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Incoherent control of two-photon induced optical measurements in open quantum systems:
Quantum heat engine perspective
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We present a consistent optimization procedure for the optical measurements in open quantum systems using
recently developed incoherent control protocol. Assigning an effective hot bath for the two-entangled-photon
pump we recast the transmission of classical probe as a work in a quantum heat engine framework. We
demonstrate that maximum work in such a heat engine can exceed that for the classical two-photon and
one-photon pumps, while efficiency at maximum power can be attributed to conventional boundaries obtained
for the three-level maser heat engine. Our results pave the way for incoherent control and optimization of optical
measurements in open quantum systems that involve two-photon processes with quantum light.
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I. INTRODUCTION

A Thermal engine [1] plays a pivotal role in many ther-
modynamical processes. In the seminal work by Scovil and
Schulz-DuBois [2], a maser heat engine was formulated in
the context of the detailed balance which results in the maxi-
mum efficiency [3,4] for a three level system [5–8] operating
between hot and cold baths. The ascent of quantum heat
engines (QHEs) has attracted a significant amount of attention
in the last few decades and constitutes an important research
direction within quantum thermodynamics, both theoretically
[9–18] and experimentally [19–24]. In addition to the diverse
development of QHEs [25–27], they have intrinsic relation-
ships with real physical systems such as lasers, solar cells
[28,29], batteries [15,30], light harvesting [31], etc. While
some of the promising features of QHEs such as quantum
coherence and entanglement [32–35] show a possibility for
enhancing the maximum output power for resonantly driven
systems [36], the significance of entanglement in optical
measurements in open quantum systems from the QHE per-
spective has not been investigated so far.

Recently, the authors developed an incoherent control
method of optical signals [37] that views the pump-probe
measurements as a QHE, which transfers energy from the
pump pulse to the probe pulse, treating the dissipation to the
environment explicitly, while computing the work performed
by the system via the detected probe photons. In this method
we have introduced an effective thermal bath by combining
a coherent pump pulse excitation of electronic excited states
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of molecules with the thermal relaxation. The “incoherent”
control algorithm for the optical signals in open quantum
systems is then introduced based on the analogy with the
QHE. It has been further shown that the spectroscopic mea-
surement for the probe pulse transmission can be improved
when the corresponding parameter regime is close to a limit
of operation, such as the Curzon-Ahlborn limit, etc. Note, that
incoherent control has been introduced in the context of nu-
merical optimization of coherent optical measurements [38].
Our method is fully analytical and is based on the analogy
with the quantum thermodynamics.

In the course of the above developments we realized that
the efficient operation of QHEs in open quantum systems such
as molecules is strongly correlated with the ability to effi-
ciently excite a particular electronic state. At the same time the
various molecular degrees of freedom such as nuclear motion,
the complex selection rules, and the associated dissipation
processes restrict the ability to control the excited states’ prob-
abilities. Moreover the latter are governed by the uncertainty
relation between the spectral bandwidth of the molecules and
the temporal profile of the excitation pulse. It has been further
shown that two-photon excitation with the entangled photons
can efficiently control the multiexciton population distribution
in complex molecules since these can violate the uncertainty
principle in the two-photon absorption measurements [39]. In
addition to the spectral selectivity, the entangled two-photon
absorption probability scales linearly with the pump intensity,
in contrast with the classical two-photon absorption which is
quadratic in the pump intensity [40]. This feature makes it at-
tractive for the low intensity applications in the photosensitive
materials such as biological molecules, etc. [41]. While a sig-
nificant amount of experimental [42] effort has been dedicated
to the optimization of two-photon absorption measurement us-
ing quantum light, it lacks a formalized theoretical foundation
due to the dissipative nature of the open quantum system. It
is therefore imperative to develop a consistent optimization
procedure for such optical measurements in connection with
the fundamental frameworks such as QHEs.
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FIG. 1. (a) Schematic for the three-level molecule undergoing two-photon pump-probe measurements. The pump field resonant with
transition g–2 excites a vibrational wave packet in the higher vibrational state 2 via the intermediate levels e and e′, which relaxes to the lower
energy vibrational state 1. The probe field then stimulates the emission from the state 1 to the excited vibrational level 0 in the ground electronic
state. Finally, vibrational relaxation brings the system back to its ground state g. (b) Equivalent three-level QHE with transitions between energy
levels g–1 and g–0 driven by hot (at temperature Th) and cold (at Tc) heat baths. The single-mode stimulated emission representing the work
done by the QHE occurs at the 1–0 transition with the Rabi frequency λ.

In this article we explore the QHE analogy with a setup
that involves two-photon pump excitation with both classical
and quantum states of light by utilizing an effective thermal
bath [37]. The two photons can be initially in, e.g., an en-
tangled twin photon state, which allows us to explore the
effects of entanglement in QHE operation. By presenting a
consistent technique of maximization of power and efficiency
at maximum power for the two-photon pumped QHE using
incoherent control, one can manipulate the two-photon in-
duced fluorescence (TPIF) and pump-probe signals due to
an additional control parameter (entanglement time) [39,43]
which does not exist classically.

II. EFFECTIVE HEAT BATH

We consider a three-level molecular system with ground
state g, single excited electronic state e, and double excited
electronic state f (see Fig. 1). To keep the notations consistent
with our previous work [37] we denote vibrational states of the
electronic ground state as 0 and g, while vibrational states of
the double excited electronic state are 2 and 1, and e and e′
denote vibrational states of the single excited electronic state.
A two-photon pump field excites a molecule from g to 2 via
states e and e′ with the pump Rabi frequencies �i and central
frequencies ωi, i = 1, 2. The vibrational state 2 relaxes to 1
by emission of a phonon. The stimulated emission 1–0 due to
interaction with a probe field of Rabi frequency λ is followed
by thermal relaxation via interaction of the 0–g transition with
the cold bath, which then brings the system to its initial ground
state. The total Hamiltonian of the system is given by

Ĥtot. = Ĥ0 + ĤI + ĤI.V., (1)

where subscript I indicates the light-matter interaction of
pump and probe fields and I.V. indicates the interaction
with the vibrational modes; Ĥ0 = ∑

i ωi|i〉〈i|, where i =
g, 0, e, e′, 1, 2. The pump-molecule interaction Hamiltonian
in the rotating wave approximation reads

ĤI (t ) = −V̂ †(t )
∑
i=1,2

(Ê j (t ) + Ê†
j (t )), (2)

where V̂ (t ) = μge e−iωet |g〉〈e| + μe2 e−iω2t |e〉〈2|, and

Ê j (t ) = i
∫ ∞

0 dω j

√
h̄ω j

2Vε0
â j (ω j )e−iω j t , where j = 1, 2, indices

denote the first and second photons, â j and â†
j are the anni-

hilation and creation operators for the jth photon that satisfy
the commutation relation [â j (ω), â†

j′ (ω
′)] = δ(ω − ω′)δ j j′ , V

is the quantization volume, and HI.V = ∑
m,i< j b†

m|i〉〈 j|e−iωit .
The two-photon pump utilized in our work originates from
the single photon sources so the coupling to the system is
naturally weak. In the case of multiphoton sources such as
squeezed light the coupling can be moderate, yet it is far from
being strong [44]. Hence, we consider that the couplings to the
pump fields are weak so we can use the perturbation theory.

