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Mesoscopic transport signatures of disorder-induced non-Hermitian phases
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We investigate the impact on basic quantum transport properties of disorder-induced exceptional points (EPs)
that emerge in a disorder-averaged Green’s function description of two-dimensional Dirac semimetals with
spin- or orbital-dependent potential scattering. Remarkably, we find that EPs may promote the nearly vanishing
conductance of a finite sample at the Dirac point to a sizable value that increases with disorder strength. This
striking behavior exhibits a strong directional anisotropy that is closely related to the Fermi arcs connecting the
EPs. We corroborate our results by numerically exact simulations, thus revealing the fingerprints of characteristic
non-Hermitian spectral features also on the localization properties of the considered systems. Finally, several
candidates for the experimental verification of our theoretical analysis are discussed, including disordered
electronic square-net materials and cold atoms in spin-dependent optical lattices.
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I. INTRODUCTION

The study of disorder in quantum materials has led to the
discovery of numerous intriguing phenomena, prominently
including metal-insulator transitions and disorder-induced
topological states [1–6]. Quite generally, scattering of random
impurity potentials tends to inhibit bulk transport by localiz-
ing the current-carrying Bloch states of a clean system [1,2].
In this context, the recently proposed framework of many-
body localization has aimed at generalizing the basic picture
of Anderson localization beyond the independent electron
approximation [6–8].

Despite the Hermitian character of the microscopic
Hamiltonian, non-Hermitian (NH) physics naturally emerges
in the description of disordered systems due to the presence
of a self-energy � = �H + i�A that accounts for impurity
scattering in the disorder-averaged Green’s function (GF). As
a simplest scenario, the anti-Hermitian part �A of the self-
energy just gives a scattering-induced finite lifetime to the
stationary Bloch states of the free system, while the Hermitian
part �H amounts to a correction of the free band structure
described by the Bloch Hamiltonian H0(k) with the lattice
momentum k. However, as soon as �A does not commute
with H0(k), remarkable phenomena unique to NH matrices
may occur, such as the formation of topologically stable ex-
ceptional points (EPs) [9–11] representing the NH counterpart
of topological semimetals known from the Hermitian realm,

*benjamin.michen@tu-dresden.de
†jan.budich@tu-dresden.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and thus an example of NH topological phases [12–44] (see
Ref. [34] for an overview).

In this paper, we study the occurrence of disorder-induced
exceptional phases in two-dimensional (2D) Dirac semimet-
als with spin- or orbital-dependent impurity scattering (see
Fig. 1). To this end, we compute the effective NH Hamiltonian

He(k) = H0(k) + �(k, ω = 0), (1)

from exact numerical data on the disorder-averaged GF [45]
at the Fermi energy (ω = 0) (cf. Sec. III below).

While previous work on disorder-induced NH phases has
mostly concentrated on spectral properties, our main focus
is on the mesoscopic quantum transport properties of ex-
ceptional NH phases in a simple two-terminal setting [46].
Interestingly, we find that the fast exponential decay of the
zero-energy conductance with system size, which is caused
by the vanishing density of states (DOS) at the nodal points in
the clean regime, can be prolonged extensively in the presence
of disorder-induced EPs. As a result, the nearly vanishing
conductance of a clean mesoscopic sample with the Fermi
energy at the Dirac point may be promoted to a sizable value
that increases with disorder strength [see Figs. 1(c) and 6
below, respectively]. Both the directional anisotropy and the
value of the transmission are found to be closely related to
the orientation and length of the Fermi arcs connecting the
EPs as well as the associated quasiparticles with arbitrarily
prolonged lifetimes that emerge in a certain parameter range.
Comparing our results to a conventional disordered phase
without EPs, where transport is overall strongly damped and
the exponential decay of the zero-energy conductance occurs
even faster than in the clean regime, our findings presented in
Sec. IV provide clear fingerprints of disorder-induced EPs on
basic transport properties.

We find that the aforementioned quasiparticles with largely
extended lifetimes in the exceptional phase are tied to ex-
act Bloch wave eigenstates that emerge in the limit of
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FIG. 1. (a) Illustration of a disordered two-dimensional (2D) ma-
terial, which hosts a semimetallic Dirac dispersion in the clean limit,
e.g., realized as a square-net material [47,48] with positive and neg-
ative ions adsorbed to the surface. (b) For orbital-selective disorder,
the Dirac cones may split into topologically stable exceptional points
exhibiting a characteristic square-root-like dispersion (absolute value
of complex energy is shown). (c) For a sample of mesoscopic size,
the vanishing zero-energy transmission seen in the clean regime (left
panel) may be promoted to a finite value (right panel) that increases
with disorder strength.

orbital-selective disorder and persist for any perturbation am-
plitude. In Sec. V B, this scenario is generalized to a theorem
that guarantees the presence of Bloch eigenstates whenever
only a sufficiently constrained subset of the orbitals are af-
fected by disorder in an arbitrary tight-binding model.

Additionally, we investigate the localization properties of
the different phases in Sec. V and find hallmarks of anoma-
lous localization (i.e., slower than exponential decay of the
eigenfunctions) in the exceptional phase for system sizes that
are amenable to numerical studies.

Finally, in Sec. VI, we outline several candidate platforms
for the experimental verification of our theoretical analysis
such as magnetically disordered 2D electron systems, square
net materials, which refer to a class of three-dimensional
(3D) multiatomic crystals with square-shaped 2D sublattices
[47,48] hosting a Dirac-like dispersion, and cold atoms in
spin-dependent optical lattices.

II. MODEL AND METHODS

We consider a conceptually simple square lattice model
of a Dirac semimetal in two spatial dimensions (2D), speci-
fied by the Hamiltonian H0 in second-quantized tight-binding

FIG. 2. Band structure of the free Hamiltonian H0 [see Eq. (2)]
exhibiting four Dirac cones with the parameters set to tx = 0.5, tz =
0.5.

form as

H0 =
∑

j

[
txψ

†
j+δy

σxψ j + tzψ
†
j+δx

σzψ j
] + H.c., (2)

with j = ( jx, jy) as well as δx = (1, 0), δy = (0, 1), and
σμ, μ = x, y, z denoting the standard Pauli matrices. Length
is measured in units of the lattice constant, energy in terms of
the spin-dependent nearest neighbor hopping chosen as tx =
tz = 0.5, and the spinors of field-operators ψ

†
j = (ψ†

j,↑, ψ
†
j,↓)

create a fermion in unit cell j with spin ↑ (↓). In reciprocal
space, the model is characterized by the Bloch Hamilto-
nian H0(k) = dR(k) · σ with dR(k) = (cos(ky), 0, cos(kx)),
the spectrum of which exhibits four nodal points in the first
Brillouin zone (see Fig. 2).

