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Anomalous buoyancy of quantum bubbles in immiscible Bose mixtures
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Buoyancy is a well-known effect in immiscible binary Bose-Einstein condensates. Depending on the dif-
ferential confinement experienced by the two components, a bubble of one component sitting at the center of
the other eventually floats to the surface, around which it spreads either totally or partially. We discuss how
quantum fluctuations may significantly change the volume and position of immiscible bubbles. We consider
the particular case of two miscible components, forming a pseudoscalar bubble condensate with enhanced
quantum fluctuations (quantum bubble), immersed in a bath provided by a third component, with which they
are immiscible. We show that in such a peculiar effective binary mixture, quantum fluctuations change the
equilibrium of pressures that define the bubble volume and modify as well the criterion for buoyancy. Once
buoyancy sets in, in contrast to the mean-field case, quantum fluctuations may place the bubble at an intermediate
position between the center and the surface. At the surface, the quantum bubble may transition into a floating
self-bound droplet.

DOI: 10.1103/PhysRevResearch.4.033017

I. INTRODUCTION

Quantum fluctuations typically play a negligible role in
weakly interacting Bose gases. This is because the dominant
beyond-mean-field correction resulting from the zero-point
motion of the Bogoliubov excitations, the so-called Lee-
Huang-Yang (LHY) correction [1], is much smaller than the
mean-field energy. As pointed out in Ref. [2], the situation
is radically different in Bose-Bose mixtures, in which the
mean-field term and the LHY correction depend in a different
way with respect to the inter- and intracomponent interac-
tions. Remarkably, repulsive intracomponent interactions may
compensate attractive intercomponent ones to quasicancel the
mean-field energy, hence enhancing the role of quantum fluc-
tuations. Under those conditions, quantum fluctuations, as a
result of their repulsive character, may prevent collapse due to
the steeper density scaling of the LHY term compared to the
mean-field one. As a result, the mixture forms an ultradilute
self-bound liquid, which has received the name of quantum
droplet. These droplets have been experimentally realized in
both homonuclear [3,4] and heteronuclear [5] mixtures. Quan-
tum droplets have been also observed in dipolar gases [6,7], in
which the competition of short-range and dipolar interactions
quasicancels the mean-field energy. Quantum stabilization
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hence results in the formation of dipolar quantum droplets
[8–10]. Interestingly, due to the anisotropy and nonlocality
of the dipolar interaction, confinement leads to the formation
of a droplet array [11], which for properly fine-tuned contact
interactions forms a supersolid [12–14].

The miscibility of a binary Bose mixture depends on the
nature of the inter- and intracomponent interactions. For a
homogeneous system, miscibility is given by the ratio � =
g12/

√
g11g22, between the intercomponent coupling constant

g12 and the intracomponent ones g11 and g22. If � > 1, the
system enters the immiscible regime characterized by phase
separation. The presence of external confinement signifi-
cantly affects the miscibiliity and spatial distribution of binary
mixtures [15–19]. In particular, for an immiscible mixture,
depending on the relation between the confinement harmonic
frequencies ω1,2 of the two components, a bubble of compo-
nent 1 may sink to the center of the trap or float rather to the
surface of component 2, in a process that resembles buoyancy
in ordinary fluids. Similar to Archimedes’ principle, buoyancy
in a binary Bose mixture is controlled by the equilibration of
the pressures inside and outside the bubble. Buoyancy sets in,
approximately, when ω1/ω2 < (g11/g22)1/4 [17].

In this paper, we are interested in the properties of an im-
miscible binary mixture when one of the two components has
enhanced quantum fluctuations. We consider specifically an
experimentally feasible scenario of a three-component Bose
gas. Components 1 and 2 are miscible and in the regime of
mean-field quasicancellation, and hence they behave as an
effective single component, which we call the “1-2 gas,” in
which quantum fluctuations play a relevant or even dominant
role. Component 3 is immiscible with respect to the 1-2 gas.
We are particularly interested in how quantum fluctuations
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modify the properties of a 1-2 bubble (quantum bubble) in
a bath given by component 3. We show that quantum fluc-
tuations change the bubble pressure, changing the relation
between bubble volume and bath density, and the buoyancy
criterion. Moreover, in contrast to the mean-field case, quan-
tum fluctuations may arrest buoyancy, placing the quantum
bubble at an intermediate position between the center and the
bath surface. In addition, at the surface, the quantum bubble
may transition into a floating self-bound droplet. Our re-
sults show that, in addition to allowing for quantum droplets,
quantum fluctuations may significantly affect other well-
established properties of quantum mixtures, a result which
could be relevant as well for immiscible dipolar mixtures [20].

