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Variational quantum algorithms are considered to be appealing applications of near-term quantum computers.
However, it has been unclear whether they can outperform classical algorithms or not. To reveal their limitations,
we must seek a technique to benchmark them on large-scale problems. Here we propose a perturbative approach
for efficient benchmarking of variational quantum algorithms. The proposed technique performs perturbative
expansion of a circuit consisting of Clifford and Pauli rotation gates, which is enabled by exploiting the classical
simulatability of Clifford circuits. Our method can be applied to a wide family of parameterized quantum circuits
consisting of Clifford gates and single-qubit rotation gates. The approximate optimal parameter obtained by the
method can also serve as an initial guess for further optimizations on a quantum device. As the first application
of the method, we perform a benchmark of so-called hardware-efficient-type ansatzes when they are applied to
the variational quantum eigensolver (VQE) of one-dimensional hydrogen chains up to H24, which corresponds
to a 48-qubit system using a standard workstation. This is the largest scale benchmark of the VQE to the best of
our knowledge and reveals the limitation of hardware-efficient-type ansatzes.
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I. INTRODUCTION

As promising candidates for possible applications of
early days quantum devices, variational quantum algorithms
(VQAs) [1] have been developed rapidly. VQAs utilize pa-
rameterized quantum circuits U (θ) with parameters θ that are
optimized with respect to some suitably defined cost func-
tion L(θ) depending on specific tasks. Target applications of
VQAs range among quantum chemistry calculations [2–4],
combinational optimization [5], and machine learning [6–10].

Despite the vast amount of theoretical proposals, demon-
strations, and benchmarks of algorithms [1,8,11–13], they are
limited to relatively small-scale problems, where classical
simulations are still feasible. Efficient techniques for their
benchmark in large-scale problems are strongly demanded
to understand the limitations of VQAs and to develop more
sophisticated algorithms.

Here we aim to resolve the above problem with a per-
turbative expansion of the cost function. We assume that a
parametrized quantum circuit utilized in an algorithm is made
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of Clifford gates and single-qubit rotation gates whose an-
gles are the circuit parameters and initialized to zero. The
above form of the circuit includes a wide family of param-
eterized circuits, which guarantees the wide applicability of
the proposed method. With this assumption, we can efficiently
compute the first and second derivatives of a cost function
by exploiting the classical simulatability [14,15] of Clifford
circuits. This allows us to perform a simple minimization
of a quadratic function to obtain an approximately optimal
value of parameters and a cost function. In particular, for
the variational quantum eigensolver (VQE) [2], which is an
algorithm to obtain an approximate ground state of a quantum
system, the perturbative treatment can be justified because
classically tractable variational solutions such as Hartree-Fock
or mean-field states are expected to be close to true ones. In
such cases, we can obtain an approximately optimal energy
that can be achieved with a certain ansatz, thereby our method
serves as a benchmark of the ansatz performance measured
by the energy it can produce. The method can also be seen as
an efficient initializer of the circuit parameters as the above
procedure corresponds to the first step of Newton-Raphson
optimization. The obtained Hessian together with the obtained
parameter can be passed as an initial guess to quasi-Newton
optimizers such as the BFGS method for further optimization
on quantum devices.

In the following, we first give the concrete algorithm of
the proposed method. Then, as an application of the method,
we benchmark the so-called hardware-efficient-type ansatzes
applied to the VQE up to 48 qubits using the hydrogen chain
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as a testbed. Benchmarks are performed by approximately
evaluating the energy that the hardware-efficient ansatz can
achieve. This is the largest scale benchmark of the VQE to
date and reveals limitations of the ansatzes. This benchmark
can be performed because the proposed technique provides us
an approximately optimal value of the cost function, which
is the energy expectation value in this case. The benchmark
itself can be seen as a demonstration of a “quantum-inspired”
quantum chemistry calculation, where the ansatz wave func-
tion is constructed with the language of the quantum circuit.
Finally, we also show the effectiveness of our perturbative
initialization approach by another numerical experiment.

