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Speeding up quantum adiabatic processes with a dynamical quantum geometric tensor
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For adiabatic controls of quantum systems, the nonadiabatic transitions are reduced by increasing the operation
time of processes. Perfect quantum adiabaticity usually requires the infinitely slow variation of control param-
eters. In this paper, we propose the dynamical quantum geometric tensor, as a metric in the control parameter
space, to speed up quantum adiabatic processes and reach quantum adiabaticity in relatively short time. The
optimal protocol to reach quantum adiabaticity is to vary the control parameter with a constant velocity along the
geodesic path according to the metric. For the system initiated from the nth eigenstate, the transition probability
in the optimal protocol is bounded by Pn(t ) � 4L2

n/τ
2 with the operation time τ and the quantum adiabatic length

Ln induced by the metric. Our optimization strategy is illustrated via two explicit models: the Landau-Zener
model and the one-dimensional transverse Ising model.

DOI: 10.1103/PhysRevResearch.4.023252

I. INTRODUCTION

Optimizing the control of quantum systems is always
pursued with specific purposes in different fields, for exam-
ple, to improve the fidelity of prepared states in quantum
computation [1–6] and to reduce the energy dissipation in
quantum thermodynamics [7–11]. Adiabatic processes with
time-dependent control parameters are basic ingredients in
adiabatic quantum computation [12–17] and quantum heat
engines [18–21]. A realistic adiabatic process is always
completed in finite operation time, where the nonadiabatic
transition induces errors in adiabatic quantum computation
[17] and consumes the output work of a quantum heat engine
[22]. The slow variation of the Hamiltonian is thus required
to reduce the nonadiabatic transition and to reach quantum
adiabaticity.

The quantum adiabatic theorem states that quantum adia-
baticity is satisfied, provided [23,24]

max
t∈[0,τ ]

∣∣∣∣∣ 〈l (t )| ∂
∂t |n(t )〉

En(t ) − El (t )

∣∣∣∣∣ � 1, (1)

where |n(t )〉 is the instantaneous eigenstate of the time-
dependent Hamiltonian H (t ) with the energy En(t ). For
simplicity, we assume the Hamiltonian is nondegenerate, i.e.,
for n �= l , En �= El . It should be noted that, in general, Eq. (1)
is insufficient to ensure quantum adiabaticity since the over-
all transition probability can still be large when plenty of
eigenstates are involved during the variation of the Hamil-
tonian [25]. Also, it cannot directly guide the optimization
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of the control scheme of finite-time adiabatic processes. To
speed up quantum adiabatic processes, various methods have
been proposed, e.g., shortcuts to adiabaticity based on the
inverse engineering method [26–33] (experimental realization
in Ref. [34]) or the fast quasiadiabatic method applied to
few-level systems with a single control parameter [35–38],
yet these optimization methods require specifically designed
control schemes or are limited to specific quantum systems.

In this paper, a geometric method is proposed to optimize
finite-time adiabatic processes. Based on the high-order adia-
batic approximation method [39–42], we formulate a metric
in the control parameter space as guidance to reduce the
nonadiabatic transition and reach quantum adiabaticity in
relatively short time. Such a metric is in a similar form to
the quantum geometric tensor [43–48] and is thus named a
dynamical quantum geometric tensor. The length Ln induced
by the dynamical quantum geometric tensor characterizes the
timescale of quantum adiabaticity and is thus named a quan-
tum adiabatic length. The quantum adiabatic condition Eq. (1)
can be geometrically reformulated into

Ln � τ. (2)

The optimal protocol to reach quantum adiabaticity in rel-
atively short time is to vary the parameter with a constant
velocity along the geodesic path according to the metric.
For the nth eigenstate, the transition probability in the op-
timal protocol is estimated by Pn(t ) ≈ 2L2

n/τ
2 or bounded

by Pn(t ) � 4L2
n/τ

2 with the operation time τ . The current
method is potentially helpful to optimize finite-time adiabatic
processes in experiments, e.g., to design control schemes for
the trapped interacting Fermi gas [49,50].

