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Nonequilibrium many-body dynamics in supersymmetric quenching
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We study the dynamics induced by quenching an ultracold quantum many-body system between two super-
symmetric Hamiltonians. Such a quench can be created by carefully changing the external trapping potential and
leads to a situation where the eigenspectra before and after the quench are nearly identical. We show that the
dynamics originating from this can be conveniently described using knowledge about the initial state only and
apply this insight to the specific example of a fermionic gas that is initially trapped in an infinite box potential.
When quenching to different, higher order supersymmetric partners potentials we observe the appearance of
many-body revivals in the survival probability and show that some of these are robust at finite temperatures. This
is in contrast to the well-known Talbot effect, which is the standard example for quenching into a system with a
quadratic spectrum.
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I. INTRODUCTION

The ongoing advances in the control and measurement
of ultracold quantum gases has established these systems as
highly promising laboratories to study many-body quantum
dynamics [1]. Of particular interest in this area is the evolution
of a system after a quench of its internal or external parameters
and the question of how the large number of degrees of free-
dom leads to equilibration and thermalization over time [2].
To study these, a system is usually considered to be prepared
in a pure state, typically the ground state of a potential, and a
sudden change in the Hamiltonian parameters or the addition
of an external perturbation is used to excite it. Many ways
to do this have been proposed and studied in recent years,
ranging from from giving a momentum kick to a quantum gas
[3], changing the trapping potential [4–6], adjusting the inter-
particle interaction strengths [7,8], or introducing an impurity
[9,10].

Once the system is excited, the subsequent nonequilibrium
dynamics is often rather complex. However, over the past
decade a number of quantities and tools have been developed
that allow one to capture typical behavior and identify un-
derlying mechanisms, such as the Loschmidt echo [11,12],
the work probability distribution [13,14], and the amount of
information scrambling [15–17]. Most quenches that rely on
a change of the Hamiltonian parameters induce the nonequi-
librium dynamics via a change in the eigenspectrum of the
system. In this case states that were previously stationary
become superpositions of eigenstates, which leads to dynam-
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ics that are strongly affected by the relation between the
initial and the final spectrum. Interesting examples here are
quenches in shape invariant potentials [18], such as harmonic
traps [19–21], and box potentials [22–24] where the initial
and final spectrum are related through a scaling factor. These
systems can exhibit perfect revivals of the initial state for
both single particle and many-body systems, similar to the
well-known Talbot effect in infinite box potentials, which has
also been thoroughly studied for both bosonic and fermionic
cold atoms [25,26]. It is also worth noting that the recurrences
of many-body states are related to the concepts of quantum
scars, which signal weak ergodicity breaking after a global
quench [27–29].

In this paper we study a specific type of quench that leaves
the eigenspectrum unperturbed, but removes a fixed number
of states from below. This situation appears when quenching
between two different Hamiltonians that are related through
a supersymmetric algebra, which results in the eigenspectra
between the two potentials being near identical [30,31]. The
supersymmetric relationship also provides a number of tools
that can be used to transform a wavefunction between the
two partner potentials, namely the supersymmetric operators
and the superpotential. We will show that these allow us
to recast the nonequilibrium dynamics of the post quench
system purely in terms of the the initial Hamiltonian and its
supersymmetric operators. While this has many advantages
from a practical perspective, it also allows us to highlight
and understand the unique dynamics that emerge in super-
symmetric quenches. This is therefore another example where
supersymmetric setups can be used in quantum systems for
controlled dynamics, similar to approaches developed for the
ground-state preparation of ultracold atoms arrays [32] or
mode filtering in optical setups [33].

In the following we will first briefly review the concepts
of supersymmetric quantum mechanics relevant to our paper
and introduce the main quantities we will use to describe a
quench between two supersymmetric Hamiltonians. We then
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FIG. 1. Infinite box potential V (1) and its first supersymmetric
partner V (2) = π2

2L2 (2 sec2( πx
L ) − 1). The spectrum is indicated by

the dashed lines and the densities of the eigenfunctions, |ψ (1)
n |2 and

|ψ (2)
m |2 are given by the red curves.

study the ensuing dynamics at zero and at finite temperatures
and in particular the appearance and stability of full revivals
in the survival probability. These results are also compared to
the related Talbot effect.

