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High Schmidt-number turbulent advection and giant concentration fluctuations
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We consider the effects of thermal noise on the Batchelor-Kraichnan theory of high Schmidt-number mixing
in the viscous dissipation range of turbulent flows at sub-Kolmogorov scales. Starting with the nonlinear
Landau-Lifshitz fluctuating hydrodynamic equations for a binary fluid mixture at low Mach numbers, we
justify linearization around the deterministic Navier-Stokes solution in the dissipation range. For the latter
solution we adopt the standard Kraichnan model, a Gaussian random velocity with spatially constant strain but
white noise in time. Then, following prior work of Donev, Fai, and Vanden-Eijnden [J. Stat. Mech.: Theory
Exp. (2014) P04004], we derive asymptotic high Schmidt limiting equations for the concentration field, in
which the thermal velocity fluctuations are exactly represented by a Gaussian random velocity that is likewise
white in time. We obtain the exact solution for concentration spectrum in this high Schmidt limiting model,
showing that the Batchelor prediction in the viscous-convective range is unaltered. Thermal noise dramatically
renormalizes the bare diffusivity in this range, but the effect is the same as in laminar flow and thus hidden
phenomenologically. However, in the viscous-diffusive range at scales below the Batchelor length (typically
micron scales) the predictions based on deterministic Navier-Stokes equations are drastically altered by thermal
noise. Whereas the classical theories predict rapidly decaying spectra in the viscous-diffusive range, either
Gaussian or exponential, we obtain a k=2 power-law spectrum over a couple of decades starting just below
the Batchelor length. This spectrum corresponds to nonequilibrium giant concentration fluctuations, which are
due to the imposed concentration variations being advected by thermal velocity fluctuations and which are
experimentally well observed in quiescent fluids. At higher wave numbers, the concentration spectrum instead
goes to a k? equipartition spectrum due to equilibrium molecular fluctuations. We work out detailed predictions
for water-glycerol and water-fluorescein mixtures. Finally, we discuss broad implications for turbulent flows and

applications of our methods to experimentally accessible laminar flows.
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I. INTRODUCTION

Recent work [1-4] has sparked renewed interest in the
effects of thermal noise on turbulent flow, a problem much
neglected since the pioneering work of Betchov more than 60
years ago [5-7]. These new studies have confirmed Betchov’s
insight that the dissipation range of turbulent flows must
be strongly affected by thermal noise. In particular, the en-
ergy spectrum below the Kolmogorov dissipation scale [8],
which has long been expected to exhibit an exponential de-
cay [9-16], instead demonstrates an equilibrium equipartition
energy spectrum in numerical simulations which incorporate
molecular noise [1-3]. The question remains which turbulent
processes at sub-Kolmogorov length scales can be essen-
tially altered by such noise. Prominent among the candidates
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for essential modifications is the turbulent mixing of a high
Schmidt-number passive concentration field. On the one hand,
the viscous-convective and viscous-diffusive ranges in the
Batchelor theory [17] of turbulent mixing occur entirely at
scales below the Kolmogorov scale. On the other hand, ther-
mal fluctuations have long been known to produce striking
effects in the diffusion of scalar concentration in laminar
flows, including a renormalization of the diffusion constant
[18-20] and large, long-range nonequilibrium correlations of
concentration fluctuations [21-23]. We shall therefore focus
in this work on the effects of thermal noise in the turbulent
mixing of a binary fluid mixture at high Schmidt numbers.
Past research on turbulent scalar mixing has rested upon
the assumption that the relevant advecting velocity field must
solve the deterministic Navier-Stokes equation below the Kol-
mogorov scale £x = v3/4s~1/* (with v the kinematic viscosity
and ¢ the energy dissipation rate per mass) and down to nearly
the mean-free path of the fluid. Assuming that the smoothing
effects of viscosity would produce a velocity field with nearly
constant gradient at lengths well below the Kolmogorov scale,
Batchelor in [17] constructed a model of distortion of small
blobs of scalar field by straining motions which were assumed
to be statistically sharp and time independent in a coordinate
system fixed in the blobs. The chief prediction of Batchelor’s
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model with velocity gradient frozen in time was a cascade of
scalar fluctuations ¢’ at wave numbers kfx 2> 1 with Fourier
spectrum

E (k) ~ Cp(x/y )k~ " exp[—Cp(kts)*/2], (1

where fooo E.(k)dk = (%)(|c’|2) and y is the rate of injection
of scalar fluctuations (or, in a statistical steady-state, the rate
of dissipation x = D(|V¢|?) for diffusivity D), y = (g/v)"/?
is the strain rate at the Kolmogorov scale, and £z = (D/y)'/?
is the scalar dissipation length scale, now termed the “Batche-
lor length.” Note that £x /€5 = Sc!/> where Sc = v/D is the
Schmidt number. The constant prefactor Cp in the power-
law spectrum E, (k) ~ Cg(x /y )k~ in the viscous-convection
range for 1/0x < k < 1/4p is often presumed universal and
called the “Batchelor constant”” In his subsequent works,
Kraichnan [24,25] argued that the turbulent velocity gradient
in the sub-Kolmogorov scales, while constant in space, was
rapidly varying in time and he proposed another soluble model
in which the advecting random velocity field was taken to be
Gaussian, white noise in time. Kraichnan’s model predicts a
spectrum at wave numbers k€x > 1 of the form

E (k) ~ Cg(x/vk)(1 + /6Cpklp) exp(—+/6Cpklp), (2)

reproducing Batchelor’s 1/k spectrum in the viscous-
convective range but exhibiting exponential decay in the
viscous-diffusive range for k€p 2 1. Such spectra have been
widely expected in the turbulence community to hold down to
nearly molecular scales.

Later studies have largely verified these predictions of
Batchelor and Kraichnan. A recent paper of Sreenivasan
succinctly reviews observations both by experiment and by
simulation [26]. Experiments have been performed in labo-
ratory flows or by field measurements in the ocean, both for
concentration fields and for temperature fields. Note that it has
largely been assumed in the turbulence literature that, when
buoyancy effects are negligible, advection of concentration
at high Schmidt numbers and of temperature at high Prandtl
number will be equivalent. Experiments supporting the Batch-
elor k=' spectrum have been performed for concentration
[27-29], for temperature [30,31], and for both simultane-
ously [32]. These studies either did not measure spectra in
the viscous-diffusive range or did not resolve with enough
accuracy to discriminate between the distinct predictions of
Batchelor and Kraichnan. The experimental picture is a bit
unclear, furthermore, as some other laboratory experiments
with high Schmidt dye as solute have reported spectra differ-
ent than the predicted k' [33,34]. Most recent studies have
resorted instead to numerical simulations of incompressible
Navier-Stokes turbulence [35-38], obtaining thereby increas-
ingly long intervals of k~! spectra in the viscous-convective
range and furthermore strong evidence in favor of Kraichnan’s
exponential decay spectrum (2) over Batchelor’s prediction
(1) in the viscous-diffusion range. The Batchelor regime of
high Schmidt scalar advection has achieved an iconic status
as “a rare thing in turbulence theory” [25] where exact results
are possible. The theory has since been extended in various
ways, e.g., to allow for finite correlation time of the advecting
velocity (see [39] and further references in [40]), and recently
a rigorous mathematical proof has even been given of the

Batchelor k~! spectrum in a forced two-dimensional (2D)
Navier-Stokes flow [41].

There is reason to believe, however, that thermal fluctua-
tions at sub-Kolmogorov scales will fundamentally change the
picture of high Schmidt-number turbulent advection. Indeed,
thermal fluctuations have long been known to have profound
effects on high Schmidt mixing, prominently diffusion in
liquids. One of the oldest pieces of evidence is the Stokes-
Einstein relation

D = kgT /67t no, 3)

which connects the diffusivity D to fluid temperature 7', shear
viscosity 7, and the radius o of a spherical particle in solution.
Significantly, this relation has long been known to be empiri-
cally valid quite generally for solutes in liquids, with o close
to the particle radius. We quote from a seminal 1945 paper of
Onsager on liquid diffusion:

“the ratio [ = kT /Dn is a length of the order of magnitude
of molecular dimensions, normally smaller than the value
6ra...