The structure of the paper is as follows. In Sec. II, we
introduce the three-component mixture, including the effect of
quantum fluctuations. Section III discusses how quantum fluc-
tuations affect the equilibrium of pressures that maintains the
quantum bubble. Section IV analyzes the dependence of the
bubble volume with respect to the bath density resulting from
the modified equilibrium conditions. The anomalous buoy-
ancy of quantum bubbles is discussed in Sec. V. In Sec. VI,
we discuss a possible experimental realization. Finally, in
Sec. VII we summarize our conclusions.

II. MODEL

A. Hamiltonian and elementary excitations

Interactions are determined by the s-wave scattering
lengths aσσ ′ , with σ, σ ′ = 1, 2, 3. Motivated by experimental
considerations (see Sec. VI), we focus on the case in which
the three components have equal mass m. The interactions
are hence characterized by the coupling constants gσσ ′ =
4π h̄2aσσ ′/m. The coupling constants g11, g22, and g12 are
such that components 1 and 2 are miscible and in the regime
of mean-field quasicancellation [2]. The bath is characterized
by the coupling g33. The intercomponent coupling constants
g13 and g23 are supposed to be large and repulsive, ensuring
immiscibility between component 3 and the 1-2 gas.

In absence of confinement, the system is determined by the
Hamiltonian:

H =
3∑

λ=1

∫
d3r ψ̂

†
λ (r)

(−h̄2∇2

2m

)
ψ̂λ(r)

+
∑
λ,λ′

gλλ′

2

∫
d3r ψ̂

†
λ (r)ψ̂†

λ′ (r)ψ̂λ′ (r)ψ̂λ(r). (1)

We perform the Fourier transform ψ̂λ(r) = 1√
V

∑
k e−ik·râλ,k,

with V being the quantization volume, and introduce the Bo-
goliubov transformation

β̂αk =
∑

λ

[
uαλ(k)âλ,k − vαλ(k)â†

λ,−k

]
, (2)

where the coefficients uαλ(k) and vαλ(k) and the corre-
sponding eigenenergies ξα result from the solution of the
Bogoliubov–de Gennes equations, ξα (k)β̂αk = [β̂αk,H]. Em-
ploying f ±

αλ(k) = uαλ(k) ± vαλ(k), we may express these

equations in the form

ξα f −
αλ(k) =

∑
λ′

[δλλ′ε(k) + 2gλλ′
√

nλnλ′] f +
αλ′ (k), (3)

ξα f +
αλ(k) = ε(k) f −

αλ(k), (4)

where ε(k) = h̄2k2/2m. Combining these equations, we ob-
tain

ξ 2
α fα (k) = ε(k)

[
ε(k)1̂ + 2g11n1Û(P2, P3)

]
fα (k), (5)

where (fα (k))λ = f −
αλ(k), Pj=2,3 = Nj/N1, and

Û(P2, P3) =

⎛
⎜⎝

1 g12

g11

√
P2

g13

g11

√
P3

g12

g11

√
P2

g22

g11
P2

g23

g11

√
P2P3

g13

g11

√
P3

g23

g11

√
P2P3

g33

g11
P3

⎞
⎟⎠. (6)

We may then express the Bogoliubov energies in the form

ξ 2
α (k) = ε(k)[ε(k) + 2g11n1Fα (P2, P3)], (7)

with Fα being the eigenvalues of Û(P2, P3).