We illustrate this method via two explicit examples, the
Landau-Zener model as a two-level system [51–54] and the
one-dimensional transverse Ising model as a quantum many-
body system [55–61]. In a quantum many-body system, the
quantum adiabatic length of the path across the quantum
phase transition approaches infinite in the thermodynamic
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limit, which is ascribed by the divergent dynamical quantum
geometric tensor at the critical point. This relates to the un-
usual finite-time scaling behavior across the quantum phase
transition [60–62], and indicates that for a many-body system
in the thermodynamic limit the quantum adiabatic condition
cannot be satisfied to cross the quantum phase transition in
finite time.

This paper is organized as follows. In Sec. II, we propose
the geometric method to optimize the control of adiabatic
processes. In Sec. III, we employ the method for the Landau-
Zener model as an illustrative example. In Sec. IV, we
optimize the control for the one-dimensional transverse Ising
model. The conclusion is given in Sec. V.

II. GENERAL THEORY

We propose a geometric method to optimize control
schemes of finite-time adiabatic processes for reducing the
nonadiabatic transition. Due to the external control, the sys-
tem is subjected to a time-dependent Hamiltonian H (t ) =∑

n En(t )|n(t )〉〈n(t )|, where both the energies En(t ) and the
instantaneous eigenstates |n(t )〉 can be time dependent. The
energies are sorted in the increasing order E0 < E1 < ... <

En < ... and are assumed nondegenerate, i.e., En �= Em for
any n �= m. The evolution of the system is governed by the
time-dependent Schrödinger equation:

i
∂

∂t
|ψ (t )〉 = H (t )|ψ (t )〉. (3)

We adopt a given protocol to vary the control parameter with
the adjustable operation time τ .

We consider the initial state as one eigenstate of the
initial Hamiltonian |ψn(0)〉 = |n(0)〉. The state at time t is
|ψn(t )〉 = ∑

l cnl (t )|l (t )〉, where the amplitudes cnl (t ) accord-
ing to Eq. (3) satisfy

ċnl + iElcnl +
∑

m

cnm〈l|ṁ〉 = 0. (4)

During the evolution, the nonadiabatic transition occurs
with the probability Pn(t ) = ∑

l �=n |cnl (t )|2. Based on the
high-order adiabatic approximation method [39,40], the first-
order result of the transition probability has been obtained as
[41]

Pn(t ) = 1

τ 2

∑
l �=n

[∣∣∣∣T̃nl

(
t

τ

)∣∣∣∣
2

+ |T̃nl (0)|2 − 2�nl (t )

]
, (5)

where the oscillation term �nl (t ) is

�nl (t ) = −Re

{
e−i[�n (t )−�l (t )]T̃nl

(
t

τ

)
T̃ ∗

nl (0)

}
, (6)

and the nonadiabatic transition rate T̃nl (s) is

T̃nl (s) = 〈l̃ (s)| ∂
∂s |ñ(s)〉

Ẽn(s) − Ẽl (s)
, (7)

with the rescaled time s = t/τ . The phase �n(t ) = �D
n (t ) +

�B
n (t ) includes the dynamical phase �D

n (t ) = τ
∫ t/τ

0 Ẽn(s)ds

and Berry phases �B
n (t ) = −i

∫ t/τ
0 〈ñ(s)|∂s|ñ(s)〉ds. It is trans-

parent to see that the first-order result of the probability is

linear

optimal

(a)
Hilbert space

(b)

FIG. 1. Illustration of the evolution under the linear (black
dashed line) and the optimal (green solid curve) protocols. (a) The
control protocols with two control parameters λ1 and λ2. (b) The
evolution of the state |ψn(t )〉. The instantaneous eigenstate |n(t )〉
is represented by the black dashed and green solid curves. In the
optimal protocol, the state |ψn(t )〉 deviates from the instantaneous
eigenstate |n(t )〉 uniformly. While in the linear protocol, the devia-
tion can increase greatly when the overall nonadiabatic transition rate
T̃n(s) becomes large.