Assuming that all molecules are initially in the ground
state, the density matrix of the interacting matter-field system
at time t is given in the interaction picture by the time-ordered
exponential superoperator

ρ̂(t ) = T̂ exp

[
− i

h̄

∫ t

dt ′Ĥint,−(t ′)
]
ρ̂mat ⊗ ρ̂field, (3)

where T̂ is a time ordering superoperator, the interaction
Hamiltonian superoperator Ĥint,± is defined by its action
on the ordinary operator X̂ as Ĥint,−X̂ = ĤintX̂ − X̂ Ĥint and
Ĥint,+X̂ = ĤintX̂ + X̂ Ĥint [45], ρ̂field denotes the ground state
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FIG. 2. (a) The set of double sided Feynman diagrams representing the leading order contribution to the population of excited state due to
relaxation 2–1. There are a total of six pathways that contribute to the matter field system: diagrams (a)–(c) and their complex conjugates.

of the matter system, and ρ̂mat denotes the initial state of the
light field. The leading-order contribution to the population
of level 1 is given by the convolution of four-point field and
matter correlation functions using the Feynman diagram in
Fig. 2, obtained from Eqs. (A17), (A18), and (A19) in Ap-
pendix A. The total population of state 1 due to pumping
transition g–2 followed by the relaxation 2 − 1 is given by
ρ11(t ) = ρa

11(t ) + ρb
11(t ) + ρc

11(t ), obtained from Eq. (A20),
and it is recast by introducing the detuning δ = ω2e − ω2e′ and
assuming the pump is tuned midway between e and e′ states,
ω0 = 1

2 (ω2e′ + ω2e). The solution we obtain for the population
of level 1 from Eq. (A20) reads

ρ11(t ) = 16 δ2 δ̃2 �4
p(1 − e−�2(2n2+1))

(2n2 + 1)
(
δ2 + 4σ 2

p

)2(
δ̃2 + 4σ 2

p + )2 ,

ρgg(t ) = 1 − ρ11(t ), (4)

where δ̃ = δ + 2ω2e′ − 2ωe′g. Before proceeding to the QHE
model, which is based on the perturbative solution of the
complete set of equations given by Eq. (A21) (Appendix A),
we first introduce an effective heat bath. To that end, we
assume that the probe field is much stronger than the coupling
to the phonon bath that governs the 2–1 transition, which itself
is stronger than that of the bath driving the 0–g transition:
λ � �2n2 � �cnc. The latter condition can be obtained in a
variety of molecular systems [46]. Under these conditions one
can eliminate the state 0 from the total system of Eq. (A21)
and consider only the three states such that the combined
effect of the coherent excitation g–2 is followed by a relax-
ation 2–1 in Fig. 1(b) can be replaced by an effective thermal
bath at temperature Th with the average photon number nh =
[exp(ω1g/Th) − 1]−1 and dephasing �h. In this case the state
2 can be eliminated and the corresponding equation of motion
for the populations of g and 1 read

ρ̇11 = −�h[(nh + 1)ρ11 − nhρgg], ρ̇gg + ρ̇11 = 0, (5)

which yields the time-dependent solution

ρth
11(t ) = Nthnh(1 − e−�h (2nh+1)t ), ρth

gg + ρth
11 = 1, (6)

where superscript “th” indicates the thermal bath and the
normalization Nth = [1 + 2nh]−1. Following the approach
outlined in Ref. [37], the population of level 1 excited by

a coherent drive is given in Eq. (4) and ρgg(t ) is obtained
using the population conservation ρ11(t ) + ρgg(t ) = 1. This
coherently excited populations 1 and g match with the thermal
bath driven populations 1 and g given in Eq. (6). By matching
the two we obtain nh and �h, that must satisfy

nh = 16 �4
p (n2 + 1)δ4

(2n2 + 1)
(
δ2 + 4σ 2

p

)4 − 32 �4
p (n2 + 1) δ4

,

�h = �2
(2n2 + 1)

(
δ2 + 4σ 2

p

) − 32 σ 4
p (n2 + 1)δ4

(
δ2 + 4 σ 2

p

)4 ,

(7)

where we set ω2e′ � ωe′g. The effective thermal bath parame-
ters defined in Eq. (7) yield the quantitative population match
between the coherent and the thermal baths shown in Fig. 3(a).
The agreement between the populations shown in Fig. 3(b)
ensures the qualitative formation of an effective bath.

III. QUANTUM HEAT ENGINE

We next obtain the power and the efficiency, given by [47]

P = iλ(ωc − ωh)(ρ01 − ρ10),

Q̇h = iωhλ(ρ01 − ρ10),

η = 1 − ωc

ωh
.

(8)

where ωh = ω1 − ωg and ωc = ω0 − ωg; nh, nc and �h, �c

are the average occupation numbers and dephasing rates for
the hot and cold baths, respectively. To find the steady state
solution for �01 and �10 in Eq. (8), we follow the standard pro-
cedure for the three-level molecule given in the Supplemental
Material of Refs. [28,37]. The output power and efficiency for
the three-level QHE then read

P = 2

3

λ2�h�c(nc − nh)(ωc − ωh)

(�hnh + �cnc)(λ2 + �h�cncnh)
,

η = 1 − 1

cp − c21
, (9)

where cp = ωp/ωc and c21 = ω21/ωc.
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FIG. 3. (a) The population of ground state g and lowest excited state 1 obtained using the coherent bath in Eq. (4) (solid lines) and the
thermal bath in Eq. (6) (dot-dashed) using parameters in Eq. (7). (b) The difference between populations of coherent and thermal baths ρc − ρth

for parameters in Eq. (7). The parameters read n2 = nc = 100, �2 = �c = 0.002 ps−1, �p = 0.0078 eV, and σp = 30.34 cm−1.