A. Supersymmetric Hamiltonians

A supersymmetric algebra relates two Hamiltonians that
can be written in a factorized manner as H (1) = A†

1A1 and
H (2) = A1A†

1, where [30,34]

A1 = h̄√
2m

d

dx
+ W (x), (1)

A†
1 = − h̄√

2m

d

dx
+ W (x). (2)

The function W (x) is known as the superpotential and writing
the Hamiltonians in the explicit form

H (1) = − h̄2

2m

d2

dx2
− h̄√

2m
W ′(x) + W (x)2, (3)

H (2) = − h̄2

2m

d2

dx2
+ h̄√

2m
W ′(x) + W (x)2, (4)

allows one to find two supersymmetric potentials as

V (1)(x) = W (x)2 − h̄√
2m

W ′(x), (5)

V (2)(x) = W (x)2 + h̄√
2m

W ′(x). (6)

The superpotential itself can be determined in a number of
ways [30], with a straightforward one being given by the nat-
ural logarithmic derivative of the ground state wavefunction
of a given H (1) as

W (x) = − h̄√
2m

∂x ln
(
ψ

(1)
0

)
. (7)

An important property of supersymmetric Hamiltonians is
that they possess near identical eigenspectra, with the one
for the second Hamiltonian shifted upwards by one quantum
number, i.e., E (2)

m = E (1)
m+1 (see Fig. 1 for the example of an

infinite well [35]).

From the factorized form of the Hamiltonians one can im-
mediately see that an intertwining relationship between them
exists

A1H (1) = H (2)A1, (8)

H (1)A†
1 = A†

1H (2), (9)

which can be used to connect the respective eigenfunctions as
[36]

ψ (2)
m = A1√

�Em
ψ

(1)
m+1, (10)

where �Em = E (2)
m − E (1)

0 . The operators A and A† therefore
map even wavefunctions into odd ones.

The intertwining property between the two Hamiltonians
also extends to the time propagation operator U (t ) = e− i

h̄ Ht

[37]. This can be easily seen by expanding the exponential in
a power series as

e− i
h̄ H (2)t =

∞∑
k=0

1

k!

(
− i

h̄
H (2)t

)k

, (11)

and noting that all terms in the sum are of the form (A1A†
1)k .

Applying an annihilation operator from the right then leads to
A1(H (1) )k and therefore to

A1U
(1)(t ) = U (2)(t )A1. (12)

Iterating on the supersymmetric relation between H (1) and
H (2), one can create a hierarchy of supersymmetric partner
potentials by finding a factorization of H (2) = A†

2A2 [38]. The
resulting partner Hamiltonian, H (3) = A2A†

2, has a spectrum
that is degenerate with the ones of H (1) and H (2), however, it
is missing the ground-state energies of each. The transforma-
tions between higher order Hamiltonians require their own set
of operators; however, the connection between the eigenfunc-
tions of the, say, first and third supersymmetric Hamiltonian
is simply given by

ψ
(1)
m+2 = 1√

E (3)
m − E (1)

0

1√
E (3)

m − E (2)
0

A†
1A†

2ψ
(3)
m . (13)

B. Survival probability and dynamical overlap

In the following we will consider an effectively one-
dimensional, spin-polarized Fermi gas of N neutral atoms at
low temperatures [39]. The gas is assumed to be confined in a
potential that can be changed time dependently with a high
degree of flexibility, which can be experimentally realised
in the recently emerging setups that use SLMs [40,41]. The
many-body states H(α)|� (α)

n 〉 = E (α)
n |� (α)

n 〉 are determined by
the Hamiltonian

H(α) =
N∑

j=1

[
− h̄2

2m
∇2

j + V (α)(x j )