bounded by Pn,−(t ) � Pn(t ) � Pn,+(t ), with

Pn,±(t ) = 1

τ 2

∑
l �=n

[∣∣∣∣T̃nl

(
t

τ

)
| ± |T̃nl (0)

∣∣∣∣
]2

. (8)

We emphasize that the first-order results [Eqs. (5) and (8)]
are only valid for slow processes when Pn(t ) � 1 is satisfied.
In this situation, the state |ψn(t )〉 during the evolution is
close to the instantaneous eigenstate |n(t )〉. With the shorter
operation time, the first-order approximation may fail at a
specific time point when the overall nonadiabatic transition
rate T̃n(s) := [

∑
l �=n |T̃nl (s)|2]1/2 becomes large. To make the

quantum adiabatic condition Eq. (1) possibly hold on the
whole evolution, the optimal protocol to vary the control pa-
rameter is to keep

T̃n(s) = const. (9)

We illustrate the evolution of the state under the linear and
the optimal protocols in Fig. 1. In the linear protocol, the state
|ψn(t )〉 deviates from the instantaneous eigenstate |n(t )〉 in-
creasingly, and the final state |ψn(τ )〉 becomes much different
from the final instantaneous eigenstate |n(τ )〉. In the optimal
protocol, the transition probability Pn(t ) is regularly oscillated
for a few-level system (Sec. III) and becomes uniform for a
quantum many-body system (Sec. IV). One can thus properly
control the deviation from the instantaneous eigenstate |n(t )〉.

To estimate the transition probability, we define the quan-
tum adiabatic length Ln for the nth eigenstate with the overall
nonadiabatic transition rate T̃n(s) as

Ln :=
∫ 1

0
T̃n(s)ds. (10)

We consider the variation of the Hamiltonian H (t ) = H[	λ(t )]
through multiple control parameters 	λ = {λi}. The quantum
adiabatic length is determined by the path in the control pa-
rameter space,

Ln =
∫ 1

0

√∑
i j

λ̃′
i(s)gn,i j (	λ)λ̃′

j (s)ds, (11)
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and is independent of the control protocol on the path. We coin
the dynamical quantum geometric tensor for the metric

gn,i j (	λ) = Re
∑
l �=n

〈l| ∂H
∂λi

|n〉〈n| ∂H
∂λ j

|l〉
(En − El )4

(12)

due to its similarity to the quantum geometric tensor [43]
except that the index in the numerator is 4 instead of 2. In
the optimal protocol, the transition probability according to
Eq. (5) is estimated by

Pn(t ) ≈ 2L2
n

τ 2
, (13)

when neglecting the oscillation term. One can further choose
the geodesic path connecting 	λ(0) and 	λ(τ ) to minimize
the quantum adiabatic length Ln and reduce the transition
probability Pn(t ). Taking into account the oscillation term
�nl (t ), the upper bound (8) of the transition probability for the
optimal protocol becomes Pn,+(t ) = 4L2

n/τ
2. The quantum

adiabatic length Ln, with the dimension of time, indicates the
timescale of quantum adiabaticity, and the quantum adiabatic
condition is geometrically reformulated in Eq. (2).

The proposed dynamical quantum geometric tensor fairly
assesses the nonadiabatic transition from |n〉 to all the other
states. In Ref. [47], the used metric for the optimization is
an approximation of Eq. (12) by substituting all En − El in
Eq. (12) with the energy gap between the ground state and
the first excited state. With the dynamical quantum geometric
tensor, the optimization of the protocol to reach quantum
adiabaticity in relatively short time is converted to finding the
geodesic path on the control parameter space.

