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Entanglement in Unruh, Hawking, and Cherenkov radiation from a quantum optical perspective
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Free quantum field theory in flat space-time is often believed to be well established, holding no surprises.
We hope, by the end of this paper, to have demonstrated that surprises still exist. For example, we will show
that a uniformly accelerated atom in Minkowski space-time emits entangled photon pairs in a squeezed state
which mimics entanglement of the Minkowski vacuum in that the entanglement is between Minkowski modes
which are dominantly in opposite causal wedges of the space-time. Similar emission of photon pairs occurs if
an atom is held above the black hole event horizon. Namely, a ground-state atom becomes excited by emitting a
“negative” -energy photon under the horizon and then spontaneously decays back to the ground state by emitting
a positive-energy photon outside the horizon, which propagates away from the black hole.
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I. INTRODUCTION

The major results reported in this paper are given in Fig. 1.
In Fig. 1(a) we depict a ground-state atom moving in the
right Rindler wedge with an acceleration a which becomes
excited by emitting a photon into a superposition of a right-
propagating Unruh-Minkowski (UM) mode F2�, where � =
ωc/a and ω is the atomic transition frequency in the atom’s
frame, and a left-propagating mode G2�. The mode F2� is
mostly localized above the t = z/c Rindler horizon, and G2�

is mostly localized below the t = −z/c horizon. The excited
atom then decays to the ground state by emitting a sum of
a right-propagating photon into the UM mode F1�, which
is mostly localized below the t = z/c horizon, and a left-
propagating mode G1� mostly localized above the t = −z/c
horizon. The modes emitted via excitation of the atom are
thus mostly located in regions of the space-time away from
the atom, while the modes emitted during the deexcitation of
the atom (F1� and G1�) are largest in the region around the
atom.

In the following we will concentrate on the calculation
for the right-propagating modes (F�), but the calculations for
the left-propagating modes (G�) are essentially identical. One
could also make the atom sensitive to only the right-going
modes by coupling the atom to ( 1

c
∂
∂τ

− ∂
∂ρ

)φ, instead of to ∂φ

∂τ
,

where τ is the proper time along the path of the atom and ρ is
the orthogonal spatial coordinate at the atom’s frame.

In Fig. 1(b) we depict a ground-state atom held fixed above
the event horizon of a static black hole (BH) in Schwarzschild
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coordinates t, r. It is uniformly accelerated in the Kruskal-
Szekeres coordinates (T, X ) through the Hartle-Hawking
vacuum (which could also be called the Kruskal vacuum, in
analogy with the Minkowski vacuum). The atom becomes
excited by emitting a photon into the Unruh-Schwarzschild
(US) modes F2� and G2�, which are mostly localized above
the T = X line or under the T = −X line, which is behind
the BH horizons. The excited atom then decays to the ground
state by emitting a photon into the US modes F1� and G1�,
which are mostly localized outside the BH horizon. The right-
propagating modes F1� propagate away from the black hole
to infinity.

In both the Unruh and Hawking radiation the combination
of emission beyond the horizon associated with the F2� mode
and spontaneous emission into the F1� mode yields entangled
states of the two-photon pair. This two-photon squeezed-
entangled state takes the form

|�〉 = (1 + βâ†
2�â†

1�)|0〉, (1)

where β characterizes small but important correlation be-
tween the modes inside (F2�) and outside (F1�) the horizon
associated with the photon creation operators â†

2� and â†
1�,

respectively.
From a quantum optical point of view, the Unruh effect can

be thought of, and calculated, as a result of virtual photons
made real due to accelerating an atom. The probability of
finding the atom excited (and a plane-wave photon emitted)
is found to be [1]

P = 2πcg2

aω

1

exp
(

2πωc
a

) − 1
, (2)

where g is the atom-field coupling constant and a is the atom’s
acceleration.

