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Electron tunneling spectroscopy of an anisotropic Kitaev quantum spin liquid
sandwiched between superconductors
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We present the electron tunneling transport and spectroscopic characters of a superconducting (SC) Josephson
junction with a barrier of a single anisotropic Kitaev quantum spin liquid (QSL) layer. We find that the
dynamical spin-correlation features are well reflected in the direct-current differential conductance dIc/dV
of single-particle tunneling, including the unique spin gap and dressed itinerant Majorana dispersive band, in
addition to an energy shift 2� from the two-SC-lead gap. From the spectral characters, we identify different
topological quantum phases of the anisotropic Kitaev QSL. We also present the zero-voltage Josephson current
Is, which displays residual features of the anisotropic Kitaev QSL. These results pave a new path to measurement
of dynamical spinon or Majorana fermion spectroscopy of Kitaev and other spin-liquid materials.
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I. INTRODUCTION

Quantum spin liquids (QSLs), which consist of various
spin quantum states without breaking any constituent symme-
tries of the underlying lattice, have attracted great attention
[1,2]. Enormous effort has been expended in attempting to
understand the essence of QSLs, and earlier studies have
focused on geometrically and magnetically frustrated inter-
actions [3,4]. However, the essence and unique characters of
QSL states remain the subject of great debate [5,6]. More than
a decade ago, Kitaev proposed an exactly solvable model on a
two-dimensional (2D) honeycomb lattice [7], and this shows
that the interaction frustration drives a ground state of a gap-
less or gapped Z2 QSL with fractionalized excitations [8]. The
QSL state with gapped excitations has Abelian anyons [9],
and the state with gapless excitations may have non-Abelian
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anyon excitations [10]. Due to topological protection and
the large degeneracy of these anyons, the Majorana fermion
excitations and the braiding group in the gapless QSL state
are expected to be applicable to quantum computing stor-
age and quantum computation [8,11]. However, researchers
have not yet found ways in which to excite and detect
the dynamics of these Majorana fermion modes in Kitaev
systems.

Josephson tunneling junctions, which consist of two super-
conducting (SC) leads separated by an insulating or metallic
barrier, provide a good probe for measuring quasiparticle in-
formation from the central region through quantum tunneling
transport [12,13]. A large number of central materials have
been studied, including insulators [14], normal metals [15],
quantum dots [16–18], ferromagnets [19–21], and antifer-
romagnets [22,23]. To explore the exotic spin correlations
and fractional excitations of Majorana fermions through the
transport of single electrons and Cooper pairs, especially the
inelastic spin-scattering process [24–26], it is worth construct-
ing novel SC–Kitaev layer–SC tunneling junctions to reveal
the current dynamics associated with exotic spin excitations
in the Kitaev layer. In the realistic candidate materials for the
Kitaev layer, spin interactions are usually anisotropic [27–30];
therefore here we employ anisotropic Kitaev layers in the
designed SC Josephson junctions.
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FIG. 1. Schematic diagram of a SC–Kitaev QSL–SC tunneling
junction. The left (right) side is an SC lead with gap �L (�R), phase
φL (φR), and electric potential VL (t ) [VR(t )]. The central region is a
single-layer Kitaev material in the ab plane.

In this paper, we use the current and conductance features
of SC–anisotropic Kitaev layer–SC tunneling junctions to
characterize the dynamical spin correlations of the central-
zone Kitaev materials. We adopt the nonequilibrium Green’s
function [17] and the few-particle response method [31,32] to
obtain formulas for the single-particle and Josephson tunnel-
ing currents. We find that the dynamical spin susceptibility is
explicitly displayed in the direct current (DC) single-particle
differential conductance spectrum dIc/dV , and from its spec-
tral features, we can confirm the different topological quantum
phases of the anisotropic Kitaev QSL. It is expected that
SC–anisotropic Kitaev QSL–SC mesoscopic hybrid systems
with weak links may be a fruitful research field not only
because of the abundant fundamental features obtained from
the interplay between Kitaev physics and SC but also because
of their potential applications in the design and development
of new quantum devices.

II. MODEL AND TUNNELING OF THE SC–KITAEV
QSL–SC JUNCTION

A. The SC–Kitaev QSL–SC junction and tunneling process

We construct a Kitaev Josephson junction in which a
single-layer Kitaev insulator is the barrier, and this is sand-
wiched by two leads consisting of conventional s-wave SCs.
Here the SC leads may be made from Nb or Pb or their
alloys, such as NbTi or Nb3Sn, and the central Kitaev layer
may be a single layer of α − RuCl3 or Na2IrO3, which are
Kitaev QSL candidate materials [29]. A schematic of such an
SC–Kitaev QSL–SC Josephson junction is shown in Fig. 1.
Since the Kitaev material is a kind of transition-metal Mott
insulator with a strong electronic correlation, the tunneling of
conduction electrons between the left and the right SC leads is
scattered by the local spins in the central region, as shown in
Fig. 2. The scattering strength is that of the s–d-type exchange
coupling J .

