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Current-driven spiral domain wall in a ferrimagnet near the magnetization compensation point

Jia-Lin Liu, Peng-Bin He ,* and Meng-Qiu Cai
School of Physics and Electronics, Hunan University, Changsha 410082, China

(Received 22 December 2021; revised 6 June 2022; accepted 7 June 2022; published 29 June 2022)

A spiral domain wall emerges when the Dzyaloshinskii-Moriya vector is along the easy axis. While the
ferromagnetic spiral wall has been well studied, its ferrimagnetic counterpart has nevertheless not been explored.
Here, using the collective variable approach, we derive the spiral domain-wall solutions in a ferrimagnetic
nanostrip with a longitudinal easy axis and a bulk Dzyaloshinskii-Moriya interaction. At the magnetization
compensation point, the wall rotates and propagates steadily in a wide current range. The (angular) velocity
of this wall increases almost linearly with the experimentally feasible currents. Also, the wall exhibits a
relativistic-like contraction with increasing velocity. Near this point, the wall moves smoothly with its velocity
linearly depending on the current below the Walker breakdown. Above this critical current, all the internal
parameters of the wall, such as the azimuthal angle, width, and spiral pitch, as well as their rates of change,
oscillate periodically. The wall moves forward with its velocity varying periodically. These different behaviors
at or near the compensation point are ascribed to the tunable demagnetization effect. The adjustability of FiM
parameters, combining with the twist induced by the Dzyaloshinskii-Moriya interaction, can effectively change
the DW’s propagation and rotation.
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I. INTRODUCTION

Current-driven magnetic domain walls (DWs) have spurred
intensive research for fundamental interests in the nonlinear
magnetism and potential applications in the logic operation
[1] and data storage [2]. Along with an upsurge of inves-
tigation on the ferromagnetic DWs, growing attention has
been drawn on the antiferromagnetic DWs driven by spin-
transfer torques (STTs) [3–9] and spin-orbit torques [9–13],
which have faster velocity and more stable structure. To
overcome the difficulties in detecting and manipulating anti-
ferromagnetic states, ferrimagnets (FiMs) provide a promising
direction to combine the ultrafast dynamics and improved
controllability. Moreover, in FiMs the magnetization and the
spin density can be tuned by changing the chemical compo-
sition or the temperature [14]. These merits have led to a rise
in experimental [15–20] and theoretical [21–28] studies of the
FiM DWs, especially, those driven by the spin-orbit torques
[16–19,24–27] and STTs [20,28].

Current research focuses on the FiM DWs in the vicinity of
angular momentum compensation point, which can provide
fast and efficient control of the DWs [29]. But so far no
analytic study has been demonstrated of the FiM DWs near
the magnetization compensation point (MCP) and with the
Dzyaloshinskii-Moriya interaction (DMI). Despite the rela-
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tive weakness, DMI influences the structure and movement
of DWs remarkably. If the DM vector coincides with the
easy axis, a spiral DW is allowed [30,31]. Otherwise, DMI
results in a stabilization of homochiral DWs [32,33] and an
enhancement of the Walker limit [34]. Recently, a significant
DMI was observed in single thin FiM films [35]. Moreover, an
adjustable bulk DMI was identified in amorphous FiM alloys
[36]. These findings open an avenue toward the DM DWs in
FiMs. In view of the well adjustability of FiM parameters, the
FiM DWs may be of practical interest. However, the spiral
DWs in FiM are still unexplored, which we will analyze
theoretically.

Here we analyze the dynamics of DWs by employing
the collective coordinates method, originally proposed by
Slonczewski in 1970s [37]. Although this method seldom
provides a quantitative fit to the real situations, it helps to
get the key physical features with qualitative clarity. The
early treatment was to view the central position (q) and the
azimuthal angle of magnetization (φ) of the DW as two
collective coordinates, often called q-φ model. In the past
20 years, by introducing the DW width parameter (�) as a
dynamic variable, a generalized q-φ-� model often has been
used [12,38,39]. For the spiral DW, to describe the dynam-
ics completely, another new time-varying coordinate (�) was
involved, leading to the q-φ-�-� model [40]. Here 2π/� is
the screw pitch. Although the rates of change of � and �

are usually minimal, it is necessary to treat them as collective
coordinates for getting a complete and dynamic expressions
of them, instead of the static ones usually used in q-φ
model.

This work is structured as follows. The model and equa-
tions are introduced in Sec. II. In Sec. III an exact analytical
solution is presented and analyzed for the spiral DW at MCP.
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FIG. 1. Schematic diagram of the DW profile. The black and red
arrows represent the magnetic moments in two sublattices. The plane
in the strip indicates the locations of magnetic moments.

In Sec. IV, near MCP, the dynamics of DW is solved by vari-
ational method. Finally, we end with conclusions in Sec. V.

II. MODEL AND EQUATIONS

As shown in Fig. 1, we consider a FiM metallic nanostrip
with a bulk DMI and a longitudinal easy axis defined as z
axis. The system is composed of two inequivalent sublattices,
with magnetic moment densities M1,2. A longitudinal electric
current flows through the strip, generating adiabatic and nona-
diabatic STTs [41–43] exerted on the magnetic moments. In
general, it is convenient to deploy transformation of variables
from M1,2 to l and m, where m = 1/2(M1/M1 + M2/M2) is
the reduced magnetization, and l = 1/2(M1/M1 − M2/M2) is
the staggered order parameter, with M1,2 being the magnitudes
of magnetization in two sublattices. l and m are subjected to
the constraints l · m ≡ 0 and l2 + m2 ≡ 1. In the ground state,
M1 and M2 remain antiparallel. So m = 0 and |l| = 1. For the
smooth nonuniform states, it is reasonable to assume |m| � 1
and |l| ≈ 1 in the strong-exchange limit. To the first order
in m, considering the large antiferromagnetic coupling, the
motion of l can be decoupled from m. Then, by a tedious but
direct derivation (see Appendix A for details), the two coupled
Landau-Lifshitz-Gilbert equations about M1,2 are reduced to
an equation about l [20,28,44,45],