III. LANDAU-ZENER MODEL

We employ the above geometric method to optimize the
control for the simplest quantum system, i.e., a two-level
system, which also serves as the basic element as a qubit
in quantum computation. The precise control of the state of
the qubit ensures the reliability of a quantum computer [17].
We consider the well-known Landau-Zener model [51,52]
described by the Hamiltonian

H = �

2
(σx + λσz ), (14)

where λ serves as the control parameter and σx, σz are the
Pauli matrices. The origin Landau-Zener model adopts a
linear protocol to vary the control parameter λ. The initial
state is chosen as the ground state |ψg(0)〉 = |g(0)〉 with
the initial control parameter satisfying |λ| � 1. For long op-
eration time, the transition probability Pg = |〈e(τ )|ψg(τ )〉|2
approaches zero at the end of the evolution.

To derive the optimal protocol, we rewrite the Hamiltonian
[Eq. (14)] into

H = �

2

√
1 + λ2(|e〉〈e| − |g〉〈g|), (15)

with the instantaneous eigenstates

|g〉 =

⎛
⎜⎝−

√√
1+λ2−λ

2
√

1+λ2√√
1+λ2+λ

2
√

1+λ2

⎞
⎟⎠, |e〉 =

⎛
⎜⎝

√√
1+λ2+λ

2
√

1+λ2√√
1+λ2−λ

2
√

1+λ2

⎞
⎟⎠. (16)

According to Eq. (9), the optimal protocol satisfies

[λ̃′
op(s)]2

[1 + λ̃op(s)2]3
= const. (17)

We can represent the control parameter into λ = tan α,
and Eq. (17) becomes |α̃′

op(s) cos[α̃op(s)]| = const. The op-
timal protocol is given by α̃op(s′) = arcsin(s′) or λ̃op(s′) =
s′/

√
1 − s′2, where the constant has been absorbed into the

rescaled time s′ ∈ (−1, 1). With the initial and final values of
the control parameter λ̃(0) = −λ0 and λ̃(1) = λ0, the optimal
protocol is given by

λ̃op(s) = −λ0(1 − 2s)√
1 + 4λ2

0s(1 − s)
, (18)

while the linear protocol is λ̃lin(s) = −λ0(1 − 2s). For the
two-level system, the quantum adiabatic lengths are identi-
cal for the ground and the excited states, i.e., Lg = Le =
|λ0|/(�

√
λ2

0 + 1).
Figure 2 shows the numerical results of the transition prob-

ability Pg(τ ) for the Landau-Zener model under the linear
and the optimal protocols. In Fig. 2(a), we compare the linear
protocol λ̃lin(s) and the optimal protocol λ̃op(s) with λ0 = 10.
In the optimal protocol, the control parameter λ is varied fast
(slowly) with large (small) energy spacing at s = 0 and 1
(s = 0.5). Figure 2(b) shows the transition probability Pg(t )
of the two protocols during the whole evolution with τ = 10
and � = 2. In the linear protocol (black dashed curve), the
transition probability Pg(t ) keeps increasing before the en-
ergy spacing reaches the minimum at t = τ/2. In the optimal
protocol (green solid curve), the transition probability Pg(t )
increases rapidly at the initial time, but soon saturates the
upper bound 4L2

g/τ
2 (blue dotted line). We observe the oscil-

lation in the transition probability Pg(t ). Its value approaches
almost zero at specific moments. Such a phenomenon can
be understood from the first-order result Eq. (5). For the
two-level system, there is only one term l = e left in the
summation in Eq. (5), and the transition probability Pg(t ) can
approach zero with a proper value of the phase factor in the
oscillation term �ge(t ). The oscillation phenomenon has also
been observed in the quantum harmonic oscillator with the
time-dependent frequency [42].

In Figs. 2(c) and 2(d), we compare the final transition prob-
ability Pg(τ ) of the two protocols with different operation time
τ . In the optimal protocol, the probability Pg(τ ) decreases
more rapidly (green curve) with the increase of the operation
time, and is estimated by Pg(t ) ≈ 2L2

g/τ
2 with neglecting the

oscillation. The quantum adiabaticity is reached with shorter
operation time in the optimal protocol than in the linear
protocol.

