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Theory of longitudinal and transverse nonlinear dc conductivity
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Kohn’s theory of Drude conductivity, established in a many-body framework, addresses even systems with
disorder and correlation, besides the ordinary band metals (i.e., crystalline systems of independent electrons).
Kohn’s theory is here extended to nonlinear dc conductivities of arbitrary order, longitudinal and transverse. The
results are then reformulated in a band-structure framework, and their relationships to the semiclassical theory
of nonlinear electron transport are elucidated.

DOI: 10.1103/PhysRevResearch.4.033002

I. INTRODUCTION

The publication in 2015 of the Sodemann-Fu paper [1]
about the quadratic Hall conductivity drew much interest, both
theoretical and experimental, on nonlinear conductivities in
general, both Hall and longitudinal. References [2–15] are just
some of the many papers and preprints devoted to nonlinear
electron transport, which appeared in the most recent years.
With the exception of Ref. [9], all of the theoretical work in
the quoted papers is set in a semiclassical framework.

Here, I take a different path, by going back to Kohn’s time-
honored theory of Drude conductivity [16–18], and showing
how it naturally extends to deal with nonlinear conductivities
of any order, both Hall and longitudinal. Since dissipation
cannot enter Schrödinger equation directly (at variance with
Boltzmann equation), the response functions are causal but
nondissipative, and the induced current does not reach a
steady state. For instance it is well known that—to lowest
order—a dc field induces in a pristine metal a longitudinal free
acceleration of the many-electron system; extrinsic effects are
needed to retrieve Ohm’s law. At the simplest level, such
effects are summarized into an heuristic relaxation time τ . I
am going to generalize this, by explicitly showing the time
dependence of the higher-order induced currents, both Hall
and longitudinal, in a pristine material. The selection rules
dictated by time-reversal (T) and inversion (I) symmetries will
also be discussed.

To linear order—and only to linear order—a dc field may
induce a steady transverse current in a T-breaking pristine ma-
terial; extrinsic effects are not needed, although they actually
contribute to the effect in real materials [19]. The intrin-
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sic linear Hall conductivity is generally called “geometrical”
[20,21]; it becomes topological in a two-dimensional insulator
[22–24]. In all of the other cases a steady current is reached
only in presence of extrinsic dissipation mechanisms.

Switching from the time domain to the ω domain makes
straightforward to account for extrinsic effects at the simplest
level: The nonlinear responses (to any order in the field) are
converted from causal to dissipative by means of an heuristic
τ . The standard approach adopted in the well-known case of
Drude conductivity [18] is generalized here to the longitudinal
and Hall conductivities of any order. Their τ dependencies
are found to be qualitatively the same as for the semiclassical
theories, based on Boltzmann equation [10–12].

All of the expressions here obtained in a compact many-
body formalism are then converted into their band-structure
analogues, in order to address crystalline systems of noninter-
acting electrons. Only the metallic case is relevant, because
all nonlinear conductivities vanish in insulators. A detailed
comparison, based on the time evolution of the adiabatic
current induced by a constant field, confirms that the semi-
classical approach, in the τ → ∞ limit, provides indeed the
same results—to all orders in the field—as the full quantum-
mechanical approach at the band-structure level.

The paper is organized as follows. Section II displays the
(by now famous) “Hamiltonian with a flux” as introduced
by Kohn in 1964, and provides the related expression for
the many-body current density, exploited in the following
sections. Section III collects all the results about dc linear
conductivity: IIIA presents the many body expression for the
anomalous Hall conductivity, including its quantized version
for a two-dimensional insulator; IIIB presents an alternative
derivation of Kohn’s famous expression for the Drude weight;
IIIC introduces the concept of Born effective charges in met-
als, and generalizes to a many-body framework the sum rule
obeyed by them, recently found by Dreyer, Coh, and Stengel
within band-structure theory [25]. Section IV shows how the
same logic as in Sec. III can be extended in order to deal
with quadratic conductivity, both Hall and longitudinal. After
the thorough discussion in Sec. IV, the following step of
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addressing an arbitrary order is quite straightforward: this
is shown in Sec. V. The general many-body formalism is
specialized in Sec. VI to band metals and band insulators
(i.e., crystalline systems of noninteracting electrons), where
some of the known formulae are retrieved; the relationships
between the nonlinear dc conductivities obtained from ab
initio band-structure theory and those obtained from the semi-
classical approach are discussed. Section VII contains some
concluding remarks. Finally, some technical developments
have been expunged from the main text and confined into
three Appendices.

II. ELECTRON TRANSPORT IN A MANY-BODY
FRAMEWORK

A. Kohn Hamiltonian

The starting point of the present theory is a milestone paper
published by Kohn in 1964 [16]. Following him, we consider
a system of N interacting d-dimensional electrons in a cubic
box of volume Ld , and the family of many-body Hamiltonians
parametrized by κ, called “flux” or “twist”:

Ĥκ = 1

2m

N∑
i=1

(pi + h̄κ)2 + V̂ , (1)

where V̂ includes the one-body potential (possibly disordered)
and electron-electron interaction. We assume the system to
be macroscopically homogeneous; the eigenstates |�nκ〉 are
normalized to one in the hypercube of volume LNd . The
thermodynamic limit N → ∞, L → ∞, N/Ld = n constant
is understood throughout this paper. In order to simplify nota-
tions I will set Ĥ0 ≡ Ĥ , |�n0〉 ≡ |�n〉, En0 ≡ En.

We assume Born-von-Kàrmàn (BvK) periodic bound-
ary conditions: the many-body wavefunctions are periodic
with period L over each electron coordinate ri indepen-
dently; the potential V̂ enjoys the same periodicity. The flux
κ—cast into inverse-length dimensions for convenience—
corresponds to perturbing the Hamiltonian with a vector
potential h̄cκ/e, constant in space. While Kohn only con-
sidered a time-independent κ, here I consider instead an
adiabatically time-dependent flux, which amounts to per-
turbing the Hamiltonian with the macroscopic field E (t ) =
−h̄κ̇(t )/e. The electron response will be evaluated by means
of κ derivatives at κ = 0, and we notice that for κ = 0 the
Hamiltonian of Eq. (1) is T invariant. Following Kohn, κ

derivatives must be evaluated first, and the L → ∞ limit taken
afterwards [16,17].

