and whose two-component version assumes that all the spin-
resolved LFCs are identically zero. Evidently, it is in good
qualitative agreement with the PIMC data for all depicted
components at these parameters. Indeed, the RPA is well
known to exactly describe the total density response in the
limit of large wavelengths; see Eq. (25). The most pronounced
systematic errors in the RPA appear around q ∼ 1.5qF, where
the total density response attains a maximum. This follows
from the addition of the deviations in both components χuu(q)
and χud(q) as the systematic errors have the same sign for
intermediate q. From a physical perspective, the deficiency
can be traced back to the spontaneous alignment of electron
pairs in the UEG, which sensitively depends on the accurate
description of the effective interaction potential [9,12].

Interestingly, the RPA exhibits systematic errors for q → 0
in the individual components, which only cancel in the total
response function χtot (q). This can be seen particularly well
by comparing them to the solid curves, which have been
obtained on the basis of the approximate static LFC that was
originally suggested by Singwi, Tosi, Land, and Sjölander
[86] (STLS); see Refs. [40,84,85] for the extension of this
idea to finite temperatures. Evidently, the STLS scheme also
attains the correct limit of the total response function, i.e.,
Eq. (25). Yet it predicts a different q → 0 limit for the individ-
ual components spin resolved compared to RPA. In addition,
we observe that the STLS scheme constitutes a substantial
improvement over the RPA over the entire q range, and the
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diamonds: the spin-offdiagonal response ρd(q, Au ); red circles: the spin-diagonal response ρu(q, Au ); green crosses: the total density response
of the unpolarized UEG to a response acting on both spin components, adopted from Refs. [98,99]. Left: q = 2πL−1(1, 0, 0)T (q ≈ 0.84qF);
right: q = 2πL−1(3, 0, 0)T (q ≈ 2.52qF). The solid black line corresponds to the prediction of linear-response theory, and the dashed yellow
line corresponds to the cubic fit according to Eq. (26).

remaining deviations to the PIMC data are small. Finally,
we emphasize that the favorable cancellation of errors in the
RPA and STLS predictions for the long-wavelength total den-
sity response function, unavoidably turns into an unfavorable
augmentation of errors in the RPA and STLS predictions for
the long wavelength spin response function. Concerning the
χS(q) response, the STLS scheme still constitutes a substan-
tial improvement over the RPA within the entire q range, but
its q → 0 deviations to the PIMC data are rather substantial.

We shall postpone the discussion of the yellow triangles
for now, and instead consider the spin-resolved static LFCs
that are depicted in the right panel of Fig. 3. In stark contrast
to the static density response, the STLS curves do not follow
the PIMC data that we have obtained from Eq. (20). While
the former exhibit the same ordering as the latter for q � 3qF,
they exhibit a convergence towards a constant value in the
limit of large q. In fact, this is a well-known property of purely
static theories of the LFC [65,85,130], whereas the exact static
limit of the dynamic LFC, G(q) = limω→0 G(q, ω) exhibits a
more complicated behavior. Indeed, Holas [131] has shown
that the latter parabolically diverges for large q at T = 0, with
the pre-factor being determined by the exchange-correlation
contribution to the kinetic energy Kxc [70,71,104,132]. Sub-
sequently, based on highly accurate PIMC data, Dornheim
et al. [63,114] have discovered that the same qualitative trends
persist also at finite temperatures. Remarkably, Kxc is known
to attain negative values for T > 0 at some rs-θ combina-
tions [70,132], which leads to a negative tail of the LFC at
large q; this is indeed the case for the total (spin-symmetric)
LFC, the spin-antisymmetric LFC and the spin-diagonal LFC
component at the present conditions. Moreover, we note that
this negative slope seems to be exclusively caused by Guu(q),
whereas the spin-offdiagonal LFC appears to attain a con-
stant value for large q. Unfortunately, this point cannot be

conclusively settled on the basis of the present data due to
the increasing Monte Carlo error bars. On the other hand,
such a conclusion seems to be empirically supported by the
almost nonexistent imaginary-time dependence of Fdu(q, τ )
shown in Fig. 1. Due to the substantially reduced magnitude
of the imaginary-time diffusion between electrons of differ-
ent spin orientation, the corresponding intermediate scattering
function behaves nearly classically. This will then be reflected
in the behavior of the LFC, which is known to converge
towards a constant value at large q in the classical limit [84].
Finally, in spite of the χS(q), χtot (q) convergence at q �
2qF, there is no corresponding G−(q), G+(q) convergence at
short wavelengths; see the small difference in the constitutive
Eqs. (21) and (22) but also the nonzero large-q limit of the
spin-offdiagonal LFC.