In Appendix A, we optimize the control of a general
two-level system with changing the direction of the control
parameters.

IV. ONE-DIMENSIONAL TRANSVERSE ISING MODEL

It is intriguing to employ the geometric method to optimize
the control of quantum many-body systems. For a system with
multiple energy eigenstates, the nonadiabatic transitions to all
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FIG. 2. The transition probability for the Landau-Zener model. The parameters are set to be λ0 = 10 and � = 2. (a) The control schemes
for the linear and the optimal protocols. (b) The transition probability Pg(t ) during the whole evolution with τ = 10. The blue dotted line shows
the upper bound Pg(t ) � 4L2

g/τ
2 for the optimal protocol. (c), (d) The final transition probability Pg(τ ) as a function of the operation time τ .

In the optimal protocol, the final transition probability is estimated by Pg(τ ) ≈ 2L2
g/τ

2 (blue dotted curve) with Lg = 0.498.

the other states contribute to the transition probability Pn(t ),
whose behavior can still be investigated from the dynamical
quantum geometric tenser. As an illustrative example, we con-
sider the one-dimensional transverse Ising model [59]. The
Hamiltonian reads

H = −J
N∑

i=1

(
σ z

i σ z
i+1 + λσ x

i

)
. (19)

We consider the site number N even and periodic boundary
condition σN+1 = σ1. The sign of J does not affect the results
of the transition probability Pn(t ) and we set J = 1 in all the
numerical calculations for convenience. This model can be
mapped into a free Fermion model described by quasiparti-
cles, and is thus fully solvable. The quantum phase transition
of this model occurs at the critical points λ = ±1 [59]. The
external field λ serves as the control parameter, the control
scheme of which is usually considered as the instant [57,58]
or the linear quenches [55,56]. For the linear quench across
the critical point, the average excitation [60] and the average
excess work [61] scale with the operation time as τ−1/2.

For the one-dimensional transverse Ising model in the ther-
modynamic limit, the quantum phase transition closes the
energy gap of the system at the critical points, resulting in
the divergence of the quantum geometry tensor [45,46]. The
divergence also exists for the dynamical quantum geometric
tensor and prevents constructing an optimal protocol to cross
the critical point, but the current method can be used to op-
timize the control scheme either for a finite-size system or
without crossing the critical point.

Under the Jordan-Wigner transformation, the model is
mapped to a free Fermion model with the Hamiltonian [59]

H =
∑
k>0

Hk, (20)

where k ranges from 0 to π with the interval 2π/N . In the
k-subspace, the Hamiltonian entangles the modes k and −k as

Hk = 2Jψ
†
k

(
λ − cos k −i sin k

i sin k −λ + cos k

)
ψk, (21)

in terms of ψ
†
k = (c†

k c−k ). The modes k = 0 and π are
not entangled since the off-diagonal terms in Eq. (21) are
zero. The Hamiltonian is diagonalized under the Bogliubov
transformation as

Hk = εk
(
A†

kAk − 1
2

)
. (22)

The energy and the annihilation operator of the quasiparticle
are εk = 2J (λ2 − 2λ cos k + 1)1/2 and Ak = ukck − ivkc†

−k ,
where the coefficients are uk = cos(θk/2) and vk = sin(θk/2)
with tan θk = sin k/(λ − cos k).

For the initial ground state, the wave function between
different pairs ±k are in the direct product form. We write
the ground-state wave-function in each k-subspace as

|g(k)〉 = uk|0k0−k〉 + ivk|1k1−k〉, (23)

where |lk〉 is the Fock state satisfying c†
kck|lk〉 = lk|lk〉 with

l = ±1. The single-occupy states are always the eigenstates
Hk|0k1−k〉 = 0, Hk|1k0−k〉 = 0 of the Hamiltonian Hk . The
finite-time variation of the control parameter λ does not in-
duce the nonadiabatic transition to these states. Therefore,

023252-4



SPEEDING UP QUANTUM ADIABATIC PROCESSES … PHYSICAL REVIEW RESEARCH 4, 023252 (2022)

the Hamiltonian in each k subspace is equivalent to that of
a two-level system. The nonadiabatic transitions are obtained
with several pairs of states |0k0−k〉 and |1k1−k〉.