From the point of view of molecular theory, viscous flow
and diffusion present parallel problems. It would seem that
for an exact theory of either, we should have to analyze the
cooperative character of the molecular motion involved; but
this difficult analysis has not yet been developed further than
the hydrodynamic approximation.” [42]

The appearance of shear viscosity in the empirical Stokes-
Einstein relation thus hints that mass diffusion and momentum
diffusion are strongly coupled processes. Indeed, the observed
diffusivity D in liquids generally differs considerably from the
“bare” collisional diffusivity Dy predicted by Enskog kinetic
theory [20].

A second striking piece of evidence for the importance
of thermal noise is the “giant concentration fluctuations”
(GCF’s) observed both in free diffusive mixing [43,44] and in
nonequilibrium steady states with an imposed concentration
gradient [45,46]. These effects were predicted using linearized
fluctuating hydrodynamics [21-23] and are a particular in-
stance of the spatial long-range correlations of fluctuations
which are generic for systems away from global thermody-
namic equilibrium [47-50]. The basic prediction involves the
static structure function S..(k) defined in terms of the Fourier
transform of concentration fluctuations ¢’ (k) by

(@R (K)) = 27)°8* (k+K')Scc (k). “

It should be noted here that this structure function is related
to the scalar spectrum commonly considered in turbulence
theory by the relation E.(k) = ﬁszcc(k). The result which
has been confirmed by experiment is a power-law scaling

kgT
See(k) ~ ;;nmﬁk—“ (5)

down to very low wave numbers, limited only by the fluid
domain size or by buoyancy effects [51,52]. In low-gravity
environments these fluctuations are truly “giant,” growing to
macroscopic scales and with amplitudes orders of magnitude
larger than equilibrium concentration fluctuations [43,46].
The scale invariance corresponds to fractality of the con-
centration isosurfaces, which are being advected by thermal
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velocity fluctuations with long-range correlations induced by
pressure forces. These striking nonequilibrium fluctuation
effects have been the subject of many experimental inves-
tigations, including the up-coming NEUF-DIX microgravity
experiment of the European Space Agency [53,54]. It is worth
remarking that these long-range fluctuation correlations and
the Stokes-Einstein relation for diffusivity are not necessar-
ily independent manifestations of thermal noise, but may be
connected by heuristic arguments [55].

A remarkable link of such thermal effects with turbulence
theory has been discovered in the work of Donev, Fai, and
Vanden-Eijnden [56] (hereafter, DFV). In most liquids, a
large separation of timescales exists between the fast viscous
dynamics of the thermal velocity fluctuations and the slow
diffusive dynamics of solute molecules, i.e., momentum diffu-
sion proceeds much faster than mass diffusion. DFV exploited
this fact to develop an exact high Sc asymptotic reduction
of the equations of fluctuating hydrodynamics for a binary
fluid mixture under the condition of incompressible, isother-
mal flow. Importantly, the DFV theory does not linearize
the equation for the concentration field and treats nonlinear
advection exactly. The conclusion of the DFV analysis is a
reduced stochastic equation for individual realizations of the
concentration field on long, diffusive timescales in which the
scalar is advected by a modified thermal velocity field which
is Gaussian, white noise in time. Thus, the long-time, high Sc
limiting equation for the concentration field is a version of the
exactly soluble Kraichnan model [24,25,40] which has been
widely used to study turbulent scalar advection.

As a result, the DFV theory yields exact closed equa-
tions for the correlation functions of all orders in the
scalar concentration field. In particular, DFV showed that
the equation for the ensemble-average concentration field
exhibits a renormalization of the bare molecular diffusiv-
ity Do and yields naturally the Stokes-Einstein diffusivity
D as a renormalized “eddy diffusivity” due to advection
by thermal velocity fluctuations. As discussed in [56], the
effective stochastic equations for individual realizations of
the concentration field are furthermore more efficient to
solve numerically than the original fluctuating hydrodynamics
equations, by a factor of Sc, since the fast viscous dynam-
ics of the thermal velocity fluctuations has been eliminated.
DFV demonstrated in numerical simulations of free diffu-
sive mixing that these model equations produce the fractal
scalar interfaces which are observed experimentally and also
power-law GCF’s of the concentration. They did not, however,
observe clearly the k= scaling (5) of the concentration struc-
ture function, as predicted by linearized theory, but instead
observed a scaling closer to K~ in the quasisteady regime
of decay. It has therefore been unclear how to reconcile the
DFV asymptotic theory with the experimental observations
verifying the prediction (5).

In this paper we shall illuminate the latter issue and,
furthermore, we generalize the DFV theory to include turbu-
lent advection by combining it with the original approach of
Kraichnan [24,25]. In this manner, we can study analytically
the effects of thermal noise in the sub-Kolmogorov scales on
high Schmidt turbulent advection. We choose to consider here
a statistically stationary turbulent cascade with injection of
concentration fluctuations at a constant rate x at a length scale

L 2 £ by a stochastic source field. We find that the Batche-
lor k~! scalar spectrum in the viscous-convective interval is
unaffected by thermal noise, despite the rapid decay of kinetic
energy spectrum in sub-Kolmogorov scales being replaced by
a k? equipartition spectrum. Working in physical space, we
find more precisely that the steady-state concentration corre-
lation function C(r) = (¢’(r)c’(0)), with r = |r|, exhibits the
logarithmic scaling

Cr) ~Clx) +Colntte/r). s SrSte (6)
14

whose Fourier transform yields exactly the Batchelor-
Kraichnan k! spectrum. Our key finding, however, is that
giant concentration fluctuations with a k=2 power-law scalar
spectrum occur in the viscous-diffusive range, replacing the
rapidly decaying spectra predicted by Batchelor and Kraich-
nan. In physical space we get

C(r)~C(0)—2X—D(r2+3crr+-~-), o<r<t; ()

where o is a length of order of the radius of the solute particle.
The first term in (7) is the one oc(|V¢|?)r? which is expected
for a smooth concentration field and which would arise from
the rapidly decaying spectra of Batchelor and Kraichnan. The
second term appears to be subleading and negligible until
r >~ o. However, this term is nonanalytic in r and on Fourier
transforming produces a k=2 power law which dominates the
spectrum for k€p 2 1. We obtain an exact solution for the
scalar spectrum E, (k) of our model in terms of known spe-
cial functions, which exemplifies this behavior. Note using
the Stokes-Einstein relation (3) and x = D(|Vc|?) that the
Fourier transform of the term o in (7) yields the concentra-
tion spectrum

X0 1 kgT

E.(k) ~ "=k ~ — —(|Vc[")k 2,

kég =1 (8
7D 672 Dn sl ®

which, except for being smaller by a factor of 2, corresponds
exactly to the structure function scaling in (5) associated to
the giant concentration fluctuations observed experimentally
in laminar flows. Eventually, at higher wave numbers, ther-
mal equilibrium fluctuations of the concentration field must
begin to dominate and an equipartition spectrum E, (k) o k?
should appear; for a detailed discussion of the equilibrium
spectrum see Sec. IV and Appendix A. Because of this ef-
fect of molecular fluctuations, the concentration gradients V¢
become dependent upon a high-wave-number cutoff A in the
model and the estimates by the relation (|V¢|?) = x /D must
be interpreted as “effective gradients” holding over a certain
range of scales. This somewhat subtle issue will be discussed
at length in the following.