A T-breaking modification of Kohn’s Hamiltonian is

Ĥκ = 1

2m

N∑
i=1

[
pi + e

c
A(ri ) + h̄κ

]2
+ V̂ , (2)

where the vector potential summarizes all intrinsic T-breaking
terms, as, e.g., those due to a coupling to a background of
local moments; in this case A(r) enjoys BvK periodicity. The
vector potential could even account for a macroscopic B field,
provided that it is commensurate, and that the BvK boundary
conditions are modified accordingly [23].

B. Macroscopic current

The kinetic energy term in Eq. (2) defines the extensive
many-electron velocity operator as

v̂κ = 1

m

N∑
i=1

[
pi + e

c
A(ri ) + h̄κ

]
= 1

h̄
∂κĤκ. (3)

When κ is adiabatically varied in time the instantaneous cur-
rent density is the sum of two terms: the expectation value of
the current operator, and the Niu-Thouless adiabatic current
[24,26]. Their expression is cast as

jα = − e

h̄Ld
〈�0κ|∂κα

Ĥκ|�0κ〉

+ ie

Ld
(〈∂κα

�0κ|�̇0κ〉 − 〈�̇0κ|∂κα
�0κ〉)

= − e

h̄Ld
∂κα

E0κ + e

Ld
�αβ (κ)κ̇β , (4)

where the sum over repeated Cartesian indices is understood,
and �αβ (κ) is the many-body Berry curvature

�αβ (κ) = −2 Im 〈∂κα
�0κ|∂κβ

�0κ〉. (5)

We consider from now on only the adiabatic response to a
field constant in time, in which case κ = κ(t ) = −etE/h̄. The
macroscopic current to all orders in κ—ergo to all orders in E
and in t—is

jα (t ) = − e

h̄Ld
∂κα

E0κ − e2

h̄Ld
�αβ (κ)Eβ. (6)

The extensive quantity −�αβ (κ)κ̇β is the many-electron
anomalous velocity, normal to the electric field E : the second
term in Eq. (6) accounts therefore for a purely transverse
current, which can be nonzero in either insulators or metals.

The first term in Eq. (6) is not new: it already appeared
in this form in Ref. [9], where it is exploited in a somewhat
different way from the present one. This term accounts for a
current, which in general is not parallel to the field. To lowest
order this term yields the symmetric part of the dc linear-
conductivity tensor, ergo is by definition longitudinal; when
dissipation is accounted for, the current is Ohmic. Beyond the
linear regime and in a macroscopic approach the partition of
the current into Hall and Ohmic components becomes subtle
in low-symmetry situations [11]. In the present microscopic
theory the partition in two terms is unambiguous: I am going
to call throughout as “longitudinal” the current from the first
term in Eq. (6), labeled with a superscript “(+)”; the second
term will originate “Hall” currents, labeled with “(–)”.

In insulators the expectation value of the many-body
velocity is zero to any order in E—bar a dielectric
breakdown—ergo the longitudinal current vanishes and E0κ

is κ independent; in metals instead E0κ actually depends
on κ, because periodic boundary conditions violate gauge-
invariance in the conventional sense [16].

III. LINEAR CONDUCTIVITY

The conventional setting for linear conductivity is in the ω

domain:

jα (ω) = σ
(+)
αβ (ω) Eβ (ω) + σ

(−)
αβ (ω) Eβ (ω), (7)
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where the symmetric (longitudinal) and antisymmetric (Hall)
components of the conductivity tensor are explicitly sepa-
rated.

At finite ω the tensor obtains from time-dependent linear-
response theory, via the appropriate Kubo formulae; here
instead we focus on the dc components only, and we address
them by means of the adiabatic response of the many-electron
system. The appeal of the present approach is that it can be
very naturally generalized to nonlinear conductivities. For the
sake of completeness, Appendix A 1 reports the conventional
derivation of the linear results given below via Kubo formulae,
for both the Hall and longitudinal cases.

A. Hall conductivity

By setting κ = 0 in the second term of Eq. (6) we get
immediately the linear Hall tensor:

σ
(−)
αβ (0) = − e2

h̄Ld
�αβ (0); (8)

the expression holds for either insulators or metals, for either
d = 2 or d = 3, and yields the geometric (or intrinsic) term
in the Hall conductivity [19]; it can be nonzero only if the
Hamiltonian breaks T symmetry at κ = 0 (see also the discus-
sion below about symmetry).

In the special case of an insulator and d = 2 Eq. (8) is
quantized in the large-L limit:

σ (−)
xy (0) = −e2

h
C1, (9)

where C1 ∈ Z is a Chern number. This famous relationship
was first established at the independent-electron level, where
C1 is also known as TKNN invariant [22]; it was later general-
ized by Niu, Thouless, and Wu, who provided the many-body
expression for C1 [23]. Following Ref. [24] (Sec. IIIC) the
same invariant is conveniently recast as

C1 = 1

2π

∫ 2π
L

0
dκx

∫ 2π
L

0
dκx Ωxy(κ); (10)

Equation (10) is quantized because it is equivalent to the
integral over a torus.

In order to retrieve this result within the present approach,
we focus on the simple case of no macroscopic B field,
i.e., on the so-called quantum anomalous Hall effect. I start
reminding that in insulators the ground-state energy E0κ is
κ independent, and I define r̂ = ∑

I ri. I then observe that
whenever the components of κ − κ′ are integer multiples of
2π/L, then the state ei(κ−κ′ )·r̂|�0κ〉 obeys both the Schrödinger
equation and BvK boundary conditions, ergo is eigenstate of
Ĥκ′ with the same eigenvalue as |�0κ〉. The eigenstates, which
define Ωxy(κ) have therefore the required toroidal periodicity:

|�0κ′ 〉 = ei(κ−κ′ )·r̂|�0κ〉. (11)

Since Ωxy(κ) is gauge-invariant, an arbitrary κ-dependent
phase factor may relate the two members of Eq. (11). It is
worth stressing that in the topological case a globally smooth
periodic gauge does not exist and an “obstruction” is necessar-
ily present; in other words one can enforce Eq. (11) as it stands
(with no extra phase factor) only locally, not globally; we also

notice that Eq. (11) may be regarded as the many-body analog
of the periodic gauge in band-structure theory [20].