II. ALGORITHMS

A. VQA

VQA generally refers to a family of algorithms that involve
the use of parametrized quantum circuits U (θ) whose param-
eters θ are optimized with respect to a suitable cost function
L(θ); U (θ) is used to generate a n-qubit parametrized state
|ψ (θ)〉 := U (θ) |0〉⊗n. Hereafter we abbreviate |0〉⊗n by |0〉
when it is clear from the context. A famous example of VQAs
is the VQE [2], where the cost function is defined as an energy
expectation value E (θ) with respect to a Hamiltonian H , i.e.,
L(θ) = E (θ) = 〈ψ (θ)| H |ψ (θ)〉. The cost function is usually
computed from expectation values of observables also in other
examples such as machine learning [6–10] and combinational
optimization [5]. A general form of L(θ) can be written as
L(θ) = L(〈O(θ)〉) where O denotes the measured observable
and 〈O(θ)〉 := 〈ψ (θ)| O |ψ (θ)〉. O is typically expressed as
a sum of No n-qubit Pauli operators {Pi} ⊂ {I, X,Y, Z}⊗n as
O = ∑No

i=1 ciPi with coefficients {ci}.

B. Main result: Quadratic Clifford expansion

We consider an ansatz in the form of

U (θ) = RK (θK )CK · · · R2(θ2)C2R1(θ1)C1, (1)

where θ = {θk}K
k=1, Rk is a single-qubit rotation gate generated

by a Pauli operator Pk , i.e., Rk (θk ) = eiθkPk , and Ck is a circuit
consisting of Clifford gates. Note that this form of the ansatz
is quite general. When we wish to build a hardware-efficient
ansatz [4], it is frequently in the form of Eq. (1) because the
two-qubit gates which are tuned to give a high fidelity on the
hardware are usually Clifford gates such as controlled-NOT or
controlled-Z gates. More sophisticated ansatz such as unitary
coupled cluster [2] can also be written in this form.

This form of the ansatz allows us to efficiently compute the
perturbative form of the cost function L(θ). More concretely,
a Taylor expansion of 〈O(θ)〉 around θ = 0 can be written as

〈O(θ)〉 = 〈O(0)〉 +
∑

k

gkθk + 1

2

∑
k,m

Akmθkθm + O(‖θ‖3),

(2)

where

gk = 2Re

[
〈0|U †(0)O

∂U (0)

∂θk
|0〉

]
, (3)

Akm = 2Re

[
〈0| ∂U †(0)

∂θk
O

∂U (0)

∂θm
|0〉

]

+ 2Re

[
〈0|U †(0)O

∂

∂θk

∂U (0)

∂θm
|0〉

]
, (4)

and ∂U (0)
∂θk

:= ∂U (θ)
∂θk

|θ=0, which can then be used to expand
L(θ) = L(〈O(θ)〉) itself. Since we assumed U to be in the
form of Eq. (1), ∂U (0)

∂θi
can be efficiently computed. To see this,

observe that

∂U (0)

∂θk
= iCK · · · PkCk · · ·C2C1. (5)

Pk can be efficiently passed through CK · · ·Ck+1. Let

CK · · ·Ck+1Pk = P′
kCK · · ·Ck+1, (6)

for some Pauli operator P′
k . P′

k can be found in time O(nK )
on a classical computer if {Ck} are local, that is, {Ck} act
only on O(1) qubits. Using P′

k , the coefficients appearing
in the second-order Taylor expansion [Eq. (2)] can be writ-
ten in terms of the expectation values 〈ψ (0)|OP′

k|ψ (0)〉,
〈ψ (0)|P′

kOP′
m|ψ (0)〉, and 〈ψ (0)|OP′

kP′
m|ψ (0)〉. The decompo-

sition of the operators OP′
k , P′

kOP′
m, and OP′

kP′
m into a sum of

Pauli operators can be computed in time O(nNo) on a classical
computer. This can be performed simply by multiplying P′

k
and P′

m to each Pauli operator in O. The expectation values of
these operators can be evaluated efficiently on a classical com-
puter because |ψ (0)〉 is a stabilizer state under the assumption
that U (0) is Clifford. More concretely, we evaluate expecta-
tion values of each Pauli operator constituting OP′

k , P′
kOP′

m,
and OP′

kP′
m and then take the summation. This process can

be performed in time O(n2NoK2) using a standard simulation
technique [15], which gives the leading-order complexity of
the perturbative expansion. We call this technique quadratic
Clifford expansion. The technique itself might be useful for
classical simulations of near-Clifford circuits, i.e., we can
approximately simulate the output of such circuits as long as
the non-Clifford rotation angles are small and the perturbative
treatment is valid.