Random disorder with a spin-dependent structure is intro-
duced to the system by means of the operator V , given in real
space representation as

V =
∑

j

a j[ψ
†
j (s0σ0 + γ (sin(φ)σx + cos(φ)σz))ψ j + H.c.],

(3)

with s0, γ , φ ∈ R. The uncorrelated random amplitudes {a j}
are drawn from the box distribution on the real interval
[−α, α], so the overall disorder strength scales with α. De-
pending on the choice of disorder parameters, an exceptional
or ordinary phase may emerge. In Sec. VI, we outline several
possible platforms for the experimental implementation of
our model. We again stress that the total Hamiltonian H =
H0 + V is Hermitian, and that NH physics only enters via the
self-energy in the GF description discussed in the following.

To describe the electronic excitations close to the
Fermi level in disordered systems, we employ an ef-
fective NH Hamiltonian He(k) = H0(k) + �(k, ω = 0) [cf.
Eq. (1)], which we obtain from numerically exact data
on the disorder-averaged GF. Starting from the propa-
gator GR

k,k′ (t − t ′) = −i	(t − t ′)〈0|{ck(t ), c†
k′ (t ′)}|0〉, where

c†
k(t ) = (c†

k,↑(t ), c†
k,↓(t )) is the Heisenberg picture spinor of

creation operators in reciprocal space, a Fourier transform
with respect to (t − t ′) yields the retarded GF in frequency
space. Averaging over the random disorder terms restores
translational invariance and renders the resulting disorder-
averaged GF GR,av

k block diagonal in momentum space (see
Appendix A for details). The blocks GR,av

k (ω) = [1(ω +
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FIG. 3. (a) Numerically exact spectrum of He(k) in the exceptional phase. Nodal points of the clean are split into EPs connected by
Fermi arcs (marked by red lines). Lines of vanishing imaginary part (marked in green) entail propagating quasiparticles with infinite lifetime.
The group velocity along the green lines is parallel to the kx axis, which leads to a directional dependence of transport signatures. Disorder
parameters are α = 1.5, s0 = 1.0, γ = 1, φ = 0. (b) Cut along the line where kx = π

2 , showing the profile of the two Fermi arcs in the (+, +)
and (+,−) quadrants of Fig. 3(a). Note that the imaginary Fermi bubbles touch the real axis. Disorder parameters are α = 1.5, s0 = 1.0,
φ = 0. Different colors correspond to γ = 1 (blue), γ = 0.9 (orange), and γ = 0.8 (red), respectively, where for γ < 1 the disorder potential
is no longer exactly restricted to one orbital.

iη) − H0(k) − �(k, ω)]−1, where η > 0 is an infinitesimal
regularization, determine the self-energy correction �(k, ω)
that enters the effective Hamiltonian He(k). In the following,
we calculate GR,av

k in a numerically exact fashion for a system
size of 100 × 100 sites.

III. SPECTRAL PROPERTIES

In this section, we briefly discuss the phenomenon of EPs
and show how a conventional disordered phase without EPs
or an exceptional phase featuring EPs emerges in our model
system specified by Eqs. (2) and (3).

A. Exceptional points

For parameter-dependent NH matrices, EPs refer to points
in parameter space at which not only the eigenvalues but also
the corresponding eigenvectors coalesce, thereby rendering
the matrix nondiagonalizable [49–51]. Since all Hermitian
matrices possess a complete set of eigenvectors, this is a
genuinely NH phenomenon. For an overview on the role of
EPs in contemporary physics, see, e.g., Refs. [34,52].

As an example of EPs occurring in a NH Bloch band
setting such as the disorder-averaged description of our dis-
ordered model system, here we focus on the case of a

two-banded model with a generic NH Hamiltonian of the form

He(k) = d0(k)σ0 + d(k) · σ, (4)

where d = dR + idI with dR, dI ∈ R3 and d0 ∈ C. The

eigenenergies of He are E± = d0 ±
√

d2
R − d2

I + 2idR · dI and
at degeneracy points where the real and the imaginary part
under the square root vanish simultaneously, i.e., d2

R − d2
I = 0

and dR · dI = 0, the eigenvectors coalesce, leading to an EP. In
conclusion, EPs require the tuning of two separate conditions,
which is also the case for more than two bands, and thus are
a generic and stable phenomenon in systems with at least two
spatial dimensions.

From a mathematical point of view, EPs are the end points
of a branch cut in the complex plane, which manifests itself
as a line of purely real or purely imaginary energy gap that
connects the EPs and corresponds to the conditions dR · dI =
0 and d2

R − d2
I > 0 or d2

R − d2
I < 0 in the two-banded case. In

the context of NH physics, these lines are referred to as (NH)
Fermi arcs and they play a central role in the interpretation of
the anomalous transport properties of the model studied in the
following.
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FIG. 4. (a) Energy-dependent two-terminal conductance in x direction for the disorder-free system of size Nx = 100, Ny = 200. (b) Energy-
dependent two-terminal conductance in x direction for various disorder parameters at system size Nx = 100, Ny = 200. Orange line:
Exceptional phase with disorder parameters s0 = 1, γ = 0, φ = 0, α = 1.5. Blue line: Exceptional phase with disorder parameters s0 = 1,
γ = 0, φ = π

2 , α = 1.5. Green line: Conventional phase with disorder parameters s0 = 1, γ = 0, α = 1.5. (c) Normalized DOS and average
IPR at each energy in the conventional phase. Disorder parameters are s0 = 1, γ = 0, α = 1.5. Data from exact diagonalization of a system with
Nx = 50, Ny = 50 sites. (d) Normalized DOS and average IPR at each energy in the exceptional phase. Disorder parameters are s0 = 1, γ = 1,
φ = 0, α = 1.5. Data from exact diagonalization of a system with Nx = 50, Ny = 50. All disordered data averaged over ten independently
drawn realizations.

B. Complex spectrum of the model

For the system at hand, the simplest possible perturbation,
consisting only of an on-site disorder potential, is reflected
by the parameter choice s0 = 1, γ = 0, and leads to a trivial
self-energy �, such that the real part of the spectrum remains
the same as for H0 (cf. Fig. 2) and the imaginary part of
the spectrum is flat and twofold degenerate with a value of
about −0.4i.