However, there is more to the story. When a ground-state
atom becomes excited by emitting an acceleration radiation
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(a) (b)

FIG. 1. (a) A ground-state atom accelerated in wedge I goes to
the excited state |a〉 while emitting a photon into a right-propagating
Unruh-Minkowski (UM) mode F2�, which is mostly located in the
“future” wedge and wedge II by the ratio of the Boltzmann factor
for temperature a/(2πc), and a left-propagating mode G2�, which
is mostly localized below the t = −z/c horizon. Subsequently, the
atom spontaneously decays to the ground state |b〉 emitting a photon
into the UM modes F1� and G1�, which are mostly located in the
same wedge as the atom. (b) A ground-state atom held fixed above
the horizon of a Schwarzschild black hole goes to the excited state
while emitting a photon into the Unruh-Schwarzschild (US) mode
F2� which exists mostly in the “future” wedge below the event
horizon and mode G2�, which is mostly localized under the T = −X
line. Subsequently, the atom spontaneously decays to the ground
state emitting a photon into the US modes F1� and G1�, which are
located mostly above the horizon.

photon into, say, the left Rindler wedge, the atom can go back
to the ground state by spontaneously emitting another pho-
ton into the right Rindler wedge. This entangled two-photon
configuration can be (and is) well explained by nothing much
more than operator algebra of the type discussed above. One
may then well ask if there is a quantum optical explanation for
the entangled photon pairs just as we have for the acceleration
radiation. The answer is yes and is the subject of this paper.

To put this paper in perspective, we recall that the Unruh
effect, that accelerated atoms see the vacuum as a thermal
state, can be realized without introducing atoms at all. That
is, we use the relation between Minkowski (âν) and Rindler
(b̂�) [2] photon operators as

b̂� =
∫ ∞

0
dν[α�ν âν − β�ν â†

ν], (3)

where the Bogoliubov coefficients are [2,3]

β�ν = − c

2πa

√
�

ν
e− πc�

2a

(cν

a

)i c�
a



(
−i

c�

a

)
(4)

and 
(x) is the gamma function. The expectation value of the
Rindler photon number operator for the Minkowski vacuum is
then found to be

〈0M |b̂†
�b̂�|0M〉 =

∫ ∞

0
dν|β�ν |2 = 1

e2πc�/a − 1
. (5)

Indeed, the entanglement of photons [4] between right and
left Rindler wedges is a hallmark of acceleration radiation,
having much in common with quantum optics. The Unruh
effect can be understood as a process of superoscillations [5],
in which a function, composed purely of modes with a lim-
ited range of frequencies, can have oscillations outside that
range in certain regions. In this case, the limitation is that
the frequency is limited to purely negative frequencies (for
the modes associated with the creation operator of the fields).
On excitation of the atom, the accelerated atom probes that
region, and the positive frequencies associated with the cre-
ation operators cause an excitation of the field, a particle
emission by the atom. The accelerated atom makes a transition
from the ground state to an excited state while emitting a
photon into a Minkowski vacuum [6]. From another point
of view, Unruh radiation can be viewed as (Rindler) photons
existing as a thermal bath in a uniformly accelerated reference
frame [2,7,8]. The Rindler state vacuum can be obtained by
operating on the Minkowski vacuum with UM creation op-
erators [4]. From a quantum optics vantage, this amounts to
applying a squeeze operator to the Rindler vacuum generating
biphoton pairs of creation operators for photons correspond-
ing to positively and negatively accelerated frames.

This is simply a feature of the Minkowski vacuum, when
viewed from the modes naturally associated with the accel-
erated frame. There is, however, another effect, intimately
involving the atom.

In quantum optics, correlated photon pairs can come from,
for example, two-photon downconversion generating signal
photons of frequency ν1 and idler photons of frequency ν2.
That is, the photon pair operation is governed by the biphoton
operator â†

1â†
2, where â†

1 (â†
2) is the creation operator of the

idler (signal) photon.
In this paper we develop the theory of biphotons gener-

ated by atoms emitting acceleration radiation (described by
operator â†

2 ) and being excited in the process, and there-
after spontaneously emitting a photon (described by operator
â†

1). This creates an entangled pair of photons, ordinary
Minkowski photons. We apply the same process to generate
entangled pairs in Hawking [9] and Cherenkov [10] radiation.

The interplay between aspects of general relativity and
quantum optics yields insights and flags open questions. See,
e.g., recent work on acceleration radiation from an atom
falling into a black hole [11], which is analogous to exci-
tation of a fixed atom by a uniformly accelerated mirror in
Minkowski space-time [12]. More recently [13], we have em-
phasized the following.