B. Quantum fluctuations

At the mean-field level, the chemical potential of compo-
nent λ is given by μMF

λ = ∑
λ′ gλλ′nλ′ . In the following, we

will obtain the correction to this chemical potential induced
by quantum fluctuations, i.e., the generalization of the well-
known LHY correction [1] to the three-component case under
consideration. In order to do so, we employ the formalism
introduced by Hugenholz and Pines [21], which avoids in a
natural way the ultraviolet divergence that results from the
usual Bogoliubov treatment, and which is typically cured by
considering the second-Born approximation of the coupling
constants. This formalism, which is based on a Green’s func-
tion formalism, has been recently applied for the treatment
of low-dimensional gases [22,23] and dipolar mixtures [24].
Within the Hugenholz-Pines formalism, the correction εLHY of
the energy density of the ground state of the Bose mixture may
be evaluated from the knowledge of the Bogoliubov spectrum
by means of the differential equation

εLHY − 1

2

3∑
λ=1

nλ

∂εLHY

∂nλ

= χ, (8)

where

χ = −1

2

∫
d3k

(2π )3

∑
α

[ξα (k) − ε(k)]3

4ξα (k)ε(k)
. (9)

Plugging Eq. (7) into Eq. (9), we obtain that

χ = −64

15

√
π

h̄2

m
(n1a11)5/2

∑
α

F 5/2
α , (10)

and substituting into Eq. (8) we obtain

εLHY = 256

15

h̄2

m

√
π (n1a11)5/2

∑
α

F 5/2
α . (11)

Hence the beyond-mean field correction to the chemical po-
tential of component λ reads

μLHY
λ = ∂

∂nλ

εLHY = 32

3
√

π
g11(n1a11)3/2Qλ, (12)
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with

Q1 =
∑

α

F 3/2
α

(
Fα − P2

∂

∂P2
FαP3

∂

∂P3
Fα

)
, (13)

Q2 =
∑

α

F 3/2
α

∂

∂P2
Fα, (14)

Q3 =
∑

α

F 3/2
α

∂

∂P3
Fα. (15)

The matrix U in Eq. (6) determines the mean-field stability
of the mixture. If all its eigenvalues are positive, the mixture
is fully miscible. For the purposes of this work, we restrict
ourselves to the case where component 3 and components 1-
2 are immiscible. Hence in the 1-2 region, we may assume
P3 = 0, and we recover the known LHY corrections for the
1-2 mixture [2]. Quantum corrections play a crucial role for
the 1-2 mixture if the mean-field interactions quasicancel, i.e.,
if δa ≡ a12 + √

a11a22 � 0. If δa < 0, quantum fluctuations
are crucial since they stabilize the 1-2 gas against collapse [2],
but even for δa � 0 they play an important role, as discussed
below.

C. Coupled extended Gross-Pitaevskii equations

In order to investigate the properties of a spatially in-
homogeneous mixture, we use the results obtained for an
homogeneous mixture, and employ local-density approxima-
tion arguments for treating the LHY correction [2]. The use
of the local-density approximation is justified by the fact that
the LHY correction is mostly contributed by excitations with
wavelengths shorter than the typical length of density varia-
tion. We obtain in this way a set of three coupled extended
Gross-Pitaevskii equations (eGPEs):

μ̃λψσ (�r) =
[
− h̄2∇2

2m
+

∑
λ′

gσσ ′nσ ′ (�r)

+μLHY
σ [nσ ′ (�r)]

]
ψσ (�r), (16)

with nσ (�r) = |ψσ (�r)|2. Similar equations have been employed
in binary mixtures [2] and dipolar gases [25], providing very
good qualitative, and to a large extent quantitative, agreement
with experiments.

III. EQUILIBRIUM OF PRESSURES

We consider at this point a spherical homogeneous 1-2
bubble of volume V , with N = N1 + N2 particles and polar-
ization P = N2/N1, placed in an otherwise homogeneous bath
of component 3, with particle density n3. We determine the
relation between the bath density n3 and the bubble density
n = N/V , which is established by an equilibrium of pressures.
We are particularly interested in how quantum fluctuations
modify such an equilibrium.