Equation (10) is independent of the L value, and its inte-
grand is extensive: therefore in the large-L limit the integration
domain contracts to a point:

C1 = 1

2π

(
2π

L

)2

�xy(0). (12)

By comparing this to Eq. (8) for d = 2, Eq. (9) is immediately
retrieved.

Finally, it is worth stressing that Eq. (12)—at variance with
Eq. (10)—is not quantized at finite L: it only becomes quan-
tized in the L → ∞ limit. Indeed the convergence with L of
the single-point Chern number, Eq. (12), has been investigated
long ago by actual simulations based on an independent-
particle model Hamiltonian: see Fig. 2 in Ref. [27].

B. Drude conductivity

The longitudinal response linear in the field obtains by
taking the time derivative of the first term in Eq. (6):

∂t j (+)
α (t ) = − e

h̄Ld

∂2E0κ

∂t ∂κβ

(13)

= − e

h̄Ld

∂2E0

∂κα∂κβ

κ̇β = e2

h̄2Ld

∂2E0

∂κα∂κβ

Eβ.

This derivative is time independent, ergo the many-electron
system undergoes free acceleration; Eq. (13) can be recast as

∂t j (+)
α = Dαβ

π
Eβ, Dαβ = πe2

h̄2Ld

∂2E0

∂κα∂κβ

, (14)

where Dαβ is the Drude weight, as defined by Kohn [16–18];
it clearly measures the inverse inertia of the many-electron
system when probed by a constant macroscopic field.

In the ω domain the Drude conductivity is expressed as
j (+)
α (ω) = σ

(+)
αβ (ω)Eβ ,

σ
(+)
αβ (ω) = Dαβ

π

i

ω + iη
= Dαβ

[
δ(ω) + i

πω

]
, (15)

where the positive infinitesimal η ensures causality [18]; an
alternative derivation is provided in Appendix C. The δ(ω)
singularity is a fingerprint of the free acceleration in the time
domain. Notice that only the dc contribution to σ

(+)
αβ (ω) is

considered here and could be derived from the adiabatic re-
sponse; the full tensor requires time-dependent perturbation
theory and is discussed in Appendix A 1.

The response functions as considered so far are causal but
nondissipative: one cannot indeed include dissipation within
the Schrödinger equation of motion. Nonetheless dissipation
can be inserted a posteriori via a relaxation time τ , by heuris-
tically replacing ∂t with ∂t + 1/τ in Eq. (14), and then setting
the ∂t term equal to zero (steady state); equivalently, one could
replace the infinitesimal η in Eq. (15) with an inverse relax-
ation time 1/τ . In both cases the finite Drude contribution to
longitudinal conductivity is

σ
(+)
αβ = τ

π
Dαβ. (16)
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This is clearly reminiscent of the classical Drude theory for
free electrons [28], where

Dαβ = Dfreeδαβ, Dfree = πe2n

m
. (17)

One could therefore cast

Dαβ = πe2n∗
αβ

m
, (18)

where n∗
αβ has the meaning of the effective electron density

contributing to the macroscopic adiabatic current [17]. In the
case of a crystalline system of noninteracting electrons only
the partly filled bands contribute to n∗

αβ [18]; analogously,
in the classical theory n is meant to represent the valence
electrons only.

C. Born effective charges in metals

Born effective-charge tensors are a staple in the theory
of harmonic lattice dynamics in crystalline insulators, and in
the ab initio theory of ionic conductivity in insulating liquids
(molten salts and electrolytes in general). If s labels the sth
nucleus in the BvK periodic cell of volume L3 (or in the crystal
cell) the total macroscopic current density flowing through the
sample while the nuclei move with velocities vs is [29,30]:

j (tot)
α (t ) = 1

L3

∑
s

eZ∗
s,αβ (t )vsβ (t ). (19)

The expression holds to linear order in the nuclear velocities,
and the Z∗ tensors depend on time through the instantaneous
positions of the nuclear coordinates; in the lattice-dynamical
case they are evaluated at the equilibrium crystal structure.
Owing to linearity, the dimensionless Born charge tensor at a
given time is

Z∗
s,αβ = L3

e

∂ j ((tot)
α

∂vsβ
, (20)

and in insulators the Born tensors obey the basic relationship∑
s Z∗

s,αβ = 0, called the acoustic sum rule [31].
It was recently discovered by Dreyer, Coh, and Stengel [25]

that, when the definition of Eq. (20) is extended to the metallic
case, the acoustic sum rule is violated and

∑
s Z∗

s,αβ is propor-
tional to the Drude weight. In order to see how this happens,
suppose that all nuclei in the cell are rigidly displaced with the
same velocity v; then Eq. (19) yields

j (tot)
α = e

L3

(∑
s

Z∗
s,αβ

)
vβ. (21)

In the insulating case no current flows, i.e., the many-electron
system is rigidly translated as well: hence the acoustic sum
rule.

In the metallic case, instead, the electrons are left behind
and a macroscopic steady current flows through the sample.
In the reference frame of the nuclei, the macroscopic current
is carried by the electrons only, all moving at velocity −v. The
same macroscopic current density can then be written as

j (tot)
α = e n∗

αβvβ, n∗
αβ = 1

L3

∑
s

Z∗
s,αβ, (22)

where n∗
αβ has the meaning of the effective electron density

contributing to the steady current. Comparing to Eq. (18) one
immediately gets

1

L3

∑
s

Z∗
s,αβ = m

πe2
Dαβ. (23)

This result is double checked from the appropriate
quantum-mechanical linear responses in Appendix B; the re-
sult requires T symmetry (and local one-body potential), as
indeed recognized in Ref. [25].