We employ the geometric method to optimize the control
scheme of the quench for the one-dimensional transverse Ising
model with finite site number N . Our task is to find the optimal
protocol to vary the external field λ. As shown in Appendix B,
the quantum adiabatic length is obtained as

dLg =
∑
k>0

sin k

8J (λ2 − 2λ cos k + 1)3/2
dλ, (24)

where the summation of k is limited to k =
2π/N, 4π/N, ...π − 2π/N . The optimal protocol λ̃op(s)
follows as

[λ̃′
op(s)]2

∑
k>0

sin2 k

[λ̃op(s)2 − 2λ̃op(s) cos k + 1]3
= const. (25)

Due to the quasiparticle representation of this model, the tran-
sition probability Pg(t ) of the ground state of this many-body
system is the product of the transition probabilities of the
two-level system in each k subspace.

For given site number N , the optimal protocol can be nu-
merically solved by Eq. (25). For N = 4, only one term with
k = π/2 leaves in the summation, and the optimal protocol
coincides with that of the Landau-Zener model. In Fig. 3(a),
the optimal protocols are shown for different site numbers
N = 4, 50, 100. With the increase of the site number N , it
consumes more operation time to cross the critical points
λ = ±1.

In the thermodynamic limit N → ∞, Eq. (25) is simplified
into

λ̃′
op(s)2

|λ̃op(s)2 − 1|3 = const, (26)

and the optimal protocol is explicitly obtained as

λ̃op(s) =

⎧⎪⎨
⎪⎩

−s√
s2−1

λ < −1
s√

1+s2 −1 < λ < 1
s√

s2−1
λ > 1,

(27)

as shown in Fig. 3(b). The constant has been absorbed into
the rescaled time s here. In the three regions λ < −1, −1 <

λ < 1, and λ > 1 of the control parameter, the ranges of the
rescaled time are s ∈ (1,+∞), (−∞,+∞), and (1,+∞),
respectively. Equation (27) shows that in the thermodynamic
limit N → ∞, the optimal protocol cannot cross the critical
points λ = ±1 in any finite-time process.

Figure 4 shows the numerical results of the transition
probability Pg(τ ) with the linear protocol λ̃lin(s) = λ̃(0)(1 −
s) + λ̃(1)s and the optimal protocol λ̃op(s) [Eq. (25)] for the
one-dimensional transverse Ising model. The initial and final
values of the control parameter are λ̃(0) = 2 and λ̃(1) = 0.
The site number is N = 50 in Figs. 4(a) and 4(b) and N = 100
in Figs. 4(c) and 4(d). The transition probability of the ground
state is obtained by numerically solving the time-dependent
Schrödinger equation. Figures 4(a) and 4(c) present the final
transition probability Pg(τ ) as a function of the operation time
τ . The final transition probability in the optimal protocol is
well estimated by Pg(τ ) ≈ 2L2

g/τ
2 (blue dotted curve) and is

FIG. 3. The optimal protocol for the one-dimensional transverse
Ising model. (a) The optimal protocols for finite site numbers N =
4, 50, 100 with the time s′ rescaled to (−1, 1). (b) The optimal
protocol in the thermodynamic limit N → ∞. We show the the opti-
mal protocols Eq. (27) for the three regions λ < −1, −1 < λ < 1,
and λ > 1. The metric is divergent at the critical points λ = ±1
(horizontal gray line), which cannot be crossed in finite time.

much smaller than that in the linear protocol as shown by the
insets. With more spins in the system, it requires a longer
operation time to remain the same transition probability to
cross the critical point λ = 1. The phenomenon is induced by
the modes around k � 0 with slower dynamics [60].