“Emission of photons by atoms can occur into modes which
extend into a region causally disconnected with the emitter.
For example, a uniformly accelerated ground-state atom emits
a photon into the Unruh-Minkowski mode which is exponen-
tially larger in the causally disconnected region. This makes an
impression that photon emission is acausal. Here we show that
conventional quantum optical analysis yields that a detector
atom will not detect the emitted photon in the region non-
causally connected with the emitter. However, joint excitation
probability of atoms in the causally disconnected regions can
be correlated due to entanglement of Minkowski vacuum and
be much larger than the product of independent excitation
probabilities.”

033010-2



ENTANGLEMENT IN UNRUH, HAWKING, AND CHERENKOV … PHYSICAL REVIEW RESEARCH 4, 033010 (2022)

In this paper we show that the vacuum entanglement re-
ferred to above can be demonstrated via the simple toy model
depicted in Fig. 1(a). The message of Fig. 1(a) is that the atom
(coming from infinity) is accelerated through wedge I. That
is, the atom with high velocity travels along the z axis from
infinity, slows down, stops, and and then keeps accelerating
back out to infinity. The atom emits an acceleration radiation
photon which is predominantly in wedge II and subsequently
spontaneously emits a photon located dominantly in wedge I.
As is shown below, these photons are entangled and are in a
two-mode squeezed state.

In quantum optics [14] the two-mode squeezed state is
generated by the action of the unitary squeeze operator

Ŝ = eξ∗â1â2+ξ â†
1 â†

2

on the two-photon vacuum state |0102〉, where â1(â2) and
â†

1(â†
2) are the usual annihilation and creation operators. In

particular, for weak squeezing, such that ξ � 1, we have

|�〉 = [1 + ξ â†
1â†

2]|0102〉.
The two-mode squeezed state can be generated in a nonlinear
crystal by a parametric downconversion process in an optical
cavity [15], in which a strong (classical) laser field produces a
pair of photons 1 and 2 as described by the Hamiltonian

Ĥ = h̄g(â†
1â†

2 + â1â2),

where the coupling strength g is the effective Rabi frequency
of the driving field. The Schrödinger equation yields that the
state of the generated field is

|�(t )〉 = e−ig(â1â2+â†
1 â†

2 )t |0102〉,
which is a two-mode squeezed state. To lowest order, the
downconversion process produces the “squeezed” state

|�〉 ∼= (1 − igτ â†
1â†

2)|0102〉,
where τ is the duration of the short pulse driving field in this
simple model. In the squeezed state, the photon numbers in
the modes are correlated. Namely, the photon numbers in each
mode n1 and n2 fluctuate, obeying thermal distribution, but
the difference n1 − n2 does not fluctuate. That is, if there are
n photons in mode 1, then with unit probability there are n
photons in mode 2.

It is interesting that the Minkowski vacuum |0M〉 is a
squeezed state in terms of Rindler photons; namely, in terms
of Rindler states [4]

|0M〉 =
∏
ν>0

(1 − e−2πcν/a)eexp(− πcν
a )(b̂†

R1ν b̂†
R2ν+b̂†

L1ν b̂†
L2ν )|0R〉, (6)

where |0R〉 refers to Rindler vacuum, b̂†
R1ν and b̂†

R2ν (b̂†
L1ν and

b̂†
L2ν) are creation operators of Rindler photons in the right-

(left-)propagating Rindler modes

φ1ν =
√

a

νc
(∓z − ct )i νc

a θ (∓z − ct ) (7)

and

φ2ν =
√

a

νc
(ct ± z)−i νc

a θ (ct ± z). (8)

Here, a > 0 is a parameter which has dimension of acceler-
ation. Rindler modes φ1ν and φ2ν are solutions of the wave
equation and for ν > 0 have positive norm (defined as the
Klein-Gordon inner product). The mode functions (7) and (8)
are nonzero in half of the t-z plane and form a complete basis
set.

One should note that squeezed states also appear in
cosmology. For example, relic gravitational waves are in
squeezed states in which variances in the wave amplitude
distribution are very large, while variances in the phase dis-
tribution are practically equal to zero [16].