IV. QUADRATIC CONDUCTIVITY

A. Hall conductivity

The Hall response quadratic in the field obtains by taking
the time derivative of the second term in Eq. (6):

∂t j (−)
α (t ) = − e2

h̄Ld
∂t�αβ (κ)Eβ (24)

= − e2

h̄Ld
∂κγ

�αβ (0)Eβ κ̇γ = e3

h̄2Ld
∂κγ

�αβ (0)EβEγ .

This is clearly constant in time: in absence of any extrinsic
relaxation mechanism the many-electron system undergoes a
skewed free acceleration:

j (−,2)
α (t ) = e3t

h̄2Ld
∂κγ

�αβ (0)EβEγ . (25)

The Fourier transform, analogously as for Eq. (15), is

j (−,2)
α (ω) = e3

h̄2Ld
∂κγ

�αβ (0)
i

ω + iη
EβEγ ; (26)

an alternative derivation is provided in Appendix C directly in
the ω domain.

As for the symmetry properties of the quadratic Hall re-
sponse, we remind that in presence of T symmetry �αβ (κ) =
−�αβ (−κ), while in presence of I symmetry �αβ (κ) =
�αβ (−κ) [24]: therefore in a T-symmetric system �αβ (0) = 0
and—as said above—the linear Hall conductivity vanishes.
In the quadratic case the parity is swapped: the gradient
of �αβ (κ) is even in T-symmetric systems, and odd in
I-symmetric systems. Therefore a quadratic Hall current re-
quires breaking of I symmetry; in the special case of a
T-symmetric and I-breaking system, nonzero Hall conductiv-
ity appears to second order only.

In the single-relaxation-time approximation we heuristi-
cally replace ∂t with ∂t + 1τ and discard the time-dependent
transient current; equivalently we may replace the infinitesi-
mal η in Eq. (26) with 1/τ . The quadratic dc current becomes
in both cases

j (−,2) = τe3

h̄2Ld
∂κγ

�αβ (0)EβEγ . (27)

B. Longitudinal conductivity

By taking one more time derivative of the first term in
Eq. (6) we get

∂2 j (+)
α (t )

∂t2
= − e

h̄Ld

∂3E0κ

∂t2 ∂κβ
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= − e

h̄Ld

∂3E0

∂κα∂κβ∂κγ

κ̇β κ̇γ

= − e3

h̄3Ld

∂3E0

∂κα∂κβ∂κγ

EβEγ . (28)

In presence of T symmetry E0κ = E0,−κ and therefore Eq. (13)
vanishes: a quadratic contribution to longitudinal conductivity
requires T breaking.

The second time-derivative of the adiabatic current is
time-independent. Therefore the quadratic response of the
many-electron system is a motion where—in absence of
dissipation—the acceleration itself increases linearly in time:

j (+,2)
α (t ) = − e3t2

2h̄3Ld

∂3E0

∂κα∂κβ∂κγ

EβEγ . (29)

The corresponding expression in the ω domain is

j (+,2)
α (ω) = − e3

2h̄3Ld

∂3E0

∂κα∂κβ∂κγ

(
i

ω + iη

)2

EβEγ ., (30)

where clearly the singular distribution is the counterpart of
t2 dependence of the induced current. To the best of the

author’s knowledge, this expression first appeared in Ref. [9];
an alternative derivation is provided in Appendix C.

In order to heuristically summarize the extrinsic relaxation
mechanisms in a single relaxation time, one may replace the
infinitesimal η in Eq. (30) with 1/τ . The quadratic longitudi-
nal current becomes

j (+,2)
α = − τ 2e3

2h̄3Ld

∂3E0

∂κα∂κβ∂κγ

; (31)

the τ 2 scaling is common to the semiclassical theory [10–12].
As said above, in presence of T symmetry Eq. (31) vanishes
and the current quadratic in the field is purely transverse, and
is nonzero provided that I symmetry is broken.

V. HIGHER ORDER CONDUCTIVITIES

A. Hall conductivity

The logic adopted so far extends easily to the nonlinear dc
response of any order. In the Hall case the adiabatic current of
order �, for � � 2, obtains form the (� − 1)th time derivative
of j(−)(t ):

∂�−1 j (−)
α1

(t )

∂t�−1
= − e2

h̄Ld

(
− e

h̄

)�−1 ∂�−1�α1α2 (0)

∂κα3 . . . α�+1
Eα2Eα3 . . . Eα�+1 . (32)

Since the (� − 1)-th derivative is constant in time, the �th order adiabatic current evolves in time like t�−1:

j (−,�)
α1

(t ) = − 1

(� − 1)!

e2

h̄Ld

(
−et

h̄

)�−1 ∂�−1�α1α2 (0)

∂κα3 . . . α�+1
Eα2Eα3 . . . Eα�+1 , (33)

and its Fourier transform is

j (−,�)
α1

(ω) = − 1

(� − 1)!

e2

h̄Ld

(
− e

h̄

)�−1 ∂�−1�α1α2 (0)

∂κα3 . . . α�+1

(
i

ω + iη

)�−1

Eα2Eα3 . . . Eα�+1 ; (34)

see Appendix C for the derivation of Eq. (34) directly in the
ω domain. The highly singular distribution is once more a
fingerprint of the time dependence of the adiabatic current
induced by a dc field, which in the present case is t�−1.
When the infinitesimal η is heuristically replaced by a single
inverse relaxation time 1/τ all the induced currents become
time-independent. The order-� Hall currents scale like τ �−1,
as in the semiclassical theory [10–12].

We remind that in presence of T symmetry �αβ (κ) =
−�αβ (−κ), while in presence of I symmetry �αβ (κ) =
�αβ (−κ); therefore the odd-order currents are nonzero only if

T symmetry is broken, while the even-order ones are nonzero
only if I-symmetry is broken. If the material is both T sym-
metric and I symmetric no Hall current may flow, to any order
in the electric field. Even such features are in agreement with
very general symmetry arguments.