Figures 4(b) and 4(d) present the transition probability
Pg(t ) during the whole evolution with given operation times
τ = 30 and τ = 80, respectively. In the linear protocol, the
transition probability Pg(t ) increases rapidly at the moment
t/τ = 0.5 across the critical point. In the optimal protocol,
the transition probability during the whole evolution is well
estimated by Pg(t ) ≈ 2L2

g/τ
2 (blue dotted line). The oscilla-

tion in Pg(t ) is much weaker but more irregular compared to
the case of the two-level system, since Pg(t ) is the product of
the transition probabilities in each k subspace.

V. CONCLUSION

We proposed the dynamical quantum geometric tensor to
speed up quantum adiabatic processes. The dynamical quan-
tum geometric tensor is a metric in the control parameter
space. The length induced by metric, i.e., the quantum adia-
batic length, determines the timescale of quantum adiabaticity.
The optimal protocol is to vary the control parameter with
a constant velocity along the geodesic path according to the
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FIG. 4. The transition probability for the one-dimensional transverse Ising model. The site number is N = 50 in (a), (b) and N = 100 in
(c), (d). The external field is varied from λ̃(0) = 2 to λ̃(1) = 0 via the optimal protocol λ̃op(s) (green solid curve) and the linear protocol
λ̃lin (s) = 2(1 − s) (black dashed curve). All the blue dashed curves show the estimation 2L2

g/τ
2. (a), (c) The final transition probability Pg(τ )

as a function of the operation time τ . The results of the linear protocol are shown in the insets. (b), (d) The transition probability Pg(t ) during
the whole evolution. The values of Pg(t ) in the linear protocol are multiplied ten times.

metric, and the transition probability is estimated (bounded)
by the quantum adiabatic length as Pn ≈ 2L2

n/τ
2 (Pn �

4L2
n/τ

2). We employ the geometric method to optimize the
control of the Landau-Zener model and the one-dimensional
transverse Ising model, and verify the transition probability in
the optimal protocol is much smaller than that in the linear
protocol with given operation time.
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APPENDIX A: GENERAL TWO-LEVEL SYSTEM

For a two-level system, the Hamiltonian is generally writ-
ten as

H = 1
2 (λxσx + λyσy + λzσz ), (A1)

with the control parameters 	λ = (λx, λy, λz ). According to
Eq. (12), the dynamical quantum geometric tensor is obtained
as

gg(	λ) = 1

4λ6

⎛
⎜⎝

λ2
y + λ2

z −λxλy −λxλz

−λxλy λ2
x + λ2

z −λyλz

−λxλz −λyλz λ2
x + λ2

y

⎞
⎟⎠, (A2)

with λ =
√

λ2
x + λ2

y + λ2
z . For the two-level system, the metric

for the excited state is the same ge(	λ) = gg(	λ). Under the
sphere coordinates (λ, θ, φ) with cos θ = λz/λ and tan φ =
λy/λx, the quantum adiabatic length is simplified into

dL2
g = sin2 θdθ2 + dφ2

4λ2
. (A3)

The metric is degenerate along the direction 	λ/λ, since the
changing strength with fixed direction does not generate the
transition between different eigenstates. We constrain the con-
trol of the parameters on a sphere λ = const. The geodesic
paths on the sphere are large circles.

We next compare different control protocols to vary the
external field constraint on the sphere λ = 1. Two proto-
cols are adopted to vary the external field from the initial

point 	̃λ(0) = (1/
√

2, 0, 1/
√

2) to the final point 	̃λ(1) =
(−1/

√
2, 0, 1/

√
2), with one on a small circle,

	̃λ1(s) =
√

2

2
(cos(πs), sin(πs), 1), (A4)

and the other on a large circle (geodesic path):

	̃λ2(s) =
(

sin

[
π

4
(1 − 2s)

]
, 0, cos

[
π

4
(1 − 2s)

])
. (A5)