A. Classical two-photon pump

We now recast the output power in Eq. (9) using Eq. (7)
in the high temperature limit where nc = n1 � Tc/ωc, n2 =
nh � T2/ω21, and ωc = ω0g. We then introduce an effective
temperature of the hot bath Th = (�p �2

2 /2 δ)1/2 and the
dimensionless temperature scale τ = Tc/Th. The pump en-
ergy scale cp = ωp/ωc, the coupling scale λ′ = λ(�2Tc)−1/2,
and the pump pulse width scale σ ′

p = σ e
p �2/δTc, where σ e

p =
(σ 2

p − δ2/4)1/2. Equation (9) for the dimensionless parameters
given in Eq. (A22) can be finally maximized with respect to
dimensionless variable c21 which yields

Pmax
C = 4uvλ′τ̃

[
2A + 2 αu v + τ 8σ ′8

p c′
p(mu + v)

]
3τ 8σ ′8

p (v − uλ′)2 , (10)

where A =
√

u v (τ 8 c′
p σ ′8

p + α u)(τ 8 c′
p λ′ σ ′8

p + αv), τ̃ =
1 − τ 8σ ′8

p , and c′
p = cp − 1. The efficiency corresponding to

the maximum output power defined in Eq. (10) is given by

η∗
C = 1 − 1

cp + τ̃
√

uv(c′
pτ

8σ ′8
p +αu)(τ 8λ′c′

pσ
′8
p +αv)+uv τ̃ α2

τ̃ τ 8σ ′8
p [αv+λ′(c′

pτ
8σ ′8

p +αu)]

, (11)

where subscript C specifies the efficiency of the two-photon
pump. We next assume the weak dissipation regime, i.e.,
ωc � �c, which yields

η∗
CW = 1 − 1

cp + α2uv

τ 8σ ′8
p [τ 8(cp−1)λ′σ ′8

p +αuλ′]
, (12)

where subscript CW indicates the classical efficiency in the
weak coupling regime. The entire parameter space corre-
sponding to the efficiency given by Eq. (12) can be separated
into four regions summarized in Table I and represented by
the colorful two-dimensional (2D) shapes in Fig. 4(a). We use
the dimensionless pump frequency cp as a control parameter
that depends on the effective temperature ratio τ ; the pump
pulse bandwidth σ ′C

p (the classical pump bandwidth of σ ′
p)

that depends on the dimensionless probe coupling field λ′;
and τ , u, v, and α. We define the characteristic efficiency
values describing the boundaries between the four regions cor-
responding to 0, ηC/2 (between I and II regions), ηC/(2 − ηC )
(between III and IV), Carnot efficiency ηC = 1 − τ (upper
bound of IV), and Curzon-Ahlborn (CA) limit [48] ηCA =
1 − τ 1/2 (between II and III). Note, that the two parameters
of the pump field, the frequency ωp and the Rabi frequency
�p, which define an effective hot bath temperature Th and
the pump bandwidth σ ′C

p , can be controlled experimentally.
Thus the 2D parameter space {τ, cp} and {τ, σ ′C

p } shows a
constrained relation between the two as seen in Figs. 4(b) and
4(c), respectively.

We now compare the two-classical-photon pump with our
previous work [37] where a single resonant pump has been
taken to drive transition g–2. Let us highlight some important
points here. First, the range of the pump frequency in the
single photon case is ωp � 2ωc while in the two photon case
ωp � ωc, which affirms that the size of the system can be

TABLE I. Parameters of the coherent bath corresponding to the
QHE efficiency bounds shown in Fig. 4, where ξ = α

2(1−ηC )8 .

Bound η∗
CW cp σ ′C

p

I 0 1 8

√
ξ (u −

√
u2 − 4uv

λ′ )

I/II ηC
2

2
2−ηC

8

√
ξ (u −

√
u2 − 2uv(2−ηC )

λ′ )

II/III ηCA
1√

1−ηC

8

√
ξ (u −

√
u2 − 4uv

√
1−ηC

λ′ )

III/IV ηC
2−ηC

2−ηC
2(1−ηC )

8

√
ξ (u −

√
u2 − 8uv(1−ηC )

(2−ηC )λ′ )

IV ηC
2

1−ηC

8

√
ξ (u −

√
u2 − 4uv(1−ηC )

λ′ )
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FIG. 4. (a) 2D mapping of the efficiency at maximum power η∗
CW in Eq. (12) vs Carnot efficiency ηC = 1 − τ . (b) 2D mapping of the cp

vs ηC corresponding to (a). (c) 2D mapping of the σ ′C
p vs ηC corresponding to (a).

smaller. Second, this particular boundary is reached at dif-
ferent pump parameters. For instance, a CA limit is obtained
for the single-photon pump at cp � 2/

√
τ and for the two

photons cp � 1/
√

τ , and its corresponding Rabi frequency is
�CA

p � (4ωp/ωc)4T 2
c δ/�2

2 . The factor of 2, which appears in
the other bounds as well, originates from the quadratic scaling
of the photon absorption probability with the input intensity
for classical light.

B. Entangled two-photon pump

We now consider the case when the two photons driving
transitions g − e and e − 2 are entangled. A classical pump
beam at frequency ωp directed into a crystal is down converted
into an entangled photon pair: signal (s) and idler (i) with
frequencies ωs and ωi, respectively, as shown in Fig. 5(a).
We consider type-II down conversion, which corresponds to
orthogonally polarized signal and idler beams; this allows
us to introduce the entanglement time and avoid complica-
tions with the selection rules. The different group velocities
along two polarization axes create a time delay between the

FIG. 5. (a) The pump photon frequency ωp is down converted
into two signal and idler photons with frequencies ωs and ωi, re-
spectively. We consider spontaneous down conversion (SPDC) with
energy conservation ωp = ωi + ωs. The entangled photons drive
transitions g → e′ and e′ → 2 and the probe field then stimulates the
emission fromstate 1 to the excited vibrational level 0 of the ground
electronic state.

signal and the idler photons represented by entanglement
time T . Owing to energy conservation, ωp = ωi + ωs. The
photon pair is fully characterized by the twin photon state
amplitude ϕ(ωi, ωs) = A(ωi + ωs)�(ωi, ωs), where A(ω) =

A0
ω−ωp+iσ is a Lorentzian envelope function of the pump pho-
ton with bandwidth σ centered around ωp and �(ωi, ωs) =
sinc[(ωs − ωi )T/2], originating from the phase matching in-
side the crystal (see Appendix B). The leading contribution to
the population of state 2 calculated perturbatively according
to the ladder diagram in Fig. 2, and by following the same
approach given in Appendix A to obtain Eq. (4), and assuming
that transition energy ω21 is much larger than dephasing rate
�2, the final populations read

�11(t ) = N2 �2 ñ2 ω2e′ ωe′g ω̃2
2g(1 − e−�2(2n2+1)t )θ

�2(2n2 + 1)
(
σ 2

p + ω̃2
2g

)2 ,

�gg(t ) = 1 − �11(t ),

(13)

where ñ2 = n2 + 1, ω̃2g = ω2g − ωp, θ = sinc2[
T (ω2e′−ωe′g)

2 ],

and N2 = N 2A2
0μegμe′eμ2e′μ21

4ε2
0V 2 is a normalization. Assume for

brevity that the normalization N of a quantum state is the
same as that of a classical state [49], N = �1′�2′ . This en-
sures that all the dimensionless parameters for the entangled
case are the same as in the classical one. Similarly to the
classical case we now introduce an effective hot bath char-
acterized by the thermal photon occupation number nh and
dephasing rate �h which drives the transition g − 1, where the
parameters of the bath are given by

nh = ñ2 θ ω2e′ωge′ �2
1′�

2
2′�

2

(2n2 + 1)�̃4 − 2�2
1′�

2
2′�2ñ2ω2e′ωge′θ

,

�h = �2
[
(2n2 + 1)�̃4 − 2 ñ2 θ ω2e′ωge′�2

1′�
2
2′�

2
]

�̃4
, (14)

where �̃2 = �2 + σ 2
p and � = ω2g − ωp. Using the effective

bath introduced for the system excited by the two entangled
photons in Eq. (14), we can perfectly match the populations of

023259-5



MD QUTUBUDDIN AND KONSTANTIN E. DORFMAN PHYSICAL REVIEW RESEARCH 4, 023259 (2022)

FIG. 6. (a) The population of ground state g and lowest excited state 1 obtained using a coherent bath in Eq. (13) and a thermal bath ρth

using parameters in Eq. (14). (b) The difference between populations of coherent and thermal baths �c − ρth for parameters in Eq. (14).

g and 1 driven by the thermal bath given in Eq. (6), as shown
in Fig. 6. In the two-photon entangled, pump bandwidth scale
σ ′Q

p = σ e
p�2/Tc�, where σ e

p = (σ 2
p − �2)1/2.