The 1-2 contribution to the bubble energy is

E12(V ) = 1

2
G(P)

N2

V
+ γ (P)g11a3/2

11

N5/2

V 3/2
, (17)

where the first and second terms correspond, respectively, to
the mean-field and LHY corrections, and

G(P) = g11 + g22P2 + 2g12P

(1 + P)2
, (18)

γ (P) = 64

15
√

π

f
(

g2
12

g11g22
,

g22

g11
P
)

(1 + P)5/2
, (19)

with

f (x, y) = 1

4
√

2

∑
±

(
1 + y ±

√
(1 − y)2 + 4xy

)5/2
(20)

As already mentioned, components 1 and 2 form an effective
scalar component, the 1-2 gas, characterized by an effec-
tive scattering length a(P), with G(P) = 4π h̄2a(P)

m , and by
enhanced quantum fluctuations that dominate the bubble prop-
erties in the mean-field energy quasicancels, e.g., if G(P) � 0.

Due to immiscibility, the bubble induces a hollow spher-
ical cavity of volume V in the bath. The change induced by
the cavity in the bath energy is �E3 = EC (N3) − ENC (N3),
with EC (N3) the energy of a bath of N3 particles with the
hollow cavity, and ENC (N3) the energy of the bath without
the cavity. Note that EC (N3) � ENC (N3 + δN3) − ξ3V , where
δN3 = n3V , and ξ3 = 1

2 g33n2
3 is the energy density of the

third component (where we have neglected LHY corrections,
which for the single component in the bath are assumed
as negligible compared to the mean-field energy). In turn,
ENC (N3 + δN3) � ENC (N3) + μ3δN3, with μ3 = g33n3 being
the chemical potential of the bath. We may hence write

�E3(V ) = 1

2
g33n2

3V. (21)

The energy associated to the bubble is hence E12(V ) +
�E3(V ). Minimizing it with respect to V , we obtain the
equation for the equilibrium between the inner pressure P12 =
−∂V E12 and the outer bath pressure P3 = −∂V �E3:

G(P)n2 + 3γ (P)g11a3/2
11 n5/2 = g33n2

3. (22)

IV. QUANTUM BUBBLE IN AN HOMOGENEOUS BATH

A. Scaling of the bubble volume with the bath density

Equation (22) determines the bubble volume for a given
bath density. In the mean-field regime, in which we may
neglect the effect of quantum fluctuations in the bubble, the
equilibrium of pressures results in the known expression [17]

nMF =
√

g33

G(P)
n3, (23)

and the bubble volume is inversely proportional to n3.
The situation changes significantly when the 1-2 mean-

field interactions quasicancel. For G(P) = 0 and sufficiently
large density, the LHY energy dominates the bubble energy
(we call this the LHY bubble regime), and the equilibrium of
pressures leads to an anomalous dependence:

nLHY =
(

g33

3γ (P)g11a3/2
11

)2/5

n4/5
3 . (24)

The volume of a LHY bubble scales thus as n−4/5
3 .
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In contrast, for G(P) = 0, if the bubble density is too
low, we can neglect the effect of quantum fluctuations and
the bubble energy is dominated by the single-particle (ki-
netic) contribution, associated to the inhomogeneity of the
bubble wave function within the bath cavity, which we
have up to now neglected. Approximating that the bubble
is in a spherical hard-wall cavity of volume V , the bubble
energy is h̄2π2

2m ( 4π
3V )2/3, leading to an inner pressure P12 =

π2

3 ( 4π
3 )2/3 h̄2N

mV 5/3 . Equating P3 = 1
2 g33n2

3 results hence in a scal-

ing V ∝ n−6/5
3 .

B. Variational formalism

Quantum fluctuations hence significantly modify the bub-
ble volume and its scaling with the bath density. In order to
investigate the bubble properties, we employ the coupled eG-
PEs introduced in Sec. II. We consider a spherical hard-wall
numerical box of radius RB, with N3 = n3

4π
3 R3

B particles in the
bath. We consider a bubble at the center of the numerical box,
with N = N1 + N2 particles. We assume P = √

a11/a22 here
and also in the rest of the paper. Although this is a necessary
condition for a 1-2 self-bound droplet [2], it is not necessary
in our case, in which the bubble is surrounded by a bath. We
assume it, however, for simplicity of the resulting expressions.