The theoretical predictions of our analysis for the con-
centration spectrum are illustrated in Fig. 1 for the specific
case of a water-glycerol mixture. The Kolmogorov turnover
rate y = 10? s~! is chosen very close to that in recent fluid
turbulence experiments with water-glycerol solutions in a von
Karmén flow [57]. No experiments have been performed on
turbulent high Schmidt mixing with water-glycerol mixtures,
as far as we are aware, so that we have chosen x = 10% s~!
from one of the more recent laboratory experiments with a wa-
ter solution of disodium fluorescein [28]. In this hypothetical
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FIG. 1. Our predicted scalar concentration spectrum (red solid
line, —) and the prediction of Kraichnan [25] (Kr74; green dashed
line, - - -), for a water-glycerol solution at temperature 7 = 25°C,
pressure p = 1 bar, and mean concentration of glycerol ¢ = 0.5,
with y = 10% s7! and x = 10 s~!. Distinct ranges of the concen-
tration spectrum are labeled as follows: Batchelor’s k! spectrum
(Ba59); k2 power law associated to giant concentration fluctuations
(GCF); k?* equipartition spectrum (EQ). The vertical dashed (---)
and dotted lines (+++-- ) indicate, respectively, the Kolmogorov wave
number 27 /€x = 44.7 cm™! and Batchelor wave number 27 /€5 =
7034.5 cm~!.

experiment, we predict more than two decades of power-law
spectrum E, (k) o< k=2 associated to giant concentration fluc-
tuations appearing at scales just below the Batchelor length,
which is here £z = 1.98 um.

It is important to emphasize that, even if there is no tur-
bulent velocity field and the scalar is advected by thermal
velocity fluctuations only, then the power law (8) still holds,
extending down now to wave numbers k >~ 1/L in our steady-
state model with a random, spatially distributed source of
concentration fluctuations. Including turbulent shear, these
GCF’s of thermal origin are supplanted by the Batchelor-
Kraichnan k~! spectrum of concentration fluctuations at the
wave numbers k€p < 1 in the viscous-convective range. This
effect is similar to the “shear quenching” of GCF’s predicted
for small departures from global equilibrium (weak shear)
using linearized fluctuating hydrodynamics [58], although the
turbulent k' spectrum differs substantially from the k/3
spectrum predicted for the weakly sheared case. There has
been some question whether such shear quenching will hold
in experimentally realizable flows, with gravity and finite-size
effects argued instead to limit the GCF’s at low wave num-
bers [59]. We have not included buoyancy in our analysis,
but this was done in the work of DFV and gravity effects
can thus be considered, in principle, within our framework.
Unfortunately, including gravity in the asymptotic mode re-
duction of DFV for Sc > 1 produces an effective equation for
concentration with a term quadratic in ¢, due to advection
of concentration by self-induced velocity fluctuations arising
from buoyancy. [See Eq. (102) later in the text.] Because of
this quadratic nonlinearity, closed equations are no longer
obtained for the correlation functions of the concentration,

fundamentally complicating mathematical analysis. We shall
comment more on this issue below.

The main message of our work for turbulence theory
is that thermal noise completely alters the character of the
viscous-diffusive range of high Schmidt-number turbulent ad-
vection, leading to fundamentally different predictions than
those based on deterministic Navier-Stokes dynamics. This is
likely to be true also for other physical processes in turbulent
flows that involve essentially the sub-Kolmogorov scale mo-
tions, such as combustion [60-62], condensation [63—-65], and
locomotion of micro-organisms [66—68], not to speak of the
intrinsic nonlinear turbulent dynamics itself. The presence of
giant concentration fluctuations in turbulent flows should not
have been unexpected because they are a generic feature of
diffusive mixing far from global equilibrium. We quote from
the paper of Vailati and Giglio:

“So the orders-of-magnitude increase of the fluctuations above
the equilibrium value (the most prominent feature that can be
captured experimentally) is to be expected for any nonequi-
librium fluid that has macroscopic concentration variations
comparable to those in this experiment” [43].

It will, unfortunately, be probably very difficult in the
near future to observe these effects in laboratory or field
experiments on high Schmidt turbulent advection because the
Batchelor length ¢p is generally near micron scales and no
current experimental techniques can probe such small scales
in a turbulent flow with the required accuracy. The most re-
cent experiment on turbulent high Schmidt mixing of which
we are aware [29] measures concentration fluctuations via
laser-induced fluorescence with an optical fiber probe hav-
ing a spatial resolution of 2.8 um, which is close to the
Batchelor scale. However, instrumental noise dominates the
measurements before even getting to this scale (see [29],
Fig. 3). It should be quite possible, on the other hand, to
test our predictions by means of numerical simulations of
high Schmidt-number turbulent mixing with existing codes
for low Mach-number fluctuating Navier-Stokes equations of
multicomponent [69] and binary [70] mixtures.

The main message of our work for statistical physics is
that methods from turbulence theory provide effective tools
to study nonequilibrium thermal fluctuations more generally,
as originally suggested by DFV [56]. The DFV theory applies
not only to turbulent flows, but also to laminar flows, such as
the free diffusive mixing of an initial blob of concentration
in a quiescent (zero Reynolds-number) fluid. The DFV the-
ory treats nonlinear advection of scalar concentration exactly
without need for linearization, and, as seen from our result
(8), it is able to recover GCF’s with the scaling S..(k) ~ Kk
which is observed experimentally. This approach is thus able
to deal with large-amplitude fluctuations driven by strong
gradients, high concentrations, and nonsteady transient dif-
fusion processes, which are difficult theoretical problems
driving current empirical investigations such as NEUF-DIX.
We therefore expect that the first experimental tests of validity
of these methods will come from novel applications to diffu-
sive mixing in laminar flows.

Because our paper is somewhat lengthy, it is useful to
briefly outline its contents. Section II discusses the DFV
asymptotic theory of the high Schmidt-number limit, first
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reviewing the original work for zero mean flow (Sec. 11 A)
and then extending that analysis to turbulent flows, assuming
Kraichnan’s standard model for the dissipation-range velocity
field (Sec. II B). In the main mathematical Sec. III we exactly
solve the limiting model for the concentration spectrum in a
statistical steady state with constant injection of scalar fluctua-
tions. We first review necessary background on the Kraichnan
white-noise advection model and mathematical methods em-
ployed in its solution (Sec. III A). We apply these methods to
solve for the static two-point correlation function of concen-
tration fluctuations (Sec. III B) and then compute analytically
its Fourier transform to obtain the concentration spectrum
(Sec. IIT C). In Sec. IV we develop concrete predictions of our
theory for turbulent mixing of water glycerol and water flu-
orescein, and in the final Sec. V we discuss implications and
possible extensions of our work. Several Appendixes (A—H)
provide technical details of the derivations, background ma-
terial for easy reference, and numerical methods for plotting
our analytical results.

II. DFV THEORY AND HIGH Sc LIMIT

In this section, we shall first concisely review the work
of DFV [56] on diffusion of scalar concentration in the
asymptotic limit of large Schmidt numbers. DFV considered
the problem where the fluid is at rest, in global equilibrium,
and performed a formal adiabatic mode-elimination procedure
for the fast thermal velocity degrees of freedom. In the limit
they obtained reduced model equations for the scalar con-
centration field in which the effective advecting velocity is
Gaussian and white noise in time (Kraichnan velocity), so that
closed equations follow for all scalar correlation functions.
We shall here extend the asymptotic analysis of DFV to a
turbulent fluid in the Kolmogorov dissipation range, adopting
further Kraichnan’s white-noise velocity approximation for
the turbulent velocity field. The result of the adiabatic elimi-
nation is another Kraichnan model for the scalar concentration
field, in which the Gaussian, white-in-time velocity field has
two independent contributions representing advection by tur-
bulent fluctuations and by thermal fluctuations. The resulting
closed equations for the scalar two-point correlations in this
reduced model will be solved exactly in Sec. III.