Following the general approach outlined in Ref. [37] we
apply the high temperature limit for the phonon bath, i.e.,
T2 � ω21, and the maximum power with respect to (w.r.t.) c21,
which is recast in terms of dimensionless parameters given in
Eq. (B16), yields

Pmax
Q = 4uvλ′Wτ 4c′2

p

(
σ ′Q

p

)4(
θ − τ 4σ ′4

p

)
3θ

(
X + τ 4v c′

p

(
σ

′Q
p

)4
)(

X + τ 4uc′
pλ

′(σ ′Q
p

)4
) ,

(15)

where X = W + E, E = α u v sinc2[T (ω2e′ − ωge′ )/2], W =√
uv(τ 4c′

pσ
′4
p + E/v)(τ 4c′

pλ
′σ ′4

p + E/u), and c′
p = cp − 1.

The corresponding efficiency at maximum power is given by

η∗
Q = 1 − 1

cp − (cp−1)E
W+E

, (16)

where subscript Q denotes the two-photon entangled pump.
Similarly, in the weakly dissipating regime Eq. (16) can be
recast as

η∗
QW = 1 − 1

cp + u v α2 θ2

τ 4λ′σ ′4
p [α u θ+(cp−1)τ 4σ ′4

p ]
, (17)

where subscript QW specifies the weak dissipation limit
of a two-photon entangled (quantum) pump and θ =
sinc2[T (ω2e′ − ωge′ )/2]. Similarly to the classical efficiency
given in Eq. (12), the entire parameter space of the respec-
tive quantum efficiency in Eq. (17) is also divided into four
regions, summarized in Table II. By comparing Tables I and
II, it is clear that the four regions for η∗

CW and η∗
QW are

identical when σ ′C
p = σ ′Q

p . The distinction between σ ′C
p and

σ ′Q
p originates due to additional parameter T and the different

pump intensity scalings (quadratic vs linear) [43] as men-
tioned in Tables I and II. The effective bandwidths for the
two-classical-photon and two-entangled-photon pumps vs ηC

are depicted in Figs. 7(a) and 7(b), respectively. Furthermore,
the efficiency corresponding to the maximum output power
for the quantum light is more robust than that for the classical
light for a moderate range of τ as shown in Fig. 7(c), which
will be discussed in the next subsection.

C. Maximum QHE power for the quantum and classical
two-photon pumps

After maximization of QHE power with respect to the
temperature and pump bandwidth we obtain different scal-
ings for the classical and the entangled two-photon pumps
[50]. Figure 8(a) shows numerically that in a specific tem-
perature range the maximum output power in the entangled
case can be larger than that in the classical case. The
quantum enhancement for the maximum output power oc-
curs for small τ . In this case Eqs. (10) and (15) yield,

TABLE II. The efficiency and pump scale are same as in Table I.
The pump bandwidth parameters of the quantum bath corresponding
to the QHE efficiency bounds in this table are shown in Fig. 7, where

� = α

2(1−ηC )4 sinc2[
T (ω2e′ −ωge′ )

2 ].

Bound η∗
QW cp σ ′Q

p

I 0 1 4

√
�(u −

√
u(uλ′−4v)

λ′ )

I/II ηC
2

2
2−ηC

4

√
�(u −

√
u[λ′u−2v(2−ηC )]

λ′ )

II/III ηCA
1√

1−ηC

4

√
�(u −

√
u(uλ′−4v

√
1−ηC )

λ′ )

III/IV ηC
2−ηC

2−ηC
2(1−ηC )

4

√
�(u −

√
u[u(2−ηC )λ′−8v(1−ηC )]

(2−ηC )λ′ )

IV ηC
2

1−ηC

4

√
�(u −

√
u[uλ′−4v(1−ηC )]

λ′ )
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FIG. 7. (a) The 2D mapping of σ ′Q
p vs ηC for entangled photons given in Table. II. (b) The 2D mapping of σ ′C

p vs ηC of two pump photons

from Table I. (c) The ratio of efficiency at maximum power in Eqs. (17) and (12) vs τ for sinc2[
T (ω2e′ −ωge′ )

2 ] ∼ 1 and η∗
QW > η∗

CW occurs for small
τ and also (in the inset) η∗

QW < η∗
CW for considerably large value of τ . The parameters read T2 = Tc = 300 K, ωp = 1.3 eV, ωc = 0.012 eV,

�p = 0.023 eV, λ = 0.1 eV, δ = 0.00003 eV, σp = 200 cm−1, �2 = 0.71 ps−1, and �c = 0.025 ps−1.

respectively,

Pmax
C = τ 8(cp − 1)2λ′(σ ′c

p )8

3 α
, (18)

Pmax
Q = τ 4(cp − 1)2λ′(σ ′Q

p

)4

3 α sinc2
[ T (ω2e′−ωge′ )

2

] , (19)

where for brevity σ ′C
p = σ ′Q

p = σ ′
p, and from Eqs. (18) and

(19) results we have Pmax
Q /Pmax

C = τ−4σ ′−4
p sinc−2[T (ω2e′ −

ωge′ )/2], which gives Pmax
Q > Pmax

C for sinc2[T (ω2e′ −
ωge′ )/2] � 1 and σ ′

pτ < 1. The above analysis clearly indi-
cates the relation between the effective bath temperature, the
entanglement time, and the spectral bandwidth of the optical
fields as well as the system energy scale and its effect on the
optical measurements with the entangled light in open quan-
tum systems. For instance in the limit of short entanglement
time we can achieve quantum enhancement even in a highly
anharmonic system as long as |ω2e′ − ωe′g|  1/T . Similarly,
for the long entanglement time the quantum enhancement can

FIG. 8. (a) The numerical simulation of maximum QHE power vs τ showing the quantum advantage within a small range of τ . (b) Same
as (a) for the spectroscopic power, showing the quantum advantage for the different regime of temperature scale. The vertical axes of (a) and
(b) correspond to the maximum classical and quantum output power of the nonperturbed and perturbed regimes, respectively, and in this
simulation the quantum advantages differ in their magnitude. The parameters are T2 = Tc = 300 K, ωp = 1.3 eV, ωc = 0.012 eV, �p =
0.023 eV, λ = 0.1 eV, δ = 0.00003 eV, σp = 200 cm−1, �2 = 0.71 ps−1, and �c = 0.025 ps−1.
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be reached for a nearly harmonic system (ω2e′ � ωe′g). In the
same time inequality σ ′

pτ < 1 yields an additional require-
ment for the pumping source such that �p > 4δ(σ e

p )2/�2.