ρl × ∂2l
∂t2

− S−
∂l
∂t

+ αS+l × ∂l
∂t

= −l × δEl

δl
+ Tl , (1)

where the parameters are defined by those of sublattices,
ρ = S2

+/(8A0), S± = S1 ± S2, and α = (α1S1 + α2S2)/(S1 +
S2), with α1,2 being the sublattice damping constants. S1,2 =
M1,2/γ1,2 is the densities of angular momentum in two sublat-
tices with γ1,2 being sublattice gyromagnetic ratios. A0 = J/�

is the exchange energy density between nearest moments per
unit cell, with J > 0 being the exchange energy between a pair
of nearest magnetic moments, and � the volume of unit cell.

The reduced magnetic energy functional El = ∫
El dr,

with the energy density

El = A2

2

(
∂l
∂z

)2

− K (l · ez )2 − Dez ·
(

l × ∂l
∂z

)

+ 1

2
μ0M2

−[Nx(l · ex )2 + Ny(l · ey)2], (2)

where the first term is the exchange energy density, and
the exchange stiffness A2 = A0a2/2 with a being the lattice
constant. The second term is the anisotropy energy density,
and K = K1 + K2 where K1,2 = K1,2/� are the sublattice
anisotropy constants, with K1,2 being the anisotropy energy
per moment. The third term is the bulk DMI energy density,
and D = (D/�)a representing the strength of DMI [35,36],
with D being the DMI energy per bond. The forth term is
the demagnetization energy density with μ0 being the vacuum
permeability, and Nx,y being the demagnetization factors along
the x and y axes. For a long magnetic nanostrip, Nz = 0 and
Nx + Ny = 1. Finally, M− = M1 − M2.

After transformation (see Appendix A for details), the adi-
abatic and nonadiabatic STTs in Eq. (1) are expressed as

Tl = −P− je
∂l
∂z

+ βP+ jel × ∂l
∂z

, (3)

where je is the current density and β is the nonadiabatic STT
parameter. P± = P1 ± P2, where P1,2 = h̄

2e p1,2 with h̄ being
the reduced Planck constant, e the elementary charge, and pi

the spin polarizations of two sublattices.
Strictly speaking, the exchange and DMI energies depend

on the gradient of magnetization. Here we consider a film
with its width and thickness being smaller than the exchange
length. Furthermore, the length scale of DMI (e.g., the spiral
pitch defined in next section) is general much larger than the
exchange length. Thus, the magnetization is assumed to be
constant in the transverse direction.

In addition, the reduced magnetization m acts as a slave
vector, which can be obtained by (see Appendix A for details)

m = − S+
8A0

l × ∂l
∂t

− A1

4A0

∂l
∂z

(4)

with A1 = A0a.
To illustrate our analytic results, we do some theoretical

estimations by choosing typical parameters [15,20,28] in the
following sections. Several magnetic parameters are listed
as: γ1 = 1.94 × 1011 s−1 T−1 and γ2 = 1.76 × 1011 s−1 T−1,
K1 = K2 = 0.3 meV, J = 7.5 meV, D = 0.3 meV, and α1 =
α2 = 0.004. The sublattice magnetization can be adjusted by
the temperature [20]. The lattice constant a = 0.4nm, and the
volume of unit cell is approximated as � = a3. For the rare
earth-transition metal FiMs, the spin polarization is mostly
determined by the transition metal sublattice. So the spin
polarizations p1 = 0.11 and p2 = 0 [20].

III. DYNAMICS AT MCP

At MCP, the two sublattices have equal magnetization. So
M1 = M2, and the demagnetization energy vanishes. In this
case a static spiral DW solution can be strictly derived by min-
imizing the magnetic energy [Eq. (2)]. Assuming a constant
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magnitude, it is convenient to parametrize l by spherical co-
ordinates, namely, l = sin θ cos ϕex + sin θ sin ϕey + cos θez

with θ and ϕ being the polar and azimuthal angles, respec-
tively. Then a local minima of the energy functional (2) is a
static spiral DW [30,31] expressed as θ = 2 arctan exp[λ(z −
q)/�s], and ϕ = �s(z − q) + φ, where λ = ±1 allows distin-
guishing between a head-to-head DW (λ = 1) or a tail-to-tail
DW (λ = −1). q is the center position of DW, and φ is the
tilted angle of the center magnetic moment. The DW width
�s = (�−2

i − �2
s )−1/2 with �i = √

A2/(2K ) being the width

in the absence of DMI. �s = D/A2 with 2π/�s being the
pitch of spiral. Obviously, this DW exists for weak DMI
(D <

√
2KA2), namely, �s�i < 1.

At MCP, we have obtained an exact solution having the
form of static spiral Walker profile. Based on this static DW
profile, it is assumed that a traveling-wave ansatz takes the
form of θ = θ (ξ ), and ϕ = �ξ + φ(t ) with ξ = z − q(t ). q(t )
and φ(t ) are two dynamic variables, representing the center
position and the tilted angle of DW. Inserting this ansatz into
the θ -ϕ form of Eq. (1) without the demagnetization term, we
have

[ρ(�v̇ − ω̇) + αS+(�v − ω) + βP+ je�] sin θ + (S−v + P− je)θξ = −2[(A2 − ρv2)� − (D − ρvω)] cos θθξ , (5)

[S−(�v − ω) + P− je�] sin θ − (ρv̇ + αS+v + βP+ je)θξ = (A2 − ρv2)θξξ − [2K + A2�
2 − 2D� + ρ(�v̇ − ω̇)] sin θ cos θ,

(6)

where the subscript ξ indicates the derivative with respect to
it, and the overdot denotes the derivative with respect to the
time. It is easy to observe that, if taking θξ ∝ sin θ , Eqs. (5)
and (6) may be solved consistently.