A. Fluid at rest

In a fluid at rest, i.e., with no large-scale motion, ther-
mal fluctuations produce the entire velocity field v = vy. For
low Mach-number isothermal fluids, DFV adopted a standard
model of linearized incompressible fluctuating Navier-Stokes
equation for the velocity field v:

PV = —Vp+nAv+V - (V2nksT n(x,1))
= PnAv+V - (v2nkgT n(x,1))], 9

where p, n, and T, represent, respectively, the mass density,
shear viscosity, and temperature, all assumed to be constant,
and kg is Boltzmann’s constant. Also, p is the kinematic
pressure, which may be replaced by the tensor operator P;; =
8;j — 9;0 jA‘l, the Leray-Hodge projection onto the space of
divergence-free velocity fields, so that the incompressibility

constraint

V.v=0 (10)

is maintained. The white-noise symmetric, traceless tensor
field n(x, t) represents a thermal fluctuating stress, with mean
zero and covariance

2
(i (x, O (x', 1) = <5ik5j1 +8idjx — 351;;5“)

x 83(x —x)8(t —1). (11)

The prefactor «/2nkgT is chosen according to the stan-
dard fluctuation-dissipation relation so that the correct Gibbs
equilibrium distribution is obtained for the equal-time veloc-
ity statistics, with energy equipartition among wave-number
modes. For example, see [2], Appendix A, for a careful
discussion.

For the scalar concentration field c(x, ¢) in a binary mixture
of two identical fluids of molecular mass m, DFV adopted the
fluctuating advection-diffusion equation

dc=—u-Ve+ V- (DyVe+2mDop~le(1 — ¢) 5.(x, 1)),

(12)
where u is a smoothed advection velocity (see below), Dy is
the bare molecular diffusivity, and ».(x, t) is a white-noise
vector field representing a thermal fluctuating mass flux, with
zero mean and covariance

(nei(x, Dne; (X, 1)) = 8;;8( — )8 (x —x)  (13)

(see also [71]). Here again the factor \/2mD0,o*1c(1 —c)
in the noise term is dictated by the fluctuation-dissipation
relation, so that the concentration fluctuations have their
equilibrium equal-time statistics given by the Boltzmann-
Einstein formula determined from the entropy of mixing. See
Appendix A for this standard argument in statistical ther-
modynamics. Note that DFV considered only the limit of
low concentrations ¢ < 1 in their work, so that they took
c¢(l —c) =c, but in our analysis we allow arbitrarily high
concentrations. Finally, a key step in the theory of DFV was to
assume that the concentration field of tracer particles (tagged
particles of the fluid, solute molecules, colloidal particles,
etc.) is advected by a coarse-grained velocity u obtained by
convolving v with a smoothing kernel o,

ux,t)=o*xv= /o(x, XWX, t)d>x. (14)
This convolution filters out features at scales below a cutoff
scale o, taken to be of order of the typical linear size of a
tracer particle.

The theoretical justification for the starting equations (9)
and (12) of the DFV theory must be discussed briefly. The
fluctuating hydrodynamic equations of a general binary mix-
ture with nonconstant density and temperature fields have
been derived in [72] by the phenomenological arguments of
statistical thermodynamics, based upon the corresponding hy-
drodynamic equations (see [73], Sec. 22.7). In principle, these
stochastic equations should be derivable by the Zwanzig-Mori
projection methods which have been applied to obtain fluc-
tuating hydrodynamics for simple, single-component fluids
[74,75]. An important point which becomes clear from these
derivations is that the equations of fluctuating hydrodynamics
such as (9) and (12) should not be considered as continuum
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stochastic partial differential equations. Instead, they are low-
wave-number effective theories which describe the physics
only of modes at wave numbers less than some cutoff A,
generally taken to be of order the inverse of the mean-free-
path length. Thus, the spatial delta functions which appear in
the covariances (11) and (13) should in fact be interpreted as
“cutoff delta functions” §,(x — x’) [see (A6) in Appendix A
and [74]].

To obtain the final form of the fluctuating hydrodynamic
equations (9) and (12), the low Mach-number, isothermal limit
must be taken. This has been carefully considered for a binary
or a general multicomponent fluid in [69,70]. This analysis
leads to equations close to (9) and (12), except that the incom-
pressibility constraint differs from (10) and the momentum
equation (9) contains the nonlinear advection term (u - V)u.
As to the first, the constraint on the velocity derived in [70]
for the binary fluid mixture in the low Mach limit is

V.v=-V.(BF),

where F =DyVc+ \/2mD0,0—1c(1 —c)n, and where
B(c) = (1/p)(@p/dc)p, 1, is the solutal expansion coefficient
at background pressure Py and temperature 7y. The above
constraint thus reduces to (10) if either volume changes little
with concentration (8 near zero) or if the bare diffusivity Dy is
negligible, as DFV explicitly assume. The second difference,
the neglect of the nonlinear advection term, is justified by the
renormalization group analysis of [76,77], which implies that
in thermal equilibrium the nonlinearity becomes negligible at
sufficiently low wave numbers and frequencies. A quantitative
estimate provided in [2] implies that the nonlinear coupling
should be weak except for length scales of order the radius
of the fluid molecules, where no hydrodynamic description
is valid in any case. Finally, the key assumption of DFV that
tracer particles are advected by the smoothed velocity field
(14) is intuitively plausible since such particles can feel only a
resultant velocity averaged over fluctuations at a scale smaller
than their size o. This hypothesis is further motivated in [56],
with reference to earlier works such as [20] on the modeling
of fluid-tracer interactions in diffusive mixing.

The essential result of DFV is an exact analysis of the
high Schmidt-number limit Scy = Diop > 1 for the model
equations (9) and (12). Motivated by the empirical success of
the Stokes-Einstein relation D ~ kgT /no, DFV introduced a
small parameter € < 1 to order quantities for formal asymp-
totics and adopted a scaling

n— 6_117, Dy — €Dy (15)

so that Dyn ~ (const) and Scy ~ € 2. In the limit € < 1
there is a separation of timescales between the fast viscous
dynamics, governing the thermal velocity fluctuations v, and
the slow diffusive evolution of the concentration field c. DFV
formalized this separation by introducing a “macroscopic”
diffusive time t which is related to the “microscopic” viscous
time ¢ of Egs. (9) and (12) by t = €'t or, equivalently, by the
scaling

t—> et (16)
with T renamed . These scalings can be used in a formal

adiabatic mode elimination of the fast velocity degrees of
freedom, which will be discussed in detail in Sec. II B for the

more general case of a turbulent flow. The result is a limiting
stochastic advection-diffusion equation for the concentration
field in the “macroscopic” time:

dc=—-wO Ve+DyAc+ V- (vV2mDop~—'c(1 —¢) 3,).
17)
Here O represents a Stratonovich dot product and w(x, t) is
an incompressible, advecting random velocity field which is
white noise in time, with zero mean and covariance

(wx,t)@wix',t')) = R(x,x)é@¢ — 1),

R(x,X) := 2/oo(u(x,t) Qux',t +1"))dt
0

(18)

and which can thus be shown to be given by
2kgT

R(x,x) = (*G*a')(x,X), (19)
where G is the Green’s function of the linear Stokes operator
A = —PA, or the so-called Oseen tensor. For example, in
unbounded three-dimensional (3D) space

ij / ij / 1 g,
G'x,xX)=G'"x—x)= — 8"+ — (20)
8mr r?
with r = x — x'. Note that G is singular for x = X/, but the
smoothed tensor R is regular at coinciding points. The spa-
tial realizations of w are obtained from the stationary Stokes
equation with smoothed thermal forcing

[2vkgT
P[UAW + V . ( ka 1’0)}
P
2UkBT
:—Vq+vAw+V~( 170):0 21
V 0

with 9, = o * 9 and g determined by V - w = 0. This equa-
tion expresses the physics that viscous diffusion and smoothed
thermal fluctuations are in instantaneous balance for the effec-
tive velocity w, with long-range spatial correlations induced
by the incompressibility constraint.