IV. SPECTROSCOPIC REGIME

So far we have discussed QHE regime in which the density
matrix has been solved nonperturbatively. We now focus on
the pump-probe spectroscopic signal derived by the perturba-
tive approach in the light-matter interaction. Reference [37]
shows the apparent connection between the thermodynamics
of the QHE and the spectroscopy that emerges as an incoher-
ent control tool for the optimization of optical measurements,
which can enhance the yield of fluorescence and pump-probe
measurements and improve the signal-to-noise ratio in a wide
class of the optical signals. Here we explore the class of
two-photon pump classical probe signals using classical and
entangled two-photon pumps. To that end the coherence ρ01

and ρ10 which enter in the definition of Eq. (8) can be calcu-
lated perturbatively.

Using Eq. (A21) (in Appendix A), while keeping the lead-
ing order terms following the Feynman diagram in Fig. 2, we
substitute the solution for the population ρ11(t ) from Eq. (4)
and solve for ρ01(t ) for the two-photon pump, which yields

ρ01 = − 32 i �2 λ n2 δ4 �4
p(

δ2 + 4σ 2
p

)4
σpr(�cnc + �2n2)(5�2n2 + �cnc)

,

ρ10 = −ρ01. (20)

Similarly, to obtain the coherence �01(t ) while keeping the
leading order terms following the Feynman diagram in Fig. 2,
we substitute the solution for the population �11(t ) from
Eq. (13) and we get

�01 = − 2 i �2 λ n2 δ4 �2
1′�2

2′Sinc2
[ T (ω2e′−ωge′ )

2

]
(
�2 + σ 2

p

)4
σpr(�cnc + �2n2)(5�2n2 + �cnc)

,

�10 = −�01. (21)

Utilizing Eq. (20) we obtain the power for the classical two-
photon pump in Appendix C, Eq. (C1). After optimizing w.r.t.
c21, the maximum power yields

Pmax
C = uλ′(3cp + 5αu − 3 − C)

2τ 8σprσ ′8
p

, (22)

where C = √
5(cp + αu − 1)(cp + 5αu − 1). Similarly, we

optimize the power for the entangled two-photon pump in
Eq. (C2) and its maximum yields

Pmax
Q = 4αc21u2(cp − c21 − 1)λ′sinc2

[ T (ω2e′−ωge′ )
2

]
τ 4σpr(c21 + αu)(c21 + 5αu)σ ′4

p
. (23)

In Appendix C, we demonstrate numerically that the maxi-
mum power for the quantum light is much larger than that for
the classical light for a moderate range of τ < 1 in Eqs. (23)
and (22) [see Fig. 8(b)]. The ratio of maximum power for the
corresponding equations reads

Pmax
Q

Pmax
C

= τ 4σ ′4
p sinc2

[
T (ω2e′ − ωge′ )

2

]
. (24)

For the short entanglement time sinc2[
T (ω2e′−ωge′ )

2 ] � 1 and in
the limit of σ ′

pτ > 1 we obtain Pmax
Q > Pmax

C . We therefore
have identified the parameter regime where maximum power
for the entangled two-photon pump is enhanced compared to
the classical case using the perturbative regime. In comparison
to the QHE (nonperturbative) regime the power increase due
to the entanglement in the spectroscopic (perturbative) regime
occurs when the bath temperature ratio is τ > 1/σ ′

p, whereas
in the former case τ < 1/σ ′

p, which agrees with the strong
pump (nonperturbative) vs weak pump (perturbative) limits
taken in these two cases.

Simulations of the maximum power for the QHE regime
given in Eqs. (18) and (19) and for the spectroscopic regime
given in Eqs. (22) and (23) are shown in Fig. 8 (Appendix C).
It shows that the quantum enhancement of power is achieved
at different timescales: in the QHE regime at 0 < τ < 0.5 ×
10−2 and in spectroscopic regime at 0 < τ < 0.07.

V. SUMMARY

It has been shown that the two-photon absorption of en-
tangled light may enhance the Raman excitation [51] due to
different intensity scalings at low photon fluxes. In the present
analysis the two-photon absorption in the open quantum sys-
tem regime benefits from additional control parameters using
an incoherent control scheme by mimicking QHEs. In this
proposed model we analytically explored the characteristics
of two-photon absorptions for classical and entangled pair
of photons and their dependence on additional degrees of
freedom, due to which we get the maximum work, in both
the weak and strong intensity approximations. By using the
approach of [37] we developed a connection between the ther-
modynamics of the QHE and the spectroscopy. The transfer
of entanglement to the system allows one to optimize the
detailed balance in system-bath driven optical transitions in
an open quantum system allowing a QHE to operate near
the thermodynamic cycle, which consequently provides an
enhanced yield of conversion between the pump and the probe
fields. Our results can be further extended to Raman, hyper-
Raman, and other techniques that require additional control
over illumination intensity and pump light statistics.
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APPENDIX A: EFFECTIVE HEAT BATH

The master equation in Liouville space is

d ρ̂

dt
= − i

h̄
[Ĥint (t ), ρ̂], (A1)
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We define the superoperator in Liouville space by acting on a
arbitrary operator X :

Ĥint,−X̂ = ĤintX̂ − X̂ Ĥint. (A2)

Now, the solution of Eq. (A1) can be written as a Dyson series
in Liouville space. Hence, we obtain the density matrix

ρ̂(t ) = G(t, t0)ρ̂(t0), (A3)

with the Liouville space Green’s function

G(t, t0) = T̂
[
− i

h̄
exp

∫ t

t0

Ĥint,−(τ )

]
, (A4)

where T̂ is a time ordering superoperator which is defined by

T̂ Â(t1)B̂(t2) ≡ �(t1 − t2)Â(t1)B̂(t2) + �(t2 − t1)B̂(t2)Â(t1),
(A5)

where Â(t ) and B̂(t ) are two arbitrary superoperators and
�(t ) is the Heaviside function. A perturbative expansion of
the Dyson series yielding the leading order contribution of
Eq. (A3) reads

ρ11(t ) = 1

h̄4

∫ t

t0

dτ1

∫ τ1

t0

dτ2

∫ t2

t0

dτ3

∫ τ3

t0

dτ4〈〈Ĥint,−(τ1)

× Ĥint,−(τ2)Ĥint,−(τ3)Ĥint,−(τ4)ρ̂(t0)〉〉, (A6)

where 〈〈·〉〉 = Tr[·, ρ̂(t )] represents the trace with the density
operator. The population of the excited state due to relaxation
2–1 is represented by a diagrammatic Feynman ladder in
Fig. 2 given by