B. Longitudinal conductivities

The adiabatic longitudinal current of order � obtains form
the �th time derivative of j(+)(t ) in Eq. (6):

∂� j (+)
α1

(t )

∂t�
= − e

h̄Ld

(
− e

h̄

)� ∂�+1E0

∂κα1∂κα2 . . . ∂κα�+1

Eα2Eα3 . . . Eα�+1 . (35)

Since the �th derivative is constant in time, the �th order adiabatic current evolves in time like t�:

j (+,�)
α1

(t ) = − 1

� !

e

h̄Ld

(
−et

h̄

)� ∂�+1E0

∂κα1∂κα2 . . . ∂κα�+1

Eα2Eα3 . . . Eα�+1 , (36)

j (+,�)
α (ω) = − 1

� !

e

h̄Ld

(
− e

h̄

)� ∂�+1E0

∂κα1∂κα2 . . . ∂κα�+1

(
i

ω + iη

)�

Eα2Eα3 . . . Eα�+1 ; (37)

033002-5



RAFFAELE RESTA PHYSICAL REVIEW RESEARCH 4, 033002 (2022)

even here the highly singular distribution is a fingerprint of
the t� dependence of the adiabatic current induced by a dc
field. Equation (37) was first obtained by Watanabe and Os-
hikawa in 2020 [9,32]; an alternative derivation is reported
in Appendix C; in presence of T symmetry the odd-order
longitudinal conductivities vanish.

When the infinitesimal η is heuristically replaced by a
single inverse relaxation time 1/τ all the induced currents
become time-independent. The order-� longitudinal currents
scale like τ �, as in the semiclassical theory [10–12].

VI. INDEPENDENT ELECTRONS

A. Band-structure formulation

I deal next with the special case of band insulators and band
metals, i.e., crystalline systems of independent electrons. One
needs therefore to express within band-structure theory the
two main quantities entering the current as defined in Eq. (6),
namely the ground-state energy per unit volume E0κ/Ld and
the many-body curvature per unit volume �αβ (κ)/Ld .

At the independent-electron level the many-electron wave-
function is a Slater determinant of Bloch orbitals |ψ jk〉 =
eik·r|u jk〉 with band energies ε jk; we normalize the orbitals
to one over the crystal cell. The discrete k vectors become a
continuous variable after the L → ∞ limit is taken [33].

It is easy to prove (see Appendix A 2) that

E0κ

Ld
=

∑
j

∫
BZ

dk
(2π )d

f j (k)ε j,k+κ, (38)

1

Ld
�αβ (κ) =

∑
j

∫
BZ

dk
(2π )d

f j (k) �̃ j,αβ (k + κ), (39)

where BZ is the Brillouin zone, and f j (k) is the Fermi factor
at T = 0; in Eq. (39) �̃ j,αβ (k) is the Berry curvature of band
j [20]:

�̃ j,αβ (k) = −2 Im 〈∂kα
u jk|∂kβ

u jk〉. (40)

The formulae are given per spin channel (or for “spinless
electrons”).

All of the formulae provided so far in a many-body set-
ting apply as they stand to the independent-electron case, by
simply adopting the BZ-integral expressions of Eqs. (38) and
(39); therein—as said above—the large-L limit is implicit.
The current induced by a constant field E , Eq. (6) becomes
in the band-structure case, and to all orders in E:

jα (t ) = − e

h̄

∑
j

∫
BZ

dk
(2π )d

f j (k) ∂κα
ε j,k+κ

− e2

h̄

∑
j

∫
BZ

dk
(2π )d

f j (k) �̃ j,αβ (k + κ) Eβ, (41)

where κ(t ) = −etE/h̄.
The gradient of a function periodical in reciprocal space in-

tegrates to zero over the whole BZ. Therefore in insulators all
conductivities bar the linear Hall vanish. The alert reader may
have noticed that—in the above many-body formulation—no
explicit statement has ruled out nonlinear Hall conductivi-
ties in insulators. The reason is that in fact I was unable to
reach a proof of this conjecture, the ultimate reason being

that discriminating an insulator from a metal is trivial in the
band-structure case, much less so in the many-body case [34].
As said above, in insulators linear Hall conductivity is quan-
tized for d = 2; materials realizing the quantum anomalous
Hall effect—known as “Chern insulators” [20]—have been
synthesized since 2013 onwards [35,36]. As a basic tenet of
topology, extrinsic effects play no role in such materials, in-
sofar as they remain insulating. The Hall conductivity cannot
be topological for d = 3, because it has not the dimensions of
some fundamental constant.

Switching to metals all contributions from the fully occu-
pied bands vanish, since they integrate to zero over the BZ;
only the partially filled bands eventually appear in Eq. (41).
A very hypothetical exception could be a T-breaking metal
whose core bands are topological. Landau’s Fermi-liquid
theory holds that charge transport in metals involves only
quasiparticles with energies within kBT of the Fermi level
[37], while Eqs. (38) and (39) are instead Fermi-volume
integrals. An integration by parts transforms indeed the
responses—to any order—into Fermi-surface integrals. I have
tacitly assumed here a simple Fermi surface; in general there
may be multiple bands that cross the Fermi level and Fermi
surfaces having complex topology, for example including dis-
connected sections. Even such cases can be dealt with, but
require some extra care (see, e.g., Ref. [38]); we disregard
such complications here.

The band-structure formulation of the Drude weight is
thoroughly discussed in Ref. [18]; here I only address the
quadratic Hall conductivity, a topic, which is drawing a large
interest since the seminal 2015 paper by Sodemann and Fu
[1], formulated therein within the semiclassical approach. If
we write the quadratic Hall current as

j (−,2)
α (ω) = i

ω + iη
χαβγ EβEγ , (42)

then Eqs. (26) and (39) yield

χαβγ = e3

h̄2

∑
j

∫
BZ

dk
(2π )d

f j (k) ∂kγ
�̃ j,αβ (k). (43)

We have retrieved here the Sodemann-Fu result; see the fi-
nal part of Sec. VI B for a further discussion. As usual, the
Fermi-volume integral can be transformed in a Fermi-surface
integral via an integration by parts. The expression in Eq. (42)
also shows a feature recently emphasized in Ref. [11]: the
nonlinear conductivity tensors are non unique. In fact addition
of an arbitrary term to χαβγ , antisymmetric in the βγ indices,
has no effect on the physical current.