In Sec. II we present a detailed analysis of the acceleration-
radiation-induced entangling of UM modes F1� and F2�,
which is essentially a two-mode squeezed state. In Sec. III we
present an analysis of the Hawking radiation which consists
of entangled photon pairs localized above and below the BH
event horizon. In Sec. IV we show how “squeezed-entangled”
radiation is related to Cherenkov radiation. Section V is a
discussion and conclusion.

II. GENERATION OF SQUEEZED PHOTON STATES BY
ACCELERATED ATOMS

Next we consider an electrically neutral two-level atom
with a transition angular frequency ω which moves along the
trajectory t (τ ), z(τ ) in a vacuum, where τ is the proper time of
the atom. The atom is coupled to the electromagnetic field. For
simplicity we approximate the field as a scalar field described
by the operator �̂(t, z) and consider dimension 1 + 1. We will
call the quanta of the scalar field photons and will assume
the following form of the interaction Hamiltonian between the
atom and the scalar field:

V̂ (τ ) = g(σ̂e−iωτ + σ̂ †eiωτ )
∂

∂τ
�̂(t (τ ), z(τ )), (9)

where g is the atom-field coupling constant and σ̂ and σ̂ †

are the atomic lowering and raising operators. Since the atom
feels the local value of the field, the operator �̂ is evaluated at
the atom’s position t (τ ), z(τ ). For simplicity we consider only
the right-propagating waves. The results can be generalized to
include the left-propagating waves in a straightforward way.

In the usual quantization procedure, one splits the solutions
to the field equations into two sets of Fourier modes. To make
the system as simple as possible, we will examine a massless
scalar field φ in 1 + 1 dimensions, although the results, while
more complex for massive fields, scalar or vector, apply in
higher dimensions as well. The field equation of motion is
taken as (

1

c2

∂2

∂t2
− ∂2

∂z2

)
φ(t, z) = 0. (10)

The solutions of Eq. (10) can be written as sums of the Fourier
transform modes

φk (t, x) = e−i(νt−kz) (11)

with ν2 = k2 or ν = ±k.
In the usual quantization procedure, one associates the

modes with ν > 0 with the annihilation operators for the field
âk and the modes with ν < 0 with the creation operators
â†

k , which obey the commutation relations [âk, â†
k′ ] = δkk′ . In
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order that the field strength φ and its conjugate momentum
π = c∂L/∂φ̇ = (1/c)∂φ∗/∂t obey the standard commutation
relations, we must have

i

2c

∫ ∞

−∞

(
φ∗

k

∂φk′

∂t
− ∂φ∗

k

∂t
φk′

)
dz = δkk′ . (12)

For our purposes, however, we will choose a different set of
modes, often called the Unruh-Minkowski (UM) modes. They
were discovered by Unruh in 1976 [2]. The right-propagating
UM modes are defined as [4]

F1�(t, z) = |t − z/c|i�√
2� sinh(π�)

e− π�
2 sgn(t−z/c), (13)

F2�(t, z) = |t − z/c|−i�

√
2� sinh(π�)

e
π�
2 sgn(t−z/c), (14)

where � > 0 is a parameter which is proportional to the pho-
ton frequency in the Rindler space [17]. In wedge I, z > ct and
the potentially large factor eπ�/2 appears in Eq. (13), which
means that the mode F1� is mostly in wedge I [see Fig. 1(a)]
and has positive frequency in wedge II even though it is
associated with a creation operator (negative norm). On the
other hand, the mode F2� is exponentially larger when ct > z,
which is in wedge II. The left-moving modes are obtained
from Eqs. (13) and (14) by replacing z → −z.

The functions (13) and (14) are the limit for positive ε → 0
of the expression

F1�(t, z) =
(
t − z

c − iε
)i�

√
2� sinh(π�)

e− π�
2 ,

F2�(t, z) =
(
t − z

c − iε
)−i�

√
2� sinh(π�)

e
π�
2 .

These functions are analytic and bounded in the upper half
complex plane of the complex field argument t − z/c for all
values of � > 0, just as the functions e−iν(t−z/c) are for ω >

0. The factors 1/
√

2� sinh(π�) are the normalization factors
under the Klein-Gordon norm.