The perturbative expansion given in Eq. (2) is justified
especially for the VQE [2], where we can obtain an approx-
imate ground state classically by using techniques such as
Hartree-Fock methods. If we construct U (θ) in such a way
that |ψ (0)〉 becomes the Hartree-Fock ground state, |ψ (0)〉 is
considered to be close to the true ground state. This type of
strategy in which we start the optimization from a state close
to a solution has been shown to be effective to alleviate the
barren plateau problem [16]. Therefore in this case, we can
presume the optimal value of θ to be small, which justifies
the perturbative treatment of the cost function E (θ). As long
as the perturbation is accurate enough, we can obtain the
optimal value of 〈O(θ)〉 by simply minimizing the quadratic
function obtained with the second-order expansion, which can
be done in time O(K3) and provides us an optimal parameter
θ∗ = −A+g, where A+ is the Moore-Penrose pseudoinverse of
the Hessian A. The approximate, perturbative optimal value of
〈O(θ)〉 can be calculated by substituting θ∗ into Eq. (2) and
neglecting cubic error term, which we denote by 〈O〉∗.

One might think that the condition the ground state must
be approximated by a stabilizer state is rather restrictive.
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While it is true for general quantum systems, there are cer-
tain interesting cases such as the transverse-field toric code
model [17] and the transverse-field cluster model [18] where
this condition holds. Moreover, we can readily improve the
approximation by using an arbitrary superposition of the poly-
nomial number of stabilizer states instead of |0〉 as an input to
the ansatz U (θ) while maintaining the polynomial runtime.
This strategy, for instance, allows us to use wave functions
obtained by the configuration interaction singles and doubles
method, which is a classical post-Hartree-Fock method, as
|ψ (0)〉.

Whether the above perturbation is accurate or not cannot be
efficiently determined classically in general, since we cannot
obtain the expectation value 〈O(θ)〉 for general θ on a classical
computer. This indicates the need for a quantum device for
validating the result. Therefore a possible strategy of using
the proposed technique is to evaluate 〈O(θ∗)〉 on a quantum
computer, and if it returns a value close to the perturbative
one, then we just assume that we have found an optimal
approximate ground state; otherwise, we further optimize the
parameters starting from θ∗.

We remark that θ∗ can also be seen as the parameter ob-
tained by the first step of the Newton-Raphson method. It
provides a good starting point for further optimization using
sophisticated techniques like stochastic gradient descent [19].
Moreover, the Hessian Akm can be passed to quasi-Newton
optimizers such as the BFGS method which are frequently uti-
lized in the VQE. This method can also be applied to calculate
the quantum natural gradient [20–22], which can be calculated
from overlaps between derivatives of |ψ (θ)〉. We also note that
a recently proposed optimization method called the quantum
analytic descent [23] can be easily combined with our method,
as it uses the gradient and the Hessian of the cost function to
approximate its landscape with trigonometric functions.

We can also apply the proposed method to the machine-
learning algorithms [6–10]. In this direction, techniques for
computing a “good” initial guess like the mean-field solution
are not yet developed. We leave such an extension for the
future.

III. NUMERICAL EXPERIMENT

To demonstrate the effectiveness of our idea, we apply the
method described in the previous section to the VQE to bench-
mark the performance of the so-called hardware-efficient
ansatz [4]. For this purpose, we use electronic Hamiltonians of
evenly spaced one-dimensional chains of hydrogen atoms Hm,
which are frequently used as a benchmark system for quantum
chemistry calculations [24]. All benchmarks are performed on
a workstation with two Intel Xeon Silver 4108 processors. For
quantum circuit simulations, we utilized an NVIDIA Tesla-
V100 GPU.

A. Experimental details

Electronic Hamiltonians of hydrogen chains are generated
by OpenFermion [25] and PySCF [26,27] using the STO-3G
minimal basis set. The generated fermionic Hamiltonians are
mapped to qubit ones by the Jordan-Wigner transformation
implemented in OpenFermion, which results in a 2m-qubit

FIG. 1. Ansatz used in the numerical experiment. Gray boxes
represent (fixed) 2-qubit Clifford gates in the form of the upper
left, where white boxes are randomly chosen from 24 single-qubit
Clifford gates [31]. Green boxes represent parametrized single-qubit
rotations consisting of x, y and z-axis rotations, respectively.