Aiming to get a more direct practical insight into the spin-
resolved density response of the warm dense UEG, we have
also carried out PIMC simulations that are governed by the
Hamiltonian of Eq. (1) with Au > 0 and with Ad = 0. In other
words, we have only perturbed the spin-up electron species,
but we have estimated how both spin components react to the
external perturbation. The results are shown in Fig. 4, where
we show our PIMC data for the different induced densities
for q ≈ 0.84qF and q ≈ 2.52qF. The green crosses have been
obtained from earlier PIMC simulations [98,99] where both
components were perturbed and have been included as a ref-
erence. In addition, the red circles and blue diamonds show
the actual spin-diagonal and spin-offdiagonal responses. The
solid black lines show the corresponding predictions from
linear-response theory (i.e., using our data for χst (q) that were
obtained from the IT-ISFs), which are in excellent agreement
to the raw PIMC data in all three cases in the vanishing
perturbation limit. In addition, it is well known that the first
nonlinear contribution to the density response at the wave
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the perturbation amplitude A = 0.1. Red circles (blue diamonds): the density response of the spin-up (spin-down) electrons to a perturbation
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number of the original perturbation (i.e., the first harmonic
[99]) is cubic in the perturbation amplitude A, and the dashed
yellow lines have been obtained by fitting to the PIMC data
the function [98]

ρst (q, A) = χst (q)A + χ
(cubic)
st (q)A3, (26)

where the linear and cubic response functions are the free
parameters. It is straightforward that the inclusion of the cubic
terms means that the analytical curves in Fig. 4 remain valid
for substantially stronger perturbation amplitudes. In addition,
it should be pointed out that χ

(cubic)
st (q) leads to a reduction

of the actual density response compared to linear-response
theory for both the diagonal and the offdiagonal density re-
sponses. In other words, nonlinear effects are actually more
pronounced in the individual components, and they cancel to
some degree in the full density response; cf. the green crosses
and the corresponding black and yellow curves. A detailed
investigation of the spin-resolved nonlinear density response
should be based on a corresponding generalization of the
higher-order imaginary-time correlation functions introduced
in Ref. [95], which is beyond the scope of the present work.

In order to check the consistency of our PIMC implemen-
tation, we have included the linear coefficients from Eq. (26)
as the yellow triangles in the left panel of Fig. 3 for all the
components. We find perfect agreement to the IT-ISF-based
results for all three response functions, and for all three con-
sidered values of the wave number q.

A further perspective onto the physical meaning of the
different χst (q) is provided in Fig. 5, where we plot the
density profile along the direction of the external perturbation
in coordinate space. We consider the same wave numbers
as in Fig. 4, and choose the perturbation amplitude A = 0.1,
where linear-response theory is accurate, although not exact;
see the small deviations between the black curves and the red
circles and green crosses in the left panel. In both cases, it
can be clearly discerned that the perturbed spin-up electrons
(red circles) strongly react to the externally imposed field and
that they, on average, avoid the maximum of the latter. On the

other hand, the directly unperturbed spin-down electrons (blue
diamonds), exhibit the opposite trend at q ≈ 0.84qF (left), but
they hardly react for q ≈ 2.52qF (right). As discussed earlier,
at such wave numbers, the full density response is nearly
exclusively provided by the spin-diagonal component.

Let us conclude our investigation of the spin-resolved den-
sity response of the warm dense UEG at the metallic density
rs = 2 by the analysis of the spin-resolved components of
the static structure factor Sst (q); cf. Eq. (13) in Sec. II B
above. The respective results are shown in Fig. 6, where
the spin-offdiagonal part Sdu(q) = Sud(q), the spin-diagonal
part Suu(q) = Sdd(q), and the total structure factor Stot(q) are
depicted in the top, center, and bottom panel. Specifically, the
crosses and bars have been obtained for N = 14 and N = 34
unpolarized electrons, and no finite-size errors can be resolved
within the given Monte Carlo error bars. In addition, the
dashed blue and solid red lines show the corresponding results
within the RPA and the STLS scheme. The latter exhibit the
same qualitative trends as the PIMC reference data. We again
observe that both these analytical approaches give the exact
result for the total structure factor in the long-wavelength limit
of q → 0 [129],