Equating the coefficients of sin θ cos θ in Eq. (6), we obtain

θξ = λ

�
sin θ, (7)

where � = �s(1 − v2/v2
sw )1/2[1 + (� − �s)2�2

s + (�v̇ −
ω̇)�2

s /v
2
sw]−1/2, with v = q̇ being the velocity, ω = φ̇ the

angular velocity, and vsw = √
A2/ρ the spin-wave velocity.

Solving Eq. (7) yields the dynamic Walker solution.
Furthermore, equating the coefficients of sin θ cos θ in

Eq. (5), � is derived as � = (�s − vω/v2
sw )/(1 − v2/v2

sw ).
Then the dynamic spiral DW is described by

θ = 2 arctan exp

[
λ

z − q(t )

�

]
, (8)

ϕ = �[z − q(t )] + φ(t ). (9)

Finally, equating the coefficients of sin θ in Eqs. (5) and
(6), the dynamic equations of v and ω are obtained,

ρ

(
v̇

ω̇

)
=

(
a11 a12

a21 a22

)(
v

ω

)
+

(
b1

b2

)
je, (10)

where a11 = λ��S− − αS+, a12 = −λ�S−, a21 = λ(1 +
�2�2)S−/�, a22 = −(λ��S− + αS+), b1 = λ��P− − βP+,
and b2 = λ(1 + �2�2)P−/�. For the steady motion, both the
acceleration v̇ and the angular acceleration ω̇ vanish. There-
fore, the velocity and angular velocity are expressed as

v0 = �0�0

1 + �2
0�

2
0

�0ω0 − E je, (11)

ω0 = λ
(
1 + �2

0�
2
0

)
F

je
�0

, (12)

where

E = S−P− + αβS+P+
S2− + α2S2+

, (13)

F = αS+P− − βS−P+
S2− + α2S2+

. (14)

�0 and �0 are written as

�0 = �s

√
1 − v2

0/v
2
sw

1 + (�0 − �s)2�2
s

, (15)

�0 = �s − v0ω0/v
2
sw

1 − v2
0/v

2
sw

. (16)

In general, under small perturbations, a physical solution
must be stable. This can be explored by the linearization
method. Inserting v = v0 + v′ and ω = ω0 + ω′ into Eq. (10),
and retaining only the first-order terms with respect to the per-
turbations v′ and ω′, we can obtain the linearized equations.
Then, solving for solutions of the form v′(ω′) ∝ eκt , we can
get a secular equation

ρ2κ2 + 2αS+ρκ + S2
− + αS2

+ = 0, (17)

which has the roots

κ± = −α
S+
ρ

± i
S−
ρ

. (18)

Obviously, the real parts of κ± are negative. So this steady DW
is stable.

Although there are no explicit relations between the
dynamic variables and the currents, several significative
conclusions can be drawn from above calculations. More
abundant dynamics comes forth due to the good adjustability
of FiM. For example, S± and P± in Eqs. (13) and (14) can be
tuned by temperature or by choosing different materials.

First, the magnetic moments can rotate clockwise or anti-
clockwise (ω0 > 0 or <0), depending on the DW type (λ =
±1) and the sign of αS+P− − βS−P+. From Eq. (12), the
angular velocity increases in the presence of DMI with the
increment proportional to the square of the twist �0�0.

Second, the propagation of DW is also greatly affected
by combining the twist produced by DMI and the tunabil-
ity of FiM. From Eq. (11), in the absence of DMI (�0 =
0), v0 = −(S−P− + αβS+P+)/(S2

− + α2S2
+) je, independent

of the topological charge λ. Considering that αβ � 1 gen-
erally, whether the DW moves against or along the current
direction mostly depends on the sign of S−P−, which is deter-
mined by the parameters of two sublattices. This is different
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FIG. 2. Dependence of v0 (a), ω0 (b), �0 (c), and �0 (d) on the
current density for the steady DW at MCP. The solid curves are plot-
ted by numerically solving Eqs. (11), (12), (15), and (16). The dashed
curves are from Eqs. (19) and (20). M1 = M2 = 5.25 × 105 A/m
[20]. The nonadiabatic parameter β = 0.53 [20]. The DW type is
chosen as λ = 1.

from ferromagnets, where the DW always moves against the
current [30] without DMI. On the other hand, depending on
whether the DW rotates in the same or opposite direction as
the twist of DW, DMI can speed up or slow down the DW.
This behavior is similar to the ferromagnetic case [30], but not
exactly the same. DMI-induced increment and reversal of v0

relies on α − β for ferromagnetic DWs, while it depends on
αS+P− − βS−P+ for FiM DWs. In comparison, the latter is
more tunable. Especially, if αS+P− ≈ βS−P+, the DW almost
stops rotating and propagates fluently.

Third, the chirality of spiral can be switched possibly. The
chirality refers to the sense of spatial rotation, corresponding
to the positive or negative �0. For a static spiral DW, the
sign of �s is determined by the direction of DM vector. For
a steady spiral DW, its propagation and rotation happen si-
multaneously, describing by the velocity v0 and the angular
velocity ω0. Like the DW width (�0), the spiral pitch (�0)
also varies when a DW moves steadily. From Eq. (16), �0 not
only varies along with the propagation and rotation of DW,
but also changes sign at v0ω0/v

2
sw = �s. When the chirality

is reversed, the DW twist (�0�0) also changes sign. From
Eq. (11), the variation trend of velocity is altered. Also by
comparing the solid curves in Fig. 2(a) and Fig. 2(d), at the
current density je ≈ 9.12 × 1013 A/m2, �0 changes sign, and
the increase of velocity starts to slow down, then decreases
with the current increasing further.