Hamiltonian for an m-hydrogen chain Hm. A thorough review
of these procedures can be found in, e.g., Ref. [28]. All con-
ventional quantum chemistry calculations are also performed
with PySCF.

As for the ansatz, we use the one shown in Fig. 1, which
can be regarded as a “hardware-efficient” ansatz constructed
on a one-dimensional qubit array. It consists of alternating
layers of two-qubit Clifford gates and single-qubit rotation
gates. This form of the ansatz can generate sufficiently non-
local evolutions that give nonzero gradients. In Fig. 1, the
two-qubit Clifford gates in the region shaded by blue are
randomly chosen as shown in the upper left of the figure. We
define U (θ1) to be the circuit in the blue region. The circuit in
the orange region, V (θ2), is chosen to satisfy V (0) = U †(0).
This allows us to easily guarantee |ψ (0)〉 to be the Hartree-
Fock state |ψHF〉; we can just inject |ψHF〉 to the input of the
circuit. Note that Hartree-Fock states are computational basis
states under fermion-to-qubit mappings such as the Jordan-
Wigner transformation, and its evolution under Clifford gates
can efficiently be simulated. The single-qubit rotations hold
the parameter θ = {θ1, θ2} to be optimized. Each has three
parameters as x-, y-, and z-rotation angles. Note that, although
the two-qubit Clifford gates in V (θ2) are chosen to satisfy
V (0) = U †(0), the parameters implemented in single-qubit
rotations in U (θ1) and V (θ2) are independent.

Using this ansatz, we calculate the gradient and Hessian
based on the method described in the previous section. Then,
we perform the minimization of the second-order perturba-
tive energy to obtain approximately optimal energies and
parameters. Optimization is performed simply by calculating
θ∗ = −A+g. This provides us θ∗ and perturbative energies
E∗ = 〈H〉∗. Finally, when possible, we simulate an ansatz
whose parameters are set to the perturbatively optimal ones
to check if the perturbative treatment can be justified. This
simulation is performed with Qulacs [29].

To make the benchmark systematic, we set the depth of
the ansatzes equal to the number of hydrogen atoms, m. This
scaling of the depth can be considered as the largest possi-
ble value for today’s most advanced quantum computer [30].
Note that this choice corresponds to K = O(m2). Combining
with the fact that No = O(m4) and n = 2m in this case, the
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FIG. 2. Results of the numerical experiments at (a) m = 2,
(b) m = 4, and (c) m = 6. Full-CI is the exact ground-state energy,
and MP2, CCSD, and HF, respectively, are the mean approxi-
mate ground-state energy obtained with second-order Møller-Plesset
perturbation, coupled cluster with single and double excitations,
and Hartree-Fock. Circuit value and perturbative value represent
E (θ∗) and its perturbative approximation computed from Eq. (2),
respectively.

overall time complexity of computing Hessian for this system
is O(m8). Since the minimization of the quadratic function
can be done in time O(K3) = O(m6), the Hessian part con-
tributes the most to the total time.

Finally, to somewhat relax the randomness of the ansatz,
we first randomly generate 200 ansatzes in the form of Fig. 1
for each m used in the experiment. For each generated ansatz,
we calculate gl using the Hamiltonian with the spacing of
1.0 Å. Then, the circuit with the largest

∑
l |gl | is chosen as

the ansatz to be used for each hydrogen chain with different
spacings. This is based on our expectation that an ansatz with
large gradients would provide the highest performance.

B. Results and discussion

1. Preliminary results of small-scale systems

Figure 2 shows the result of the numerical experiment
at m = 2, 4, and 6 along with the energy obtained from
standard quantum chemistry calculations [32] as references.
For m = 2 and 4, we can observe that the energies obtained
from the circuit simulation and the one from the perturbative
optimization match well at small spacings. Here the Hartree-
Fock method gives a relatively accurate description of the
ground state, and the perturbative treatment works fine as
expected. The effectiveness of the perturbation also means
that we can achieve the optimal parameter with this technique.
This implies that the hardware-efficient ansatzes considered
in this work can only achieve the accuracy of second-order
Møller-Plesset perturbation (MP2) [32], which is a technique
used widely in current quantum chemistry calculations as one