For this setup, the tunneling current consists of the normal
single-particle and Josephson contributions. We can describe
the normal single-particle tunneling process as follows. First,
the electrons at the bottom of the SC gap in the right lead
enter the Kitaev layer, and they occupy the high-energy lev-
els to form virtual double-occupied states. The propagation
of the electrons would be modulated by the dynamical spin

FIG. 2. Sketch diagram of single-particle (red) and Cooper-pair
(blue) tunneling processes in a SC–Kitaev QSL–SC Josephson junc-
tion. The left and right sides show the bare DOS distributions ρ(E )
of the two SC leads, and the central region is the Kitaev QSL layer.
The circles indicate the s–d exchange processes of a single particle
and a Cooper pair with local spin.

susceptibility of the Kitaev QSL in the spin-conserving
channel as well as in the spin-flipping process with spin
fluctuations. Finally, the electrons leave the Kitaev layer with
constant or opposite spins and proceed to the top of the SC
gap in the left SC lead.

The tunneling process of the SC Cooper pairs can be ad-
dressed as follows. A Cooper pair in the right lead first tunnels
into the central Kitaev region, splitting into a quasielectron
and quasihole with opposite spins. After this, the quasielec-
tron and quasihole would go through similar virtual transitions
as single particles with the modulation of the Kitaev QSL.
Once they have tunneled out of the central Kitaev region, the
separated quasielectrons and quasiholes would recombine into
SC Cooper pairs. These tunneling processes can be qualita-
tively described by the sketch diagram shown in Fig. 2.

B. Model Hamiltonian and formulas

The total Hamiltonian of the SC–Kitaev QSL–SC tunnel-
ing junction shown in Figs. 1 and 2 consists of three parts:
The left and right SC electrodes HLead,n (n = L, R), the single-
layer Kitaev material in the central scattering region Hcen, and
the s–d exchange interaction part between the SC leads and
the central material HT . Thus H = ∑

n=L,R HLead,n + Hcen +
HT , and

HLead,n =
∑
kσ

ε0
nkσ a†

nkσ
ankσ +

∑
k

�n[an,−k↓ank↑ + H.c.],

Hcen = −KX

∑
〈i j〉X

σ̂ x
i σ̂ x

j − KY

∑
〈i j〉Y

σ̂
y
i σ̂

y
j − KZ

∑
〈i j〉Z

σ̂ z
i σ̂ z

j , (1)

HT =
∑

i

{−J̃i(t )

2

[
σ̂ z

i (a†
Li↑aRi↑ − a†

Li↓aRi↓)
+σ̂+

i a†
Li↓aRi↑ + σ̂−

i a†
Li↑aRi↓

]
+ H.c.

}
,

where a†
nkσ

and c†
iσ are the creation operators of electrons

in the SC leads and Kitaev layer, respectively, and a†
niσ is

the Fourier transform of a†
nkσ

on the ith site of the 2D
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interface between the SC leads and the Kitaev layer; σ̂
x(y,z)
i =∑

σσ ′ c†
iσ σ

x(y,z)
σσ ′ ciσ ′ are twice the spin components; and σ̂±

i =
σ̂ x

i ± iσ̂ y
i , where σ

x(y,z)
σσ ′ are the Pauli matrices. Let the two

SC leads be the s-wave SCs, their order parameters are �̃n =
�ne−iφn with magnitudes �n and phases φn, and ε0

nkσ is the
single-electron energy. KX , KY , and KZ are the spin-coupling
constants along the X , Y , and Z bonds in the central Ki-
taev layer, and these satisfy the conditions KX = KY > 0 and
KX + KY + KZ = 3K for the anisotropic Kitaev model. Ji is
the s–d exchange matrix element between the electrons in
the SC leads and the local spins in the Kitaev layer. In the
presence of an external electric potential Vn(t ) (n = L, R),
the exchange parameter becomes the voltage dependence
of J̃i(t ) = Ji exp[i(φL − φR) − (i/h̄)

∫ t
0 e(VL(t1) − VR(t1))dt1]

through a unitary transformation, leaving only the perturba-
tion term HT that explicitly depends on time [16].

The tunneling current from the left SC lead to the central
region reads

I(t ) = −e

〈
dNL(t )

dt

〉
= ie

h̄
〈[NL(t ), H (t )]〉

= − e

h̄
Re

∑
i

J̃i(t )i

〈
σ̂ z

i (a†
Li↑aRi↑ − a†

Li↓aRi↓)

+ σ̂+
i a†

Li↓aRi↑ + σ̂−
i a†

Li↑aRi↓

〉
. (2)

This actually contains two parts: The normal single-particle
tunneling current and the SC Josephson current. Both of these
stem from inelastic scattering with spin-conserving (m = zz)
and spin-flipping (m = xx, yy) processes,

I(t ) = −2e

h̄
Re

∑
i j,m

∫ t

−∞

dt1
h̄

JiJj

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e
ieV (t−t1 )

h̄

[
g̃r

m,LR,i j (t, t1)G<
m, ji(t1, t )

+ g̃<
m,LR,i j (t, t1)Ga

m, ji(t1, t )

]

+ e
ieV (t+t1 )

h̄ eiφ

[
g̃′r

m,LR,i j (t, t1)G<
m, ji(t1, t )

+ g̃′<
m,LR,i j (t, t1)Ga

m, ji(t1, t )

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3)

Throughout this paper, we only consider the DC voltage
V = VL − VR, and φ = φL − φR is the phase difference be-
tween the left and the right SC leads. We define G(g)r,a,<

m, ji (t1, t )
with the superscripts r , a and < as the dressed (bare)
retarded, advanced, and lesser Green’s functions of spin cor-
relation in the central region, respectively; g̃r,a,<

m,LR,i j (t, t1) and
g̃′r,a,<

m,LR,i j (t, t1) are bare normal and anomalous Green’s func-
tions of electron–hole modes and Cooper pairs between the
left and right SC leads, respectively. For example, the ad-
vanced Green’s functions can be written as:

gr
m, ji(t1, t ) = −iθ (t1 − t )〈[0.5σ̂ α

j (t1), 0.5σ̂ α
i (t )]〉, (4)

g̃r
m,LR,i j (t, t1) = −iθ (t − t1)