Although the change from Eq. (12) to (17) in the limit
€ — 0 for the concentration field may seem minor, a crucial
physical contribution is obscured in (17) by the stochastic
calculus. Converting instead to the equivalent Itd form, which
is most appropriate to calculate ensemble averages, produces

0;c = —w-Vc+DyAc+ V- [Dx)Vc]
+V - (2mDop~Te(1 — ¢) p,), (22)

with an additional drift term V - [D(x)V¢] which contains a
renormalized diffusivity

D(x) = 1R(x, x). (23)

The physical origin of this addition to diffusivity is advection
by the eliminated thermal velocity fluctuations, similar to an
“eddy diffusivity” due to eliminated turbulent eddies. Under
further assumptions of homogeneity and isotropy, D becomes
independent of x and D;; = Dg§;;, with the enhanced scalar
diffusivity D calculated in [56] for a particular choice of filter
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kernel o as

p= 2T (1
6 no
where L is the linear dimension of the flow domain and o0 < L
is the size of the tracer particle and where space dimension is
3. The size-dependent correction of order O(o /L) is tiny for
macroscopic systems but is a well-known effect in molecular

dynamics (MD) studies of diffusion coefficients [78,79].

Importantly, (24) corresponds exactly to the Stokes-
Einstein formula for the renormalized diffusivity D which,
since Dy < D, dominates in the total effective diffusivity
Dt = Dy + D = D. Although the filter kernel o was spe-
cially selected in [56] to produce the precise numerical
prefactor in the original Stokes-Einstein relation for hard
spheres, an arbitrary kernel yields (24) with 6 replaced by
some other numerical constant of order unity. Thus, the DFV
theory explains the empirical success of the Stokes-Einstein
formula as the effect of strong renormalization of a small bare
diffusivity due to advection of tracer particles by thermal ve-
locity fluctuations. This is one of the significant results of the
DFV theory. Note that similar augmented diffusivities have
been obtained in renormalization group studies of a passive
scalar advected by thermal velocity fluctuations, without the
assumption of high Schmidt numbers [76,77]. However, those
studies did not incorporate the fluctuation-dissipation relation
for the scalar and thus have uncertain relevance to physical
diffusion processes.

A further important consequence of the DFV theory,
which, however, was not fully utilized in [56], is the existence
of closed equations for the scalar correlation functions of any
order. This result shall be exploited in Sec. III where it will
be shown that the DFV theory predicts the well-known giant
concentration fluctuations, but without the usual approxima-
tion of linearizing the advection term in the concentration
equation. It is this capability to deal with nonlinear advection
which makes the DFV approach particularly useful to study
the scalar concentration field in a turbulent flow.

V2o

B. Turbulent flow

For turbulent flow, the full nonlinear form of the fluctuating
hydrodynamics equation [3,69,70,76,77] must be used

v ="Pl=(-V)V+VAV+ V- (2vkgT /p n(x, 1))],
(25)
where v = n/p is kinematic viscosity and where the white-
noise term n has covariance (11), just as before (see [2],
Appendix A). We can, however, decompose the velocity into
a “turbulent part” and a “thermal part” as

vV =vr + Vg,
where the turbulent velocity vy satisfies the deterministic
Navier-Stokes equation and vy represents the small thermal

fluctuation around that solution. An equation for vy follows
by the standard approach of linearization:

9:vg = P[—vr - Vvg — Vg - Vvr + vAvy

+V - (2vksT [ p 0(x, 1))).

The neglect of the nonlinear term vy - Vvy assumed in this
approximation is valid because it is small compared with the

(26)

viscous term VAvy in the turbulent dissipation range below
the Kolmogorov scale £k, which is our focus of interest here.
The matter was discussed in [2], Sec. II B, where it was noted
that the ratio of this nonlinear term to the viscous term (which
is a kind of scale-dependent “thermal Reynolds number” Re?)

is of order 0,1</ > at the Kolmogorov scale £ = £x, where 0 =
kgT /pv2L3 is the ratio of fluid thermal energy to the kinetic
energy of a Kolmgorov-scale eddy. Since g ~ 1076-107° in
realistic flows, the neglect of the nonlinear term is justified
throughout the turbulent dissipation range and down to nearly
molecular scales.

We shall take for the scalar concentration field the same
equation as did DFV:

d¢c=—u-Vec+ V- (DgVe++/2mDop~le(1— ¢) n.(x, 1)),
27
but with the crucial difference that now

u=ur +uy, (28)

where ur = o xvy and uy = o xvy. We emphasize that
Eq. (27) is fundamentally different from Eq. (12) since it
includes the effects of turbulent advection as well as advection
by thermal velocity fluctuations. Because we consider here the
turbulent dissipation range at scales below the Kolmogorov
length ¢¢, where the velocity vy is smooth, and because £ >
o, we should expect that o x vy >~ vy. However, the coarse
graining at scale o remains crucial for the much rougher
thermal component.

Equations (26)—(28) are the basis of all of our subsequent
analysis. To make the problem mathematically tractable, how-
ever, we shall follow Kraichnan [24,25] in further modeling
the Navier-Stokes solution vy in the turbulent dissipation
range as a Gaussian random velocity field, white noise in time,
with zero mean and covariance

(vr(x,1) ® vr (X', 1)) = Vr(x = x)s(t — 1), (29)

where

Vrij(x) = 2Vro8i; — 20 (Q2r78;; — rirj) (30)

and 2Vrod;; = Vr,;;(0). We consider here statistically homo-
geneous flows (periodic domains or infinite space) so that
the covariance depends only upon the difference r = x — x'.
The constant Vo with units of (length)2 /(time) represents
the sweeping effects of large integral-scale eddies, while the
constant I" has units of 1/(time) and its magnitude should be
taken to be of order of the inverse Kolmogorov time (the eddy
turnover rate at the Kolmogorov scale).' Equations (26) and
(27) now become

Vg = P[—Vr O Vvyg — Vg © Vvr + VAV

+V - (20ksT /p n(x, 1)), 31)
oc=—-u®Vec+V.-(DyVc
+v2mDop~Te(1 = ¢) n.(x.1)). (32)

'Our constant I' is chosen to coincide with D; in Eq. (48) of [40] for
the case £ = 2, d = 3 and thus equals A/30 in terms of the constant
A introduced in the original work of Kraichnan [24,25].
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Because of the white-noise character of uy, we must spec-
ify the stochastic calculus and © indicates a Stratonovich
dot product. This is the standard choice for the Kraichnan
model because it is considered as the zero-correlation limit
of a model with a stochastic advecting velocity field that has
finite-time correlation. By taking space derivatives of (30),
one obtains

(Bkvri(x, 1)devr (X', 1))
= 21" (48;8ke — SikSje — Sie8jx)8(t — 1), (33)

which makes clear that Kraichnan’s model of the velocity field
in the turbulent dissipation range corresponds to a spatially
uniform random straining field, rapidly varying in time. As
a consequence, the smoothed turbulent velocity field uy =
o * vy has a spatial covariance Uy which differs from Vr
in (29) only by the replacement of V¢ with a constant Uy
larger by an amount ~I'o'. To avoid possible confusion, we
note that this constant-strain model introduced by Kraichnan
[24,25] was later generalized by him [80] to involve arbitrary
spatial covariance and this generalization is now more com-
monly known as the “Kraichnan model” (see Sec. IIL A).

The high Schmidt-number limit of our turbulent advection
problem can be studied by the same formal asymptotics with
the small parameter € < 1 used by DFV, with identical rescal-
ings (15) and (16). The key physical issue is the ordering to
be adopted for the white-noise turbulent field v7. The correct
ordering can be motivated by the observation that for Navier-
Stokes turbulence

d 1

dt 2
where we used the fact that I' is of the order of the in-
verse Kolmogorov time. Now invoking the rescalings 7 +—
e~ 't, v~ e 'v we see that I" must be rescaled as " > €T".
Stated equivalently, the turbulent velocity gradient must be
ordered so that, with large viscosity, a finite total amount of
energy is dissipated in a unit “macroscopic” time. Together
with the covariance of the white-noise field (29) and (30) and
the scaling f — €~ 't, one then obtains

(V?) = v(IVV ) ~ uI?,

vr(x,t) — evr(X,1).