Finally, from Eqs. (11), (12), (15), and (16), we can in-
fer the counterpart relations of v0, ω0, �0 and �0 with je
for ferromagnets and antiferromagnets. If setting S2 = P2 =
0, the system becomes ferromagnetic: S+ = S− and P+ =
P−. Then v0 ∝ [λ�0�0(α − β ) − (1 + αβ )]/(1 + α2) je, and
ω0 ∝ λ(α − β )/(1 + α2) je, which are just the results of the
ferromagnetic spiral DW in Ref. [30]. Additionally, if setting
S1 = S2 = S, and P1 = P2 = P, the system is antiferromag-
netic. Then S+ = 2S, S− = 0, P+ = 2P, and P− = 0. The
steady-state velocity v0 = −(β/α)(P je/S). The angular ve-
locity vanishes.

It must be pointed out that Eqs. (11), (12), (15), and (16) are
coupled transcendental equations. It is difficult to see a direct
dependence of these DW parameters on the current. However,
due to the strong exchange interaction, the spin-wave velocity
is very high (about 2.64 × 104 m/s for the adopted magnetic
parameters). So it is not a bad approximation to take a limit
that v0 � vsw. By keeping the leading-order terms of v0/vsw,
Eqs. (11), (12), (15), and (16) can be decoupled. Then, we
obtain the explicit dependence of v0 and ω0 on the current
density,

v0 = −
v2

sw + A j2
e −

√
(v2

sw + A j2
e )2 − Bv2

sw j2
e

C je
, (19)

ω0 = −�s

2v2
sw − A j2

e − 2
√

(v2
sw + A j2

e )2 − Bv2
sw j2

e

C je
,(20)

where

A = λF
[
2E�s�s + λF

(
1 − �2

s �
2
s

)]
, (21)

B = 6λF�s�s(E − λF�s�s), (22)

C = 3λF�s�s, (23)

with E and F being Eqs (13) and (14). Inserting Eqs. (19) and
(20) into Eqs. (15) and (16), we can also derive the explicit
dependence of �0 and �0 on je.

To corroborate the reliability of above approximate analyti-
cal results, we plot v0, ω0, �0, and �0 in Fig. 2 as a function of
je by solving Eqs. (11), (12), (15), and (16) numerically. Com-
paring with the dashed curves directly plotted from Eqs. (19)
and (20), the validity of the approximation is confirmed for
an experimentally feasible current range ( je � 1014A/m2 in
Fig. 2).

In general, the spin-wave velocity vsw, which is very high,
defines an upper limit for the DW motion. There are two
obstacles to arrive at vsw. One is the Joule heat generated by a
high current. The other is the destruction of DW before its
velocity arrives at vsw. This is ascribed to the fact that ω0

and �0 approach infinity when je � 2.35 × 1014 A/m2 [see
Figs. 2(b) and 2(d)]. Moreover, �0 has been close to zero
before v reaches vsw, as observed by comparing Figs. 2(a) and
2(c). So, in this high-current range, the solution is not phys-
ical. So far as we know, the typical current density in these
kinds of experiments is lower than several TA/m2 [16–20].
Therefore, though the velocity can approach the order of mag-
nitude of vsw theoretically, it is difficult to reach so high cur-
rent experimentally. However, the spin transfer torque is pro-
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portional to je/Ms [42]. If choosing a material with small sat-
uration magnetization, the current can be decreased possibly.

IV. DYNAMICS NEAR MCP

Once the system deviates from MCP [20], the demagne-
tization term can not be omitted in Eq. (2). It is impossible
to get a rigorous solution of DW. However, near MCP, the
demagnetization term 1/2μ0M2

− is small. So it is reasonable
to suppose the static spiral DW profile is preserved when
including the STTs, the damping, and the demagnetization
energy. Moreover, the DW dynamics is governed by four col-
lective coordinates q(t ), φ(t ), �(t ), and �(t ), which evolution
equations can be obtained by a perturbation method [30] or a
variational method [37].

Here we use the variational method [37] to derive the
dynamic equations about the collective coordinates. The
dynamic ansatz has the same form as the static spiral
Walker profile, just regarding q, φ, �, and � as dynamic
variables. For convenience, Eq. (1) is written in a variational
form, δEl = δEl

δθ
δθ + δEl

δϕ
δϕ, where δEl/δθ = −ρ(θtt −

ϕtt sin θ cos θ ) − αS+θt + S−ϕt sin θ−(P−ϕz sin θ−βP+θz ) je,
and δEl/δϕ = −ρ(ϕtt sin2 θ+2θtϕt sin θ cos θ )−S−θt sin θ −
αS+ϕt sin2 θ + (P−θz sin θ + βP+ϕz sin2 θ ) je. Integrating δEl

over z and using the dynamic Walker ansatz, the variation
of DW energy per unit area, δσ = ∫

δEl dz, can be obtained
after a straightforward but rather tedious algebra manipulation
(see Appendix B for detailed derivations). Then the dynamic
equations about q, φ, � and � read

δσ

δq
= −2ρ(1 + �2�2)�−1q̈ + 2ρ��φ̈ + ρ��̈ − 2αS+(1 + �2�2)�−1q̇ − 2(λS− − αS+��)φ̇

− 2ρ��q̇�̇ − 2ρ(�2 − �−2)q̇�̇ + 2ρ�φ̇�̇ − 2(1 + �2�2)�−1βP+ je, (24)

δσ

δφ
= 2ρ��q̈ − 2ρ�φ̈ + 2(λS− + α��S+)q̇ − 2αS+�φ̇ + 2ρ�q̇�̇ + 2ρ�q̇�̇ − 2ρ�̇φ̇ + 2(λP− + ��βP+) je, (25)