ρa
11(t ) = 1

h̄4

∫ t

dτ1

∫ τ1

dτ2

∫ τ2

dτ3

∫ τ3

dτ4〈〈G11,22(t − τ1)

× V̂2eG2e,2e(τ1 − τ2)V̂†
2eGee,e′e′ (τ2 − τ3)V̂e′g

× Ge′g,e′g(τ3 − τ4)V̂†
e′g〉〉〈Ê†

1 (τ3)Ê†
2 (τ1)Ê2(τ2)Ê1(τ4)〉

= 1

h̄4

∫ t

dt1

∫ t1

dt2

∫ t2

dt3

∫ t3

dt4〈〈G11,22(t1)

× V̂2eG2e,2e(t2)V̂†
2eGee,e′e′ (t3)V̂e′gGe′g,e′g(t4)V̂†

e′g〉〉
× 〈Ê†

1 (t − t1 − t2 − t3)Ê†
2 (t − t1)Ê2(t − t1 − t2)

× Ê1(t − t1 − t2 − t3 − t4)〉, (A7)

where t1 = t − τ1, t2 = τ1 − τ2, t3 = τ2 − τ3, t4 = τ3 − τ4,
and V̂ is a time independent dipole operator in Liouville
space. Now, we transform the fields components in frequency
domain, and it can be recast as

ρa
11(t ) = 1

h̄4

∫
dω1 dω1′ dω2 dω2′

(2π )4
〈�̂†

1(ω1′ )�̂†
2(ω2′ )�̂2(ω2)�̂1(ω1)〉

∫ ∞

−∞
dt1dt2dt3dt4G11,22(t1)G2e,2e(t2)

× Gee,e′e′ (t3)Ge′g,e′g(t4)eiω1′ (t−t1−t2−t3 )+iω2′ (t−t1 )−iω2(t−t1−t2 )−iω1(t−t1−t2−t3−t4 )

= 1

h̄4

∫
dω1 dω1′ dω2 dω2′

(2π )4
〈�̂†

1(ω1′ )�̂†
2′ (ω2′ )�̂2(ω2)�̂1(ω1)〉ei(ω1′ +ω2′−ω1−ω2 )t

× G11,22(ω1 + ω2 − ω2′ − ω1′ )G2e,2e(ω1 + ω2 − ω1′ )Gee,e′e′ (ω1 − ω1′ )Ge′g,e′g(ω1), (A8)

where �̂1(ω1) = μge

√
h̄ω1

2Vε0
â1(ω1)e−iω1t ; we similarly define

�̂2(ω2), �̂
†
1(ω′

1), and �̂
†
2(ω′

2).
The population Green’s functions G11,22, Gee,e′e′ , and Ggg,00

originate from the solution of coupled transport (relaxation)
equations:

ρ̇22 = −�2(n2 + 1)ρ22 + �2n2ρ11,

ρ̇11 = �2(n2 + 1)ρ22 − �2n2ρ11, (A9)

ρ̇e′e′ = −�e(ne + 1)ρe′e′ + �eneρee,

ρ̇ee = �e(ne + 1)ρe′e′ − �eneρee, (A10)

ρ̇00 = −�c(nc + 1)ρ00 + �cncρgg,

ρ̇gg = �c(nc + 1)ρ00 − �cncρgg. (A11)

Equations (A9)–(A11) can be recast as a Pauli master equa-
tion:

ρ̇ii(t ) = −
∑
ii, j j

κii, j jρ j j (t ), (A12)

where κii, j j is the population transport matrix. In Eq. (A12),
the diagonal elements, i = j, κii,ii are positive, whereas
the off-diagonal elements, i �= j, κii, j j are negative. The
population transport matrix satisfies the population conser-
vation

∑
i κii, j j = 0. The evolution of the diagonal elements

is defined by the population Green function, ρ j j (t ) =∑
i G j j,ii(t )ρii(0), where G j j,ii(t ) is given [52]

G j j,ii(t ) =
∑

n

ξ
(R)
jn D−1

nn exp(−λnt )ξ (L)
ni , (A13)

where λn is the nth eigenvalue of left and right eigenvec-
tors (ξ (L)

n , ξ (R)
n ) and D = ξLξR is a diagonal matrix. Using

Eq. (A13) we obtain for the population Green’s functions

G00,gg(t ) = nc(1 − e−t (1+2nc )�c )

(1 + 2nc)
, (A14)

Gee,e′e′ (t ) = ne(1 − e−t (1+2ne )�e )

(1 + 2ne)
, (A15)

G11,22(t ) = (1 + n2)(1 − e−t (1+2n2 )�2 )

(1 + 2n2)
. (A16)
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We use Eqs. (A14)–(A16) and Liouville space Green’s
functions G(ω) = −(ni+1)�i

(ω+iε)[ω+i(2ni+1)�i]
, where ni is the average

phonon occupation number and �i is the dephasing rate for the
i ↔ i − 1 transition. To examine field-induced fourth-order

correlations of matter, we utilize the reduced density matrix
obtained by tracing out the field degrees of freedom, Eq. (A8),
as

ρa
11(t ) = �2�e(n2 + 1)(ne + 1)e−(�21+ε2 )t

(ε2 − �21)(εe − �ee′ )

〈(
e�21t

(
�̂

†
1[ ωe′g + i(εe − �e′g)]�̂†

2[ ω2e + i(ε2 − �2e)]�̂2[ ω2e + i(εe − �2e)]

− �̂
†
1[ ωe′g + i(�ee′ − �e′g)]�̂†

2[ ω2e + i(ε2 − �2e)]�̂2[ ω2e − i(�2e − �ee′ )]
)

+ eε2t
(
�̂

†
1[ ωe′g + i(�ee′ − �e′g)]�̂†

2[ ω2e + i(�21 − �2e)]�̂2[ ω2e − i(�2e − �ee′ )]

− �̂
†
1[ ωe′g + i(εe − �e′g)]�̂†

2[ ω2e + i(�21 − �2e)]�̂2[ ω2e + i(εe − �2e)]
))

�̂1[ωe′g − i�ee′]
〉
, , (A17)

where ε2 and εe are the dephasing rates at transitions 2–1 and e–e′, respectively.
The populations of vibrational state 1 from Feynman diagrams (b) and (c) are

ρb
11(t ) = 1

h̄4

∫ t

dt1

∫ t1

dt2

∫ t2

dt3

∫ t3

dt4〈〈G11,22(t − t1)V̂†
2eGe2,e2(t1 − t2)V̂2eGee,e′e′ (t2 − t3)

× V̂e′gGe′g,e′g(t3 − t4)V̂†
eg〉〉〈Ê†

1 (t3)Ê†
2 (t2)Ê2(t1)Ê1(t4)〉

= �2�e(n2 + 1)(ne + 1)e−(�21+ε2 )t

(ε2 − �21)(εe − �ee′ )