〈[σ̂ α
σσ ′a†

Liσ aRiσ ′ (t ), σ̂ α
σσ ′a†

R jσ aL jσ ′ (t1)]〉,
g̃′r

m,LR,i j (t, t1) = −iθ (t − t1)

〈[σ̂ α
σσ ′a†

Liσ aRiσ ′ (t ), σ̂ α
σσ ′a†

L jσ aR jσ ′ (t1)]〉,
where m = αα, α = x, y, z. The details are shown in Sec. A
of the Supplemental Material [33].

With zero-bias voltage, we have only the DC Josephson
current Is generated by the tunneling of Cooper electron pairs
through the Kitaev QSL. At V �= 0, we are very interested
in the DC current Ic and its conductance dIc/dV of the nor-
mal single-particle tunneling. Thus the DC single-particle and
Josephson current terms in the first-order approximation can
be obtained as:

Ic = 4e

h̄

∑
i j,m

∫
dε

2π
JiJj Im

[
g̃r

m,LR,i j (eV − ε)
]

Im
[
gr

m,i j (ε)
]
[n(ε) − n(ε − eV )],

Is = 4e

h̄

∑
i j,m

∫
dε

2π
JiJj Im

[
g̃′r

m,LR,i j (ε)gr
m, ji(ε)

]
n(ε) sin φ, (5)

respectively, where n(ε) = 1/[exp(ε/kBT ) − 1] is the Bose–
Einstein distribution function. As seen in Eq. (5), Ic

clearly depends on the dynamical spin susceptibility Sm
i j (ε) =

−2 Im[gr
m,i j (ε)] of the Kitaev QSL, the spectral weight of

electron–hole modes Cm
LR,i j (ε) = −2 Im[g̃r

m,LR,i j (ε)] between
the two SC leads, and the occupation difference between spins
and electron–hole modes. Similarly, Is is weighted by the
hybridization spectrum of spins and Cooper pairs Am

hy,i j (ε) =
2 Im[g̃′r

m,LR,i j (ε)gr
m, ji(ε)] and the Bose–Einstein occupation

n(ε). In these inelastic scattering processes, electron–hole
modes or Cooper pairs with charge between the left and right
SC leads transfer energy to the central spin system [25].

Further analysis reveals that both the normal and the
anomalous Green’s functions of the two leads have the same
zz, xx, and yy components because of the time-reversal sym-
metry. We have g̃r

m,LR,i j (ε) = g̃r
0,LR,i j (ε) and g̃′r

m,LR,i j (ε) =
g̃′r

0,LR,i j (ε) for m = xx and yy, and zz, respectively. At the
same time, due to the unique features of QSLs, gr

m, ji(ε) is
a short-range spin correlation in real space, and only the
on-site and nearest-neighbor (NN) contributions are nonzero;
this is explained later in Sec. II C. The currents have two-part
contributions from the on-site and NN X , Y , and Z bonds.
Therefore we can simplify the tunneling currents Ic and Is at
zero temperature as

Ic = 8e

h̄
NJ2

∑
m

∫ eV

0

dε

2π

{
Im

[
g̃r

0,LR,AA(eV − ε)
]

Im
[
gr

m,AA(ε)
]

+ ∑
〈AB〉 Im

[
g̃r

0,LR,BA(eV − ε)
]

Im
[
gr

m,BA(ε)
]},

Is = 8e

h̄
NJ2

∑
m

∫ ∞

0

dε

2π
sin φ

{
Im

[
g̃′r

0,LR,AA(ε)gr
m,AA(ε)

]
+ ∑

〈AB〉 Im
[
g̃′r

0,LR,AB(ε)gr
m,BA(ε)

]}. (6)

Here the indexes of the sublattices, AA and AB, stand for the on-site and NN configurations, respectively, and Ji = J for each
site i; N is the number of unit cells in the honeycomb lattice.
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The normal and anomalous two-body Green’s func-
tions can then be evaluated through frequency summations
over the combinations of the left- and right-lead single-

body Green’s functions in the 4×4 Nambu representation
(ank↑ a†

n,−k↓ ank↓ a†
n,−k↑). The details can be seen in Sec. B of

the Supplemental Material [33]. We thus obtain that

g̃r
0,LR,AA(BA)(ε) = s2

2

∫
d2k

4π2

∫
d2 p

4π2
ei(k+p)·RAA(BA)

{
1

ε − ERp − ELk + i0+ − 1

ε + ERp + ELk + i0+

}
, (7a)

g̃′r
0,LR,AA(AB)(ε) = − s2

2

∫
d2k

4π2

∫
d2 p

4π2
ei(k+p)·RAA(AB)

�L�R

ELkERp

{
1

ε − ERp − ELk + i0+ − 1

ε + ERp + ELk + i0+

}
. (7b)

Here Enk(p) =
√

ε2
nk(p) + �2

n, the parabolic energy dispersions εLk = h̄2k2/2m∗ − EF and εRp = h̄2 p2/2m∗ − EF , m∗ is the

effective electron mass, EF is the Fermi energy level, we set h̄ = 1, s is the area of a unit cell of the SC–Kitaev layer–SC
interface in the SC leads, and RAA = 0 and RAB = X,Y, Z for the on-site and NN contributions, respectively.