In addition, although the eGPE formalism permits a good
characterization of the quantum bubble, a simpler variational
formalism, discussed in the following, is in very good agree-
ment with the eGPE calculation, allows for a quick simulation
of the bubble-bath system, and permits additional physical
insights. We minimize the energy using a trial wave function
for the 1-2 bubble of the form

ψ1,2(r; σ, s) = A1,2 exp

[
−1

2

( r

σ

)s
]
, (25)

where the variational parameters σ and s characterize, re-
spectively, the bubble radius, and the flatness of the bubble
profile. The latter interpolates between a Gaussian (s = 2) and
a flat-top solution for s 	 2 [26]. For the bath, we employ the
variational form,

ψ3(r; r0, δr) = A3

[
1 + tanh

( r − r0

δr

)]
, (26)

where the variational parameters r0 and δr characterize, re-
spectively, the radius of the hollow cavity in the bath, and
the bath healing length back into the homogeneous density
value. The amplitudes A1,2,3 are found upon normalization to
the number of particles Nσ = ∫

d3r|ψσ (r)|2
Figures 1(a) and 1(b) depict our results for G(P) = 0,

P = √
a11/a22, N = N1 + N2 = 10 000, and two different

bath densities, n3 = 9 × 1018 and 7 × 1020 m−3. We consider
(a11, a22, a13, a23, a33) = (34.44, 82, 172, 172, 60)a0 (see
Sec. VI). Note that the variational calculations are in excellent
qualitative and to a large extent quantitative agreement with
the eGPE results. For a given number of particles N in the
bubble, increasing the bath density n3 increases the outer
pressure, compressing the bubble. In turn, the increase of the
bubble density results in an enhanced role of interactions such
as for a LHY bubble [G(P) = 0], when n3 grows the bubble
moves from a regime dominated by the kinetic energy [as in
Fig. 1(a)] into a regime dominated by the LHY energy [as in

FIG. 1. Density profile of the 1-2 gas (circles) and of
the bath (squares) obtained from the coupled eGPEs, for
(a11, a22, a13, a23, a33) = (34.44, 82, 172, 172, 60)a0, N = 104, P =√

a11/a22, for two different bath densities n3 = 9 × 1018m−3 (a) and
7 × 1020m−3 (b). Dashed lines indicate the corresponding variational
results.

Fig. 1(b)]. As a result, the quantum bubble acquires a flat-top
profile. The change in the character of the density profile is
evident from Fig. 2, where we plot the variational parameter s
as a function of the bath density for a fixed N = 10 000. Note
the transition from a Gaussian-like profile s � 2 to a flat top,
s 	 2. According to the discussion above, the progressively
larger role played by the LHY energy for growing n3 modifies
the dependence of the bubble volume with the bath density. In
Fig. 3, we depict the volume as a function of the bath density,
for N = 1650 and the same scattering lengths as above. Note
the expected crossover between a scaling V ∝ n−6/5

3 when the
kinetic energy dominates, and a scaling V ∝ n−4/5

3 , when the
LHY energy dominates.

FIG. 2. Exponent s that characterizes the profile of the droplet.
s = 2 is a Gaussian-like droplet, whereas s 	 2 indicates a flat-top
profile. The calculations are performed for the same parameters as
in Fig. 1, with N = 104 and P = √

a11/a22. Note that when the bath
density grows, the bubble profile becomes progressively more flat
top.
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FIG. 3. Volume of the quantum bubble as a function of the bath
density n3 for the same scattering lengths and bubble polarization P
as in Fig. 1, for G(P) = 0 and N = 1650. Note the crossover from a
kinetic-energy dominated V ∝ n−6/5

3 (dashed line) dependence into a
LHY-dominated V ∝ n−4/5

3 dependence (dotted line).

V. ANOMALOUS BUOYANCY

We investigated in the previous section a bubble in an
otherwise homogeneous bath. At this point, we consider a
more realistic situation, in which the mixture is confined in
an isotropic harmonic trap, characterized by a frequency ω

for the 1-2 components, and a frequency ω3 for the bath.
We assume that interactions in the bath are strong enough
to result in a Thomas-Fermi radial density profile n3(r) =
n3(0)(1 − r2/R2).