B. The semiclassical approach

Many recent papers have considered nonlinear conduc-
tivities (longitudinal and transverse) in the framework of
semiclassical theory. Common wisdom holds that—whenever
dc phenomena are considered—the semiclassical theory pro-
vides results, which are exact at the band-structure level. To
linear order, the longitudinal case is dealt with in Ref. [18],
and the Hall case is obvious: the band-structure formula and
the semiclassical formula coincide as they stand [20,24]. The
present formalism leads naturally to a simple proof to an arbi-
trary order; since the quantum-mechanical response functions
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imply zero temperature and no dissipation, the semiclassical
theory is formulated next under the same conditions.

In order to simplify the algebra we take the simple case of
one band and of a Fermi surface, which does not touch the
BZ boundary. Therefore in Eq. (41) we drop the j index and
we replace the BZ integral with the integral over the whole k
space. A change of variables yields

jα (t ) = − e

h̄

∫
dk

(2π )3
f (k − κ) ∂κα

εk

− e2

h̄

∫
dk

(2π )d
f (k − κ) �̃αβ (k) Eβ. (44)

This is exact—in the adiabatic approximation—for all times,
and we remind once more that κ(t ) = −etE/h̄; in this alterna-
tive form the time dependence of the current originates from
the Fermi factor only.

When we expand the Fermi factor in Eq. (44) in powers of
the field, the �th time-derivative of the �th term is constant in
time:

∂� f (k)

∂t�
=

(
− e

h̄

)� ∂� f (k)

∂kα1∂kα2 . . . ∂kα�

Eα1Eα2 . . . Eα�
. (45)

We are ready at this point to make contact with the semiclas-
sical formulation, based on the Boltzmann equation. Therein,
the time evolution of the Fermi factor f̃ (k, t ) is, in the infinite-
τ limit:

∂t f̃ (k, t ) = −k̇ · ∇k f̃ (k, t ). (46)

In zero magnetic field the semiclassical equation of motion for
k is k̇ = −eE/h̄, ergo k(t ) = −etE/h̄. Upon deriving � − 1
times Eq. (46) one finds the term of order � in the field:

∂� f̃ (k, t )

∂t�
= e

h̄

∂�−1

∂t�−1

∂ f̃ (k, t )

∂kα1

Eα1

= − e

h̄

(
− e

h̄

)�−1 ∂� f̃ (k, 0)

∂kα1∂kα2 . . . ∂kα�

Eα1Eα2 . . . Eα�
,

(47)

which is constant in time. This shows that the expansion of the
zero-temperature semiclassical Fermi factor f̃ (k, t ) in powers
of E is identical—for τ → ∞—to the expansion of the ab
initio quantum mechanical Fermi factor appearing in Eq. (44).

The semiclassical velocity in zero macroscopic B field is

vα (k) = 1

h̄
∂κα

εκα
+ e

h̄
�̃αβ (k)Eβ, (48)

and the semiclassical current is

jα (t ) = −e
∫

dk
(2π )3

f̃ (k, t )vα (k). (49)

Therefore, as stated above, the semiclassical “approxima-
tion” it is not an approximation after all, insofar as only dc
transport—to all orders in E—is considered: the semiclassical
theory reproduces the exact quantum-mechanical response
functions in the framework of band-structure theory, i.e., for
a system of noninteracting electrons in a periodic potential.
Schrödinger equation obviously implies zero temperature, and
the response functions are causal but nondissipative. In a
semiclassical approach a relaxation time can be introduced

directly within Boltzmann equation, and a finite temperature
can be directly accounted for in the form of the Fermi factor
f̃ (k, t ). In the ab initio approach, instead, these two effects
must be accounted for a posteriori in heuristic ways.

An input signal of frequency ω induces—beyond the lin-
ear regime—generation of higher harmonics. A macroscopic
ω-dependent field induces, e.g., to second order a rectified
current (time-independent) and a second-harmonic current
at frequency 2ω: some of the semiclassical literature deals
with the different terms separately [1,12]. But since only dc
transport is addressed, the 2ω → 0 limit is eventually taken:
only the sum of the two terms is therefore physically relevant.
For instance Eq. (43), in the single-band case, is equivalent
to the sum of the two terms in Ref. [1]; the present adiabatic
derivation avoids partitioning the dc response into different
harmonics.

VII. CONCLUSIONS

I have presented here a comprehensive treatment of non-
linear dc conductivities of any order, Hall and longitudinal,
based on Kohn’s pathbreaking approach to Drude conduc-
tivity, while most of the current literature [2–8,10–15] is at
the semiclassical level. Both the present approach and the
semiclassical one are strictly limited to the dc conductivity;
the ac one would require time-dependent perturbation theory
and explicit Kubo formulae. Whenever a frequency ω appears
in some expression, it has invariably to be understood as in the
ω → 0 limit (here as well as in the semiclassical literature).

All of the Hall conductivities presented here are geomet-
rical, in that they are determined by the many-body Berry
curvature. At the start, the focus of the theory is on the time
dependence of the current adiabatically induced, to a given
order, by a static E field in a pristine material. Switching then
to the ω domain, the highly singular Fourier transforms of
such currents are regularized in an obvious way by means of a
finite relaxation time, analogously to the well-known case of
linear Drude conductivity [18].

The present theory of dc conductivity is formulated by con-
sidering the adiabatic response of the many-electron system to
a dc field E . One might wonder whether this is appropriate in
a metal, given that in a molecular system the adiabatic ap-
proximation would require a finite excitation gap, a condition
clearly violated here. Nonetheless the time-honored theory
of lattice dynamics (and related computations) has proved
that in most metals the response is indeed adiabatic to a
very good approximation when the perturbation acting on the
electronic system is in the infrared range of frequencies; the
reasons while this happens—and in which materials—have
been thoroughly discussed in the literature [39]. In the present
case the physical perturbation is not even low frequency. It
is clearly static (a dc electric field) and therefore it does not
violate the adiabatic requirement to all orders. The reason for
the apparent time-dependence of the perturbation is that quan-
tum mechanics cannot deal with fields directly. It deals with
potentials: vector potential and scalar potential; furthermore
the scalar potential (in our case −E · r) is incompatible with
the BvK boundary conditions of condensed matter physics
[40]. It is then mandatory to adopt the time-dependent vector
potential gauge, as done here throughout: in the notations of
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the present paper, the field enters Schrödinger equation via the
vector potential −ctE = h̄cκ(t )/e.