〈(
e�21t

(
�̂

†
1[ωe′g + i(εe − �e′g)]�̂†

2[ω2e − i(εe − �2e)]�̂2[ω2e − i(ε2 − �2e)]

− �̂
†
1[ωe′g − i(�e′g − �ee′ )]�̂†

2[ω2e − i(�ee′ − �2e)]�̂2[ω2e − i(ε2 − �2e)]
) + eε2t

(
�̂

†
1[ωe′g − i(�e′g − �ee′ )]

× �̂
†
2[ω2e − i(�ee′ − �2e)]�̂2[ω2e − i(�21 − �2e)] − �̂

†
1[ωe′g + i(εe − �e′g)]�̂†

2[ω2e − i(εe − �2e)]

× �̂2[ω2e − i(�21 − �2e)]
))

�̂1[ωe′g − i�e′g]
〉
. (A18)

ρc
11(t ) = 1

h̄4

∫ t

dt1

∫ t1

dt2

∫ t2

dt3

∫ t3

dt4〈〈G11,22(t − t1)V̂2e′G2e′,2e′ (t1 − t2)V̂e′gG2g,2g(t2 − t3)

×V̂†
2e′Ge′g,e′g(t3 − t4)V̂†

eg〉〉〈Ê†
1 (t2)Ê†

2 (t1)Ê2(t3)Ê1(t4)〉

= �e(ne + 1)e−(�21+ε2 )t

(�21 − ε2)

〈
�̂

†
1[ω2g − ω2e′ + i(�2e′ − �2g)]

(
e�21t �̂

†
2[ω2e′ + i(ε2 − �2e′ )]

− eε2t �̂
†
2[ω2e′ + i(�21 − �2e′ )]

)
�̂2[ω2g − ωe′g + i(�e′g − �2e)]�̂1[ωe′g − i�e′g]

〉
. (A19)

The total population ρ11(t ) = Re(ρa
11 + ρb

11 + ρc
11) in-

duced by a pulse with Lorentzian shape is defined, e.g.,

�̂1[ωe′g + i�e′g] = �̂1′
ωe′g−ω0+iσp−i�e′g

, where ω0 is the central

frequency and ωe′g is the e′–g transition frequency. Employing
the approximation �21 = �2(2n2 + 1) � ε2, assuming that
the transition energy is much larger than the decay constant.
The total population of level 1 by employing Eqs. (A17),
(A18), and (A19) yields

ρ11(t ) = 16(n2 + 1) |�p|4ω̃2
2e′ ω̃

2
e′g(1 − e�2(2n2+1)t )

(2n2 + 1)
(
σ 2

p + ω̃2
2e′

)2(
σ 2

p + ω̃2
e′g

)2 , (A20)

where ω̃2e′ = ω2e′ − ω0, ω̃e′g = ωe′g − ω0, and we set |�1′ | =
|�2′ | = |�†

1′ | = |�†
2′ | = |�p|.

We consider a three-level molecular system with the
ground state g, single electronic excited state e, and double
excited electronic state f shown in Fig. 1(a). We denote the
vibrational states of electronic ground states 0 and g and
vibrational double excited states of electronic states 2 and 1,
and e and e′ are single electronic states. The corresponding
equation of motion for the density matrix is given by

ρ̇gg(t ) = i�1[ρge(t ) − ρeg(t )] + �c(nc + 1)ρ00(t ) − �cncρgg(t ),

ρ̇ee(t ) = −i�1[ρge(t ) − ρeg(t )] + i�2[ρg2(t ) − ρ2e(t )],

ρ̇22(t ) = −i�2(t )[ρe2(t ) − ρ2e(t )] − �2(n2 + 1)ρ22(t ) + �2n2ρ11(t ),

ρ̇11(t ) = −iλ[ρ01(t ) − ρ10(t )] − �2(n2 + 1)ρ00(t ) + �cncρgg(t ),
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ρ̇2e(t ) = i�2(t )[ρ22(t ) − ρee(t )] + i�1ρ2g(t ) −
{

�2(n2 + 1)

2
+ i(ω2e − ν2)ρ2e

}
,

ρ̇eg(t ) = i�1[ρee(t ) − ρgg(t )] − i�1ρ2g(t ) −
{

�cnc

2
+ i(ωeg − ν1)

}
ρeg(t ),

ρ̇2g(t ) = i�1ρ2e(t ) − i�2ρeg(t ) −
{

�2(n2 + 1)

2
+ �cnc

2
+ i(ω2g − ν1 − ν2)

}
ρ2g(t ),

ρ̇10(t ) = iλ[ρ11(t ) − ρ00(t )] −
{

�2n2

2
+ �c(nc + 1)

2
+ i(ω10 − νpr )

}
ρ10(t ),

ρ̇e2(t ) = ρ̇
†
2e, ρ̇ge(t ) = ρ̇†

eg, ρ̇g2(t ) = ρ̇
†
2g, ρ̇01(t ) = ρ̇

†
10, (A21)

where �2/2 is a dephasing rate and n2 = [exp(ω21/Tc) − 1]−1

is the average phonon occupation number corresponding to
1 − 2 at temperature T2.

The output power in Eq. (9) using Eq. (7) in the high
temperature limit becomes

PC = 4 Tc ωc c21 τ 8u v c̃pλ
′σ ′8

p

(
c̃21 − τ 8(c̃21 − c21)σ ′8

p

)
3
(
c21 τ 8 σ ′8

p + u c̃21
)(

c21τ 8λ′σ ′8
p + vc̃21

) ,

(A22)

where subscript C specifies the two-photon pump and c̃p =
(cp − c21 − 1), c̃21 = α − c21, u = �2ωc/�cTc, v = �c/ωc,
and α = T2/ωc, where T2 is the phonon bath temperature of
level 1–2.

APPENDIX B: ENTANGLED STATES OF TWO PHOTONS

The state of spontaneous down conversion (SPDC) to first
order in perturbation theory is

|ψ〉 = |0〉 − i

h̄

∫ t

t0

dt ĤI (t )|0〉, (B1)

where HI is the effective third-order interaction Hamiltonian
given by

ĤI (t ) = ε0

∫
V

d3rχ (2)E+
p (r, t )Ê−

s (r, t )Ê−
i (r, t ) + H.c.,

(B2)

where χ (2) is the susceptibility tensor of rank 2 which de-
scribes the nonlinear crystal. V is the interaction volume
covered by the pump field and the pump field is simply chosen
as a classical plane wave along the z direction.