The presence of a trap results eventually in buoyancy [17].
For a given ratio ω/ω3 > (ω/ω3)cr, the 1-2 bubble remains
at the trap center. In contrast, when ω/ω3 < (ω/ω3)cr the
bubble moves from the center [17]. A mean-field bubble
floats to the bath surface, where it is destroyed forming a
partial or complete spherical shell around the bath. We show
in this section that quantum fluctuations significantly modify
the buoyancy condition. Moreover, they may lead to arrested
buoyancy, i.e., the displacement of the bubble to an interme-
diate position between the center and the surface of the bath.
Finally, for δa < 0, when the bubble moves to the surface, it
does not spill over the surface but undergoes a transition into
a self-bound droplet that remains compact floating at the bath
surface.

A. Buoyancy condition for a uniform bubble

We first consider the simplified case in which the bub-
ble density is homogeneous within the hollow cavity, and in
which the bubble volume is much smaller than the overall bath
volume. Under these conditions, we may neglect the kinetic
energy and the boundary effects associated to interparticle
interactions between 1-2 and 3 at the domain wall. We can
derive, as for the homogeneous case, the equation for the
equilibrium of pressures for a droplet at position r:

G(P)n(r)2 + 3γ (P)g11a3/2
11 n(r)5/2 = g33n3(r)2. (27)

The energy per particle of the bubble is

E (r)

N
= 1

2
mω2r2 + 1

2
G(P)n(r)

+ γ (P)g11a3/2
11 n(r)3/2 + 1

2
g33

n2
3(r)

n(r)
. (28)

For r ≈ 0, we can approximate n(r) � n(0)[1 + ε(r)] with
ε(r) � 1. Plugging this expression into Eq. (28), using
Eq. (27) at r = 0, as well as the Thomas-Fermi relation
1
2 mω2

3R2 = g33n3(0), we obtain

[E (r) − E (0)]/N

g33n3(0)
�

[( ω

ω3

)2
− n3(0)

n(0)

]( r

R

)2
. (29)

We hence obtain the critical frequency ratio for buoyancy:

( ω

ω3

)
cr

=
√

n3(0)

n(0)
. (30)

We recall that for ω
ω3

< ( ω
ω3

)cr the bubble moves out of the trap
center. However, as shown below, this does not necessarily
mean that it moves to the bath surface.

1. Mean-field bubble

For a mean-field bubble, in which we can neglect the
LHY contribution, the density ratio is given by Eq. (23), and
we retrieve the known critical frequency ratio for mean-field
buoyancy [17]:

( ω

ω3

)MF

cr
=

(
G(P)

g33

)1/4

. (31)

2. LHY bubble

For a LHY bubble [G(P) = 0], the equilibrium of pres-
sures leads to a simple dependence of n(0) on n3(0) given by
Eq. (24), and the critical frequency ratio acquires the form( ω

ω3

)G=0

cr
=

√
(3γ (P))2/5 a11

a33
(n3(0)a3

33)1/5
. (32)

Note that it depends explicitly on the bath density. This is
connected to the arrested buoyancy discussed below.

3. Quantum bubble with |δa| > 0

The buoyancy condition may be obtained as well for the
case of mean-field quasicancellation, when |δa|√

a11a22
� 1 (we

assume P = √
a11/a22). We can then expand in Eq. (20)

f (x, y = 1/P) around x = 1, obtaining

γ (P) � γ0(P)

(
1 − 5P

(1 + P)2

δa√
a11a22

)
(33)

with γ0(P) = 64
15

√
π

P−5/2. At the critical frequency for buoy-
ancy, we may substitute the relation (30) in the equation for
the equilibrium of pressures, obtaining

a(P)

a33

(ω3

ω

)4

cr
+ 3γ (P)

(a11

a33

)5/2√
n3(0)a3

33

(ω3

ω

)5

cr
= 1 (34)

with a(P) = 2P
(1+P)2 δa. We may then evaluate up to first order

in |δa|√
a11a22

the critical frequency ratio for the buoyancy of a
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quantum bubble:( ω

ω3

)G�=0

cr
�

( ω

ω3

)G=0

cr
(1 + η), (35)

where

η = a(P)

2
√

a11a22

[
1 − 2

5

√
a11a22

a33

(( ω

ω3

)G=0

cr

)−4]
. (36)