lim
q→0

Stot(q) = q2

2ωp
coth

(
βωp

2

)
, (27)

with ωp = √
3/r3

s the usual plasma frequency, but fail to give
the exact long-wavelength results for the individual com-
ponents Suu(q) and Sdu(q). Overall, as it is expected, the
STLS scheme provides a substantially better agreement to
the PIMC data over the entire q range in all three cases.
Nevertheless, it is evident that the impressive quality of the
STLS results for the total structure factor Stot(q) is the result
of a fortunate error cancellation between the spin-diagonal
and spin-offdiagonal components, where the STLS results
are systematically too low and too high, respectively. The
STLS discussion serves as a manifestation of how our exact
spin-resolved data for the density response can be exploited
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to give insights into the performance of established dielectric
schemes [40,59,60,85,133,134], and to guide the further de-
velopment of novel schemes [88,89].

C. Spin-resolved density response at the strongly
coupled electron regime

A further interesting research question is given by the de-
pendence of the spin-resolved density response on the density
parameter rs. To this end, we have carried out additional
PIMC simulations of the UEG at θ = 1 and rs = 10. These

conditions are located at the margins of the strongly coupled
electron liquid regime [3,114] and exhibit a potential wealth
of interesting physical effects. For example, Dornheim et al.
[8] have found a roton-like feature in the dispersion relation
ω(q) of the dynamic structure factor S(q, ω) at these parame-
ters, that has recently been explained by the spontaneous pair
alignment of electrons [9]. Furthermore, it has been reported
that the effective interaction between two electrons in the
presence of the UEG [135,136] becomes weakly attractive at
this density–temperature combination [12].

In the left panel of Fig. 7, we show the corresponding
spin-resolved components of the density response function,
as obtained from our PIMC estimation of the respective
Fst (q, τ ). At a first glance, we perceive a qualitatively similar
picture to the metallic density case shown in Fig. 3, i.e., the
spin-diagonal and the spin-offdiagonal density response func-
tions have opposite signs for q � 2qF, and χdu(q) converges
towards zero already around intermediate wave numbers q/qF.
Furthermore, we observe that the RPA (dashed curves) is sub-
stantially less accurate in the present case. This is expected,
given the increased coupling strength which leads to a more
pronounced impact of the electronic exchange-correlation
effects that are encoded into the LFCs Gst (q) and are com-
pletely neglected within the RPA. Again, the STLS scheme
constitutes a substantial improvement over the RPA, but does
not correctly predict neither the magnitude nor the position of
the peak in the total response function χtot(q). When inspect-
ing the spin-resolved components, we observe that the RPA
systematically underestimates the true magnitude of χuu(q)
over the entire q range, whereas it crosses the PIMC results
for χdu(q) around q = qF. The STLS scheme, likewise, sys-
tematically underestimates the spin-diagonal component and
crosses the PIMC data for χdu(q), but around q = 2qF.

In addition to the above technical insight into the perfor-
mance of different dielectric schemes, we detect a sign change
in our PIMC data for the spin-offdiagonal density response
function χdu(q) in the range 2qF � q � 3qF. This can be
discerned particularly well in the inset showing a magnified
segment around this remarkable feature. Aiming to further
elucidate the physical origin and manifestation of this effect,
we have carried out PIMC simulations of the UEG where
only the spin-up electrons are subject to the external harmonic
perturbation. The results for the spin-resolved density profiles
along the direction of the perturbation are shown in the right
column of Fig. 7, where the left and right ordinates corre-
spond to the spin-up (red) and spin-down (blue) electrons,
respectively. In particular, Fig. 7(a) has been obtained for
q ≈ 0.62qF and the perturbation amplitude Au = 0.002; we
reiterate that there no perturbation is applied to the spin-down
electrons, Ad = 0. Evidently, we observe a similar picture as
for rs = 2 (cf. Fig. 5) with the spin-up electrons escaping the
external potential perturbation, and the spin-down electrons
occupying the vacant space. Owing to the small wave number,
the two contributions almost cancel, which indicates that the
total electronic density response is small, as seen in the green
curve in the left panel of Fig. 7. In Fig. 7(b) we have plotted
the same information, but for q ≈ 2.5qF and Au = 0.01, which
is located in the vicinity of the negative minimum of χdu(q).
Remarkably, we find that the unperturbed spin-down electrons
actually follow the perturbed spin-up electrons and, therefore,
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occupy the minima of the external potential acting on the
latter.