δσ

δ�
= −ρ�q̈ − ρφ̈ − π2

6
ρ�−1�̈ − ρ�−2q̇2 + π2

12
ρ�−2�̇2 − π2

6
αS+�−1�̇ − π2

6
λS−��̇ − 2ρq̇�̇, (26)

δσ

δ�
= −π2

6
ρ�3�̈ + 2ρ��q̇2 + π2

6
λS−��̇ − π2

6
αS+�3�̇ − π2

2
ρ�2�̇�̇ − 2ρ�q̇φ̇. (27)

In addition, inserting the dynamic Walker ansatz into the magnetic energy density [Eq. (2)] and integrating over z, we can get
the DW energy per unit area,

σ = �

{
A2(�−2 + �2) + 2K − 2D� + 1

2
μ0M2

− ×
[

1 + (Nx − Ny)
π��

sinh(π��)
cos 2φ

]}
. (28)

Equations (24), (26), and (27) represent dynamic pressures
due to the changes of the location, width, and pitch of DW.
Equation (25) represents a dynamic torque due to the rotation
of magnetic moments. These dynamic pressures and torque
can be balanced by corresponding static ones, which are de-
rived from the variational derivatives of σ [Eq. (28)] with
respect to q, φ, �, and �.

The DW energy σ is translation invariant, namely, σ is
independent of q. So the dynamics of steady DW can be
obtained by setting q̈, φ̈, �̈, �̈, φ̇, �̇, and �̇ to zero. Then, from
Eqs. (24), (25), and (28), we get the steady-state velocity,

v0 = q̇ = −β

α

P+
S+

je, (29)

and the DW angle φ0 which satisfies

sin 2φ0 = λ
je
j0

, (30)

where

j0 = 1

2
(Nx − Ny)

αS+μ0M2
−

βS−P+ − αS+P−

π�0�
2
0

sinh(π�0�0)
. (31)

From Eqs. (26), (27), and (28), the steady solutions �0 and �0

can be obtained. By omitting the terms of μ0M2
−, near MCP,

which is much smaller than other terms, �0 and �0 read (see
Appendix B for detailed derivations)

�0 = �s

(
1 − v2

0/v
2
sw

)3/2√(
1 − v2

0/v
2
sw

)2 + �2
s �

2
s v

4
0/v

4
sw

, (32)

�0 = �s

1 − v2
0/v

2
sw

. (33)

Inserting Eq. (29) into Eqs. (32) and (33), �0 and �0 are
expressed as explicit functions of je. Further substituting �0

and �0 into Eq. (31), φ0 can also be written as a function of je.

In the absence of DMI, �s = 0. �0 = �s

√
1 − v2

0/v
2
sw. When

the DW moves faster, it contracts in a relativistic-like manner,
similar to its antiferromagnetic counterpart.

When | je/ j0| > 1, Eq. (30) has no physical solution and
the steady DW becomes unstable (known as the Walker break-
down). Inserting je = ± j0 and v = ∓ β

α

P+
S+

j0 into Eqs. (32)
and (33), and eliminating �0 and �0 in Eq. (31), the mag-
nitude of critical current jc satisfies

jc = j�
(
1 − v2

c /v
2
sw

) π f 2�s�
2
s /�i

sinh (π f �s�s)
, (34)
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where

j� = 1

2
|Nx − Ny|μ0M2

−
αS+

|βS−P+ − αS+P−|�i (35)

and

f =
√

1 − v2
c /v

2
sw√

(1 − v2
c /v

2
sw )2 + �2

s �
2
s v

4
c /v

4
sw

, (36)

with vc = β

α

P+
S+

jc. From Eq. (35), it is easy to observe that
if βS−P+ ≈ αS+P−, the critical current diverges and the
velocity can be very large. This means that 1/α(γ2M1 −
γ1M2)/(γ2M1 + γ1M2) ≈ 1/β(P1 − P2)/(P1 + P2). For ferro-
magnets, we can take M2 = 0 and P2 = 0. This equation is
reduced as α ≈ β, which has been reported for ferromagnetic
DWs [43]. It is difficult to control or adjust α and β in a well-
defined manner and approach this limit. However, for FiMs,
M1,2 can be tuned by the temperature [20]. The parameters of
STTs on the right of this equation can be varied by choosing
different materials. So it is possible to postpone the Walker
breakdown and acquire a high steady velocity.

Equation (34) is a transcendental equation about jc, which
can be solved in view of the strong exchange, namely, in
the limit of vc � vsw. If omitting v2

c /v
2
sw, jc/ j� ∝ π�s�s

sinh(π�s�s ) ,
which is similar to the ferromagnetic result in Ref. [30].
Furthermore, it is more legitimate to keep the leading-order
terms in vc/vsw, and the critical current density is explicitly
expressed as

jc = j�

√
�2

i
�2

s
+ 2η3 cosh (π�s�s) v2

�

v2
sw

− �i
�s

η2 cosh (π�s�s) v2
�

v2
sw

, (37)

where η = π�s�s
sinh(π�s�s ) , and v� = β

α

P+
S+

j�.
Let us briefly discuss the influence of DMI on the criti-

cal behavior. The static DW twist �s�s = D/
√

2KA2 − D2,
which demands that D <

√
2KA2. The inset of Fig. 3 indi-

cates that the twist is increased by DMI, and greatly enlarged
when D approaches

√
2KA2. This results in that the critical

current is suppressed by DMI, as revealed by Fig. 3, which
shows the dependence of jc on D for several small v�. As
D is close to

√
2KA2, the critical current vanishes gradually.

On the other hand, if D = 0, �s = 0 and �s = �i. Then

jc ≈ j�
√

1 − v2
�/v2

sw, as shown in the top right corner of
Fig. 3. This limit value of jc can be obtained from Eq. (34)
or Eq. (37).