We assume that kF = 1/as and EF = 20K , where kF and as are the Fermi wave vector and lattice constant of the two SC
leads, respectively. Since the exchanged momenta between the SC leads and the Kitaev layer are constrained by 0 � |q| �
2kF , the product q · X(Y, Z) (q = k + p) can be taken as zero for simplicity [24,25] in the Green’s functions with the NN
contribution. This is suitable for “bad metals” such as Nb or Pb, which have small Fermi wave vectors. Hence in the leads, we
have g̃r

0,LR,AB(BA)(ε) ≈ g̃r
0,LR,AA(BB)(ε) and g̃′r

0,LR,AB(BA)(ε) ≈ g̃′r
0,LR,AA(BB)(ε). The imaginary part of the normal retarded Green’s

function of the leads can then be further simplified as

Im
[
g̃r

0,LR,AA(ε)
] = −2πρLρR

⎧⎪⎨
⎪⎩

∫ ε

�L
dE E√

E2−�2
L

(ε−E )√
(ε−E )2−�2

R

, ε � E + �R∫ −ε

�L
dE E√

E2−�2
L

(ε+E )√
(ε+E )2−�2

R

, ε � −E − �R

, (8a)

as well as the imaginary and real parts of the anomalous retarded Green’s function

Im
[
g̃′r

0,LR,AA(ε)
] = π

2
ρLρR

⎧⎨
⎩

∫ ε

�L
dE �L√

E2−�2
L

�R√
(ε−E )2−�2

R

, ε � E + �R∫ −ε

�L
dE �L√

E2−�2
L

−�R√
(ε+E )2−�2

R

, ε � −E − �R

,

Re
[
g̃′r

0,LR,AA(ε)
] =

∫ ∞

−∞

dω

2π

(−2)Im
[
g̃′r

0,LR,AA(AB)(ω)
]

ε − ω
. (8b)

Here we calculate the real part of the Green’s function by
using the Kramers–Kronig transformation. The normal den-
sity of states (DOS) in the 2D interface ρL(R) = m∗a2

s /2π h̄2.
More details can be seen in Sec. B of the Supplemental
Material [33].

We can thus obtain the DC single-particle differential con-
ductance dIc/dV and the derivative of the DC Josephson
current Is with respect to �, dIs/d� as

dIc

dV
= 2e2

h̄
NJ2

∑
m

∫ eV

0

dε

2π

{
d
[
C0

LR,AA(eV − ε)
]

dV
Sm(ε)

}
,

dIs

d�
= 4e

h̄
NJ2

∑
m

∫ ∞

0

dε

2π

d
[
Am

hy(ε)
]

d�
sin φ. (9)

Here the total dynamical spin susceptibility, the total hy-
bridization spectrum of spins and Cooper pairs, and the
equally weighted spectrum of electron–hole modes are
defined as

Sm(ε) = −2 Im
[
gr

m(ε)
]
,

Am
hy(ε) = 2 Im

{
g̃′r

0,LR,AA(ε)gr
m(ε)

}
,

C0
LR,AA(ε) = −2 Im

[
g̃r

0,LR,AA(ε)
]
, (10)

respectively, where the total Green’s function of spin corre-
lation gr

m(ε) = gr
m,AA(ε) + �〈AB〉gr

m,BA(ε). Once the Green’s
functions g̃r

0,LR,AA(ε), g̃′r
0,LR,AA(ε), and gr

m(ε) have been ob-
tained, we can find the DC single-particle current and its
differential conductance numerically, as well as the zero-
voltage Josephson current at zero temperature.

C. Dynamics of the Kitaev model

Next, we need the total Green’s function of the spin
correlation of the anisotropic Kitaev QSL, gr

m(ε), whose
imaginary part corresponds to the dynamical spin suscep-
tibility, Sm(ε). We can evaluate Sm(ε) by employing the
few-particle-response method and gr

m(ε) via the Kramers–
Kronig transformation.

The Kitaev model Hcen in Eq. (1) can be exactly solved by
introducing four Majorana fermions bα

i (α = x, y, z) and ci per
site for the local spins, i.e., σ̂ α

i = icibα
i . We define the bond

operators ûα
i j = ibα

i bα
j on the NN bond 〈i j〉� (� = X,Y, Z),

respectively. Their eigenvalues are uα
i j = ±1, and they com-

mute with Hcen and with each other. The Kitaev model can
therefore be expressed in terms of the different sets of {uα

i j}
and the Majorana fermions [8,32],

Hcen = i
∑

�,〈i j〉�
K�uα

i jcic j, (11)

023251-4



ELECTRON TUNNELING SPECTROSCOPY OF AN … PHYSICAL REVIEW RESEARCH 4, 023251 (2022)

FIG. 3. (a) Variation range of Kitaev coupling strengths in the parametric phase diagram of the Kitaev model with the conditions KX = KY

and KX + KY + KZ = 3.0 marked by red, blue, and green arrows. Six points are marked with black dots, KZ = 1.8, 1.5, 1.4, 1.24, 1.0, and 0.6.
Kitaev coupling KZ dependences of (b) the overlaps 〈Mz

F |M0〉2, 〈Mx,y
F |M0〉2, and vison gap �z

F , and (c) the overlaps 〈Mx
F |M0〉2, 〈My,z

F |M0〉2, and
vison gap �x

F in the variation range of panel (a).