]
, (14)

where α represents the order of the supersymmetric hierarchy
and α = 1 is the original potential we quench from. The
initial state at inverse temperature β = (kBT )−1 is given by
ρ (1) = ∑

n
1
Z0

eβ(E (1)
n −Nμ)|� (1)

n 〉〈� (1)
n |, where μ is the chemical

033014-2



NONEQUILIBRIUM MANY-BODY DYNAMICS IN … PHYSICAL REVIEW RESEARCH 4, 033014 (2022)

potential of the system, kB is the Boltzmann constant, and Z0

is the grand canonical partition function.
The nonequilibrium dynamics induced by a quench is gen-

erally rather complex and a good quantity to characterise
it is the survival probability, which describes the squared
overlap of the initial state with the time-evolved one. For a
quench from H(1) to H(2) it is given by F (t ) = |O(t )|2 =
|Tr[e

i
h̄ H(2)t e− i

h̄ H(1)tρ (1)]|2. The calculation of the dynamical
overlap O(t ) can be eased considerably by rewriting the
many-body states |� (α)

n 〉 as a Slater determinant of single
particle states H (α)|ψ (α)

k 〉 = E (α)
k |ψ (α)

k 〉, which gives [9,42–
44]

O(t ) = det
[
1 − n̂ + n̂e

i
h̄ H (2)t e− i

h̄ H (1)t
]
, (15)

where n̂ = (eβ(H (1)−μ) + 1)−1 is the Fermi-Dirac distribution
and H (α) = − h̄2

2m ∇2 + V (α)(x) is the corresponding single par-
ticle Hamiltonian.

At zero temperature the initial many-body ground state is
a perfect Fermi sea described by

�
(1)
0 (x1, x2, ..., xN ) = 1√

N!

N
det

k, j=1

[
ψ

(1)
k (x j )

]
, (16)

which allows one to write the survival probability in a simpler
way as [9,45,46]

FT =0(t ) = ∣∣〈� (1)
0

∣∣e i
h̄ H(2)t e− i

h̄ H(1)t
∣∣� (1)

0

〉∣∣2
. (17)

This can be simplified further by introducing the dynamical
overlap probabilities of the single particle states as

Okl (t ) =〈
ψ

(1)
k

∣∣e i
h̄ H (2)t e− i

h̄ H (1)t
∣∣ψ (1)

l

〉

=
∞∑

m=1

〈
ψ

(1)
k

∣∣ψ (2)
m

〉〈
ψ (2)

m

∣∣ψ (1)
l

〉
e− i

h̄ (E (1)
l −E (2)

m )t , (18)

leading to

FT =0(t ) = ∣∣ det [Okl (t )]
∣∣2

, (19)

which is equivalent to Eq. (15) at T = 0.
It is interesting to note that the time dependence of the

survival probability can be fully predicted from the knowledge
of the initial single particle Hamiltonian since, by using the
transformation between the two sets of eigenstates of the two
supersymmetric Hamiltonians given in Eq. (10), the single
particle overlaps can be expressed purely in terms of the
eigenstates of the initial Hamiltonian as

Okl =
∞∑

m=1

〈
ψ

(1)
k

∣∣A∣∣ψ (1)
m+1

〉〈
ψ

(1)
m+1

∣∣A†
∣∣ψ (1)

l

〉

× e− i
h̄ (E (1)

l −E (1)
m+1 )t

�Em
. (20)

The survival probability indicates how distinguishable the
nonequilibrium state after the quench |�(t )〉 is from the state
at t = 0. The initial decay of the survival probability is propor-
tional to the strength of the quench, i.e., how different H (2) is
from H (1), and is related to the amount of irreversible excita-
tions created [8]. Complete revivals of the survival probability,
F (t ) = 1, indicate the recurrence of the initial state and are

usually the result of finite size effects stemming from the trap-
ping potential [8,25,26]. We stress that the overlap in Eq. (15)
is a many-body observable, which incorporates fermionic
statistics and that its dynamics heralds many-body effects such
as the orthogonality catastrophe [44,46]. Furthermore, it can
be measured experimentally via Ramsey interferometry [47],
while its sensitivity to finite temperatures make it an accurate
thermometer for trapped Fermi gases [48,49].