Beyond Walker breakdown (| je| > jc), the DW enters
the precessional regime. Unlike the ferromagnetic case [30],
there is no analytic solution. Solving the dynamic equa-
tions [Eqs. (24)–(28)] numerically, we find that the collect
coordinates φ, � and �, and their rates of change, as well
as the velocity v, all depend on time periodically. To gain a
further insight into above results, we plot the evolutions of the
collective coordinates φ, � and � in Figs. 4(a), 4(b), and 4(c),
respectively. The evolutions of the velocity, angular velocity,
and rates of change of � and � are shown in Figs. 4(d), 4(e),
4(f), and 4(g). For comparison, we also plot the evolutions for
| je| < jc.

In the steady region (| je| < jc), v, φ, �, and � reach steady
values after a transient process. ω, �̇, and �̇ approach zero

FIG. 3. Dependence of the critical current and the DW twist
(inset) on the reduced DMI strength.

quickly. These evolution results coincide with the relation
between v (ω) and je, as indicated by the dashed lines in
Fig. 5. When β = 0, the steady DW stops moving.

In the precessional region (| je| > jc), the DW angle φ, DW
width �, and reciprocal of spiral pitch � vary periodically,
with φ being twice the period of � and �, as shown in
Figs. 4(a), 4(b), and 4(c). In addition, the deviations of � and
� from their static values �s and �s are vanishingly small.
This justifies a usual treatment neglecting the variation of �

and �.
In addition, the rates of change of φ, �, and � vary peri-

odically with the same period. Especially, �̇ and �̇ oscillate
around zero. So we can take time average of Eqs. (24)–(27) by
neglecting the terms including �̇ and �̇, due to the vanishing
smallness of their time averages. Then we obtain the average
velocity and angular velocity, which are formally identical to
Eqs. (11) and (12) with �0 and �0 replaced by the corre-
sponding static values. As shown by the dotted lines in Fig. 5,
these analytic results exhibit a very good agreement with the
numerical calculations (solid lines in Fig. 5) in the range of
high currents. This agreement can be ascribed to the fact that
the precession of the azimuthal angle [as shown in Fig. 4(a)]
results in the vanishing of the demagnetization-induced terms
after being averaged over time. Near the Walker breakdown,
the analytic results deviate from the numeric ones a little
more. So it is unsuitable to adopt the static values of � and �

in deriving the average (angular) velocity in the critical region.
For the adopted parameters near MCP, vsw ≈ 1.84 ×

104 m/s. At the Walker breakdown, vc = −17.0 m/s for β =
0.53, and 4.34 m/s for β = −0.53. So the velocity of steady
DW is far less than vsw. For the precessional DW, if the
average velocity reaches vsw, the current density should be
4.84 × 1013 A/m2 for β = 0.53, 6.07 × 1013 A/m2 for β =
0, and 8.14 × 1013 A/m2 for β = −0.53. Under such a high
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FIG. 4. Evolutions of the collective coordinates φ (a), � (b), and
� (c), as well as the velocity v (d), the angular velocity ω (e), the
rate of change of DW width �̇ (f), and the rate of change of spiral
pitch �̇ (g). The red solid curve corresponds to je = 2 jc, and the
blue dashed curve je = 0.8 jc. M1 = 8 × 105 A/m and M2 = 7.09 ×
105 A/m [20]. The nonadiabatic parameter β = 0.53 [20]. The DW
type is chosen as λ = 1.

current, the oscillations of � and � become more dramatic but
are still around their static values. So the analytic expression
for average velocity is still valid. On the other hand, through
changing the chemical composition or the temperature, the
sublattice magnetization can be adjusted for enhancing the
steady velocity.

It should be noted that the ω̄ vs je/ jc curve is indepen-
dent of β, as shown in the inset of Fig. 5. This is because
ω ∝ αS+P− − βS−P+ [see Eq.(12)] and jc ∝ 1/(αS+P− −
βS−P+) [see Eq. (35)]. The β dependence is offset. Above jc,
the DW not only moves sometimes fast and sometimes slow
with the average velocity linearly increasing with the currents,
but also rotates likewise.

FIG. 5. Dependence of the velocity and the angular velocity
(inset) on the current density. The blue dashed lines correspond to
the steady DW. The red solid curves represent the average (angu-
lar) velocity of the precessional DW, which are plotted by solving
Eqs. (24)–(27) numerically. The black dotted lines are from Eqs. (11)
and (12) by taking �0 = �s and �0 = �s. The parameters are the
same as those in Fig. 4.

V. CONCLUSION

In this paper we have studied the DW dynamics driven by
the adiabatic and nonadiabatic STTs in a ferrimagnetic nanos-
trip with a longitudinal easy axis and a bulk DMI. At the MCP,
a spiral DW is obtained analytically using the traveling-wave
ansatz. Owing to the vanishing of demagnetization effects,
this DW moves steadily in a wide range of current. Its velocity
and angular velocity are proportional to the current density in
an experimentally feasible current range. Moreover, if the DW

moves faster, it shrinks as
√

1 − v2
0/v

2
sw.

Deviating from MCP, two motion regimes with different
mobilities are obtained, separated by a critical current jc (the
so-called Walker current). Below jc, the DW moves only
along the nanostrip and does not rotate. The velocity increases
linearly with the current with its mobility inversely propor-
tional to the damping constant. This point is similar to the
ferromagnetic case. Above jc, the DW angle, the width, spiral
pitch, and their rates of change, as well as the velocity, all vary
periodically. In the high-current regime, the average velocity
and angular velocity scale linearly with the current.