We shall see below that this ordering leads to turbulent advec-
tion making an O(1) contribution in the high Schmidt-number
limit.

Before discussing the formal € — 0 limit, we first consider
the inclusion of additional terms into the concentration equa-
tion (32) to enable a steady-state scalar cascade. As written,
Eq. (32) corresponds to a freely decaying scalar. While this
setup permits a Batchelor regime (e.g., see [25,28]), it entails
the complication of nontrivial time dependence. It is simpler
to analyze instead a steady-state cascade with some external
source included to inject concentration fluctuations, so that
a time-independent balance can be achieved with diffusive
dissipation. That is what we shall do in this work. The simplest
source to include for this purpose is a constant mean con-
centration gradient y = (V¢), which contributes an additional
term —p - u to (32) that injects scalar fluctuations. Such a con-
stant concentration gradient has been often considered, both in
turbulence [36,81] and in statistical physics [23,46,58], having
the motivation that it is realizable in laboratory experiments.

An alternative source of scalar fluctuations more amenable to
mathematical analysis is a spatially distributed source s(x, t),
which may be either deterministic or random. In the latter
case, a Gaussian random source field which is white noise in
time is especially convenient because it gives exact control of
the rate of injection x of scalar fluctuations. In particular, with
covariance

(s(x,)s(x', 1)) = 8(t — t')S(X%X,) (34)

it follows that in the statistically stationary state
38(0) = Do(|Vel) = x (33)

and rate of input of scalar fluctuations matches the dissipation
rate by diffusion [82]. Here S is a smooth, positive-definite
function and thus L gives the length scale of injection of the
scalar fluctuations. It is such stochastic white-noise forcing
which we shall analyze in this work, but for future appli-
cations we shall derive the reduced equations for all of the
various scalar sources.

What is important to consider in including scalar source
terms into Eq. (32) is their ordering in the small parameter
€ < 1. We shall rescale these quantities so that they appear
at O(1) in the final equation for the concentration and, thus, a
strong scalar cascade is obtained in macroscopic time. The fi-
nal equations we consider, with all quantities properly ordered
but expressed in original microscopic time units, is

vy = Pl—/evr © Vvy — vy - /eVVr + ve Ay

+V - (V2vetkgT /p n(x, 1)1, (36)

8¢’ = —Jeur © (V' +p) —uy - (V' + p) + €Dy Al
+eso(x, €t) + Jes(x, 1)
+V - (V2e mDop~"e(1 — o) (x, 1)). 37

Here ¢’ denotes the scalar fluctuation, so that (¢} =0,
and thus ¢ = ¢’ + y - x. Note that \/evr (X, e~ =evp(x, 1)
because of the scaling properties of white noise, in agree-
ment with our previous argument. Likewise, the white-noise
random scalar source satisfies /€s(x, ety =es(x,1). A de-
terministic distributed source, denoted here by sp, is assumed
to have zero space average and is scaled as esy (X, €f), which
amounts to the assumption that it is weak and slowly varying
in microscopic time units.

Finally, changing to macroscopic or diffusive time by the
substitution ¢ > €~ !t we get the equations

3 vy = P[—vr O Vvg — vg - Vvy + ve 2Avy
+V - (V2ve2kgT / p n(x, 1))], (38)

o = —ur(x,1) O (V' +p) —e lup(x, e '1) - (V' + p)
+ DoAc + so(x, 1) + 5(x, 1)
+V. (\/ZmDopflc(l —on.(x,1)). 39)

In Appendix B we start with these equations and perform
a standard adiabatic mode elimination of the fast velocity
degrees of freedom, following closely the argument in [56].
Here, we present the main result of that analysis for the
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readers who wish to skip the mathematical details. First, the
thermal velocity field vy, to leading order in the asymptotics,
is unaffected by the background turbulent velocity vy and
evidences thermal equilibrium statistics at the temperature 7 .
This result is in agreement with numerical simulations of the
full nonlinear fluctuating hydrodynamic equation (25), where
the velocity in the far dissipation range of turbulence exhibits
Gaussian equipartition statistics [3]. The equation for the
concentration fluctuation field on the macroscopic timescale
reduces simply to

o = —(ur +wy) © (V' + p)
+ DoAC + so(x, 1) + s(x, 1)
+V - (2mDop~Te(1 — o (x, 1)),

where wy is the Gaussian, white-noise random field w which
appeared in the DFV theory for a fluid at rest, defined by (18)
with the space covariance (19). An equivalent Ito form of the
equation is

(40)

¢’ = —(ur +wy) - (V' +p)
+ Desg AC + so(X, 1) + s(x, 1)
+V - (y2mDop~te(1 — o) (x, 1)),

where Dggt = Dy + Dy + D with Dy = U7 the turbulent
eddy diffusivity and with D the diffusivity contribution from
thermal fluctuations calculated by DFV. In general, Doy >~ Dr
because the turbulent diffusivity dominates. The important
result, which shall form the basis of all of our conclusions
in this paper, is that the equation for the concentration field
in the dissipation range reduces to a Kraichnan model with
white-noise advecting velocity v = ur 4+ wy which is an ad-
ditive sum of contributions from turbulence and from thermal
fluctuations.

(41)

III. SOLUTION OF THE MODEL

Having developed our reduced model of high Schmidt
turbulent mixing by the asymptotic method of DFV, we now
solve it exactly for the concentration correlation function C(r)
and the corresponding spectrum E.(k). We consider the sim-
plest situation of a statistically homogeneous and isotropic
steady state with concentration fluctuations injected at a con-
stant rate x at a length scale L 2 £k via a random spatially
distributed source s(x,t), as in (34). In the first subsection
below we briefly review the Kraichnan model in general and
some of the important mathematical results concerning it.
Then, in the following subsections, we employ those standard
results as part of the exact solution of our specific problem.

A. Précis of the Kraichnan model

The standard review of the Kraichnan model is the 2001
article of Falkovich et al. [40]. Very good discussions for
beginners (and even for experts) are contained in published
conference lectures by Gawedzki [83—85]. In particular, these
reviews discuss the theoretical breakthrough of the exact cal-
culation of anomalous scaling exponents of the passive scalar
in the inertial-convective range, which, however, plays no role
in our analysis here. For a recent comparison of the Kraichnan

model predictions with experimental data and with simula-
tions of incompressible Navier-Stokes turbulence, see [26].
We draw upon all of these sources for the presentation below.

What is now termed the “Kraichnan model” is described
mathematically by an equation for a passive scalar field c(x, 7)
which is advected by a Gaussian random velocity field v(x, ¢)
which is white noise in time:

0;c = —v QO Vc+ DyAc + s, 42)
where the velocity field has zero mean and covariance
Wik, Do 1)) = Vyx, X80 — 1), (43)

As in Sec. II, the symbol © denotes a Stratonovich dot product
and Dy is the molecular (bare) diffusivity. We have included
a random Gaussian source s(x, t) (independent of velocity)
with zero mean and covariance given by Eq. (34). We con-
sider here only a solenoidal (incompressible) velocity field,
so that V,:V;;(x, x) = 0, although the compressible case has
been studied in the literature [40,85]. In our specific problem,
we consider a statistically homogeneous flow, so that V;;
depends only upon the difference r = x — x’. However, we
present all of the results for general inhomogeneous flows in
this summary since many important future applications will
involve situations with boundary conditions or initial condi-
tions for velocity and concentration that break homogeneity.
Converting to Ito calculus, the Langevin equation (42) gains
a noise-induced drift term, hence, in Itd interpretation the
equivalent equation is

1
0;c=—v-Vec+DyAc+ V- <§V(X, X)-VC> + 5. (44)

The additional term has the physical meaning of a turbulent
“eddy diffusivity” Degay(X) = %V(x, x) which is induced by
the random advection.