II. QUENCH AT ZERO TEMPERATURE

To explore quenching between supersymmetric potentials
we start by assuming that the N particle system is initially
confined in an infinite square well of width L,

V (1)(x) =
{∞, if |x| > L

2 ,

0, if |x| < L
2 .

(21)

For this system the single particle eigenstates are well known
and given by

ψ (1)
n (x) =

⎧⎨
⎩

√
2
L sin

(
nxπ

L

)
, n = even;,√

2
L cos

(
nxπ

L

)
, n = odd,

(22)

with the corresponding eigenenergies being E (1)
n =

n2π2h̄2/(2mL2). The infinite box potential is a common
system for which supersymmetric partners have been
studied extensively [35], and, indeed, the superpotential for
V (1)(x) and its partner potential V (2)(x) can be calculated
as W (2)(x) = π√

2L
tan( πx

L ) where the superscript (2)
references the target potential. The exact eigenfunctions
of the supersymmetric Hamiltonian H (2) are known and the
expression for the general superpotential for higher partners
is given by [35,50]

W (α) = (α − 1)
π√
2L

tan
(xπ

L

)
. (23)

In the following we focus on the dynamics of a quench
from an initial box potential V (1)(x) directly to a higher order
supersymmetric potential V (2)(x), V (3)(x), or V (4)(x). The ini-
tial state at T = 0 is the ground state |� (1)

0 〉 of the Hamiltonian
H (1) and, for a gas of N = 30 fermions, the survival probabil-
ity is shown in Figs. 2(a)–2(c). One can see that in all cases
the survival probability decays quickly immediately after the
quench, but regular complete recurrences of the initial state
[F (t ) = 1] appear as well. In fact, these occur at integer mul-
tiples of tr/4, where the standard, state-independent revival
time for a box is given by [51,52]

tr = 4mL2

π h̄
= 2π h̄

E (1)
1

, (24)

and where E (1)
1 is the ground-state energy of the initial Hamil-

tonian.
The occurrence of the revivals at multiples of tr/4 can be

easily understood by realising that at these times the phase
evolution of all single particle eigenstates is independent of n
[51–55]. This can be shown by separating the evolving single
particle eigenstates into their even and odd subspaces, which
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FIG. 2. Survival probabilities for different quenches of a system
of N = 30 fermions at T = 0 starting with an infinite box of width
L = 4. In panels [(a)–(c)] the final potentials are the supersymmetric
partner potentials V (2), V (3), and V (4), respectively. In panel (d) the
quench is from a box of length L′ = 3.9 to one of length L = 4. Note
that the parameters for the quench in (d) were chosen to compare to
the dynamics observed in (a).

have the associated energies

Ee
n = E1(2n + 1)2 and Eo

n = 4E1(n + 1)2, (25)

for n = 0, 1, 2, 3 . . . . The time evolution is then given by

e− i
h̄ Ee

n t = e−iφe
n (t ) = e− 2π i(2n+1)2

tr
t , (26)

e− i
h̄ Eo

n t = e−iφo
n (t ) = e− 8π i(n+1)2

tr
t , (27)

and one can see that for t = tr/4 the single particle phases
phases become independent of n,

φe
n(tr/4) = π

2
(mod 2π ), (28)

φo
n(tr/4) = 0 (mod 2π ), (29)

and in particular are purely real or imaginary. This means
that the orthonormality that was present at t = 0 between
the states is recovered at integer multiples of tr/4 and the
overlap matrix Okl (t ) contains only diagonal elements. For
a quench V (1) → V (2) (or every quench where the difference
in the order of the supersymmetric partner potentials is odd)
the diagonal elements describe a transition from a state with
an even quantum number to one with an odd quantum number
(in the original basis) and the phases of the overlap matrix
elements in Eq. (20) can be calculated to be

�φ = φe,o
( tr

4

)
− φo,e

( tr
4

)
= ±π

2
(mod 2π ) (30)

for all possible combinations of overlaps.

For the quench V (1) → V (3) (or every quench where the
difference in the order of the supersymmetric partner po-
tentials is even), the corresponding phase difference is the
difference between like parity states, which is simply zero or
a multiple of 2π . Since in both cases the determinant is just
the absolute value of the product of the diagonal elements, the
revivals in the survival probability in Eq. (19) occur.