The final part of this paper addresses a crystalline system
of noninteracting electrons and reformulates the whole theory
in that framework, where the nonlinear conductivities assume
the form of Fermi-volume integrals, or equivalently of Fermi-
surface integrals. The common wisdom that—insofar as dc
conductivity is addressed—the semiclassical treatment is ex-
act at the band-structure level is confirmed to all orders in E .

It is worth stressing that—at variance with the present
quantum-mechanical approach—the semiclassical one deals
with the fields (electric and magnetic) directly; the equation of
motion therein is gauge invariant. Therefore even magnetore-
sistance is theoretically accessible; while instead—to the best
of the author’s knowledge—no fully quantum-mechanical
treatment of magnetoresistance has ever been attempted. The
reason is that the vector potential of a macroscopic B field is
incompatible with BvK periodic boundary conditions (for any
gauge choice); only commensurate B fields are allowed, and
the boundary conditions must be modified in the appropriate
way [23]. The problem is nonanalytic at B = 0 and a small-B
expansion looks awkward.
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APPENDIX A: KUBO FORMULÆ FOR LINEAR
CONDUCTIVITY

1. Many-body formulæ

We define the matrix elements of the many-body velocity
operator at κ = 0:

Rn,αβ = Re 〈�0|v̂α|�n〉〈�n|v̂β |�0〉, (A1)

In,αβ = Im 〈�0|v̂α|�n〉〈�n|v̂β |�0〉, (A2)

where Rn,αβ is symmetric and In,αβ antisymmetric; we further
set ω0n = (En − E0)/h̄. The longitudinal (symmetric) conduc-
tivity is

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) + i

πω

]
+ σ

(regular)
αβ (ω), (A3)

Dαβ = πe2

Ld

(
N

m
δαβ − 2

h̄

∑
n �=0

Rn,αβ

ω0n

)
, (A4)

Re σ
(regular)
αβ (ω) = πe2

h̄Ld

∑
n �=0

Rn,αβ

ω0n
δ(ω − ω0n), ω > 0 (A5)

Im σ
(regular)
αβ (ω) = 2e2

h̄Ld

∑
n �=0

Rn,αβ

ω0n

ω

ω2
0n − ω2

; (A6)

the Drude weight Dαβ vanishes in insulators.

The real part of longitudinal conductivity obeys the f -sum
rule∫ ∞

0
dω Re σαβ (ω) = Dαβ

2
+

∫ ∞

0
dω Re σ

(regular)
αβ (ω)

= Dfree

2
δαβ, (A7)

with Dfree = πe2n/m. An important subtlety must be stressed
[41]: if the ω integration includes the ultraviolet and x-ray
regions of the spectrum, then the density n includes the core
electrons. When the focus is on dc transport and optical
properties the core contributions to the f -sum rule must be
discounted: this happens automatically in a pseudopotential
framework.

Using the relationship

|∂κα
�0〉 = −

∑
n �=0

|�n〉 〈�n|v̂α|�0〉
ω0n

, (A8)

the Drude weight can be recast as a geometrical property of
the electronic ground state:

Dαβ = Dfreeδαβ − 2πe2

h̄2Ld
Re 〈∂κα

�0| (Ĥ − E0) |∂κβ
�0〉. (A9)

If we then start from the identity 〈�0κ| (Ĥκ − E0κ ) |�0κ〉 ≡ 0,
we take two derivatives, and we set κ = 0, we arrive at Kohn’s
famous expression for the Drude weight:

Dαβ = πe2

h̄2Ld

∂2E0

∂κα∂κβ

, (A10)

also proved in the main text and in Appendix C in two alter-
native ways.

Transverse conductivity is nonzero only when T symmetry
is absent. The Kubo formulae for the transverse (antisymmet-
ric) conductivity are

Re σ
(−)
αβ (ω) = 2e2

h̄Ld

∑
n �=0

In,αβ

ω2
0n − ω2

, (A11)

Im σ
(−)
αβ (ω) = πe2

h̄Ld

∑
n �=0

In,αβ

ω0n
δ(ω − ω0n), ω > 0. (A12)

Using again Eq. (A8) the dc transverse conductivity is easily
recast in terms of the many-body Berry curvature at κ = 0:

Re σ
(−)
αβ (0) = − e2

h̄Ld
�αβ (0); (A13)

the expression holds for metals and insulators, in either 2d
or 3d . Notice that Re σ

(−)
αβ (0) = σ

(−)
αβ (0), since the imaginary

part is odd in ω. Equation (A13) is derived in the main text in
an alternative way, by means of the anomalous velocity in its
many-body formulation.

2. Band-structure formulæ

We start reminding that the anomalous Hall conductivity of
a pristine crystal is [20]

σ
(−)
αβ (0) = −e2

h̄

∑
j

∫
BZ

dk
(2π )d

f j (k) �̃ j,αβ (k); (A14)
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comparison to Eq. (A13) yields:

1

Ld
�αβ (0) =

∑
j

∫
BZ

dk
(2π )d

f j (k) �̃ j,αβ (k). (A15)

The L → ∞ limit is implicitly understood in the left-hand
side.; it is instead explicit in the right-hand side, given that
the Bloch vector therein is a continuous variable.