Expansion of the right-moving part of the field operator in
terms of the UM modes (13) and (14) reads [4]

�̂ =
∑
�>0

(F1�â1� + F2�â2� + F ∗
1�â†

1� + F ∗
2�â†

2�), (15)

where â1� and â2� are the UM photon annihilation operators.
â1� and â2� can be written as sums of the plane-wave anni-
hilation operators âk introduced above. Thus the vacuum state
for the UM photons is the usual Minkowski vacuum |0M〉.

We consider a uniformly accelerated atom moving along
the trajectory

t (τ ) = c

a
sinh

(aτ

c

)
, z(τ ) = c2

a
cosh

(aτ

c

)
(16)

in Minkowski space-time. In Eq. (16), τ is the proper time of
the atom. If a > 0 (a < 0), the atom moves in the right (left)
Rindler wedge [see Fig. 1(a)].

The UM modes (13) and (14) are a convenient choice for
the description of Unruh acceleration radiation. Namely, a
ground-state atom with a transition frequency ω moving in
the right Rindler wedge with an acceleration a [see Fig. 1(a)]
in Minkowski vacuum |0M〉 can become excited by emitting a

right-propagating photon into the single UM mode F2�, where
� = ωc/a [4,18]. The excited atom can then decay to the
ground state by emitting a right-propagating photon into the
UM mode F1�. As a result of these processes, the final state
of the field will have two photons in UM modes F1� and F2�

which are entangled.
To the lowest order, we find that the final state of the field

is

|�〉 = |0M〉 −
( g

h̄

)2
∫ ∞

−∞
dτ ′e−iωτ ′ eiα�τ ′

e
π�
2√

2� sinh(π�)

×
∫ τ ′

−∞
dτ ′′eiωτ ′′ e−iα�τ ′′

e− π�
2√

2� sinh(π�)
|12�11�〉, (17)

where α = a/c. One can write Eq. (17) as

|�〉 =
(

1 + �

2� sinh(π�)
â†

2�â†
1�

)
|0M〉, (18)

where � is a factor containing the time integral

� = −
( g

h̄

)2
∫ ∞

−∞
dτ ′e−iωτ ′

eiα�τ ′
∫ τ ′

−∞
dτ ′′eiωτ ′′

e−iα�τ ′′
.

(19)
The factor � is large if the resonant condition � = ωc/a is
satisfied.

III. GENERATION OF SQUEEZED PHOTON STATES BY
ATOMS HELD ABOVE THE BLACK HOLE HORIZON

The Schwarzschild metric of a nonrotating black hole of
mass M in 1 + 1 dimensions is given by

ds2 =
(

1 − rg

r

)
c2dt2 − 1

1 − rg

r

dr2, (20)

where rg = 2GM/c2 is the gravitational radius, G is the grav-
itational constant, and t, r are Schwarzschild coordinates.

Kruskal-Szekeres coordinates on a black hole geometry are
defined in terms of the Schwarzschild coordinates t, r as

T =
√

r

rg
− 1e

r
2rg sinh

(
ct

2rg

)
, (21)

X =
√

r

rg
− 1e

r
2rg cosh

(
ct

2rg

)
, (22)

for r > rg, and

T =
√

1 − r

rg
e

r
2rg cosh

(
ct

2rg

)
, (23)

X =
√

1 − r

rg
e

r
2rg sinh

(
ct

2rg

)
, (24)

for 0 < r < rg.
In 1 + 1 dimensions, in the Kruskal-Szekeres coordinates,

the Schwarzschild metric is conformally invariant to the
Minkowski metric

ds2 = 4r3
g

r
e− r

rg (dT 2 − dX 2), (25)

where r is a function of T 2 − X 2 which has a value of rg when
T 2 − X 2 = 0. Thus one can choose mode functions in the
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Kruskal-Szekeres coordinates as functions of T ± X . Again,
although the atom couples to both the right- and left-moving
modes (F{1,2}� and G{1,2}�), we again concentrate on the right
movers.