From these insights above one can classify the revivals of
the survival probability into two different groups [52]. For
times where the phases of the overlaps do not align at a
multiple of 2π the wavefunction density overlaps with the
density at t = 0, however, the imaginary and real parts of the
wavefunction do not align. Such revivals are called quasire-
vivals. Conversely, at integer multiples of tr the overlap phases
align at multiples of 2π and are called true revivals.

In between the full revivals the dynamics in each quench
is different and one can see that for higher order quenches the
survival probability is approaching zero in these regions. It is
worth noting that the initial decay of the survival probability is
directly related to the average work done on the system [13],
which can therefore be used to quantify the strength of the
quench. For the quenches between supersymmetric Hamilto-
nians we can calculate the quantity explicitly to be (taking
advantage of the fact that we only need to know properties of
the initial Hamiltonian)

〈W (α)〉 = −i
d

dt
O(t )

∣∣
t=0

=
∑

m

(
E (α)

m − E (1)
0

)∣∣〈� (α)
m

∣∣� (1)
0

〉∣∣2

= E (1)
1 N (N + 1)(α2 − α). (31)

From this expression one can immediately see that quenches
to higher order potentials result in larger amounts of work.
Furthermore, the irreversible work can quantify the amount of
nonequilibrium excitations induced by the quench and can be
calculated to be〈

W (α)
irr

〉 = 〈W (α)〉 − �E (α)
0 = E1N2(α − 1)2, (32)

where

�E (α)
0 =

N∑
l=1

E (1)
l+α−1 −

N∑
l=1

E (1)
l

= (α − 1)(N2 + αN )E (1)
1 (33)

is the energy difference between the ground states of the initial
and the final potential.

Additional insight into the quench dynamics can be ob-
tained by examining the work probability distribution (WPD).
This quantity is given by the Fourier transform of the dynam-
ical overlap

P(W ) =
∫

dt e−iW tO(t ) (34)

=
∑

m

∣∣〈� (α)
m

∣∣� (1)
0

〉∣∣2
δ
(
W − (

E (α)
m − E (1)

0

))
, (35)

and allows one to understand how the excitations are spread in
the Hilbert space of the final Hamiltonian [56]. We show this
quantity in Figs. 3(a)–3(c) for the supersymmetric quenches
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FIG. 3. Work probability distribution corresponding to the
quenches shown in Fig. 2. The transition between ground states of
both potentials is marked with a black star, with other transitions
color coded for single particle transitions (blue), two particle transi-
tions (red), and three particle transitions (green).

corresponding to the quench dynamics shown in Figs. 2(a)–
2(c). The weakest quench is to V (2), where the survival
probability is small, but still finite, in between revivals. This
indicates that the initial state is not completely destroyed by
the quench and, correspondingly, the WPD shows a significant
peak at �E (2)

0 [black star in Fig. 3(a)]. This is the lowest possi-
ble excitation, which corresponds to the transition probability
between the respective ground states |� (1)

0 〉 and |� (2)
0 〉. One

can also distinguish the higher energy excitations through the
number of particles that are excited from the initial Fermi
sea: A single particle excitation (blue diamonds) corresponds
to the lowest N − 1 states being occupied and one particle
occupying a state above N ; a two particle excitation (red
diamonds) leads to the lowest N − 2 states being occupied
and two particles occupying states above N − 1, and higher
order excitations are defined similarly.

One can see from Fig. 3(a) that single particle excitations
possess the largest probability and exist in a single band. For
excitations consisting of more particles there is a larger set
of different two particle combinations, however, the majority
of these can be seen to possess a lower probability, similarly
for the three particle excitations. For the stronger quenches
to V (3) and V (4), the WPD broadens and the probability to
occupy the ground state |〈� (α)

0 |� (1)
0 〉|2 decreases [black star

in panels 3(b) and 3(c)], which corresponds to the survival
probability in Fig. 2 essentially vanishing between revivals. In
fact, the WPD for these quenches shows that two particle exci-

FIG. 4. Survival probability F (t ) as a function of temperature
and time for a quench V (1) → V (2).

tations dominate the dynamics and single particle excitations
become less important in the quench to V (4). Nevertheless, for
each supersymmetric quench an underlying structure can be
observed in the WPD, which is related to the appearance of
the perfect revivals. While for weaker quenches the majority
of the excitations are happening just above the Fermi surface,
for stronger quenches this is no longer true.