Combining the adjustability of FiM with the spatial twist
produced by DMI, more abundant dynamics arise for the
spiral FiM DWs, such as reversal of the DW propagation and
rotation, change of the magnitude of (angular) velocity, and
switching of spiral chirality. We envision that these features
can enrich the study of the DW dynamics and provide a clue
for future experiments of FiM.
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APPENDIX A: DERIVATIONS FROM m1-m2 EQUATIONS
TO REDUCED l-EQUATION

We consider a ferrimagnetic metallic nanowire with a bulk
DMI and a longitudinal easy axis defined as z axis, as shown in
Fig. 1. A longitudinal electric current flows through the strip,
generating adiabatic and nonadiabatic STTs. Phenomeno-
logically, the current-driven ferrimagnetic dynamics can be
described by two exchange-coupled LLG equations written as

∂mi

∂t
= γi

Mi
mi × δE

δmi
+ αimi × dmi

dt
+ γi

Mi
Ti, (A1)

where mi and Mi are the unit vectors and the magnitudes
of sublattice magnetization, with i = 1, 2, representing the
magnetic moment of transition metal and that of rare metal,
respectively. γi are the gyromagnetic ratios and equal to gi

μB

h̄ ,
with gi being the Landé factors, μB the Bohr magneton, and h̄
the reduced Planck constant. The magnetic energy includes
the contributions from the exchange interaction, magnetic
anisotropy, demagnetization, and DMI,

E =
∫

(Eex + Ean + Ede + Edm)dr. (A2)

Here the exchange energy density is

Eex = 2A0m1 · m2 + A1m2 · ∂m1

∂z
+ A2m2 · ∂2m1

∂z2
, (A3)

where A0 = J/�, A1 = (J/�)a, and A2 = (J/�)a2/2, with
J > 0 being the exchange energy between a pair of nearest
magnetic moments, � the volume of unit cell, and a the lattice
constant along the z axis. The anisotropy energy density is

Ean = −K1(m1 · ez )2 − K2(m2 · ez )2, (A4)

with Ki being anisotropy constants. The demagnetization en-
ergy density is

Ede = 1
2 Nxμ0[(M1m1 + M2m2) · ex]2

+ 1
2 Nyμ0[(M1m1 + M2m2) · ey]2, (A5)

with μ0 being the vacuum magnetic conductivity, and Nx,y

the demagnetization factors. For long magnetic nanostrips,
the demagnetization along the z axis is almost zero. So we
consider only the demagnetization along x and y axes, and
Nx + Ny = 1. The DMI energy density is

Edm = Dez ·
(

m2 × ∂m1

∂z

)
, (A6)

where D = (D/�)a, with D being the DMI energy between a
pair of nearest magnetic moments. The spin-transfer torques,
including the adiabatic and nonasiabatic terms, read

Ti = −Pi jemi ×
(

mi × ∂mi

∂z

)
− βPi jemi × ∂mi

∂z
, (A7)

where je is the current density, β is the nonadiabatic constant,
and Pi = h̄

2e pi, with pi being the spin polarizations and e the
elementary charge.

Introducing the density of angular moment Si = Mi/γi, the
coupled LLG equations are explicitly expressed as

Si
∂mi

∂t
= mi ×

(
2A0m3−i + (−1)iA1

∂m3−i

∂z
+ A2

∂2m3−i

∂z2

)
− Dmi ×

(
ez × ∂m3−i

∂z

)
− Ki(mi · ez )(mi × ez )

+ Nxμ0Mi[(M1m1 + M2m2) · ex](mi × ex ) + +Nyμ0Mi[(M1m1 + M2m2) · ey](mi × ey)

+αiSimi × ∂mi

∂t
− Pi je

[
mi ×

(
mi × ∂mi

∂z

)
+ βmi × ∂mi

∂z

]
. (A8)

To deal with the ferrimagnetic dynamics analytically, it is con-
venient to introduce a reduced magnetization m = 1/2(m1 +
m2), and a Néel order parameter l = 1/2(m1 − m2). Obvi-
ously, l · m = 0 and l2 + m2 = 1. In the ground state, m = 0
and |l| = 1. It is reasonable to assume that the exchange cou-
pling between the transition metal and rare metal sublattices is
strong enough to ensure a nearly antiparallel alignment. So, in
the strong-exchange limit and near the ground state (m2 � 1),
the coupled m1-m2 equations [Eq. (A8)] can be reduced as an
l-equation with m being a slave vector, i.e., Eqs. (1)–(4).

APPENDIX B: DYNAMIC EQUATIONS NEAR THE
MAGNETIZATION COMPENSATION POINT

Due to the assumption |l| ≈ 1, it is convenient to
parametrize l with spherical coordinates, namely, l =
sin θ cos ϕex + sin θ sin ϕey + cos θez with θ and ϕ being the

polar and azimuthal angles, respectively. Then Eq. (1) is trans-
formed into

−ρ(ϕtt sin θ + 2θtϕt cos θ ) − S−θt − αS+ϕt sin θ

= 1

sin θ

δEl

δϕ
− P− jeθz − βP+ jeϕz sin θ, (B1)

ρ(θtt − ϕtt sin θ cos θ ) − S−ϕt sin θ + αS+θt

= −δEl

δθ
− P− jeϕz sin θ + βP+ jeθz, (B2)

where the subscripts t and z indicate the derivative with re-
spect to them. Correspondingly, the energy density is also
expressed in spherical coordinates as

El = A2

2

(
θ2

z + sin2 θϕ2
z

)2 − K cos2 θ − Dϕz sin2 θ

+ 1

2
μ0M2

− sin2 θ
(
Nx cos ϕ2 + Ny sin2 ϕ

)
. (B3)
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FIG. 6. Two functions about π�0�0 in the terms of μ0M2
− of

Eqs. (B22) and (B23).