B. Arrested buoyancy

Interestingly, when occurring, buoyancy may differ signif-
icantly from the well-known mean-field case, due to the role
played by quantum fluctuations in the 1-2 gas. Let us first
consider the case of a mean-field bubble. Using the Thomas-
Fermi form of n3(r), we rewrite the bubble energy as

E (r)/N

g33n3(0)
=

[( ω

ω3

)MF

cr

]2(
1 −

( r

R

)2)
+

( ω

ω3

)2( r

R

)2
. (37)

For ω/ω3 < (ω/ω3)MF
cr the bubble passes from the cen-

ter directly to the bath surface since the energy becomes
monotonously decreasing with increasing r/R. At the surface,
the mean-field bubble, which was solely maintained by the
outer bath pressure, is destroyed and it forms a partial or
complete covering of the bath spherical surface.

For an LHY bubble, we may express the bubble energy as

E (r)/N

g33n3(0)
= 5

6

[( ω

ω3

)G=0

cr

]2(
1 − r2

R2

)6/5

+
( ω

ω3

)2 r2

R2
.

(38)
In contrast to the mean-field case, when � ≡

ω
ω3

/( ω
ω3

)G=0
cr < 1, the bubble energy has a minimum at

r

R
=

√
1 − �10. (39)

Hence, when buoyancy sets in, the position of the bubble does
not immediately jump to the surface, as in the mean-field case,
but rather experiences an abrupt, but finite, position displace-
ment, breaking spontaneously the spherical symmetry. The
red dashed curve in Fig. 4(a) shows, as a function of ω

ω3
,

the average position for an homogeneous quantum bubble,
well within the quasicancellation regime for the parameters
considered. As expected from the discussion above, there is
a window of frequency ratios for which the bubble is placed
at an intermediate position within the bath component. Note
that in the regime of arrested buoyancy the bubble breaks
the spherical symmetry of the model. We hence foresee an
interesting superfluid rotation dynamics of quantum bubbles
within the bath, which may occur at arbitrarily low energies.
However, this discussion is beyond the scope of the present
paper.

C. Buoyancy for an inhomogeneous bubble

The previous discussion neglects the kinetic energy of the
bubble, which in general may have a sizable contribution, and
assumes that the bubble size is negligible with respect to the
size of the Thomas-Fermi cloud of the bath. The latter is a
particularly crude approximation under typical conditions.

We have evaluated the ground-state of the mixture using
the coupled eGPEs (16), adding the confinement potential.

FIG. 4. (a) Position of the quantum bubble for a Thomas-Fermi
bath with n3(0) = 5 × 1020 m−3 (using N3 = 8 × 105 in a trap with
ω3 = 2π × 150 Hz), for the same parameters as Fig. 1, for N1 =
1 000 (squares), N1 = 20 000 (triangles), N1 = 50 000 (circles), and
a33 = 100a0. The dashed curve indicates the position of the bubble
obtained for the same n3(0) from the minimization of the energy per
particle (28), using the relation (27) between bubble and bath density.
Panel (b) shows in detail the arrested buoyancy regime in the vicinity
of the critical frequency ration for buoyancy, � ≡ (ω/ω3 )

(ω/ω3 )cr
= 1. The

arrested buoyancy window becomes more apparent when the LHY
dominates the bubble physics. The scattering lengths considered are
the same as in Fig. 1, except that a12 is slightly shifted, such that
δa = −5a0.

The circles in Fig. 4(a) shows our results of the average posi-
tion of the bubble for a small number of particles N1 = 1000.
For this case, the LHY term is negligible and the bubble
properties are dominated by the kinetic energy. As a result,
compared to Eq. (35), a larger ω/ω3 ratio is necessary to keep
the bubble confined at the center. Also, when buoyancy sets
in, there is no discernible regime of arrested buoyancy.