where the product of all bond operators around a plaque-
tte, Wp = ∏

i, j∈p uα
i j

.= ±1, can define the flux sectors. The
eigenstates of this model are Z2 gauge fluxes threading the
plaquettes and Majorana fermions (or spinons) propagating
between sites in this Z2 gauge field [32]. Their wave vec-
tors |〉 are the direct product of the bond (gauge flux) and
Majorana-matter-fermion degrees of freedom, |〉 = |F 〉 ⊗
|M〉. The ground state is within the zero-flux sector, with
Wp = 1 (uα

i j=1) for all plaquettes.
Through the diagonalization of the zero-flux Hamiltonian

matrix in momentum space, the ground-state spinon energy
dispersion can be expressed as

Ek = 2
∣∣KX eik·X + KY eik·Y + KZ eik·Z∣∣. (12)

The ground-state parametric phase diagram can then be ob-
tained [8], as shown in Fig. 3(a). From Eq. (12), one can find a
van Hove singularity at EV 1 = 2|KZ | corresponding to the en-
ergy contour line PMP′ in the first Brillouin region, and there
is another van Hove singularity at EV 2 = 2|KX + KY − KZ |
when |KZ | < 1.5, or a spinon gap �S = 2|KZ − KX − KY |
when 1.5 < |KZ | < 3.0, associated with the M′ point. There is
also an energy maximum Emax = 2|KX + KY + KZ | = 6 at the
� point. In probing into the dynamical features and evolution
of the QSL ground states in the anisotropic Kitaev model, we
take the range of the Kitaev couplings KZ along the red, blue,
and green lines with arrows, indicating a gapped, gapless, and
another gapless QSL, in this phase diagram. The quantum
phases in these three regions display distinctly different quan-
tum features [30].

The time-dependent dynamical spin susceptibility of
the ground state, Sαα

i j (t ) = 0.25〈0|σ̂ α
i (t )σ̂ α

j (0)|0〉 (|0〉 =
|F0〉 ⊗ |M0〉) [32], can be derived as follows:

Sαα
i j (t ) = −0.25i〈M0|eiH0t cie

−i(H0+V〈i j〉� )t c j |M0〉
× (iδi j + ûα

i jδ〈i j〉,�), (13)

where V〈i j〉� = −2iK�cic j , i ∈ A, j ∈ B, and α = x, y, z has
a one-to-one correspondence with � = X,Y, Z . We can find
that only the on-site (δi j) and NN (δ〈i j〉,�) contributions to the

dynamical spin correlations are nonzero, and Sαα
i j only has the

α = z(x, y) component in the NN X (Y, Z ) bond.
Sαα

i j can have the Lehmann representation by inserting the
identity 1 = ∑

λ |λ〉〈λ| of the two-flux sector with a flipping
bond uα

i j = −1. The main contributions are from the zero-,
one-, and two-particle components of |λ〉, which occupy 98%
of the total [32]. We can thus obtain the dynamical spectrums
in frequency (ω) space as

Sαα
AA (ω) = π

2

∑
λ

〈M0|cA|λ〉〈λ|cA|M0〉δ[ω − (EF
λ − E0)],

Sαα
BA (ω) = π

2
i
∑

λ

〈M0|cB|λ〉〈λ|cA|M0〉δ[ω − (EF
λ − E0)].

(14)

Here E0 is the ground-state energy of the zero-flux sector, EF
λ

is the energy eigenvalue of state |λ〉 of the two-flux sector
[32], the lowest energy is EF

0 with the state |Mz(x,y)
F 〉, and |λ〉

and EF
λ are obtained through diagonalization of the two-flux

Hamiltonian matrix in real space. We can calculate the over-
laps 〈M0|Mz(x,y)

F 〉2 and the “vison” gap �
z(x,y)
F = EF

0 − E0 due
to the gauge-flux excitation, as shown in Figs. 3(b) and 3(c);
this is consistent with Knolle’s results [32].

From the dynamical phase diagrams in Figs. 3(b) and 3(c),
we can see that the lowest-energy states of the zero-flux sector
H0 and two-flux sector H0 + Vz(x,y), i.e., |M0〉 and |Mz(x,y)

F 〉,
conserve the parity owing to the spatial inversion symmetry.
Along the line in Fig. 3(a), |M0〉 and |Mz

F 〉 have the same parity
when 0 < |KZ | < 1.24 and the opposite parity when 1.24 <

|KZ | < 3.0; |M0〉 and |Mx(y)
F 〉 have the same parity throughout.

In the case with the same parity, |λ〉 must have an odd number
of excitations, and these are mainly the single-particle con-
tributions [32]. These dynamical spin susceptibilities can be
evaluated by using Eq. (12). In the opposite case, |λ〉 only
contain an even number of excitations, and these are mainly
the zero- and two-particle contributions [32]. The Lehmann
representation is actually modified by inserting the iden-
tity 1 = ∑

λ cA(B)|λ〉〈λ|cA(B) of two-flux sector H0 + Vx + Vy
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FIG. 4. Energy (E ) dependences of the dynamical spin susceptibilities of the anisotropic Kitaev QSL, including the total Stot and its three
components Sαα (E ) (α = x, y, z) for different Kitaev couplings (in units of K): KZ = (a) 1.8; (b) 1.4; (c) 1.0; (d) 0.6. Here Sxx = Syy.

with two flipping bonds ux
i j, uy

i j = −1. Its lowest-energy state
|Mx,y

F 〉 has the same parity as |M0〉 [32], as shown in Fig. 3(b).
We also plot the lowest-energy state |My,z

F 〉 for H0 + Vy + Vz,
as shown in Fig. 3(c). This has the opposite parity to |M0〉
throughout. Therefore we can explicitly express Eq. (11) for
the zero- and two-particle contributions:

Sαα
AA (ω) = π

2

∑
λ

〈M0|λ〉〈λ|M0〉δ[ω − (EF
λ − E0)],

Sαα
BA (ω) = π

2
i
∑

λ

〈M0|cBcA|λ〉〈λ|M0〉δ[ω − (EF
λ − E0)].