of the easiest post-Hartree-Fock methods, for H4 as we can
observe from Fig. 2(b). There is a possibility of improving the
accuracy by optimizing from a randomly initialized θ as the
above discussion only considers the case where we take θ = 0
as the initial parameter. However, such a strategy would not
be generally scalable because of the barren plateau problem
[33]. On the other hand, the perturbative treatment breaks
down at the larger spacings where the electronic correlation
becomes larger. As mentioned in the previous section, one has
to perform further optimization in such a case. Note that for
the m = 2 case, we can generate the exact ground state by a
Clifford circuit at a large spacing in principle since the ground
state approaches (|0011〉 + |1100〉)/

√
2. However, it is not

possible to generate this state using the ansatz construction
strategy utilized here because we restrict the ansatz to become
identity at θ = 0. This is a limitation of this strategy in the
ansatz construction but not of the quadratic clifford expansion.
We believe this situation can be improved by using more
sophisticated strategy for choosing the Clifford part of the
circuit, e.g., it would be interesting to combine the strategy
presented in Ref. [34] with the proposed method.

In the case of m = 6, we cannot observe the clear break-
down of the perturbative treatment, i.e., the energies obtained
from the perturbation match well with those from the circuit
simulation. Again, it means that the optimal parameters and
corresponding energies can be obtained with the proposed
technique. We can see that the hardware-efficient circuit can-
not even achieve the MP2 energy for H6. Note that MP2
considers up to double electron excitations and involves O(n4)
parameters in its construction. This scaling is considerably
greater than the number of parameters implemented in the
ansatz of Fig. 1 with depth n. In this sense, the performance
worse than MP2 is expected behavior. This trend of decreasing
accuracy will also be certified with the result in the next
subsection.

The important message of Fig. 2 is that the perturbative
treatment becomes more accurate as we increase the sys-
tem size in this setup. Assuming this trend persists in larger
systems, our method can provide a performance benchmark
in terms of the energy achievable by the ansatz at a scale
where classical simulation of VQE is infeasible. In the next
subsection, we perform such a benchmark up to a system size
m = 24 which corresponds to 48 qubits.

2. Benchmark results of large-scale systems

Although the complexity of O(m8) is polynomial in m,
the large exponent prohibits us from extending the analysis to
larger scales. Due to this complexity, we need some modifica-
tions to the experimental settings. First, we modify the ansatz
to only involve real numbers by generating an ansatz that has
the same form as the one shown in Fig. 1, but the random
single-qubit Clifford gates are randomly chosen from identity
and Hadamard gates only, and the single-qubit rotations just
contain a y rotation. This modification reduces the number of
parameters by a third. We find that this modification does not
significantly alter the result as shown in the Appendix, which
can be explained by the fact that the eigenstates of nonrel-
ativistic quantum chemistry Hamiltonians can be described
with states that are real in the computational basis. Second,
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FIG. 3. Results of the numerical experiments at (a), (b) m = 14
and (c), (d) m = 24. Graph legends follow those of Fig. 2. Panels
(a) and (c) show the total energy, while (b) and (d) show the correla-
tion energy.

to further reduce the number of parameters involved in the
Hessian calculation, we “drop out” the parameters that give
zero gradients to the energy, i.e., y rotations that do not give
the first-order contribution to the energy are removed from
the ansatz after calculating the gradient. This is motivated by
our observation in the preliminary experiment where we have
found that the gradients with respect to most of the parame-
ters are exactly zero. In the following experiment, the results
are obtained by removing the rotation gates with |gl | < 10−6

Hartree. In the Appendix, we show that this modification does
not significantly alter the results either.

Figure 3 shows the benchmark results for m = 14 and
m = 24 cases. Note that m = 14 corresponds to 28 qubits,
which is the largest number of qubits that can be handled with
the Qulacs-GPU simulator [29] using an NVIDIA Tesla-V100
processor. At m = 16, the required memory far exceeds its
capacity. For this reason, we do not show the circuit value in
the case of m = 24 which corresponds to 48 qubits [Figs. 3(c)
and 3(d)]. Also, as the exact diagonalization at m = 24 could
not be performed under our environment, it is not shown in the
figure. The energy of coupled-cluster with single and double
excitations (CCSD) is not depicted in both cases because
we experienced its numerical instability. Note that coupled-
cluster methods generally encounter instability when applied
to a system with strong correlation [35,36].