Upon imbalancing the amplitude of the disorder potential
between the orbitals, the system enters an exceptional phase.
We start by considering the extremal case of the disorder only
affecting the A sublattice through the parameter choice s0 = 1,
γ = 1, and φ = 0, noting that deviations from this limiting
case will be discussed further below. The Dirac cones are split
into EPs connected by a Fermi arc of purely imaginary energy
gap [marked by red lines in Fig. 3(a)], which increases in
length with the disorder strength α and is perpendicular to the
kx direction. By tuning the parameter φ in Eq. (3), the angle
between the Fermi arcs and the kx axis may be adjusted, where
the limiting cases φ = 0 (disorder on the A sublattice) and
φ = π (disorder on the B sublattice) afford a simple physical
interpretation. Other values of φ amount to a rotation around
the σy axis, thus resulting in orbital selectivity in a rotated
orbital basis. More generally, the parameter φ allows us to
investigate the influence on the transmission of the angle be-
tween the Fermi arcs and the transport direction [cf. (5)] in our
setup. In an actual experiment, the angle dependence could
be readily probed by measuring the transmission in different
directions through the sample.

Another notable feature of the exceptional phase with
orbital selective disorder is the presence of states with a

vanishing imaginary part at all energies [marked by green
lines in Fig. 3(a)]. As we demonstrate in Sec. V B, these states

FIG. 5. Conductance in x direction at zero energy in the excep-
tional phase as a function of φ along with a fit of T (φ) = e2

h exp [Ã −
τ̃ (Nx

√
1 + tan2(φ))p], where p = 1

5 , with the parameters Ã = 4.67,
τ̃ = 1.08. Remaining disorder parameters are s0 = 1, γ = 1, α =
1.5. System size Nx = 100, Ny = 200. Insets show the decay of the
conductance at zero energy for increasing system size along with a
fit of T (l ) = e2

h exp[A − τ (Nx )p]. Remaining disorder parameters are
s0 = 1, γ = 1, φ = 0, α = 1.5. System Ny = 200. (a) p = 1 and A =
1.92, τ = 0.0012. (b) p = 1

2 and A = 2.61, τ = 0.068. (c) p = 1
5 and

A = 4.63, τ = 1.06.
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are Bloch modes of the clean system that remain unaffected
by the disorder potential and are responsible for the enhanced
and anisotropic transport capabilities of the exceptional phase.

Since the self-energy � shows no dependence on k (see
Appendix A), the splitting looks similar around all nodal
points. It is therefore sufficient to closer inspect the two Fermi
arcs in the (+,+) and (+,−) quadrant and a cut along these
two Fermi arcs is shown in Fig. 3(b). The nodal points in
the spectrum of H0 from Fig. 2 have been inflated into nodal
lines in the real part of the spectrum of He. By stark contrast
to the conventional phase, the DOS at zero energy does not
vanish in the quasiparticle picture. To gauge the sensitivity of
the exceptional phase toward deviations from the restriction of
the disorder potential to one orbital, we also show the result
for γ = 0.9 and γ = 0.8 in Fig. 3(b), which corresponds to
distributing 5% and 10% of the disorder amplitude on the
second orbital. With decreasing value of γ , the Fermi arcs
shrink and the top of the Fermi bubbles starts to move away
from zero, i.e., the long-lived states acquire a long but finite
life-time.

For all sets of disorder parameters, we find only a very
weak if any ω dependence of He(k, ω), which allows us
to draw conclusions on the quasiparticle dispersion through
the complete energy range from He(k, ω = 0) or Fig. 3(a),
respectively.

IV. TRANSPORT SIGNATURES

Here, we investigate the influence of the quasiparticle
dispersion inside the bulk on the transport properties of
a finite-sized sample for the different NH phases. To this
end, we generate a random rectangular instance of the sys-
tem with Nx = 100 sites in the x direction and Ny = 200
sites in the y direction. After attaching two spin-independent
metallic leads to both ends of the sample, we calculate
the two-terminal linear-response conductance in the x di-
rection. The dispersion in the leads is given by the Bloch
Hamiltonian HL = (cos(kx) + cos(ky))σ0.

A. Energy-dependent conductance

First, we present the energy-dependent conductance
through the clean system in Fig. 4(a). Resonance effects
lead to small fluctuations of the transmission amplitude over
the energy spectrum and the vanishing DOS at zero energy
completely suppresses transport there.

Figure 4(b) shows the energy-dependent conductance for
different disorder configurations. The green line represents
the conventional disordered phase, where almost no transport
occurs at any energy, which is a consequence of the large
imaginary part and therefore damping of modes in the cor-
responding quasiparticle dispersion. The orange line belongs
to the exceptional disordered phase with φ = 0, where the
Fermi arcs are perpendicular to the direction of transport
along kx. There, an enhanced conductance at all energies
when compared to the conventional phase is visible, carried
by the states with an extended lifetime in the vicinity of the
green lines in Fig. 3(a). Strinkingly, the transmission at zero
energy surpasses that of the clean system by far. We interpret
that as a signature of the increased DOS in the quasiparticle

picture caused by the inflation of the nodal point into a Fermi
arc [compare to Fig. 3(b)]. Finally, the blue line indicates
the exceptional disordered phase with φ = π/2, i.e. with the
Fermi arcs parallel to direction of transport. Here, transport is
suppressed heavily in comparison to the case with φ = 0.

B. Effect of φ on the conductance

As Fig. 4(b) shows, the angle of the Fermi arc relative
to the direction of transport affects transport at all energies
in the exceptional phase. More specifically, the transmission
decreases with increasing φ, which can be intuitively under-
stood from the quasiparticle dispersion. In the imaginary part
of the spectrum for φ = 0 in Fig. 3(a), ridges with a vanishing
imaginary part are visible and accentuated by green lines. Due
to their prolonged or even infinite (at γ = 1) lifetime, it is
reasonable to expect that these quasiparticles and the ones
close to them mostly carry the transport. Additionally, all of
them have a group velocity parallel to the kx axis, i.e., the
direction of transport. With increasing φ, the Fermi arc and
also the ridges rotate in the kx-ky plane, while the direction
of transport remains along the kx axis. The group velocity
of the states associated with the ridges rotates as well and
always encloses the angle φ with the direction of transport. An
elementary trigonometric construction shows that the wave
fronts will have to travel a longer distance of Nx

√
1 + tan2(φ)

through the sample (see Appendix B), which causes the decay
of the transmission amplitude.