(15)

The dynamical spin correlation is then Sm(ε) = Sm
AA(ε) +

Sm
BA(ε) (m = αα, α = x, y, z). More details are given in Sec. C

of the Supplemental Material [33]. Hence combining the
dynamical and parametric phase diagrams, we choose four
representative points KZ = 1.8, 1.4, 1.0, and 0.6, respectively,
among the phase-transition points about the parity relation-
ship and spinon gap, KZ = 1.24 and 1.5.

Substituting Eqs. (8), (14), and (15) into Eqs. (6), (9), and
(10), we can obtain the tunneling current Ic,s and differential
conductances dIc/dV and dIs/d�. Throughout this paper, the
SC order parameters �̃L and �̃R in the left and right leads
have the same modulus �L = �R = � but different phases
φL(R). All of the energies are measured in terms of the Kitaev
coupling K , which can be taken as K = 1.

III. RESULTS AND DISCUSSION

A. Dynamical spin correlations of the anisotropic Kitaev model

First, we plot the dynamical spin susceptibilities of
the anisotropic Kitaev model, including the components
Sαα (E ) (α = x, y, z) and their total Stot as functions of energy
E [24–26,31,32], as shown in Figs. 4(a)–4(d). Here Sxx = Syy

because KX = KY . We can see that the anisotropic compo-
nents of dynamical spin susceptibilities [Szz and Sxx(yy)] and
their total (Stot) reveal remarkably different features in these
four quantum phases.

When KZ = 1.8 with a gapped QSL, the parities between
|Mz

F 〉 and |M0〉 are opposite. As shown in Fig. 4(a), in Sxx(yy)

we can see the total QSL gap �t ≈ 1.2. This actually contains
the spinon gap �S = 2|KZ − KX − KY | = 1.2 and vison gap
�x

F ≈ 0.0. There is a dip at E ≈ 3.6 owing to the van Hove

singularity of the spinon spectrum at 2KZ and an energy shift
of �x

F . An upper edge also emerges at about 6.0, which is
equal to �x

F + 2|KX + KY + KZ |. These three feature points
in Sxx(yy) thus have a one-to-one correspondence with those of
spinon dispersion at EV (�S or EV 1, EV 2, and Emax), and they
move toward �

x(y)
F + EV . There is a new peak at about 2.5

caused by vison–spinon interactions. However, in Szz, we can
observe the total gap �′

t ≈ 2.4, which stems from �z
F ≈ 0.0

and the new spinon gap �′
S = 2�S . A peak appears at E ≈ 7.2

resulting from the van Hove singularity, and the upper edge
emerges at E ≈ 12.0. The three feature points at �z

F + 2EV

in Szz are from the virtual transitions to the eigenstates of the
two-flux sector with two flipping bonds. Moreover, we can
see a distinct sharp peak at �z

F , which stems from the virtual
transitions to the lowest-energy state, |Mx,y

F 〉. There is also a
new peak around 5.0 due to vison–spinon interactions. Note
that Sxx(yy) is an order of magnitude larger than Szz. As for the
sum of Szz, Sxx, and Syy, Stot can provide complete information
about visons, spinons, and their interactions apart from some
feature points because of the resolution of Szz.

When KZ = 1.4, as shown in Fig. 4(b), the ground state
is gapless QSL, and |Mz

F 〉 and |M0〉 have opposite parity.
Hence the three feature points are displayed on Sxx(yy) and
Szz in a similar way as for KZ = 1.8 except for the van Hove
singularity rather than the spinon gap. In Sxx, we can observe
two dips at E ≈ 0.5 and 2.9 corresponding to the van Hove
singularities, and there is an upper edge at about 6.1, with
�x

F ≈ 0.11. These three feature points emerge at �
x(y)
F + EV .

There are two new interaction peaks at about 0.4 and 1.5.
In Szz, there is a dip and an inflection point associated with
the van Hove singularities at E ≈ 1.0 and 5.8, and there is a
boundary at about 12.2, with �z

F ≈ 0.17. These feature points
are therefore shown at �z

F + 2EV . A remarkable sharp peak
appears at �z

F , and a new interaction peak emerges at about
0.8. Since Szz has the same order of magnitude as Sxx,yy, Stot

can also reveal the full dynamical features of the Kitaev QSL.
When KZ = 1.0 and 0.6, as shown in Figs. 4(c) and 4(d),

|Mz(x,y)
F 〉 and |M0〉 have the same parity. At KZ = 1.0, the

ground state of the isotropic Kitaev model is a C6 gapless
QSL, and the Sxx(yy) and Szz components are equal, �

x(y)
F =

�z
F ≈ 0.26. From Szz, we can find that there is only one dip

related to the two-in-one van Hove singularity at E ≈ 2.26,
and there is an upper edge at about 6.26. There is also a new
interaction peak at about 0.5. At KZ = 0.6, two dips resulting
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FIG. 5. Derivatives of the DC Josephson tunneling current Is with respect to the SC gap, dIs/d�, including the components Gz(x,y)