Here, we consider a two-level [a is the excited level (not
to be confused with the acceleration), and b is the ground
state] atom with transition angular frequency ω near an eternal
nonrotating BH of mass M. If the atom does not move in
the Schwarzschild coordinates, that is, the atom’s trajectory is
r(t ) = r0 > rg, then in the Kruskal-Szekeres coordinates the
atom is uniformly accelerated along the trajectory

T (t ) =
√

2αr0/c − 1eαr0/c sinh (αt ), (26)

X (t ) =
√

2αr0/c − 1eαr0/c cosh (αt ), (27)

where α = c/2rg. One can write these equations as

T (τ ) =
√

2αr0/c − 1eαr0/c sinh

(
ατ√

1 − rg/r0

)
, (28)

X (τ ) =
√

2αr0/c − 1eαr0/c cosh

(
ατ√

1 − rg/r0

)
, (29)

where τ = t
√

1 − rg/r0 is the proper time of the atom.
As in the case of the Rindler horizon in the flat Minkowski

space-time, the black hole event horizon T = X divides the
Schwarzschild space-time for right-running waves into two
regions. The outgoing positive-frequency modes, which are
analogous to the right-running UM modes of the previous
section on acceleration radiation, are given by [2]

F1�(T, X ) = |T − X |i�√
2� sinh(π�)

e− π�
2 sgn(T −X ), (30)

F2�(T, X ) = |T − X |−i�

√
2� sinh(π�)

e
π�
2 sgn(T −X ), (31)

where � > 0. The corresponding photon annihilation op-
erators we denote as Â1�, Â2�. We assume that the state
of the field is a vacuum state with respect to the Unruh-
Schwarzschild (US) modes (30) and (31). We denote it as
|0K〉. For simplicity we consider only the outgoing modes.

Along the atom’s trajectory (28) and (29), the US mode
functions (30) and (31) are

F1�(T (τ ), X (τ )) = (2αr0/c− 1)
i�

2
e

π�
2 eiαr0�/c

√
2� sinh(π�)

e
− iα�τ√

1−rg/r0 ,

(32)

F2�(T (τ ), X (τ )) = (2αr0/c− 1)−
i�

2
e− π�

2 e−iαr0�/c

√
2� sinh(π�)

e
iα�τ√
1−rg/r0 ;

(33)

that is, from the atom’s perspective, the photon described
by the mode function F1� has positive frequency, while the
photon F2� has negative frequency. The photon is resonant
with the atom for � = √

1 − rg/r0ω/α, where ω is the atomic
transition frequency. As a result, the ground-state atom can
become excited by emitting a photon into the mode F2�.
Subsequently, the atom can go to the ground state by spon-
taneously emitting a photon into the mode F1� [see Fig. 1(b)].
As in the case of an atom accelerated in Minkowski space-
time, these two processes generate a two-photon entangled

state

|�〉 =
(

1 + �

2� sinh(π�)
Â†

2�Â†
1�

)
|0K〉, (34)

where � is a factor containing the time integral

� = −
( g

h̄

)2
∫ ∞

−∞
dτ ′e−iωτ ′

e
iα�τ ′√
1−rg/r0

∫ τ ′

−∞
dτ ′′eiωτ ′′

e
− iα�τ ′′√

1−rg/r0 .

(35)
According to Eq. (31), the mode function F2� is expo-

nentially (eπa�) larger in the region T > X , and hence the
probability is high that this photon falls into the black hole
singularity rather than propagating to infinity. In contrast, the
mode function F1� of the spontaneously emitted photon is
exponentially larger by the same factor in the region X > T ,
and therefore the spontaneously emitted photon most likely
escapes from the black hole region to infinity. In three dimen-
sions, if the frequency � is less than α(l + 1)/2π , where l
is the angular momentum of the photon, the outward directed
photon will, with very high probability, reflect back into the
black hole, bouncing off the momentum or curvature barrier
for photons propagating out from the black hole horizon at
r = rg. It is only those photons with a high enough energy
to get over those barriers which get out to infinity. It is also
important to note that far away from the black hole, the “natu-
ral” modes are the equivalent of the Rindler modes, with time
dependence e−iνt , not τ , which represent what most would call
the natural particle modes. The natural vacuum for the Hartle-
Hawking (Kruskal) modes is, and for these Schwarzschild
modes will be, a thermal state, both incoming and outgoing,
with temperature (1/8πM )(h̄c3/GkB), the Hawking tempera-
ture.