To further substantiate this influence of the parameter φ

on the transmission, we present the conductance in the excep-
tional phase at zero energy in dependence on φ in the main
plot of Fig. 5 for a fixed system length of Nx = 100 sites, along
with the dependence on system length in the insets, Figs. 5(a)–
5(c). To mitigate the influence of the coupling to the leads and
varying degrees of reflection with φ, we work close to the
wide-band limit by flattening the dispersion in the leads to
HL = 0.1(cos(kx) + cos(ky))σ0 for the calculations in Fig. 5.

We start by discussing Figs. 5(a)–5(c), which show the
decay of the transmission in dependence of system length for
φ = 0 along with a fit of the law T (l ) = e2

h exp[A − τ (Nx)p]
for decreasing values of p. Specifically, we have p = 1 in
Fig. 5(a), p = 1

2 in Fig. 5(b), and p = 1
5 in Fig. 5(c). Apart

from small resonance-induced fluctuations at short system
lengths, the fit in Fig. 5(c) with p = 1

5 is closest to the actual
data and yields the parameters A = 4.63, τ = 1.06.

This fit to the length-dependent transmission is motivated
by previous work on disordered one-dimensional (1D) sys-
tems, suggesting that such a slower-than-exponential decay of
the transmission amplitude is tied to anomalous localization
properties [53–55]. There, the value of p that determines
the length-dependent transmission decay corresponds to the
value obtained from the localization of the wave function
as 
(x) ∝ exp[−λ|x|p], where p = 1 for standard Anderson
localization. Since our fits agree best if we choose p = 1

5 or
smaller, it seems plausible that the exceptional phase features
very weakly localized microscopic eigenstates, which is also
indicated by a more careful analysis of the localization prop-
erties in Sec. V.

Moving to the main plot of Fig. 5, a decay of the con-
ductance with φ is clearly visible. As mentioned before,
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FIG. 6. Conductance in x direction at zero energy in the excep-
tional phase as a function of disorder strength α. Disorder parameters
are s0 = 1, φ = 0 for all curves, while we vary γ = 1, 0.9, and 0.8
to study deviations from perfectly orbital-selective disorder (γ = 1).
System size is Nx = 100, Ny = 200. For comparison, the length of
the Fermi arc is shown for s0 = 1, φ = 0, γ = 1.

the distance that the modes travel through the sample in-
creases with φ as Nx

√
1 + tan2(φ). Taking into account

the findings from the insets, the φ-dependent conductance
should roughly follow a law of the form T (φ) = e2

h exp [Ã −
τ̃ (Nx

√
1 + tan2(φ))p], with p = 1

5 . A fit reveals a good agree-
ment and basically recovers the parameters from the fit to the
length-dependent decay with Ã = 4.67, τ̃ = 1.08.

C. Effect of the disorder amplitude on the conductance

In Fig. 6, we analyze the dependence of the conductance in
the exceptional phase on the disorder strength α. The param-
eters s0 = 1 and φ = 0 are fixed and we explore the behavior
for the ideal case γ = 1 with infinitely lived quasiparticles as
well as γ = 0.9, and γ = 0.8, where the disorder potential is
no longer restricted to precisely one orbital such that the Fermi
bubbles no longer touch zero [cf. Fig. 3(b)]. Quite remark-
ably, both for γ = 1 and γ = 0.9, the conductance increases
with disorder strength, together with the length of the Fermi
arc which is plotted alongside. For γ = 0.8, the conductance
exhibits a similar tendency at small disorder amplitudes, but
drops again for strong disorder, where the increasing overall
damping exceeds the inflation of the Fermi arcs.

The conductance-enhancing effect of disorder in the ex-
ceptional phase is a consequence of the growing quasiparticle
DOS and size of the imaginary Fermi bubbles [cf. Fig. 3(b)],
which increases the amount of states with prolonged lifetimes
(suppressed damping). In this sense, the quite counterintuitive
observation of a conductance that increases with disorder
strength affords a simple explanation within the framework
of our effective NH Hamiltonian analysis. Our transport sim-
ulations are performed using the Kwant library [56].

V. MICROSCOPIC LOCALIZATION PROPERTIES

Here, we turn to the microscopic properties of the system.
We calculate the inverse participation ratio (IPR) and the
actual DOS obtained from a full diagonalization of the micro-
scopic Hamiltonian. The IPR is a measure for the localization
of states, which is given by

∫
dr|
(r)|4.

A. Microscopic DOS and average IPR

Figure 4(c) shows the microscopic DOS and the averaged
IPR at each energy for the disordered system in the con-
ventional phase with the disorder parameters set to s0 = 1,
γ = 0, α = 1.5. The localization strength varies with energy
and is weakest at zero energy with an IPR of about 0.008.
It continuously increases when moving away from this point.
The DOS at zero energy does not vanish (in contrast to the
clean system) as a consequence of the σ0 term in the disorder
[cf. Eq. (3)] that breaks the chiral symmetry of H0.

For the exceptional phase in Fig. 4(d) with the disorder
parameters set to s0 = 1, γ = 1, φ = 0, α = 1.5, the states are
uniformly localized for energies between −1 and 1, with an
IPR of about 0.007. Outside that range, the localization grows
stronger rapidly. The interval of relatively weak localization
in the exceptional phase roughly coincides with the energy
range in which transmission occurs [cf. Fig. 4(b)] and also
with the range that is covered by the real part of the spectrum
[cf. Fig. 3(a)]. Although the microscopic DOS covers a larger
energy interval than in the conventional phase, no qualitative
difference is visible.

B. Surviving Bloch modes in the exceptional phase

While the average IPR around zero energy is only
marginally smaller in the exceptional phase [cf. Figs. 4(c)
and 4(d)], we find a clear distinction in the distribution of
the individual IPRs of the microscopic eigenstates between
the two phases. Figure 7 compares the individual IPR values
in both phases as a scatter plot over the energies of their
respective eigenstates. The conventional phase in Fig. 7(a)
features eigenstates with varying degrees of localization such
that the minimum value of the IPR at zero energy is about
0.003 or higher. By contrast, the exceptional phase depicted
in Fig. 7(b) possesses a set of completely delocalized states
that come in clusters of four throughout the energy range
from −1 to 1.

These delocalized states are Bloch waves of the clean
system that live entirely on the sublattice unaffected by the
random disorder and thus survive under any perturbation am-
plitude. This phenomenon is not a fine-tuned peculiarity of our
model but rather a manifestation of a more general theorem:

Consider an arbitrary tight-binding model H0 with trans-
lational invariance and a number of n orbitals. For a random
disorder term V that only affects a subset of nα < n orbitals,
there can be Bloch modes of H0 that live on the remaining
n − nα orbitals and thus are still eigenstates of the disordered
system H = H0 + V regardless of the concrete nature of V .
Such modes require the tuning of nα complex conditions in
momentum space, which can be made real or reduced in
number by the presence of certain symmetries (see Appendix C
for a proof).