Near MCP, by reference to the static spiral Walker profile,
the dynamic ansatz is written as

θ = 2 arctan exp

[
λ

z − q(t )

�(t )

]
(B4)

ϕ = �(t )[z − q(t )] + φ(t ). (B5)

Their temporal and spatial derivatives will be used in the
following calculations and are derived as

θt = −λ
q̇

�
sin θ − �̇

�
sin θ ln tan

θ

2
, (B6)

θtt = −λ
q̈

�
sin θ − �̈

�
sin θ ln tan

θ

2
+ q̇2

�2
sin θ cos θ

+ �̇2

�2
sin θ ln tan

θ

2

(
2 + cos θ ln tan

θ

2

)

+ λ
q̇

�

�̇

�
sin θ

(
1 + cos θ ln tan

θ

2

)
, (B7)

θz = λ
1

�
sin θ, (B8)

where the overdot denotes the derivative with respect to the
time, and

ϕt = −�q̇ + φ̇ + λ��̇ ln tan
θ

2
, (B9)

ϕtt = −�q̈ + φ̈ + λ��̈ ln tan
θ

2
− 2q̇�̇, (B10)

ϕz = �. (B11)

In addition, the variations of θ and ϕ are expressed as

δθ = −λ
δq

�
sin θ − δ�

�
sin θ ln tan

θ

2
, (B12)

δϕ = −�δq + δφ + λ�δ� ln tan
θ

2
. (B13)

For convenience, Eqs. (B1) and (B2) can be written in a
variational form,

δEl = δEl

δθ
δθ + δEl

δϕ
δϕ, (B14)

where

δEl

δθ
= −ρ(θtt − ϕtt sin θ cos θ ) + S−ϕt sin θ

−αS+θt − P− jeϕz sin θ + βP+ jeθz, (B15)

δEl

δϕ
= −ρ

(
ϕtt sin2 θ + 2θtϕt sin θ cos θ

) − S−θt sin θ

−αS+ϕt sin2 θ + P− jeθz sin θ + βP+ jeϕz sin2 θ.

(B16)

By using the dynamic ansatz Eqs. (B4) and (B5), the temporal
and spatial derivatives of θ and ϕ, and the variations of θ

and ϕ, integrating δEl over z, the variation of DW energy per
unit area, δσ = ∫ ∞

−∞ δEl dz, can be obtained by a direct and
tedious calculation,

δσ = δσ

δq
δq + δσ

δφ
δφ + δσ

δ�
δ� + δσ

δ�
δ�, (B17)

where δσ/δq, δσ/δφ, δσ/δ�, and δσ/δ� are Eqs. (24)–(27).
On the other hand, inserting the ansatz (B4) and (B5) and

the spatial derivatives θz and ϕz into Eq. (B3), and integrating
over z, the energy per unit area of the plane of DW, Eq. (28),
can be calculated by σ = ∫ ∞

−∞ El dz. Then, from Eq. (B17),
we get the dynamic equations about the four collective coor-
dinates,

ρ(1 + �2�2)�−1q̈ − ρ��φ̈ − 1/2ρ��̈ = −αS+(1 + �2�2)�−1q̇ − (λS− − αS+��)φ̇ − ρ��q̇�̇ − ρ(�2 − �−2)q̇�̇

+ρ�φ̇�̇ − (1 + �2�2)�−1βP+ je, (B18)

ρ�q̈ − ρφ̈ = −(λ�−1S− + α�S+)q̇ + αS+φ̇ − ρq̇�̇ − ρ��−1q̇�̇ + ρ�−1�̇φ̇

− 1/2(Nx − Ny)μ0M2
−π��csch(π��) sin 2φ − (λ�−1P− + �βP+) je, (B19)

ρ�q̈ − ρφ̈ + π2/6ρ�−1�̈ = −ρ�−2q̇2 + π2/12ρ�−2�̇2 − π2/6αS+�−1�̇ − π2/6λS−��̇ − 2ρq̇�̇ + A2�
−2 − 2K − A2�

2

+ 2D� − 1/2μ0M2
−{1 + (Nx − Ny)[2 − π�� coth(π��)]π��csch(π��) cos 2φ}, (B20)

π2/6ρ�2��̈ = 2ρ�2q̇2 + π2/6λS−��̇ − π2/6αS+�2��̇ − π2/2ρ���̇�̇ − 2ρ�q̇φ̇

− 2A2�
2 + 2D� − 1/2(Nx − Ny)μ0M2

−[1 − π�� coth(π��)]π��csch(π��) cos 2φ. (B21)
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Taking q̈, φ̈, �̈, �̈, φ̇, �̇, and �̇ to be zero, Eqs. (29)–(31) can be inferred from Eqs. (B18) and (B19). From Eqs. (B20) and
(B21), �0 and �0 satisfy

�2
0 = A2 − ρv2

0

2K + A2�
2
0 − 2D�0 + 1

2μ0M2−
{
1 + (Nx − Ny)

[
2 − π�0�0

sinh(π�0�0 ) cosh(π�0�0)
]

π�0�0
sinh(π�0�0 ) cos 2φ0

} , (B22)

�−2
0 = A2 − ρv2

0

D�0 − 1
4 (Nx − Ny)μ0M2−

[
1 − π�0�0

sinh(π�0�0 ) cosh(π�0�0)
]

π�0�0
sinh(π�0�0 ) cos 2φ0

. (B23)

Equations (B22) and (B23) are two coupled transcendental equations. It is impossible to obtain explicit expressions of �0 and �0

as a function of je. However, near the MCP, μ0M2
− are much smaller than other terms in the denominator of these two equations.

For example, D�0 ≈ D�s = D2/A2 = 6.01 × 105 J/m3 and μ0M2
− = 1.04 × 104 J/m3 for the used parameters. Furthermore, Nx,

Ny, and cos 2φ0 have the order of 1. As shown in Fig. 6, the two functions about π�0�0 in the denominator of Eqs. (B22) and
(B23) are smaller than 1. So it is reasonable to omit the terms of μ0M2

− in Eqs. (B22) and (B23). Then Eqs. (32) and (33) are
obtained.
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