(Gx = Gy) and Gtot as functions of the SC gap � for different Kitaev couplings (in units of K): KZ = (a) 1.8; (b) 1.4; (c) 1.0; (d) 0.6. Here
φ = 3π/2.

from the van Hove singularities, an upper edge, and a new
sharp peak are shown at E ≈ 1.45, 3.85, 6.25, and 0.3 in
Sxx(yy) with �

x(y)
F ≈ 0.25. There is a dip, an inflection point, an

upper boundary, and a new peak at E ≈ 1.32, 3.72, 6.12, and
0.8 in Szz with �z

F ≈ 0.12. Therefore feature points emerge
at �

x(y)
F + EV and �z

F + EV in Sxx(yy) and Szz, respectively,
because of the virtual transitions to the eigenstates of the
two-flux sector with only a flipping X (Y ) or Z bond. The total
spin correlations Stot also contain the entire characters of the
Kitaev QSL when KZ = 1.0 and 0.6.

In summary, the dynamical spin susceptibility components
Szz and Sxx (= Syy) reveal different vison gaps �z

F and �
x(y)
F ,

respectively. Each component can only reveal partial features
of the Majorana fermion (spinon) dispersions influenced by
the gauge fluxes, including the two van Hove singularities
(or a spinon gap and a van Hove singularity) and the energy
upper edge, and in different ways. Therefore Stot can reveal
the complete information about the Kitaev QSL well. There
are some new peaks between these feature points, and these
stem from the interactions between the vison and the spinon
excitations.

B. DC Josephson current with zero voltage

In the absence of a bias voltage, only the DC Josephson
current with the tunneling of the Cooper pairs is presented in
the SC–Kitaev QSL–SC junction. The SC gap � dependences
of the derivative of the DC Josephson current Is with respect
to �, Gtot = dIs/d�, and its components Gz(x,y) (Gx = Gy)
are shown in Figs. 5(a)–5(d) for different Kitaev couplings
KZ = 1.8, 1.4, 1.0, and 0.6, respectively. Here the phase dif-
ference φ = 3π/2, and we define the dimensionless constant
g0 = 4πρLρRJ2.

As can be seen in Figs. 5(a)–5(d), when KZ = 1.8, there
is a peak at � ≈ 0.6 and an inflection point at about 1.25.
The former corresponds to the total QSL gap �t ≈ 1.2, which
originates from the resonant tunneling when 2� = �t , while
the latter stems from interactions between vison and spinon
excitations near 2� ≈ 2.5. Similarly, at KZ = 1.4, a distinct
peak, corresponding to the total QSL gap, emerges around
2� ≈ 0.17. Another peak at about 0.9 stemming from the
response to the interaction peak appears near 2� ≈ 1.8. When
KZ = 1.0 and 0.6, we can only observe the peaks at about
0.25 and 0.4, which is due to the response to the interaction

peaks around 2� ≈ 0.5 and 0.8, respectively. Thus dIs/d�

curves mainly provide information about the interaction of
gauge fluxes and Majorana fermion modes, as well as the
total QSL gap. These peaks in dIs/d� can be seen from the
dynamical spin susceptibilities in Fig. 4; however, they only
provide partial information about the Kitaev QSLs.

To understand this, the energy (E ) dependences of the
total dynamical hybridization spectral functions between the
local spins of the Kitaev layer and the Cooper pairs of
the two SC leads, Ahy = ∑

α Aαα
hy (α = x, y, z), are plotted in

Figs. 6(a)–6(d), in which the SC gaps are set as � = 1, 3, and
5. We can clearly see the complete dynamical spin correla-
tion characters, and Ahy > 0 before E = 2�. When E > 2�,
these spin-correlation features appear with a reversed sign,
i.e., Ahy < 0 in the same magnitude. Thus the DC Joseph-
son current at zero bias, as the frequency integration of the
hybridization spectrum, is partially canceled; hence it only
retains partial information about the Kitaev QSL. This arises
from the fact that, in inelastic tunneling, the quasielectrons
and quasiholes of the SC Cooper pairs contribute to the pos-
itive and negative parts of Ahy, respectively. Therefore the
total response to the dynamical spin-correlation spectrum is
canceled out due to the spin-singlet Cooper pairs.

C. DC conductance of normal single-particle tunneling

In the presence of a DC bias voltage in the SC–Kitaev
QSL–SC junction, one can reveal more characters of the
Kitaev QSL. The bias potential eV dependences of the DC
single-particle differential conductance Gtot = dIc/dV , as
well as its zz(xx, yy) components Gz(x,y), are described in
Figs. 7(a)–7(d) for different Kitaev couplings KZ = 1.8, 1.4,
1.0, and 0.6, respectively. Here we define the conductance
constant G0 = g0e2/h, and Gtot = Gx + Gy + Gz, with Gx =
Gy.