Before exploring the physical origin of this peculiar ef-
fect, we have performed one additional consistency check.
More specifically, we have carried out a number of calcu-
lations at this wave number q with different Au, and have
performed a cubic fit [cf. Eq. (26)] to the density response
of the spin-down electrons ρd(q, A). The corresponding linear
coefficient is depicted as the yellow diamond in the left panel
of Fig. 7. Hence, the extracted density response function from
the perturbation formalism is in perfect agreement to the data
from the equilibrium IT-ISF formalism. The simulations of
the perturbed system have thus conclusively shown that (a)
our IT-ISF implementation gives the correct linear-response
prediction for this negative minimum and (b) the peculiar
simultaneous movement of both spin components towards the
minima of the external potential of the spin-up electrons is not
an artefact of linear-response theory, but actually manifests
in the true density profile shown in Fig. 7(b) without any
expansions in powers of the perturbation amplitude.

To understand the physical origin of this effect, we explore
the spatial structure of the harmonically perturbed UEG, and
the involved length scales, in Fig. 8. Here the red beads
depict the perturbed spin-up electrons, which automatically
move towards the minima of the external potential (black
sinusoidal curves). In addition, the blue bead depicts a directly
unperturbed spin-down electron. The top panel corresponds
to the long wavelength regime, λ 	 d (with d ∼ 2rs the av-
erage interparticle distance), and the blue spin-down electron
will move towards the maximum of �ext(x), i.e., towards the

minimum of its interaction energy landscape due to the other
electrons that is indicated by the shaded gray area.

The center panel corresponds to the regime of interest
where q ∼ 2.5qF and λ ∼ d . In other words, the wavelength of
the external potential is commensurate with the spatial struc-
ture of the system. Therefore, the blue spin-down electron is
effectively pushed by its neighbor to the right, and effectively
attracted by its neighbor to the left. The corresponding min-
imum of the interaction energy coincides with the minimum
of �ext(x) in this case, which explains the negative sign of
the spin-offdiagonal density response function χdu(q) in this
regime. Indeed, Dornheim et al. [12] have recently reported
such an effective attraction between two electrons in the UEG
precisely in this regime, without any assumptions based on
linear-response theory or other approximations. The observed
behavior of χdu(q) thus constitutes a direct manifestation of
electronic exchange-correlation effects. Consequently, it is not
captured by either RPA or the STLS scheme; cf. the inset in
Fig. 7.

The bottom panel of Fig. 8 schematically illustrates the
spatial structure of the perturbed system in the single-particle
regime where λ 
 d . While the spin-up electrons, as usual,
move towards the minima of �ext(x), the unperturbed spin-
down electrons can be anywhere in the vicinity of the shaded
green area. Eventually, any correlations with the wavelength
λ will disappear, which means that χdu(q) = 0 in this regime.

In order to further explore the correlational origin of the
negative minimum in χdu(q), we have carried out extensive
PIMC simulations at the electronic Fermi temperature θ = 1
for four different values of the quantum coupling parameter rs.
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FIG. 8. An illustration of the length scales and the spatial struc-
ture of the harmonically perturbed UEG in the regime of effective
attraction; cf. Fig. 7. The perturbed red electrons are, on average,
aligned to the external potential applied directly to them (black
sinusoidal lines). The unperturbed blue electron aligns itself to the
minimum of the effective interaction energy landscape, which is
depicted as the shaded green area. Top: long-wavelength regime (λ >

d), both components react, but with the opposite sign; center: the
perturbation is commensurate to the inter-particle distance (λ ∼ d)
and both components are aligned to the minima of �ext; bottom:
short-wavelength regime (λ 
 rs), only the spin-up electrons are
aligned to �ext.

The results are depicted in Fig. 9, where the focus lies mainly
on the wave number regime that is relevant for this effect. The
data points correspond to our PIMC results for different rs,
and the solid curves correspond to the STLS [40,85] results for
three representative densities. First and foremost, we observe
that the magnitude of the effective attraction monotonically
increases with rs, and starts to appear around rs � 5 at this
value of θ . It should be pointed out that this is in very close
agreement to the emergence of the effective attraction be-
tween two electrons in the UEG that has been investigated in
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q/qF

rs=20
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FIG. 9. The spin-offdiagonal density response χud(q) of the un-
polarized UEG at the temperature θ = 1 for different values of the
quantum coupling parameter rs. The solid curves show correspond-
ing results of the finite-T STLS scheme [40,85].