One of the important features of the Kraichnan model
is that there is no closure problem for correlation func-
tions of the advected scalar c(x,t) and in fact the N-
point, equal-time correlation function Cy(Xp,...,Xy:t) 1=
(c(x1,t)c(Xp,1) ... (Xy,1)) satisfies an exact differential
equation [40]:

8,CN(X1, P XN) = MNCN(Xl, e

-{-ZCN,z(X],...,/n\,...

n<m

. Xy)

YAV XN)S(an Xm)»

m

(45)

where the notation “A” indicates that the variable x,, is omit-

n
ted, where we have introduced the second-order many-particle
diffusion operator

N N
1
My =5 3 IV %)V Ol + Do Y A, (46)

n,m=1 n=1

and where S is the spatial covariance function of the random
source s(x,t) introduced in Eq. (34) in Sec. II. Note that
Eq. (45) is in fact a triangular system of equations with no
closure problem since, with lower-point functions at hand, the
N-point function is governed by a closed differential equation.
While the closed equations (45) can be obtained in many ways
(see, e.g., [40,83]), one particularly straightforward approach,
which follows directly from our considerations in Sec. II, is
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simply to use the backward Kolmogorov operator correspond-
ing to the Itd equation (44):

1 8
L, := /d3x [DOAC +V- <§V(x, x)-Vc>:| 5o

1
+ > // d*xd*x' Vij(x,x') 8ic(x)8!’-c(x’)

+l f / d*xd®x' S(x x’)—SZ

2 T 8e(x)8e(x)’
which appears also in the Markov operator Ly given by
Eq. (B1) of Appendix B, in a slightly different notation.
Applying this operator L. to the product functional F([c] =

c(x1)c(x2) . . . c(xy) immediately yields (45).

For N =1, the sum on the right-hand side of Eq. (49),
which contains lower-order correlations, vanishes and we
get 9,Cy(x) = M, C(x) with C;(x) := (c(x,t)). In fact, the
closed equation for C; can be simply obtained by taking the
average of the Itd equation (44), which yields

2

Sc(x)de(x’)

1
8¢ =DyAE+V - <§V(x, X) - VE), (47)

where we use the more standard notation ¢ for Cy. This equa-
tion is trivially solved for the specific problem in this paper,
where we consider a statistically homogeneous flow (periodic
domain or infinite space) in the long-time steady state, so that
¢ is a space-time constant. In more realistic problems con-
cerning GCF’s with inhomogeneous statistics and involving
transient decay, Eq. (47) must be solved and ¢ used as an input
to the equation for the concentration cumulant (or connected
correlation) function Gy (x, x') = G (x, xX') — C; (x)C1 (x). We
shall leave such studies, which are directly relevant to experi-
mentally realizable flows in microgravity, to future work.

In this paper, we are concerned with Cy for N = 2, al-
though it would be of interest to study also higher-order
correlations Cy for N > 2 and we shall discuss this matter
later in the Conclusions. Equation (45) for N = 2 simplifies to
9,C, = M,C, + S. We further specialize to the homogeneous
case, so that all two-point correlators (C, V, etc.) become
functions of the difference variable r = x — x’ only. The cor-
relation C,, which shall be hereafter denoted simply as C, then
satisfies the equation

8,C(r, 1) = [Vyy(0) — V;;(1)13:9;C + 2Dy AC + s({) 48)
where all differential operators are now with respect to the
variable r. In the case of interest to us, the velocity statistics
(both for turbulent and thermal fluctuations) are in addition
isotropic. For such isotropic cases, the spatial velocity covari-
ance can be written in terms of the Leray projection P as

Vij(r) = PiK(r), (49)

where K (r) is a positive-definite function of the radial variable
r = |x — x| (see [86]). The general equation for the two-point
correlation in the Kraichnan model with isotropic velocity
statistics was implicit in the paper [86], but not written explic-
itly there. We thus derive this equation in our Appendix C,
where we show that for any space dimension d the equa-
tion for C(r, t) can be expressed in terms of the ball-averaged

function

1 r
1= /0 K(o)p*'dp (50)

as

rd=1 9r r L
(51)
where AJ(r) =J(0) — J(r) and we have also assumed that
the source covariance function S(r/L) is isotropic. This
equation is already indicative of a renormalized diffusivity
—AJ(r); cf. Eq. (56) in Sec. III B.
In the statistical steady state, which is our focus here,
9,C = 0 and the solution of (51) is easy to obtain by straight-
forward integration:

0C = e (1200 = @ = ose 5 ) +5(7).

sy
¢ = / p=112Dy — (d — )AJ(p)]

where we have applied boundary conditions 9,C(0) = 0 and
C(oc0) =0 [83]. The above expression represents the final
form of the steady-state two-point correlation function for
the passive scalar in the Kraichnan model with homogeneous,
isotropic statistics.

Before we proceed with evaluating this expression, we first
observe that the steady-state balance equation (35) follows
directly from (51) by setting 9,C = 0 and r = 0, which yields

dp, (52)

=5(0) = 2x,

r=0 (53)
and thus x = Dy(|Vc|?). Although this result is an exact con-
sequence of our mathematical model when ignoring thermal
fluctuations of the concentration field, the latter invalidates
this result physically. We shall see in the following that a phys-
ically valid balance equation for the concentration fluctuations
involves instead a “renormalized diffusivity” D and “effective
gradients” (V¢ )eft.

1 0 aC
2\ d—1

B. Concentration correlation function

We now apply these general results on the Kraichnan
model to the high Schmidt limit equations (41). Throughout
this entire subsection we shall neglect the final term in that
equation representing molecular noise in the dynamics of the
concentration field because of the presumed smallness of the
molecular mass m and the bare diffusivity Dy. This term, how-
ever, can become important at sufficiently small scales and
we shall evaluate its contribution in Sec. IV. With omission
of the molecular noise term, (41) becomes a particular case
of the Kraichnan model, with white-noise advecting velocity
ur + wy, representing statistically independent contributions
from turbulent fluctuations and from thermal fluctuations.
Therefore, the equation for the steady-state two-point cor-
relation function C(r) in our model is exactly Eq. (51) in
d = 3 spatial dimensions, with AJ = AJy + AJy. Solution of
this differential equation requires expressions for the scale-
dependent diffusivities.

The turbulent velocity field with space covariance (30) for
r < £k is easily checked to be given by (49) with K7 (r) =
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—5Ir? and thus
AJr(r) .= Jr(0) = Jr(r) = —Jr(r) = =Tr%.  (54)

To obtain the scale-dependent diffusivity from thermal fluctu-
ations, we need first to determine Ky (r) corresponding to the
spatial covariance R;;(r, r’) given by (19) and (20) and then
calculate the associated AJy (7). A suitable choice of the filter
kernel must be made in (19). DFV employed the isotropic
kernel 0 = oI with Fourier transform specified as

K*L?
VA + ALY + K26?)
which leads to the thermally renormalized diffusivity D =
kT /6mrno given by (24). As noted by DFV, the kernel (55)
was chosen for convenience to give the prefactor (6)~' of
the conventional Stokes-Einstein relation for hard spheres, but

any isotropic kernel will lead to a similar result with a different
prefactor of order unity. Employing (55), witho <« L, we find

(for details see Appendix D)
1— efr/a
)
(56)

Aly(ry = 22T [ 1+3<1 L o™
] r)= _ _T . 3 —
6w no 2% (_)
30
AJy(r) ~ —D I—E , r>o0

(35)

o

Most important is the asymptotic limit
(57)

which will be universal for any filter kernel which is rapidly
decaying in physical space, up to a different choice of o
rescaled by a factor of order unity. The physical meaning of
the result (57) is that diffusivity becomes scale dependent due
to the renormalization by thermal velocity fluctuations, with
effective molecular diffusivity

30
D(r) = Dy +D<1 — —> (58)

2r

at length scale r. Thus, D(r) >~ Dy for r >~ ¢ but D(r) >~ Dy +
D := D¢ for r > o. This scale dependence in the diffusivity
D(r) for correlations of concentration fluctuations is closely
related to the dependence on system size L in the effective
diffusivity (24) for the mean concentration. Note likewise that
the turbulent velocity fluctuations according to (54) contribute
an effective turbulent eddy diffusivity Dy (r) = I'r? at length
scale r.