IV. GENERATION OF SQUEEZED PHOTON STATES
THROUGH THE CHERENKOV EFFECT

Entangled photon pairs can be generated by a similar
mechanism if the ground-state atom is moving through a
medium with a constant velocity V greater than the speed
of light in the medium. For the description of Cherenkov
radiation it is convenient to choose mode functions as plane
waves which in the medium with refractive index n read (in
the laboratory frame)

ϕk (t, z) = e−i c|k|
n t+ikz, (36)

where k is the photon wave vector. Here, we consider di-
mensions 1 + 1, and k can be both positive and negative. We
denote operators of the plane-wave photons (36) as ĉk . At the
location of the atom moving with a constant velocity V > 0
along the trajectory

t (τ ) = τ√
1 − V 2

c2

, z(τ ) = V τ√
1 − V 2

c2

,

the mode function ϕk takes the form ϕk (t (τ ), z(τ )) = e−iντ ;
that is, the atom senses harmonic oscillations of the field with
frequency

ν =
c|k|

n − V k√
1 − V 2

c2

.
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From the perspective of the moving atom if V > c/n, pho-
tons propagating in the same direction as the atom’s velocity
(k > 0) have negative frequency. This leads to Cherenkov
radiation. That is, the atom can become excited by emitting
a photon in the forward direction with a wave vector k2 such
that

k2 =
ω

√
1 − V 2

c2

V − c
n

, (37)

where ω is the atomic transition frequency in the atom’s
frame. A negative frequency of the Cherenkov photon in the
atom’s frame is analogous to the negative frequency of the
UM photon in the frame of an accelerated atom.

Photons emitted in the backward direction (k < 0) have
positive frequency. Thus an excited atom can spontaneously
decay to the ground state by emitting a photon in the backward
direction with a wave vector k1 such that

k1 = −
ω

√
1 − V 2

c2

V + c
n

. (38)

As in the case of an atom accelerated in Minkowski space-
time, these processes generate a two-photon entangled state

|�〉 = (
1 + �c†

k2
c†

k1

)|0M〉, (39)

where � is a factor containing the time integral

� = −
( g

h̄

)2
∫ ∞

−∞
dτ ′e−iωτ ′

e

c|k1 |
n −V k1√
1− V 2

c2

τ ′

×
∫ τ ′

−∞
dτ ′′eiωτ ′′

e

c|k2 |
n −V k2√
1− V 2

c2

τ ′′

. (40)

� is large if the resonance conditions (37) and (38) are sat-
isfied. The Cherenkov effect yields entanglement generation
between photons propagating in the forward and backward
directions.

V. DISCUSSION AND SUMMARY

To put Sec. II in perspective, we recall that the Bogoliubov
relations allow us to obtain an expression for the Minkowski
vacuum |0M〉 in terms of excitation states of the Rindler vac-
uum |0R〉. That is, we use the relations between operators for
the Rindler modes b̂ν and the UM modes âν [13]

b̂1ν = â1ν + e−πcν/aâ†
2ν√

1 − e−2πcν/a
, b̂2ν = â2ν + e−πcν/aâ†

1ν√
1 − e−2πcν/a

(41)

and the the identities [13]

â1eγ â†
1 â†

2 = eγ â†
1 â†

2 (â1 + γ â†
2), (42)

â2eγ â†
1 â†

2 = eγ â†
1 â†

2 (â2 + γ â†
1), (43)

where γ = e−πcν/a. Multiplying both sides of Eq. (42) by
|0M〉, we obtain

â1eγ â†
1 â†

2 |0R〉 = eγ â†
1 â†

2 (â1 + γ â†
2)|0R〉 ∝ eγ â†

1 â†
2 b̂1|0R〉 = 0.

(44)

That is, if |0R〉 is the vacuum state for the Rindler photon
operator b̂1, then

|0M〉 = 1

N
eγ â†

1 â†
2 |0R〉 (45)

is the vacuum state for the UM operator â1, where N is a
normalization constant. Applying the identity (43), one can
show that Eq. (45) is also the vacuum state for the operator â2.
Multiplying both sides of Eq. (45) by Ne−γ â†

1 â†
2 , we find

|0R〉 = Ne−γ â†
1 â†

2 |0M〉. (46)

The value of N is determined by the normalization 〈0R|0R〉 =
1, which yields

N = 1√∑∞
n=0 γ 2n

=
√

1 − γ 2.