Ref. [12]. In addition, it is evident that the STLS scheme does
not provide an adequate description of this effect; the shallow
minimum in the solid blue curve for rs = 20 underestimates
its true depth by an order of magnitude, and does not even
qualitatively match the shape of the exact PIMC data.

We shall conclude the discussion of this effect with a note
on the impact of the spin polarization parameter ξ . In fact,
the spin-resolved density profiles that are illustrated in Figs. 5
and 7 seem to imply that the observed attraction might be a
spin-dependent phenomenon. To dispel this erroneous notion,
we have performed PIMC simulations at rs = 20 and θ = 1,
and the results are shown in Fig. 10. Specifically, the red,
blue, and green data sets correspond to the individual compo-
nents χuu(q), χdu(q), and χtot(q) of the spin-unpolarized UEG
(ξ = 0). In addition, we have performed PIMC simulations
of the spin-polarized UEG (i.e., ξ = 1 or n = nu, nd = 0)
at the same density and same absolute value of the inverse
temperature β = 217.204 Ha−1. The results are shown as the
yellow triangles in Fig. 10, and the PIMC data are in perfect
agreement to the total density response function of the unpo-
larized system, i.e., the green circles. Clearly, the total density
response function does not depend on the spin polarization for
such a large value of rs. This is consistent to the recent investi-
gation of the effective force and interaction potential between
a pair of electrons in the UEG by Dornheim et al. [12],
who have shown that any spin dependence of these properties
vanishes for distances r � rs. Therefore, the effective push and
effective attraction that is experienced by the blue spin-down
electron in the center panel of Fig. 8 does not intrinsically
depend on the spin orientation of either electron. Spin-up
electrons experience the same potential towards each other
as with the spin-down electrons at the depicted distances.
Instead, in this case, the apparent spin dependence is entirely
due to the spin-asymmetric external potential. Hence, the total
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FIG. 10. The spin-resolved components of the static density re-
sponse of the UEG at θ = 1 and rs = 20. The red, blue, and green
data sets show PIMC results for the spin-diagonal response χuu(q),
the spin-offdiagonal response χud(q), and the full response function
χtot(q), respectively. The yellow triangles data sets show PIMC re-
sults for the full response function of the spin-polarized (ξ = 1) UEG
at the same absolute T , β = 217.204 Ha−1. The solid and dashed
curves show the corresponding results of the finite-T RPA and STLS
scheme.

density response does not depend on the spin polarization and
is the same for both the unpolarized and spin-polarized system
as it can be clearly seen from the PIMC data points shown in
Fig. 10.

Curiously, we do observe minor yet significant deviations
between ξ = 0 and ξ = 1 in the analytical theories for χtot(q)
both within the RPA (dashed) and the STLS scheme (solid).
In the real system, any dependence on the spin-polarization
is suppressed by the strong electronic exchange-correlation
effects that are exactly incorporated into the PIMC data. The
analytical theories, on the other hand, are based on an approx-
imate description which leads to the spurious, i.e., unphysical,
observed spin effect.

D. Intermediate spin polarizations

Let us conclude the investigation of the spin-resolved den-
sity response of the warm dense UEG by considering a case
of intermediate polarization, ξ = 1/3. In Fig. 11 we show
our PIMC results for the respective IT-ISFs at rs = 2 and
θ = 1 (using the Fermi energy of the unpolarized UEG as a
reference). The top left panel shows the combined result of all
electrons and closely resembles the corresponding Ftot(q, τ )
of the unpolarized UEG at the same conditions shown in
Fig. 1. The same holds for the spin-offdiagonal element
Fud(q, τ ) = Fdu(q, τ ) that is illustrated in the top right panel.
The bottom row shows our PIMC results for the spin-diagonal
components, which are not equal for ξ �= 0. In fact, the IT-ISF

of the majority component Fuu(q, τ ) shown in the bottom left
panel exhibits a somewhat more pronounced structure than the
minority component Fdd(q, τ ) shown on the right. Most likely,
this can be traced back to a simple rescaling of the respective x
axis. In fact, we divide the wave number q by the Fermi wave
number qF of the unpolarized UEG at a total density of rs = 2.
For ξ = 1/3, it holds nu = 2nd, such that ru

s < rd
s . Since the

Fermi wave number scales as qF ∼ 1/rs, the larger rd
s will

mean that the results for Fdd(q, τ ) would effectively be shifted
to the right, where Fuu(q, τ ), too, exhibits less structure, in
particular for τ = β/2.