Finally, it is interesting to compare the quench dynamics
observed through F (t ) to the well-known Talbot effect. In this
an initial state is released into a box potential and in the result-
ing dynamics repeated images of the initial state are formed at
regular and well-defined times [51,52,54,57,58]. In Fig. 2(d)
we show the survival probability for a Fermi gas after a sudden
expansion of the infinite well potential. The initial state is the
ground state before the expansion and one can see that also
here the full revivals occur at integer multiples of t = tr/4
owing to the quadratic energy spectrum of the final potential.
Note that, for a fair comparison, we have chosen the change in
the box-width such that the survival probability in between the
revivals is visually close to the one from the supersymmetric
quench to V (2). Nevertheless, the WPD shown in Fig. 3(d)
can be seen to possess quite a different structure, indicating
that the supersymmetric quench is intrinsically different to the
Talbot effect. This will become even more clear when looking
at quenches at finite temperatures.

III. QUENCH AT FINITE TEMPERATURE

While the revivals in the survival probability at zero tem-
perature can be connected to the existence of a Fermi sea
[all occupation probabilities in Eq. (15) are either zero or
one], which restricts the dynamics of all lower lying parti-
cles [59,60], the behavior at finite temperatures can be more
complicated: With increasing temperature the Fermi edge be-
comes less sharp and the occupation probabilities for states
below the Fermi edge decreases below one. This expands the
number of possible transitions after the quench and therefore
leads to a stronger decay of the initial state [9,48].

In Fig. 4 we show the survival probability for the quench
V (1) → V (2) as a function of time and temperature in units of
the Fermi temperature TF = N2E1/kB. One can immediately
see that the revivals at integer multiples of tr are not affected
by temperature, but all other ones present at zero-temperature
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FIG. 5. Survival probability for finite temperatures of T/TF =
0.05 (blue) and T/TF = 0.1 (red) for the same quenches as presented
in Fig. 2.

decay as the temperature increases. For longer times this is
also shown in Fig. 5(a) and a similar behavior can be ob-
served for a quench V (1) → V (4) in Fig. 5(c). However, for
the quench V (1) → V (3) all the revivals are unaffected by
temperature. This phenomenon is also observed for quenches
between potentials in a hierarchy from V (α) → V (α+2n).

To calculate the WPD for finite temperatures we include
the thermal ensemble of the initial state p(1)

n = 1
Z0

eβ(E (1)
n −Nμ),

which in analogy with Eq. (35) gives

P(W ) =
∑
m,n

p(1)
n

∣∣〈� (α)
m

∣∣� (1)
n

〉∣∣2
δ
(
W − (

E (α)
m − E (1)

n

))
. (36)

In Fig. 6 one can see that, when compared to the zero-
temperature case, the distributions for the quenches to V (2)

and V (4) are much denser and less structured, while for the
quench to the potential V (3) the distribution remains compar-
atively sparse and ordered.

At finite temperatures the difference between the super-
symmetric quenches and the Talbot effect in a quenched
expanding box becomes especially clear. One can see from
Fig. 5(d) that, despite the similarity in the eigenspectra of
these two class of quenches, all revivals completely disappear
for the box expansion. This difference is not obvious from
the WPD [see Fig. 6(d)], which shows similar broadening of
the probability distribution and an increase in the number of
excitations. Instead, the presence and absence of constructive
interference of the single particle states at the revival times
can be best seen by looking at the elements of the determinant
in Eq. (15) at integer multiples of tr/4. For full revivals of

FIG. 6. Work probability distributions plotted for finite temper-
atures of T/TF = 0.05 and T/TF = 0.1 for the same quenches as
presented in Fig. 3. The black star is the same as in Fig. 3 (for T = 0)
and included for easier comparison.