These insights complement the analysis of Ref. [57], where
the existence of zero-energy (localized) eigenstates that are
restricted to one sublattice of a disordered bipartite lattice has
been derived.

The surviving Bloch modes make up the quasiparticles
with vanishing imaginary energy that we observe in the spec-
trum of the effective Hamiltonian [cf. Fig. 3(a)]. To illustrate
this, we represent the infinitely lived eigenstate of He with
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FIG. 7. Scatter plot of the microscopic Hamiltonian eigenstates over energy and IPR for a randomly generated system of 60 × 60 sites. The
point size and color indicate the overlap |〈k|ES〉|2 of the eigenstate |ES〉 with the eigenstate |k〉 of the effective Hamiltonian He at kx = π/2,
ky = π/2 with the smaller imaginary part, i.e., lower damping. (a) Result for a system in the conventional phase with parameters s0 = 1,
γ = 0, α = 1.5. (b) Result for a system in the exceptional phase with parameters s0 = 1, γ = 1, φ = 0, α = 1.5. Note that the plot range only
covers the energies for which transport occurs and also cuts off some of the more strongly localized states with very high IPRs.

momentum kx = π/2, ky = π/2 (in the center of the Fermi
arc) in the basis of the microscopic eigenstates of the system
and visualize the result in Fig. 7(b) by the color and size of
the plot points. The quasiparticle is comprised entirely of the
four delocalized Bloch eigenstates from the cluster at zero
energy. The other three eigenstates of He with zero (real)
energy and infinite lifetime belonging to the other three Fermi
arcs can also be represented within the same cluster. A similar
outcome is observed for the nondecaying quasiparticles at
other energies.

On the other hand, the quasiparticles with a large imaginary
energy part are composed of a wide range of microscopic
states with high IPR values. Exemplarily, we show the overlap
of one of the quasiparticles in the conventional phase (where
all energies have an imaginary part of about −0.4i) with the
microscopic eigenstates of the system in Fig. 7(a).

The symmetry of our model system reduces the one com-
plex condition that arises from a disorder term restricted to
one orbital to a real one (see Appendix C). In conclusion, the
surviving Bloch states have codimension one and should form
1D submanifolds in the momentum space of our 2D system,
which are precisely the green lines in Fig. 3(a).

Even though there is no direct connection between the
surviving Bloch modes and the occurrence of EPs in the
spectrum of the effective Hamiltonian, the two effects play to-
gether to create the observed transport phenomenology. While
the Bloch states themselves only provide a single transport
channel for a given energy regardless of the system size, they
enforce the lines of vanishing imaginary energy in the spec-
trum of the effective Hamiltonian [cf. Fig. 3(a)] and thereby
a population of quasiparticles with a very long lifetime in the
immediate vicinity of these lines. The transmission amplitude
carried by these regions of the spectrum does also scale with
system size. Since the distance between the EPs grows with
disorder strength, the associated Fermi bubbles broaden and
bring the imaginary part of the spectrum surrounding the
Bloch states closer to zero [cf. Fig. 3(b)], thereby increasing
the transmission amplitude (cf. Fig. 6).

C. Localization behavior

Based on the methods used in an earlier study on anoma-
lous localization [57], we measure the spatial decay of the

probability amplitude relative to the maximum by defining the
correlation function:

g(r, ϕ) =
〈
ln

( |
max|2
|
(r, ϕ)|2

)〉
. (5)

Here, we consider the probability density summed over the
two internal degrees of freedom, i.e., |
|2 = |
A|2 + |
B|2,
let |
max|2 denote the maximum, |
(r, ϕ)|2 the probability
density in relative polar coordinates to the location of the
maximum, and 〈...〉 the average over multiple eigenstates.
For an average localization behavior 
(r, ϕ) ∝ exp[−λrp(ϕ)]
with 0 < p(ϕ) < 1), the correlation function should behave as
g(r, ϕ) = λrp(ϕ).

In general, our data agrees with the above ansatz and sug-
gests that there is no dependence of the value of p on ϕ for
larger systems with similar dimensions in x and y directions.
To properly capture the asymptotic localization behavior, we
investigate systems with a size of Nx = 5000, Ny = 200 by
using the Krylov solver of the sparse matrix library of Scipy
[58] to obtain 100 eigenstates close to zero energy of a ran-
domly generated instance of the system, where we exclude the
surviving Bloch eigenstates in the exceptional phase. From
those, we compute the correlation function as per Eq. (5) in
the direction ϕ = 0, i.e., along the x direction.

Figure 8(a) shows g(r, ϕ = 0) for the conventional phase,
which behaves roughly linear up to the point where 
(r, ϕ =
0) becomes smaller than machine precision and the correla-
tion function saturates. A fit of the form g(r, ϕ = 0) = λrp

yields λ = 0.5, p = 0.73. For other sample geometries and
perturbation amplitudes α, given that the length of the sam-
ple in the direction of ϕ is big enough, we observe similar
behavior and obtain fit parameters p ranging between 0.7
and 1, which we deem compatible with regular Anderson
localization.

For the exceptional phase in Fig. 8(b), a much slower and
nonlinear decay of the correlation function is observed. At
the maximum system length presented here, g(r, ϕ = 0) is
far from saturating and the fit g(r, ϕ = 0) = λrp reveals the
parameters λ = 6.82, p = 0.07. Again, we observe similar
behavior for other sample geometries and obtain values of p
around 0.1 from the corresponding fits. In summary, our data
provides numerical evidence that the exceptional phase of our
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FIG. 8. The correlation function g(r, ϕ = 0) [see Eq. (5)] for system size Nx = 5000, Ny = 200 along with a fit of the form g(r, ϕ = 0) =
λrp. (a) Result for the conventional phase with parameters s0 = 1, γ = 0, α = 1.5. Fit parameters are λ = 0.5, p = 0.73, where only the data
up to the saturation resulting from the limited machine precision was used. (b) Result for the exceptional phase with parameters s0 = 1, γ = 1,
φ = 0, α = 1.5. Fit parameters are λ = 6.82, p = 0.07.

model exhibits anomalous localization. This is also consis-
tent with the subexponentially decaying transport amplitude
(cf. Fig. 5).