We shall next examine the spin-resolved components of
the static density response function, which are shown in the
left panel of Fig. 12. The comparison of the results for both
the total density response χtot(q) and the spin-offdiagonal re-
sponse χud(q) = χdu(q) to the corresponding results for ξ = 0
shown in Fig. 3 clearly illustrates that the overall effect of ξ is
small at these conditions; this observation holds both for the
exact PIMC results and for the RPA (dashed) and STLS (solid)
results. The situation becomes more interesting for the spin-
diagonal density response, which differs between the majority
and the minority spin. In the depicted q range, the two curves
only agree in the limit of q → 0, where they have to balance
the respective limit of χdu(q), but they substantially disagree
everywhere else. Overall, the density response of the spin-up
electrons is systematically larger than the density response of
the spin-down electrons due to their larger number density;
yet, the simple ratio nu/nd = 2 is not reflected between χdd(q)
and χuu(q). At this point, it should also be emphasized that,
courtesy of the density imbalance, the normalized chemical
potentials of the Fermi-Dirac distribution of each spin con-
stituent are different. This would translate to differences that
are not captured by the density ratio even in the noninteracting
high density limit.

In the right panel of Fig. 12, we show the corresponding
PIMC results for the spin-resolved LFCs that have been ex-
tracted via Eq. (20). Evidently, the Monte Carlo error bars are
substantially larger compared to the LFC in the case of ξ = 0
shown in Fig. 3. This is mainly a consequence of the fermion
sign problem, which becomes more severe with increasing ξ

when the density and the (absolute) temperature are being
kept constant. With increasing spin polarization, fermionic
exchange cycles that can form only between electrons of the
same spin orientation can form in our PIMC simulations with
increasing frequency; see Ref. [137] for a detailed discussion
of the manifestation of permutation effects in the imaginary-
time path integral picture. In addition, it should also be noted
that the error bars of Gdd(q) and, to a lesser extend, Gud(q)
are comparably larger due to the reduced statistics on the
spin-down electrons as Nd < Nu. Overall, the familiar order-
ing of the different spin components is recovered, with the
spin-diagonal component of the minority electrons attaining
the largest values. The same ordering appears in the STLS
results (solid curves), although they do not resemble the true
PIMC data even at a qualitative level.

As the final research question to be investigated in this
work, we have performed PIMC simulations of the harmon-
ically perturbed system with ξ = 1/3. The results for the
density response of the different components as function of
the perturbation amplitude of the spin-up electrons Au are
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FIG. 11. PIMC results for the spin-resolved components of the imaginary-time intermediate scattering function of the UEG at the
intermediate polarization ξ = 1/3, rs = 2, and θ = 1 (with the Fermi energy of the unpolarized UEG as reference). Top left: the total IT-ISF
Ftot (q, τ ). Top right: the spin-offdiagonal IT-ISF element Fud(q, τ ) = Fdu(q, τ ). Bottom left: the spin-up diagonal IT-ISF element Fuu(q, τ ).
Bottom right: the spin-down diagonal IT-ISF element Fdd(q, τ ).

shown in Fig. 13; the spin-down electrons are not subject
to an external potential, i.e., Ad ≡ 0. First and foremost, we
note that linear-response theory (black lines) is accurate for
all components over the entire investigated range of the am-
plitude. In addition, the spin-up electrons (red circles) exhibit
a density response that is larger in magnitude compared to that
of the spin-down electrons (yellow triangles), as it is expected
from Fig. 12. Regarding the spin-offdiagonal component, the
blue diamonds show χdu(q); the density response of the spin-
down electrons due to the external perturbation of the spin-up
electrons. Furthermore, we have performed PIMC simulations
where we have perturbed the spin-down electrons, and, in-
stead, we have set Au ≡ 0; the corresponding spin-offdiagonal
density response ρu(q, Ad ) is depicted by the gray squares,
which are in perfect agreement to the reciprocal ρd(q, Au).
The validity of the general relation χud(q) ≡ χdu(q), that
should also hold in the case of intermediate polarizations, is
yet another manifestation of the internal consistency of our
PIMC simulations.