FIG. 7. Diagonal elements of the overlaps for each quench at
T/TF = 0 (blue dots) and finite temperature of T/TF = 0.5 (red
dots). [(a)–(c)] Supersymmetric quenches where target potentials are
partner potentials V (2), V (3), and V (4) respectively and (d) shows the
expanding box. The off-diagonal elements are zero at these times,
which is indicted by the black crosses in the center of each panel.
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the initial state all off-diagonal elements should vanish and
the remaining diagonal elements should sit on the unit circle.
While this is true at zero temperature as shown in Fig. 7 (blue
dots show the diagonal elements, whereas the cross indicates
the off-diagonal ones), at finite temperatures (red dots) this is
no longer the case for the supersymmetric quenches V1 → V2

and V1 → V4 at tr/4 and tr/2, as well as the quench of the box
size. This is a consequence of the finite temperature Fermi-
Dirac distribution in Eq. (15), which means that the diagonal
elements of the determinant are no longer just ±1 or ±i, and
therefore the survival probability is smaller than one.

However, for the supersymmetric quench V1 → V3 at any
multiple of tr/4 and for all supersymmetric quenches at tr , the
elements of the determinant are lying on the unit circle with
a well defined phase of 2π . This corresponds to the revivals
of the exact single particle wavefunctions at these times, and
these real revivals are independent of temperature. Therefore
for the supersymmetric quenches only the quasirevivals are
affected by finite temperatures. This also sheds light on why
all revivals vanish for the Talbot quench, despite the energy
spectrum having a quadratic form before and after the quench.
From Fig. 7(d) one can see that at T = 0 the diagonal ele-
ments are distributed around the unit circle (blue dots) at any
integer multiple of tr/4, indicating that all revivals are just
quasirevivals. This is consistent with the observation that at
finite temperatures (red dots) the elements of the determinant
no longer have a magnitude of one, and therefore the revivals
vanish. This highlights the resilience of the supersymmetric
systems to thermal effects.

IV. CONCLUSIONS

In this paper we have investigated the many-body out-of-
equilibrium dynamics for a gas of spin-polarised fermions
following a sudden quench in the trapping potential. In par-
ticular we have focused on quenches between an infinite
box potential to a hierarchy of supersymmetric potentials,
which are connected through a supersymmetric algebra. What
is unique about this scenario is the similarity of the eigen-
spectra between these different potentials, which results in
interesting and accessible nonequilibrium dynamics. Indeed
we have shown that quenches between these supersymmetric

potentials at zero temperature produce periodic revivals in
the survival probability and compared this to the revivals
present in Talbot oscillations in the infinite well. Quenches
to higher order potentials lead to a stronger decay of the
survival probability in between these revivals, which can be
understood by quantifying the postquench excitations through
the average work done. We have shown that, due to the exis-
tence of the intertwining properties between supersymmetric
systems, the average and the irreversible work at zero tem-
perature can be exactly calculated. For finite temperatures we
have observed that the quasirevivals decay in the many-body
dynamics, whereas the true revivals remain and are tempera-
ture independent. These different revivals can be identified by
analyzing the elements of the overlap matrix at zero and finite
temperatures, showing that the presence of perfect revivals at
finite temperature is strongly dependent on the order of the
potential quench.

Comparing these supersymmetric quenches to the well-
known Talbot oscillations, where a quench corresponds to
changing the width of an infinite box, it is clear that su-
persymmetric quenches of such potentials are fundamentally
different, possess interesting many-body dynamics, and are
highly analytically accessible. Supersymmetric quenches are
therefore an interesting addition to better understand nonequi-
librium dynamics of quantum many-body systems. Finally,
while our paper has focused on quenches from the infinite
box potential, a similar analysis can be readily extended
to quenches between other well-known superpotentials [30].
However, as these possess a different structure of the en-
ergy spectrum, many-body revivals might not be present and
one would have to look for other distinctive measures. This
poses interesting questions about the role of supersymmetry
in different correlation functions and related concepts in in-
formation scrambling that we leave for future work.
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