From Figs. 7(a)–7(d), it can be seen that the single-particle
DC differential conductance spectrums of the SC junction,
Gtot and Gz(x,y), show distinctly different characters in the four
quantum phases. To clearly see the dynamical behaviors of
Gtot in the present anisotropic Kitaev layer, we first describe
the bias voltage dependence of Gz(x,y). When KZ = 1.8, as
seen in Fig. 7(a), in contrast with the dynamical spin suscep-
tibility in Fig. 4(a), the threshold of the conductance Gx(y) is
modulated up to about 3.2, i.e., �t + 2�. This arises from the
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FIG. 6. Energy (E ) dependences of the total hybridization spectral functions between spins of the central Kitaev QSL layer and Cooper
pairs of the two SC leads, Ahy, with � = 1, 3, and 5 for different Kitaev couplings (in units of K): KZ = (a) 1.8; (b) 1.4; (c) 1.0; (d) 0.6.

fact that the electrons at the bottom of the SC gap in the right
lead need a high enough bias potential eV = � + � + �t to
overcome the right and left SC gaps and the total QSL gap of
the central layer along the X (Y ) bond, and finally reach the
empty state on the top of the SC gap in the left lead.

When eV > 2� + �t , with the opening of the channel
of the Majorana bound state, the conductance Gx(y) starts to
rise rapidly and goes up to a sharp peak at about 4.5. This
peak corresponds to the interaction peak of the dynamical
spin correlation around 2.5 shown in Fig. 4(a), and it results
from the dynamical creation of the Majorana fermions (or
spinons) interacting with the two NN gauge fluxes in the
virtual transition. Soon after this, a remarkable dip is observed
at about 5.6, which is associated with the dip of the dynamical
spectrum around 3.6 and is due to the van Hove singular-
ities of the DOS of the Majorana dispersive band. Finally,
the single-particle conductance approaches a constant after
the upper edge at about 8 due to the edge of the Majorana
dispersive bands around 6. The features of the single-particle
DC differential conductance spectrums Gx(y) in Fig. 7(a) thus
have a one-to-one correspondence with those of the dynamical
spin susceptibility in Fig. 4(a).

We can also see a remarkable sharp peak at eV ≈ 2 in Gz

that is related to the peak in the dynamical spectrum near
�F

z ≈ 0.0. This originates from the δ-function contribution
of the virtual transition between the ground state |M0〉 and
the excited state |Mx,y

F 〉. When eV > �F
z , no obvious char-

acters in Gz are observed since Szz is an order of magnitude
smaller than Sxx(yy). Summing the three components gives rise

to the total conductance Gtot, which contains the complete
characters of the spinon spectrums, vison excitations, and
their interactions in the Kitaev QSL. Thus compared with a
normal-metal junction situation [24,25], the present differ-
ential conductance spectrums Gtot have a more intuitive and
sensitive response to the characters of the dynamical spin
correlation components of the Kitaev QSL, Stot.

When KZ = 1.4, 1.0, and 0.6, similar to KZ = 1.8, the
single-particle DC differential conductance spectrums Gz(x,y)

are able to reflect the features of the dynamical spin suscep-
tibility components Szz(xx,yy) well, aside from some feature
points due to the resolution of the numerical integration. For-
tunately, in the present situations with KZ = 1.4, 1.0, and 0.6,
the z components of the dynamical spin correlations Szz are
the same order of magnitude as Sxx,yy, so Gz can resolve all of
the features of Szz. Hence from the single-particle tunneling
spectrums, we can obtain insights into the features of the
dynamical spin susceptibilities of the Kitaev QSL.

IV. CONCLUSION

In our present theory, we point out two possible improve-
ments to previous results. On the one hand, with the condition
q · X(Y, Z) ≈ 0, we obtain the features of the total dynamical
spin susceptibility Stot. When q · X(Y, Z) �= 0, the individual
contributions of each component of the NN spin correlation
Sαα

BA to the tunneling currents would be slightly different from
the results above. Our further study reveals that, in this sit-
uation, the correction to Eq. (8) only quantitatively alters

FIG. 7. DC differential conductances of single-particle tunneling dIc/dV , including the components Gz(x,y) (Gx = Gy) and Gtot as functions
of the bias potential eV for different Kitaev couplings (in units of K): KZ = (a) 1.8; (b) 1.4; (c) 1.0; (d) 0.6.
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the tunneling current; nevertheless, it is qualitatively consis-
tent with the above conclusion. On the other hand, although
the zero-voltage Josephson current fails to measure the full
information about the Kitaev QSL in the elastic scattering
process, we expect that the AC Josephson currents with a
DC bias voltage will reveal more features of the dynami-
cal spin correlation, which goes beyond the scope of this
paper.

In summary, in investigating the electron tunneling trans-
port and its spectroscopic features in an SC–anisotropic
Kitaev QSL–SC Josephson junction with a weak link, we
assume that inelastic scattering tunneling of single particles
and Cooper pairs is realized by the s–d exchange interaction.
As expected, the DC differential conductance dIc/dV of the
normal single-particle tunneling succeeds in exhibiting the
dynamical spin susceptibility characters of the anisotropic
Kitaev QSL—including unique spin gaps (even in gapless
QSL), sharp or broad peaks, small dips, and the upper edge
of the itinerant Majorana fermion dynamics—except for the
energy shift of the two-SC-lead gap 2�. The different topo-
logical quantum phases of the anisotropic Kitaev QSL can be

distinguished well by using the tunneling spectral features.
Unusually, the zero-voltage DC Josephson currents Is only
contain some residual information about the Kitaev QSL,
which stems from the spin singlets of Cooper pairs.

Our results may pave a new path to measurement of
the Majorana–fermion dynamical correlation features of
anisotropic Kitaev and other spin-liquid materials. We expect
that our theoretical results will be confirmed by future experi-
ments and applied to SC junction devices.
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