VI. CANDIDATES FOR EXPERIMENTAL PLATFORMS

A. Basic requirements

Besides the intriguing algebraic aspects of EPs by them-
selves, a core ingredient for the physics discussed in this paper
is the possibility of quasiparticles with infinite lifetime in a
dissipative environment caused by disorder scattering. Such
extraordinarily long-lived modes are associated with Fermi-
arc regions in between the EPs, where the imaginary part of
the complex spectrum of He (at least approximately) touches
the real axis [cf. Fig. 3(a)]. For this to occur, we have iden-
tified three crucial ingredients. (i) A chiral-symmetric base
model H0, which has symmetry-protected nodal points. The
symmetry implies that the Bloch Hamiltonian H0(k) contains
only two of the three Pauli matrices σx,y,z (or two linearly
independent combinations of them) and reduces the complex
condition from the theorem in Sec. V B to a real one and thus
ensures the survival of Bloch modes at all energies. (ii) A
random disorder with on-site terms of the form

Vj, j ∼ a j (s0σ0 + s · σ), (6)

with |s0| = |s|. The vector s must be chosen such that s · σ

respects the chiral symmetry of the base model H0. This
ensures that the total model can be brought back to a form
where the disorder potential only affects one orbital and the
Bloch Hamiltonian possesses eigenstates that live on the op-
posite orbital by a unitary transformation. (iii) A symmetric
distribution of the random amplitudes {a j} around zero is
required. Any deviation from a symmetric distribution reduces
the length of the Fermi arcs and shifts them away from zero
energy.

B. Square-net materials

As a first candidate, we consider a setup where the two
internal degrees of freedom are given by different atomic
orbitals. We may choose s = (0, 0, 1) to represent disorder on
only one of the two orbitals, since

σ0 + σz

2
=

(
1 0
0 0

)
. (7)

A model of this type may occur within the class of mul-
tiatomic crystals with square subnets which have been found
to exhibit a Dirac dispersion [47,48]. A remaining challenge
then is to restrict the disorder potential (at least to good ap-
proximation) to one of the two orbitals of the atomic species
that forms the square net. In many cases though, the orbitals
are p-like as in LaCuSb2, where the Sb atoms form the square
net that yields Dirac physics [59]. Assuming a crystal growth
direction that results in a square parallel to the surface, pos-
itive and negative ions adsorbed to the surface may affect
one of the orbitals much stronger, since they are club-shaped
in different spatial directions, thus creating a disorder term
similar to Eq. (7).

Our calculations show that the disorder does not have to be
restricted to one orbital perfectly. In particular, if the disorder
strength on one of the orbitals is about 5% of the other one, the
quasiparticles along the green lines in Fig. 3(a) obtain a small
imaginary part, but the characteristic transport signatures still
remain [cf. Figs. 3(b) and 6]. Only at about 10% deviation
from the ideal configuration, the characteristic signatures start
to become unrecognizable.

According to the above ingredient (ii), the Bloch
Hamiltonian H0(k) of the base model should possess a chiral
symmetry that allows σz and one other Pauli matrix. However,
this should not be problematic, since the setup with atomic or-
bitals exhibits real hoppings. Together with the square-shaped
lattice, a chiral symmetry that rules out σy and permits σx, σz

is to be expected.
Along the same lines of reasoning, honeycomb materials

such as graphene or silicene as well as other Dirac materi-
als with nonrectangular lattices do not represent promising
candidates to create an exceptional phase akin to the one
discussed in this paper. The chiral symmetry of such lattices
will generally permit σx and σy in the Bloch Hamiltonian
H0(k), which means that the condition for the existence
of a disorder-insensitive Bloch mode is complex. Thus,
their codimension is two and they will only appear at cer-
tain isolated momenta. This is confirmed by the numerical
studies we conducted on disordered Honeycomb models,
where Bloch modes survived at isolated momenta under the
presence of lattice-selective disorder but no EPs where ob-
served. However, lattice-selective disorder in graphene has
been linked to other interesting phenomena by a previous
study [60,61].
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C. Ultracold atoms in optical lattices with spin-selective
disorder

In the context of atomic many-body systems, a promising
platform for experimentally implementing our model system
is provided by ultracold atoms in (spin-dependent) optical
lattices [62]. In the quest for probing many-body localization,
the experimental realization and control of disorder potentials
in such synthetic material systems in both 1D and 2D has
been impressively demonstrated [63,64]. Moreover, quantum
gas microscopy methods with spin-selective single site resolu-
tion have enabled the observation of antiferromagnetic phases
with cold atoms in optical lattices [65–67]. Combining these
recent developments, our proposed 2D Dirac models with
spin-selective disorder potential are well within the state of
the art toolbox of atomic quantum simulators. Remarkably,
the enormous experimental control over such systems does
not only allow for the observation of spectral properties:
Despite the electrically neutral character of the atoms, also
two terminal transport setups have become amenable in the
laboratory [68,69].

D. Surface states of a topological insulator

Another experimentally well-studied platform for 2D Dirac
physics is based on the surface states of a time-reversal
symmetric topological insulator exposed to magnetic pertur-
bations that affect the electron spin representing the internal
degree of freedom in this setting. There, an exceptional NH
phase has previously been proposed to be induced by the
tunnel coupling to a ferromagnetic thermal reservoir [41].
These ideas may be adapted to our present context of NH
physics induced by disorder scattering in a straightforward
way. Instead of a magnetic lead, the relevant perturbation is
then given by magnetic impurity ions adsorbed to the surface
such that the electro-static potential generates the s0σ0 dis-
order and the magnetic moment the s · σ term [cf. Eq. (6)].
However, it is fair to say that several issues remain with
the disordered version of this setting. To satisfy ingredient
(ii), fine-tuning the amplitude of s0 and s is required. Fur-
thermore, the above ingredient (iii) requires that the on-site
potential s0σ0 changes signs with the direction of the magnetic
moment s · σ. This amounts to having positive and negative
magnetic ions with oppositely oriented magnetic moments.

E. Comparison to materials with tilted Dirac cones

Previous works have demonstrated that EPs can emerge
from trivial disorder (i.e., affecting all degrees of freedom
similarly) as well in 2D Dirac materials with tilted cones
[9–11]. While such systems are probably easier to fabricate
than the ones listed so far, the resulting Fermi arcs are unfortu-
nately buried under a finite imaginary part that increases with
the size of the Fermi arcs, since the nondecaying quasiparti-
cles can only be obtained through orbital-restricted disorder.
This is likely to obscure transport signatures and renders this
class of systems less interesting for our present purposes.