IV. SUMMARY AND DISCUSSION

In this work, we have presented the first highly accurate
ab initio PIMC results for the spin-resolved density response
of the warm dense UEG. This has been achieved via different
routes: (a) the estimation of spin-resolved imaginary-time in-

termediate scattering functions from unperturbed simulations
that makes it possible to obtain the full wave number de-
pendence of the spin-resolved density response from a single
simulation of the unperturbed system; (b) the direct estimation
of the spin-resolved density response at selected wave num-
bers from simulations where one spin-component is subject
to an external harmonic potential whereas the other remains
unperturbed, which also makes it possible to study nonlinear
effects. As expected, both procedures are in perfect agreement
with each other at the appropriate limit of infinitesimal pertur-
bation amplitudes. Furthermore, we have utilized our exact
spin-resolved density response data in order to extract the
spin-resolved components of the static local field correction,
which contains the full, wave-number-resolved information
about electronic exchange-correlation effects.

In addition to their fundamental value, our unique cutting-
edge results allow us to assess the accuracy of previously
widely used approximations. The popular RPA gives the cor-
rect qualitative, though not quantitative, description at the
metallic density of rs = 2, but it completely breaks down from
the threshold of strong coupling (rs = 10), as it is expected. In
contrast, the finite-T STLS formalism [40,85] gives accurate
results both for the total density response function and the
total static structure factor at rs = 2. Interestingly, this has
been identified to be the consequence of a fortunate error
cancellation as the spin-resolved components are significantly
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FIG. 13. Plot of the spin-resolved density response ρs(q, At ) vs
the perturbation amplitude for the same conditions as in Fig. 12
(rs = 2, θ = 1, ξ = 1/3) and at q ≈ 0.82qF. Blue diamonds: the
spin-offdiagonal response ρd(q, Au ); gray squares: the reciprocal
spin-offdiagonal response ρu(q, Ad ); red circles: the spin-diagonal
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the spin-diagonal response of the minority spin species ρd(q, Ad ).
The solid black line corresponds to the prediction of linear-response
theory.

less accurate for both χ (q) and S(q). Furthermore, the static
LFC substantially deviates from our PIMC results. At rs = 10,
the accuracy of the STLS, too, deteriorates, and it also exhibits
qualitative disagreements.

From a physical perspective, our PIMC-based study has
given microscopic insights into the interplay of the spin-
resolved components of the static density response in the
warm dense UEG. Typically, the perturbed component reacts
by aligning to the minima of the external potential, which
implies a negative response function. The unperturbed com-
ponent, on the other hand, then, on average, occupies this
vacant space and will predominantly be located around the
maxima of �ext(r). This means that their response function
has the opposite sign of the perturbed component, i.e., it
is positive. Remarkably, we find that the unperturbed elec-
trons actually follow the perturbed component for 2qF � q �
3qF at strong coupling. This can be directly traced back
to the fact that the associated wavelength λ is compara-
ble to the mean interparticle distance in this case. In other
words, the unperturbed component is effectively moved by
the Coulomb correlations to an unoccupied minimum of
the external potential. Evidently, this remarkable effect is
directly connected to the effective attraction between two
electrons in the UEG that has been discussed in the recent
Ref. [12].

Finally, our exact PIMC simulations have given us straight-
forward access to correlations in the imaginary-time domain.
Remarkably, we have found that the spin-offdiagonal compo-
nents of the imaginary-time intermediate scattering function
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Fud(q, τ ) hardly depend on τ . Specifically, the impact of
imaginary-time diffusion on particles of different species is
orders of magnitude smaller compared to the diagonal compo-
nent Fss(q, τ ), with the latter mainly being driven by thermal
self-diffusion.

We are convinced that our study opens up a number of
possibilities for future investigations. (1) Accurate results for
the spin-resolved density response can be used to benchmark
existing approximations and may guide the further develop-
ment of improved dielectric theories [59,60,88,89,138,139].
(2) Our insights into the interplay of the spin-resolved compo-
nents of the density response will constitute an important basis
for future investigations of matter in an external magnetic
field [27]. (3) The practical manifestation of the effective
electron-electron attraction [12] in the UEG density response
deserves further exploration. This might include the study

of spin-resolved pair alignment [9], the possible formation
of a charge- and spin-density wave [3,140] and its potential
connection to superconductivity [11].
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