According to Eq. (A3), the quantum adiabatic lengths of the
two paths are Lg = √

2π/4 and π/4. In Fig. 5, we show
the transition probability Pg(τ ) for the two protocols with
different operation times τ . The transition probability Pg(τ ) of
the protocol on the geodesic path is smaller. In both protocols,
Pg(τ ) can be estimated by Pg(τ ) ≈ 2L2

g/τ
2 when neglecting
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FIG. 5. The final transition probability Pg(τ ) for the control of
the external field 	λ constraint on the sphere λ = 1. Two protocols

are considered, the small-circle protocol 	̃λ1(s) and the large-circle

protocol 	̃λ2(s). (a) The results with short operation time τ ∈ (0, 20].
(b) The results with longer operation time τ ∈ [20, 50]. The blue
dotted curve shows the estimation Pg(τ ) ≈ 2L2

g/τ
2 with the length

Lg = π/4 of the path on the large circle.

the oscillation. In Fig. 5(b), the estimation of the quantum
adiabatic length is shown for the second protocol by the blue
dotted curve.

APPENDIX B: OPTIMAL PROTOCOL OF THE
ONE-DIMENSIONAL TRANSVERSE ISING MODEL

For the one-dimensional transverse Ising model, we repre-
sent the instantaneous eigenstates of the many-body system

as the tensor product |�{n(k)}〉 = ⊗
k>0|n(k)〉, where |n(k)〉 is

the eigenstate in each subspace, and n = g and e represents
the ground state and the excited state, respectively. Here, we
do not consider the modes k �= 0, π , since the eigenstates of
them remain unchanged when varying the control parameter.
The quantum adiabatic length L{n(k)} of the eigenstate |�{n(k)}〉
is determined by Eq. (10) as

dL{n(k)} = |dλ|
[ ∑

{l (k)}�={n(k)}

∣∣∣∣∣ 〈�{l (k)}| ∂
∂λ

|�{n(k)}〉
Ẽ{n(k)}(s) − Ẽ{l (k)}(s)

∣∣∣∣∣
2]1/2

,

(B1)
where {n(k)} and {l (k)} are the eigenstates of the many-body
system with n, l = g or e. The change of the many-body
eigenstate is

∂

∂λ
|�{n(k)}〉 =

∑
k′>0

∂|n(k′)〉
∂λ

⊗
⊗
k �=k′

|n(k)〉. (B2)

Therefore, nonzero product 〈�{l (k)}|∂λ|�{n(k)}〉 requires that
the set {l (k)} has only one element different from {n(k)}. We
write this different element as n(k′) in {n(k)} and n̄(k′) in
{l (k)}, where n̄ is the opposite state of n. The nonadiabatic
transition rate is simplified as

〈�{l (k)}| ∂
∂λ

|�{n(k)}〉
Ẽ{n(k)}(s) − Ẽ{l (k)}(s)

= 〈n̄(k′)| ∂
∂λ

|n(k′)〉
εn(k′ ) − εn̄(k′ )

. (B3)

The summation over {l (k)} gives N/2 nonzero terms

∑
{l (k)}�={n(k)}

∣∣∣∣∣ 〈�{l (k)}| ∂
∂λ

|�{n(k)}〉
Ẽ{n(k)}(s) − Ẽ{l (k)}(s)

∣∣∣∣∣
2

=
∑
k′>0

∣∣∣∣∣ 〈n̄(k′)| ∂
∂λ

|n(k′)〉
εn(k′ ) − εn̄(k′ )

∣∣∣∣∣.
(B4)

The same result is obtained for both n = g and e :∣∣∣∣∣ 〈n̄(k′)| ∂
∂λ

|n(k′)〉
εn(k′ ) − εn̄(k′ )

∣∣∣∣∣
2

= sin2 k′

64J2(λ2 − 2λ cos k′ + 1)3
. (B5)

The optimal protocol Eq. (25) is obtained by varying the
control parameter λ with the constant velocity of the quantum
adiabatic length.
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