For γ � 1, Eq. (46) approximately can be written as

|0R〉 ≈ (1 − e−πcν/aâ†
1â†

2)|0M〉, (47)

which has the same exponential factor as Eq. (18) in the limit
� � 1,

|�〉 ≈
(

1 + �

�
e−π�â†

R2�â†
R1�

)
|0M〉. (48)

Having demonstrated in Sec. III that the Unruh-
Schwarzschild mode expansion applied to the BH problem
is very analogous to the acceleration radiation with Unruh-
Minkowski modes, we conclude by making a key but
somewhat subtle point. Namely, the negative-energy photon,
which is associated with the mode F2�, in both cases is lo-
calized below the “horizon.” This was already emphasized in
Ref. [4]. That is, the F2� mode into which the atom emits the
first photon is exponentially large in the left wedge (t > z/c)
in the case of Unruh acceleration radiation, and is likewise
exponentially large below the BH horizon (T > X ). In the
case of Hawking radiation the photon does not so much “fall”
into the BH, but rather is created under the event horizon
because the mode function F2� is localized in this region.

It would be interesting to look for similar effects in var-
ious analogs of the Unruh acceleration radiation [19–21]
and Cherenkov radiation. For example, a ground-state atom
moving above a metal surface [see Fig. 2(a)] can become
excited by emitting a surface plasmon with wave vector in
the direction of the atom’s motion [22]. Surface plasmons are
collective excitations of the electromagnetic field and metal
electrons which propagate along the surface. The electromag-
netic field in the surface plasmon exponentially decays away
from the surface as shown in Fig. 2(a).

From the perspective of the moving atom, the surface
plasmon frequency is Doppler shifted, and for large wave
numbers k the frequency becomes negative [see Fig. 2(b)]. In
the moving frame associated with the atom, the ground-state
atom becomes excited by emitting a surface plasmon with
negative frequency, which insures energy conservation. The
excited atom can then decay to the ground state by emitting
a surface plasmon with positive frequency, e.g., with a wave
vector opposite to the atom’s velocity. Thus the generated pair
of surface plasmons is entangled.
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FIG. 2. (a) An atom is moving near a metal surface with constant
velocity. The atom can become excited by emitting a surface plasmon
with negative frequency and then spontaneously decay to the ground
state by emitting a surface plasmon with positive frequency. (b) Fre-
quency of surface plasmons in the atom’s frame moving with velocity
V as a function of the surface plasmon wave vector k for V = 0 and

V = 0.5c. The frequency of modes with k >
ωp

V

√
c2−V 2

2c2−V 2 is negative,
where ωp is the electron plasma frequency.

We note that this also forms the basis for the analog
gravity program, in which the black hole is modeled by
a trans-sonic fluid flow and the quantum field is modeled

by sound (or other waves) in the fluid. Effects such as the
Cherenkov effect discussed above are also important here,
where the fluid flow being faster than the wave velocity plays
a crucial role (see, for example, the paper by Schuetzhold
and Unruh [23] and diagrams and references therein). This
also sheds light on the Landau critical velocity, where the
frequency of the sound waves in liquid He becomes neg-
ative, as for the Cherenkov situation discussed above. An
impurity coupled to the sound waves will create particle
pairs (squeezing) yielding a quantum friction force on the
impurity.

One should also mention that an atom can generate entan-
gled photon pairs in a de Sitter universe for which horizon
is provided by the universe exponential expansion. If the
atom does not follow a cosmic fluid geodesic, but remains at
constant proper distance from the horizon, then it is “acceler-
ated” with respect to locally inertial observers. Consequently,
the atom perceives the de Sitter vacuum as a thermal bath
with a temperature associated with the surface gravity of
the Hubble sphere, much as a uniformly accelerated detector
in Minkowski space-time measures a temperature associated
with its acceleration [24]. Thus the ground-state atom can
become excited by emitting a photon followed by spontaneous
decay with emission of a second photon. This yields gener-
ation of a two-mode squeezed photon state in the de Sitter
space-time.
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