When κ �= 0 is set in Kohn’s Hamiltonian Ĥκ, the corre-
sponding Kohn-Sham periodic orbitals |ujk〉 are eigenstates
of the single-particle Hamiltonian

e−ik·rHκeik·r = 1

2m

[
p + e

c
A(r) + h̄k + h̄κ

]2
+ VKS(r),

(A16)
where VKS is the Kohn-Sham potential, hence Eq. (38) in the
main text is obvious, while for the Berry curvature we get

1

Ld
�αβ (κ) =

∑
j

∫
BZ

dk
(2π )d

f j (k) �̃ j,αβ (k + κ). (A17)

1

Ld
∂κα

�αβ (0) =
∑

j

∫
BZ

dk
(2π )d

f j (k) ∂kα
�̃ j,αβ (k). (A18)

APPENDIX B: THE DREYER-COH-STENGEL SUM RULE

When the nuclei are displaced by us from a refer-
ence configuration, the potential in Eq. (1)—one-body term
thereof—depends on such displacements: V̂ → V̂ ({us}); the
ground-state eigenstate |�0〉 depends on the us as well. The
electronic current density induced when the Hamiltonian
is adiabatically varied in time—using once more the Niu-
Thouless theorem [24,26]—and setting κ = 0 is

jα = ie

L3
(〈∂κα

�0|�̇0〉 − 〈�̇0|∂κα
�0〉)

= −2e

L3
Im 〈∂κα

�0|�̇0〉, (B1)

where we recognize a many-body Berry curvature in the
(κα, t ) domain. If only the sth nucleus is displaced with ve-
locity vs = u̇s, the electronic current and the corresponding
sth Born tensor are

jsα = −2e

L3
Im 〈∂κα

�0|∂usβ �0〉 vsβ, (B2)

Z∗
s,αβ = 1

e

∂ j (tot)
α

∂vs,β
= Zsδαβ − 2

L3
Im 〈∂κα

�0|∂usβ �0〉, (B3)

where eZs is the bare nuclear charge.
If all the nuclei are rigidly translated at velocity v the

adiabatic electronic current is

jα = −2e

L3
Im 〈∂κα

�0|∂uβ
�0〉 vβ ; (B4)

the main object of the present Appendix becomes then

1

L3

∑
s

Z∗
s,αβ = 1

L3

∑
s

Zsδαβ + 1

e

∂ jα
∂vβ

= m

πe2
Dfreeδαβ − 2

L3
Im 〈∂κα

�0|∂uβ
�0〉, (B5)

where Dfree = πe2n/m. and n = ∑
s Zs/L3.

Then, for a T-invariant system we may transform

|∂u�0〉 = −
N∑

i=1

|∂ri�0〉 = i

h̄

N∑
i=1

pi|�0〉 = im

h̄2 (∂κĤκ )|�0〉.
(B6)

We further exploit

(∂κĤκ )|�0κ〉 = ∂κ( Ĥκ|�0κ〉 ) − Ĥκ|∂κ�0κ〉 (B7)

= (∂κE0κ ) |�0κ〉 + (E0κ − Ĥκ ) |∂κ�0κ〉.
The first term in the second line does not contribute to
Eq. (B5); the electronic current induced by a rigid translation
of all nuclei is then

1

e

∂ jα
∂vβ

= − 2m

h2L3
Re 〈∂κα

�0| (Ĥ − E0) |∂uβ
�0〉; (B8)

inserting this into Eq. (B5) and comparing to the geometrical
expression for the Drude weight, Eq. (A9), the Dreyer-Coh-
Stengel sum rule [25] is finally retrieved.

APPENDIX C: ADIABATIC RESPONSE IN THE
FREQUENCY DOMAIN

From κ̇(t ) = −eE/h̄ one gets κ(t ) = −etE/h̄ + const, and
we observe that the Fourier transform of a constant is propor-
tional to δ(ω). Switching to the Fourier transforms E (ω) =
iωh̄κ(ω)/e, whose inversion is

κ(ω) =
( e

h̄

)[
− i

ω
+ const × δ(ω)

]
E (ω); (C1)

the integration constant, as usual, is determined by imposing
causality:

∂κα (ω)

∂Eβ (ω)
=

(
− e

h̄

)(
i

ω + iη

)
δαβ

=
(
− e

h̄

)[ i

ω
+ πδ(ω)

]
δαβ, (C2)

where η → 0+ is understood (as throughout this paper).
The linear conductivity is

σαβ (ω) = ∂ jα (ω)

∂Eβ (ω)

=
(
− e

h̄

) ∂ jα (ω)

∂κβ (ω)

i

ω + iη
. (C3)

At finite frequency, ∂ jα (ω)/∂κβ (ω) obtains from time-
dependent linear response theory (i.e., Kubo formulae). Here
we limit ourselves to an adiabatic perturbation, hence the κ

derivative is taken with respect to a static κ. We thus get
from Eq. (6) the dc contribution to longitudinal conductivity
as [17]:

σ
(+)
αβ (ω) =

(
− e

h̄

)∂ j (+)
α

∂κβ

i

ω + iη

= e2

h̄2Ld

∂2E0

∂κα∂κβ

i

ω + iη
, (C4)

which in fact is Kohn’s expression, Eqs. (14) and (15).
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To higher orders in E the adiabatic response of the many-electron system obtains from the chain rule:

j (+,�)
α1

(ω) = − 1

� !

e

h̄Ld

(
− e

h̄

)� ∂�+1E0

∂κα1∂κα2 . . . ∂κα�+1

(
i

ω + iη

)�

Eα2Eα3 . . . Eα�+1 ; (C5)

with the heuristic substitution η = 1/τ the steady current scales like τ �, in agreement with the semiclassical theories.
The Hall current j(−,�) has been derived in the main text for � = 1 and � = 2; it is expedient to rewrite j(−,2), Eq. (26), as

j (−,2)
α1

(ω) = − e3

h̄2Ld
∂κα3

�α1α2 (0)
i

ω + iη
Eα2Eα3 . (C6)

Using as above the chain rule, the generalized formula for � � 2 is

j (−,�)
α1

(ω) = − 1

(� − 1)!

e2

h̄Ld

(
− e

h̄

)�−1 ∂�−1�α1α2 (0)

∂κα3 . . . α�+1

(
i

ω + iη

)�−1

Eα2Eα3 . . . Eα�+1 . (C7)

The above currents, where singular distributions appear, are the causal Fourier transforms of the corresponding time-dependent
currents, as displayed in the main text.
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