In Figs. 3(b) and 3(d), we show the correlation energy Ecorr

defined as the difference between the obtained energy and the
Hartree-Fock reference energy to illustrate the performance of
the proposed method and the hardware-efficient ansatz itself.
From Fig. 3(b), we can observe that the perturbative energy
and the circuit value match almost exactly, indicating that
we can analyze the performance of the ansatz itself with this

H-H distance = 2.5 Å

H-H distance = 2.0 Å

H-H distance = 1.5 Å

FIG. 4. Comparison of the convergence of optimization pro-
cedures with different θinit using m = 4 Hamiltonian at different
spacings of hydrogen atoms.

perturbative treatment as we have expected from the results at
smaller m. Therefore Figs. 3(b) and 3(d) show that the corre-
lation energy that can be achieved by the hardware-efficient
ansatz used in this work is a tenth or a hundredth smaller than
that of MP2. This is, to the best of our knowledge, the first
benchmark of the hardware efficient ansatz at this scale. Note
that the perturbative minimum obtained by this method is a
local one that locates around θ = 0, and the global optimal
solution for this ansatz can perform better. Nevertheless, this
result indicates that we should use types of ansatz other than
this work since the one-dimensional hardware-efficient ansatz
utilized in this work does not seem to be a promising choice.

3. Initialization performance

Finally, we show that the approximate optimal parameter
θ∗ = −A+g together with the initial Hessian A can indeed
serve as a good initial guess of the VQE. To this end, we take
Hamiltonians of H4 at different atom spacings as examples
and compare the convergence of the optimization procedure
of the VQE when using different initial parameters θinit . The
BFGS method implemented in SciPy [37], which is a pop-
ular quasi-Newton technique, is employed as the optimizer.
We compare three cases: θinit = 0, θinit = −A+g, and θinit =
−A+g with the initial Hessian provided to the optimizer.

Figure 4 shows the result of the numerical experiment. We
can observe that the θinit = −A+g cases exhibit the faster con-
vergence than θinit = 0 in all cases, saving about 2 iterations.
Also, the optimizer with the initial Hessian performs equally
well or better than the case θinit = −A+g without providing
Hessian. Although the improvement is not substantial as the
θinit = 0 case also converge in few iterations, we can conclude
that out method can reduce the optimization steps to be per-
formed on quantum devices.
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IV. CONCLUSION

We proposed a technique to efficiently compute an approx-
imate optimal parameter and the corresponding value of the
cost function in the VQAs. It is based on the observation that
we can efficiently compute the gradient and Hessian of the
cost function if an ansatz is in the form of Eq. (1) which
includes a wide range of circuits. Since the method is based
on a perturbative expansion, we can obtain an accurate solu-
tion when the initial guess of the parameter from which we
perform the Taylor expansion of Eq. (2) is close to an optimal
one. Even if we do not have such an initial guess, the gradient
and Hessian can be used to perform the first-step optimization,
and those quantities can be passed to optimizers. The gener-
ality of the ansatz allows us to apply the proposed method
to various VQAs such as VQE [2–4], quantum approximate
optimization [5], and variational machine-learning algorithms
[6–10].

We applied the method to the VQE of hydrogen chains with
a one-dimensional hardware-efficient ansatz shown in Fig. 1
for its benchmark. The simulation involving 48 qubits is the
largest scale to date. The numerical experiments showed that
the performance of such a hardware-efficient ansatz in the
VQE cannot even achieve that of classical MP2 calculation.
To the best of our knowledge, the proposed method is the only
one that enables us the benchmark of the VQAs beyond the
scale that is classically simulatable. Although the benchmark
results are pessimistic, it also motivates us to use other types
of ansatzes and to make other initialization strategies such as
the one presented in Ref. [38]. For example, one might be able
to use genetic optimization to improve the ansatz in Fig. 1
from the random choice of Clifford gates. One might also be
able to improve the performance of this ansatz by using local-
ized orbitals instead of the naive Hartree-Fock orbitals utilized
in this work to express the Hamiltonian, which would make it
easier for the ansatz to capture the electronic correlation. We
believe that the proposed technique will be of use to a wide
range of the VQAs.
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APPENDIX: REDUCING THE NUMBER OF PARAMETERS
IN THE ANSATZ

First, we demonstrate that the modification of the ansatz
to be real in the computational basis (see Sec. III B 2) does
not alter the results significantly. It is illustrated in Fig. 5(a)
where we plot the difference of the energy obtained by the
modified and original ansatz, respectively, is denoted as Ereal

and Ecomplex. The energy difference does not exceed 10−2

Hartree in the figure when the spacing is less than 2.0 Å,
which is negligible compared with the correlation energy.