E+
p (z, t ) = Ep

∫
dωpA(ωp)e−i(kp(ωp)z−ωpt ), (B3)

where A(ωp) is the pulse envelope function, and

Ê−
j (z, t ) =

∫
dω jE (ω j )â

†
j (ω j )e

−i(k j (ω j )z−ω j t ), (B4)

where j = s, i and â†(ω j ) is a creation operator, and we have
restricted the spatial integral to be over z coordinate only. We
assume that E (ω j ) = √

h̄ω/ε0V, where V is the quantization
volume is slowly varying over the frequencies of interest, and
therefore we can bring it outside the integral. The interaction

Hamiltonian part of Eq. (B1) using Eqs. (B2), (B3), and (B4)
is recast as

∫ t

t0

HI (t ′)dt ′ = A
∫ +∞

−∞
dt ′

∫ +L
2

−L
2

dz
∫

dωidωsdωp

× e−i(ki (ωi )+ks (ωs )−kp(ωp))zei(ωs+ωi−ωp)tA(ωp)

× â†
i (ωi )â

†
s (ωs) + H.c., (B5)

where L is the length of the crystal and A = EpE (ωi )E (ωs).
For a pulsed laser, we can assume that the pump field, and
therefore the interaction Hamiltonian, is zero before t0 and
after t . Therefore, we can extend the limits of the integration
over infinite time. Performing the time integral yields δ(ωi +
ωs − ωp), which then allows the ωp integral to be evaluated,
giving

∫ t

t0

ĤI (t ′)dt ′ = −2πA
∫ +L

2

−L
2

dz
∫

dωidωsA(ωi + ωs)

× e−i(ki (ωi )+ks (ωs )−kpωp)zâ†
i (ωi )â

†
s (ωs) + c.c.

(B6)

Evaluating the integral over z and substituting in Eq. (B1)
yields

|ψ〉 = |0〉 + 2iπLA
h̄

∫
dωidωsA(ωi + ωs)�(ωi, ωs)

× â†
i (ωi )â

†
s (ωs)|0〉 + H.c., (B7)

where �(ωi, ωs) = sinc( L�k
2 ) and A(ωs, ωi ) = A0

ωi+ωs−ωp+iσ is
the normalized band pump pulse of width σ . For a narrow
band pump σ → 0.

The essential character of the phase-matching function is
better illustrated when it is expressed in a simpler form ob-
tained by making the Taylor expansions

kp(ω) ≈ kp0 + (ω − ω̄)
∂kp(ω)

∂ω

∣∣∣∣
ω=2ω̄

,

k j (ω) ≈ k j0 + (ω − ω̄)
∂k j (ω)

∂ω

∣∣∣∣
ω=ω̄

. (B8)
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Here, 2ω̄ is the center pump frequency. Discarding all but the
first two terms yields, using Eq. (B8),

�k = ks(ωs) + ki(ωi ) − kp(ωs + ωi )

≈ (ωs − ωi )

(
∂ks(ωs)

∂ωs
− ∂ki(ωi )

∂ωi

)

= (ωs − ωi )

(
1

vs
− 1

vi

)
. (B9)

Therefore, the phase matching factor reads

�(ωs, ωi ) = sinc

(
(ωs − ωi )T

2

)
, (B10)

where T = L( 1
vs

− 1
vi

) is the entanglement time, characteriz-
ing the group velocity dispersion inside the SPDC crystal. The
output state of SPDC from Eq. (B1) is given by

|ψ〉 = NA0

∫∫
dωsdωi�(ωs, ωi )

ωi + ωs − ωp + iσ
â†

s (ωs)â†
i (ωi )|0〉,

(B11)

where N is a normalization constant.
For the classical light

〈Ê†
1 (ω1)Ê†

2 (ω2)Ê2(ω2)Ê1(ω1)〉 = |〈0|Ê2(ω2)Ê1(ω1)|φ〉|2

= |E2(ω2)E1(ω1)|2. (B12)

where φ is a two photon correlated states. Rabi frequency for
the transition g–2 via intermediate level e in a given classical
field is

|�1|2|�2|2 = |μeg|2|μ2e|2|E (ω2)E (ω1)|2

= |μeg|2|μ2e|2|〈0|Ê2(ω2)Ê1(ω1)φ〉|2. (B13)

For quantum light, the two-point field correlation function
reads

〈0|Ê2(ω2)Ê1(ω1)|ψ〉 = 〈0|
√

ωs

2ε0V
â2(ωs)

√
ωi

2ε0V
â1(ωi )|ψ〉

= N
2ε0V

∫∫
dωsdωi

√
ωsωi�(ωs, ωi )

× A0

ωi + ωs − ωp + iσ

× 〈0|â2(ωs)â1(ωi )â
†
i (ωi )â

†
s (ωs)|0〉

= A0N
2ε0V

√
ω1ω2

ω1 + ω2 − ωp + iσ
�(ω2, ω1).

(B14)

By combination of Eqs. (B10), (B11), (B13), and (B14) the
quantum and correlation functions are recast as

�1(ω1)�2(ω2) = μegμ2eNA0

2ε0V

√
ω2ω1

ω1 + ω2 − ωp + iσ

sinc

[
(ω2 − ω1)T

2

]
. (B15)

The output power in Eq. (9) using Eq. (14) in the high temper-
ature limit becomes

PQ = 2 u v c21c̃pλ
′ τ 4σ ′4

p

[
2 θ c̃21 − τ 4(2c̃21 − c21)σ ′4

p

]
3
(
u c̃21θ + c21τ 4σ ′4

p

)(
v c̃21θ + c21λ′τ 4σ ′4

p

) ,

(B16)

where subscript Q denotes the two-photon entangled pump
and c̃21 = α + c21, c̃p = cp − c21 − 1, θ = sinc2[T (ω2e′ −
ωge′ )/2], α = T 2/ωc, u = �2ωc/�cTc, and v = �c/ωc.

APPENDIX C: MAXIMUM POWER OF QHEs AND
SPECTROSCOPY

Using Eq. (20) in the definition of the power of Eq. (8) and
applying dimensionless parameters over the high temperature
limit, the spectroscopic power is given by

PC = 4αc21u2(cp − c21 − 1)λ′

τ 8σpr(c21 + αu)(c21 + 5αu)σ ′8
p

, (C1)

where all dimensionless parameters were defined in earlier
sections. Similarly we recast spectroscopic power for the en-
tangled two-photon source using Eq. (21):

PQ = αc21u2(cp − c21 − 1)λ′sinc2
[ T (ω2e′−ωge′ )

2

]
2τ 2σpr(c21 + αu)(c21 + 5αu)σ ′2

p

. (C2)

The maximum output power given in Eqs. (10) and (15) for
two-photon entangled and classical states respectively and
their numerical simulation vs τ are shown in Fig. 8(a). We
considered a small interval of τ because only in this regime are
quantum advantages shown in the scale of 10−3 and within the
range of τ ∈ [0, 0.0048], where the maximum output power
of the two-photon entangled pump is larger than the two-
photon classical pump case. The small value of τ corresponds
to the high intensity of the pump field, because τ = Tc/Th,
where Th ∝ √

�p and Tc at room temperature. Similarly,
the maximum output power for the spectroscopic regime in
Eqs. (22) and (23) is shown in Fig. 8(b) and the quantum
advantage is shown in the regime of low pump intensity. The
analytical solution of maximum output power in the limit of τ

is explained in main text.
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