When the number of particles in the bubble increases (or
alternatively for a growing n3) (ω/ω3)cr decreases, and a
progressively wider window of arrested buoyancy is observed
[see Fig. 4(b)]. Although the numerical results approach the
result of the homogeneous-droplet calculation, there are still
sizable deviations of the critical frequency ratio compared to
Eq. (35), mostly due to the non-negligible size of the bubble
compared to the Thomas-Fermi cloud of the bath.
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FIG. 5. Arrested buoyancy for the same parameters as Fig. 4, for N = 8.2 × 104 and n3(0) = 4.7 × 1020m−3. The upper (lower) panels
show the density profile of the bath n3(x, y, 0) [bubble n1(x, y, 0)]. When buoyancy sets in, and due to the effect of quantum fluctuations,
the bubble does not move immediately to the bath surface, but rather remains at an intermediate distance between the center and the surface,
breaking spontaneously spherical symmetry. Note also that when the bubble moves to the surface it remains compact, experiencing a crossover
into a self-bound droplet.

Figure 5 shows the density profile of the mixture in the
arrested buoyancy regime for N1 = 50 000 atoms. Note that,
as discussed for the case of a homogeneous droplet, the
inhomogeneous bubble is placed at intermediate positions
(spontaneously breaking the spherical symmetry). Note as
well that, in contrast to the mean-field case, when the bubble
reaches the boundary, it does not spread around the spherical
Thomas-Fermi surface. Since δa < 0, it rather undergoes a
crossover from a bubble into a self-bound droplet, which
remains compact floating at the bath surface.

VI. EXPERIMENTAL CONSIDERATIONS

A possible implementation of the quantum bubble scenario
discussed in this paper is provided by the multicomponent
41K-39K mixture [27], whose concrete parameters have been
employed in our simulations. In this implementation, the 1-
2 gas is composed by a 39K mixture in states |1〉 ≡ |F =
1, mF = −1〉 and |2〉 ≡ |F = 1, mF = 0〉, whereas the bath
is composed by the state |3〉 ≡ |F = 1, mF = −1〉 of 41K.
In this setting, the system is in the lowest energy state and
inelastic spin-exchange collisions can be neglected [28]. For
the bubble, the parameter δa � 0 can be tuned in the vicinity
of ≈56.9 G [3,4] where the overlap of three different Feshbach
resonances allows to control the values of a11, a22, and a12.
At this magnetic field, the bath-bubble interactions is set by
the background 41K - 39K scattering length, which is constant
(a13 = a23 ≈ 172a0).

Since the system is composed of two different potassium
isotopes, high-resolution in situ imaging detection can be per-
formed in order to extract the bubble and bath density profiles
independently. Experiments may then readily monitor how the
contribution of the LHY energy at G = 0 affects the bubble
size. For typical densities of n3 = 1020 m−3, we can expect
for large atom number in the bubble a discrepancy of up to
40% in its radius compared to the case where quantum fluc-
tuations are neglected. This discrepancy becomes larger when
increasing the density n3. Hence, the analysis of the bubble

size may readily reveal the effect of quantum fluctuations and
the scaling features discussed in this paper.

VII. CONCLUSIONS

We have considered a peculiar effective immiscible binary
mixture. Two miscible components form an effective scalar
condensate (1-2 gas) with enhanced quantum fluctuations due
to mean-field quasicancellation, and a third component is
immiscible with the other two. We have shown that due to
quantum fluctuations, the properties of the effective mixture
significantly depart from those well known for an immisci-
ble mean-field Bose-Bose gas. In particular, the volume of a
quantum 1-2 bubble in component 3 presents a significantly
modified dependence with respect to the bath density. More-
over, quantum fluctuations lead to an anomalous buoyancy
criterion. Once buoyancy sets in, in contrast to the case of
mean-field mixtures, the bubble may occupy an intermediate
position between the center and the surface of the bath (ar-
rested buoyancy). Furthermore, once the surface is reached the
bubble may transition into a droplet, which remains compact
and floating at the bath surface.

These results, which may be readily probed in, e.g.,
potassium mixtures, illustrate how quantum fluctuations, in
addition to providing the stabilization mechanism for self-
bound droplets, may significantly change other general and
well-established properties of Bose mixtures. We anticipate
that a similar physics may be at play as well in immiscible
mixtures, in which at least one of the components (forming the
quantum bubble) is dipolar within the regime of mean-field
quasicancellation [20]. However, the nonlocal anisotropic
character of the dipole-dipole interaction may significantly
affect the droplet properties and the buoyancy condition.
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