The effect of the “drop-out” utilized in Sec. III B 2 does not
alter results either. Figure 5(b) shows the comparison of the
results with and without dropout at m = 6 using the modified
real ansatz. We can observe that the “dropout” only slightly
alters the result by about the same magnitude as Fig. 5(a).
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Higgott, C. Huang, J. Izaac, Z. Jiang, X. Liu, S. McArdle
et al., OpenFermion: the electronic structure package for quan-
tum computers, Quantum Sci. Technol. 5, 034014 (2020).

[26] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z.
Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma et al.,
Pyscf: the python-based simulations of chemistry framework,
WIREs Comput. Mol. Sci. 8, e1340 (2018).

[27] Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt,
N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui et al., Recent
developments in the pyscf program package, J. Chem. Phys.
153, 024109 (2020).

[28] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X.
Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92,
015003 (2020).

[29] Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai,
J. Chen, K. M. Nakanishi, K. Mitarai, R. Imai, S. Tamiya, T.
Yamamoto, T. Yan, T. Kawakubo, Y. O. Nakagawa, Y. Ibe,
Y. Zhang, H. Yamashita, H. Yoshimura, A. Hayashi, and K.
Fujii, Qulacs: a fast and versatile quantum circuit simulator for
research purpose, Quantum 5, 559 (2021).

[30] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A.
Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W.
Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler et al.,
Quantum supremacy using a programmable superconducting
processor, Nature (London) 574, 505 (2019).

[31] P. Selinger, Generators and relations for n-qubit clifford opera-
tors, Logical Methods Comp. Sci. 11 (2015).

[32] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-
Structure Theory (John Wiley & Sons, Ltd, New York,
2000).

[33] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[34] G. S. Ravi, P. Gokhale, Y. Ding, W. M. Kirby, K. N. Smith, J. M.
Baker, P. J. Love, H. Hoffmann, K. R. Brown, and F. T. Chong,
Cafqa: Clifford ansatz for quantum accuracy, arXiv:2202.12924
[quant-ph].

[35] P. R. Surján and Á. Szabados, On the coupled-cluster equations.
stability analysis and nonstandard correction schemes, in Re-
cent Progress in Coupled Cluster Methods (Springer, Berlin,
2010), pp. 513–534.

[36] T. J. Lee and P. R. Taylor, A diagnostic for determining the
quality of single-reference electron correlation methods, Int. J.
Quantum Chem. 36, 199 (1989).

[37] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright et al., Scipy 1.0: fundamental algorithms for scientific
computing in python, Nat. Methods 17, 261 (2020).

[38] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti,
An initialization strategy for addressing barren plateaus in
parametrized quantum circuits, Quantum 3, 214 (2019).

033012-7

http://arxiv.org/abs/arXiv:1802.06002
https://doi.org/10.1038/s41534-019-0157-8
https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.1126/science.abb9811
https://doi.org/10.1038/s41534-020-0259-3
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevLett.103.020506
https://doi.org/10.22331/q-2020-08-31-314
https://doi.org/10.22331/q-2020-05-25-269
https://doi.org/10.1103/PhysRevA.103.012405
http://arxiv.org/abs/arXiv:1909.05074
https://doi.org/10.1103/PhysRevResearch.4.023017
https://doi.org/10.1103/PhysRevX.7.031059
https://doi.org/10.1088/2058-9565/ab8ebc
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1063/5.0006074
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.22331/q-2021-10-06-559
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.2168/LMCS-11(2:10)2015
https://doi.org/10.1038/s41467-018-07090-4
http://arxiv.org/abs/arXiv:2202.12924
https://doi.org/10.1002/qua.560360824
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.22331/q-2019-12-09-214