VII. CONCLUSION

In this paper, we have demonstrated the occurrence of
disorder-induced EPs by means of exact numerical calcula-
tions and explored their impact on the transport properties
of a finitely sized sample. For this, we studied a minimal
model of a Dirac semimetal, which can enter a conventional
phase (without EPs) or an exceptional phase through the ad-
dition of random disorder on both or predominantly on one of
the sublattices. The exceptional phase exhibits quasiparticle
excitations with prolonged lifetimes that we tied to orbital
restricted disorder through a rigorous theorem. Besides study-
ing the spectral properties, we computed the two-terminal
transmission and found that a finite sample in the exceptional
phase shows greatly enhanced transport properties at zero
energy when compared to both the clean system and the con-
ventional disordered phase. We demonstrated that this effect
is carried by the aforementioned long-lived quasiparticles and
accompanied by an anomalously slow decay of the local-
ized eigenfunctions. Finally, we outlined possible platforms
for the experimental realization of the proposed model sys-
tems, where the main challenge is represented by engineering
orbital-selective disorder.
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APPENDIX A: PERTURBATION THEORY

Here, we will discuss how the disorder-averaging restores
translational invariance, leading to a self-energy that is local
in k, and derive a perturbative expression for the self-energy
correction on the basis of Chap. 12 of Ref. [45]. In the follow-
ing, we use imaginary frequency iω to shorten the notation
and replace it with iω → ω + iη at the end.

For a system consisting of a solvable Hamiltonian H0 plus
some perturbation V , such that the full Hamiltonian is H =
H0 + V and the free retarded GF G0(iω) = [1iω − H0]−1 in
frequency space is known, one can self-insert the Dyson
equation to obtain a perturbation series for the full retarded
GF G(iω) = [1iω − H]−1 = [1iω − H0 − V ]−1. The result is

G(iω) = G0(iω) + G0(iω)V G0(iω)

+ G0(iω)V G0(iω)V G0(iω) + .... (A1)

If the unperturbed system H0 is a tight-binding model with
translational invariance and n internal degrees of freedom on
each site, the free GF is block diagonal in the Bloch basis and
reads G0

k,k′ (iω) = δk,k′G0(k, iω), where G0(k, iω) = [1iω −
H0(k)]−1 and H0(k) is the nxn-Bloch-Hamiltonian.

We will consider the case of random disorder represented
by similar impurities at each site, but with uncorrelated ran-
dom amplitudes aj (with j ∈ {1, 2, ..., Nx} × {1, 2, ..., Ny})

023248-9



BENJAMIN MICHEN AND JAN CARL BUDICH PHYSICAL REVIEW RESEARCH 4, 023248 (2022)

distributed according to a distribution function f (a). The dis-
order term V may include on-site terms and hoppings between

sites connected by a vector δ = (δx, δy). The generic form in
real-space representation is then

V =
∑

j

a j

[
1

2



†
j VOS
 j + 


†
j+δ1

Vδ1
 j + 

†
j+δ2

Vδ2
 j + ... + H.c.

]

=
∑

j

∑
k,k′

a j
e−i j·(k−k′ )

NxNy
c†

k

[
VOS + (Vδ1 e−iδ1·k + V †

δ1
eiδ1·k′

) + (Vδ2 e−iδ2·k + V †
δ2

eiδ2·k′
) + ...

]
︸ ︷︷ ︸

Vk,k′

ck′ . (A2)

The 

†
j are n spinors of creators for on-site states and the c†

k = 1√
NxNy

∑
j ei j·k
†

j are n spinors of creators for the Bloch-states.

The series from Eq. (A1) leads to an expression for the blocks of the full GF:

Gk,k′ (iω) = δk,k′G0(k, iω) +
∑

j1

G0(k, iω)a j1

e−i j1·(k−k′ )

NxNy
Vk,k′G0(k′, iω)

+
∑

q

∑
j1, j2

G0(k, iω)a j1

e−i j1·(k−q)

NxNy
Vk,qG0(q, iω)a j2

e−i j2·(q−k′ )

NxNy
Vq,k′G0(k′, iω) + ....

To obtain the effective Hamiltonian, this expression is averaged over the impurity amplitudes {a j} by calculating

Gav
k,k′ (iω) = 〈Gk,k′ (iω)〉 f =

∫
da1,1 f (a1,1)

∫
da1,2 f (a1,2)...

∫
daNx,Ny f (aNx,Ny )Gk,k′ (iω). (A3)

In Eq. (A3), we encounter terms of the form 〈∑ j1,... jm
a j1

a j2
...a jm

e
∑m

l=1 ql · jl 〉 f . We can group the sums into those where all
scattering vectors q ∈ Q = {q1, q2, ..., qm} are connected to one, two, three, and so on impurities. The notation |Qr | simply
indicates the number of elements in the subset Qr ⊂ Q.

〈
∑

j1,... jm

a j1
a j2

...a jm
e
∑m

l=1 ql · jl 〉 f = 〈
∑
h1=1

(ah1 )me
∑

q∈Q q·h1〉 f

+〈
∑

∪2
r=1Qr=Q

∑
h1

∑
h2

h2 �=h1

(ah1 )|Q1|(ah2 )|Q2|e
∑

q1∈Q1
q1·h1 e

∑
q2∈Q2

q2·h2〉 f

+〈
∑

∪3
r=1Qr=Q

∑
h1

∑
h2

h2 �=h1

∑
h3

h3 �=h1,h2

(ah1 )|Q1|(ah2 )|Q2|(ah3 )|Q3|

× e
∑

q1∈Q1
q1·h1 e

∑
q2∈Q2

q2·h2 e
∑

q3∈Q3
q3·h3〉 f

+ ....

Now we need to introduce a small error of the order 1
NxNy

by letting the h sums run unrestricted, e.g.,
∑

h2
h2 �=h1

→ ∑
h2

. The

average doesn’t act on the exponentials and the distribution of the amplitudes is uncorrelated, so we can pull the average of the
amplitudes out of the sums. Performing the sums gives a delta function for all momenta connected to the same impurity and we
arrive at

〈
∑

j1,... jm

a j1
a j2

...a jm e
∑m

l=1 ql jl 〉 f = NxNy〈am〉 f δ0,
∑

q∈Q q

+ (NxNy)2
∑

∪2
r=1Qr=Q

δ0,
∑

q1∈Q1
q1

〈a|Q1|〉 f 〈a|Q2|〉 f δ0,
∑

q2∈Q2
q2

+ (NxNy)3
∑

∪3
r=1Qr=Q

〈a|Q1|〉 f 〈a|Q2|〉 f 〈a|Q3|〉 f δ0,
∑

q1∈Q1
q1

δ0,
∑

q2∈Q2
q2

δ0,
∑

q3∈Q3
q3

+ ....
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Bearing this result in mind, we can express Eq. (A3) in terms of Feynman diagrams. It is given by the sum over all
topologically different diagrams of the form

(A4)

which obey simple Feynman rules. The solid-lined propagators with momentum k denote a matrix-valued free GF G0(k, iω).
The dashed propagators denote an also matrix-valued factor VqL,qR

, where qL is the momentum leaving the vertex of the dashed
and the two solid propagators to the left and qR the momentum joining it from the right. A vertex of m dashed propagators obtains
the mth moment of the distribution 〈am〉 f as a prefactor. The dashed propagators formally carry the momentum qR − qL and all
momenta joining a vertex of multiple dashed propagators add up to zero. A sum 1

NxNy

∑
q over all momenta inside a closed loop

is implied.
Now the series can be rearranged by defining the self-energy �(k, iω) as the sum of all irreducible diagrams that cannot be

separated by cutting a single propagator

Because the free Green’s function is given by G0(k, iω) = [1iω − H0(k)]−1, we finally obtain

Gav
k,k(iω) = [1 − (H0(k) + �(k, iω))]−1.

As stated, the self-energy consists of all irreducible diagrams and assumes the form

(A5)

For on-site impurities, i.e., impurities without hopping terms, Eq. (A2) shows that Vk,k′ is a constant and thus the self-energy
�(k, ω + iη) does not depend on k as well, since we integrate over all internal momenta.

APPENDIX B: TRAVELLING DISTANCE OF MODES
THROUGH THE SAMPLE

Figure 9 shows how a wave front travels through a sample
of length L0 at an angle φ. The red line represents the dis-
tance that each point of the wave front has to travel. From

basic trigonometry, one can estimate the length of the red line
to be

L = L0

√
1 + tan(φ)2.

023248-11



BENJAMIN MICHEN AND JAN CARL BUDICH PHYSICAL REVIEW RESEARCH 4, 023248 (2022)

FIG. 9. A wave front (in blue) propagates through the sample at
an angle φ.

APPENDIX C: DISORDER-INSENSITIVE BLOCH MODES

1. Prove of the theorem

Consider a generic tight-binding Hamiltonian H0 with n
internal degrees of freedom and translational invariance per-
turbed by a random disorder term V that only affects a subset
{α} of the orbitals in the sense of random on-site potentials as
well as random hopping terms connecting {α} orbitals from
different unit cells. We will denote the complement of {α} by
{β}, the number of disorder affected orbitals by nα and the
number of the remaining orbitals by nβ = n − nα .

Assuming periodic boundary conditions or the thermody-
namic limit, we may diagonalize H0 by switching to the Bloch
basis with the transformation


 j,α = 1√
N

∑
k

eik(r j+rα )ck,α, 
 j,β = 1√
N

∑
k

eik(r j+rβ )ck,β ,

where 
 j,α (
 j,β) are the field operators annihilating an elec-
tron in orbital α (β) in unit cell j, r j is the position of that unit
cell, rα (rβ) are the positions of the orbital inside that unit cell,
and N is the number of sites. In the Bloch basis, H0 can then
be written as

H0 =
∑

k

c†
k,α

H0,α (k)ck,α +
∑

k

c†
k,β

H0,β (k)ck,β

+
∑

k

c†
k,α

H0,α,β (k)ck,β + c†
k,β

(H0,α,β (k))†ck,α,

(C1)

where c†
k,α

, c†
k,β

denote the vectors of all Bloch wave-state
creators belonging to the set {α}, {β}, H0,α (k) is an nα × nα

matrix, H0,β (k) is an nβ × nβ matrix, and H0,α,β (k) is an
nα × nβ matrix.

The random disorder term V takes the form

V =
∑
k,k′

c†
k,α

Vk,k′ck,α + H.c., (C2)

with a matrix Vk,k′ of size nα × nα .
To find a Bloch state that lives entirely on the subset of

orbitals {β}, we may perform a unitary transformation ck,β →

c′
k,β that diagonalizes H0,β (k) such that Eq. (C1) becomes

H0 =
∑

k

c†
k,α

H0,α (k)ck,α +
∑

k

∑
β

εβ ′ (k)c′†
k,β

c′
k,β

+
∑

k

c†
k,α

H′
0,α,β (k)c′

k,β + c′†
k,β

(H′
0,α,β (k))†ck,α.

(C3)

For |k0, β
′〉 = c′†

k0,β
|0〉 to be an eigenstate of H0 for some k0,

the corresponding column of the coupling matrix H′
0,α,β (k0)

has to vanish. These are nα complex conditions for the exis-
tence of an eigenstate to H0 with energy εβ ′ (k0) that solely
lives on the sublattice {β}.

From Eqs. (C2) and (C3), it is evident that |k0, β
′〉 is also

an eigenstate to the total system H = H0 + V :

(H0 + V )|k0, β
′〉 = (H0 + V )c′†

k0,β
|0〉 = εβ ′ (k0)|k0, β

′〉.
To conclude, we find the codimension of disorder-

insensitive Bloch modes for a generic system with nα

disorder-affected orbitals to be 2nα . However, certain sym-
metries may turn the nα complex conditions to real ones or
require that some of the entries of H′

0,α,β (k) vanish, thereby
reducing the codimension of these Bloch states.

2. Application to our model

The unperturbed Hamiltonian H0 from Eq. (2) obeys the
chiral symmetry

σyH0σy = −H0. (C4)

In general, this will allow for a Bloch Hamiltonian of the form

H0 =
∑

k

(c†
k,A, c†

k,B)(hσx (k) + hσz (k))(ck,A,

ck,B)T =
∑

k

(c†
k,A, c†

k,B)

(
hσz (k) hσx (k)
hσx (k) −hσz (k)

)(
ck,A

ck,B

)
.

(C5)

The disorder term V from Eq. (3) can be brought to a form that
only affects sublattice A by performing a unitary transforma-
tion that amounts to a rotation around the y axis in the space
of Pauli matrices and leaves the symmetry from Eq. (C4)
invariant. The decomposition of H0 from Eq. (C5) in the sense
of Eq. (C3) yields

H0,α (k) = hσz (k),

εβ (k0) = −hσz (k),

H0,α,β (k) = hσx (k).

Note that H0,α,β (k) must be real and that this is a consequence
of the chiral symmetry from Eq. (C4). The condition for the
existence of a disorder-insensitive Bloch mode with some
momentum k0 is now

hσx (k0) = 0

and the associated eigenenergy is

εβ (k0) = −hσz (k0).
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