We shall be concerned in this paper only with the regime
L > g > r > o and hence need only the asymptotic ex-
pression (57). However, if one considers also r ~ o, then
the specific choice of kernel influences the results. Here we
note that the Fourier-transformed kernel (55) adopted by DFV
decays very slowly ~1/k at high wave numbers k and the
physical space kernel is thus not differentiable in space. This
kernel leads to a renormalized diffusivity AJy(r) which is not
smooth in the separation r. Whereas a general filter kernel that
is smooth in physical space would produce AJy(r) o r? for
r < o, instead the choice (55) of DFV leads to AJy(r) o r,
as may easily be checked from (56). To avoid this undesirable
feature, we can choose instead, for example, an exponentially
decaying kernel

(k) ~e /™ kL > 1, (59)

with 7 added to reproduce the Stokes-Einstein relation for D.
In that case, forr < L

kgT 1+ 30 462 + ) arctan (nr)
_ fuiatill Y I o0
67 no ar3| \ 72 20

- 2o/

as also shown in Appendix D. Because the physical-space
kernel corresponding to (59) is C*°, then AJy(r) r? for
r <« o as may be verified from (60). On the other hand, (57)
is recovered for r > o.

We consider only the regime L > £x > r > o hereafter
and we restrict attention also to the steady-state correlation
C(r) given by the integral (52). We find it easiest to study the
derivative 9,C(r) and, because r < L, we can take S(r/L) ~
S(0). These approximations together with the asymptotic ex-
pression (57) yield

AJy(r) =

(60)

X r
3o r2’
D1 —3% 4+

7

3,C(r) = — ©61)

where we used y = S(0)/2 and neglected the bare diffusivity
under the assumption that Dy < D. We have also introduced
the Batchelor dissipation length with convenient definition
€2 := D/T", which agrees with the standard definition up to
a constant of order unity since I' is assumed to be of order
y = (¢/v)"/2. We may now consider separately the two rel-
evant subranges, the viscous-convective range £x > r > {p
and the viscous-diffusive range 5 > r > o.

In the viscous-convective range we can keep only the 2
term in the denominator of (61) obtaining thus by integration
over r

£
C(r) = const + 3% In (—K) lg > 1> Lp. (62)
r

Taking the Fourier transform with the standard isotropic rela-
tion [[87], Eq. (3-229)]

1 o0
E.(k) = —/ kr sin(kr)C(r)dr (63)
7 Jo
yields
E (k) ~ o r 1/8x <k < 1/¢p (64)

in exact agreement with standard theory. Note that our fac-
tor 6" corresponds to the mean least-rate rate of strain y
of Batchelor [Ref. [17], Eq. (4.9)] and to the corresponding
factor (a) = A/5 of Kraichnan [24,25].

It may at first sight be surprising that we recover this
standard theoretical result. As we have noted at the end of
Sec. II B and in Appendix B, the thermal velocity fluctuations
in our model to leading order in the high Schmidt-number
limit exhibit Gaussian thermal equilibrium statistics at tem-
perature 7', in agreement with the theoretical arguments and
numerical results of [1-3] for the turbulent dissipation range.
The velocity field thus has the equilibrium equipartition spec-
trum E,(k) ~ (kgT /27 p)k?, drastically different from the
steep exponential-decay-type spectrum assumed by Batchelor
and Kraichnan in the dissipation range. One might wonder
why this drastically different spectrum for k€g > 1 appears
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to have no observable effect on the behavior of the advected
concentration field. In fact, there is a very large effect which is
hidden from view. Since the classical theory of the Batchelor
range was developed without considering thermal fluctua-
tions, the molecular diffusivity in the works [17,24,25] (which
was denoted « in those papers) in fact corresponds to the bare
diffusivity Dy in our work. Because D > Dy, the Batchelor
length £p is thus greatly increased by thermal velocity fluc-
tuations. Note, however, that this effect is purely theoretical
because DFV obtained exactly the same diffusivity renormal-
ization in an equilibrium fluid at rest as we do in a turbulent
flow and thus the diffusivity measured in most macro-
scopic experiments will coincide with the effective diffusivity
Dy calculated here. Thus, the effect of thermal velocity
fluctuations in renormalizing the bare diffusivity is very large
but not apparent from a phenomenological point of view.

In the viscous-diffusive range, on the contrary, the effects
of the thermal velocity fluctuations are very large and should
be directly observable in future experiments that can probe
such small scales. We can Taylor expand the right-hand side
of (61) in the small quantities o /r and r/{p to obtain

~ X P3
8,C=—3—D I’—gﬁ-zO’, g>»>r>o

which upon integration yields

4
cnzcoy— L2t 50, (65)
6D 2

The r? term due to asymptotic diffusivity D is the dominant
one in physical space, with the */£ term arising from turbu-
lent diffusivity and the ro term from thermally induced scale
dependence of diffusivity both subleading. Note, however,
that the first two terms are polynomials in 7> and under Fourier
transform contribute terms formally oc8®(k), consistent with
the rapidly decaying spectra (1) and (2) in the viscous-
diffusive range predicted by Batchelor and Kraichnan. In fact,
we shall see in the following subsection that setting o = 0 in
our model yields exactly the scalar spectrum (2) of Kraich-
nan. However, the o r term, although subdominant in physical
space, is nonanalytic in r and the scalar spectrum calculated
from (63) is thus a power law in wave number
1o 1
Eok) =~ 05,

This is exactly the result (8) announced in the Introduction.
As pointed out there, this power law and the dimensional
coefficients multiplying it correspond exactly to the giant
concentration fluctuations ubiquitously observed in diffusive
mixing [43-46]. We note again that the numerical prefac-
tor 1/ is smaller by % than that predicted by linearized
fluctuating hydrodynamics (5). We would not expect lin-
earized theory to be adequate to treat with perfect fidelity our
physical situation, which involves nonlinear advection of con-
centration and large, fluctuating gradients of the concentration
field.

There is a subtlety, in fact, in obtaining this agreement with
linearized theory because it depends upon the relation x =
D{|Vc|*). However, we have seen that the “correct” result
for the model is instead x = Dy(|Vc|?) which involves the

1/{p €k K 1/0. (66)

bare diffusivity. To explain the discrepancy, we use Eq. (65)
to obtain

(Ve(r) - Ve(0)) = —AC(r)

gl )+o2)) @

which implies that there is a long range of length scales £z >
r > o over which the “effective gradients” (Vc¢).s are inde-
pendent of r and given by (Vc¢)%; =~ x/D. More precisely,
these are the gradient magnitudes that would be observed for
a coarse-grained field V¢, which has been low-pass filtered
to contain contributions only from length scales >¢ for some
£p > £ > o. These are the gradients that would be seen
experimentally by measurements with a space resolution £.
In fact, these are the only physically meaningful gradients
because the effects of molecular noise on the concentration
field, which we have so far ignored, invalidate the “exact” re-
sult x = Dy(]Vc|?). We shall discuss this latter point in more
detail in Sec. IV. Using the notion of “effective gradients,” we
simply note for now that the result (66) can be rewritten in the
form

B0~ L ek, 1ty <k < 1 68
e )—m( k™, 1Mp Lk K 1/o  (68)
in formal agreement with linearized theory.

As we now argue, the power law (66) will dominate in
the concentration spectrum for k just slightly greater than
1/¢p even when o < £5. We may follow a similar argument
as that in [1,2] for the kinetic energy spectrum, by simply
equating the Kraichnan exponential decay spectrum (2) and
the power-law spectrum (66) to obtain the wave number k;,
where transition to power law occurs. Setting to 1 all constants
of order unity, this estimation yields the condition

(ktg)* exp(—ktg) = o /Lp (69)
which has an exact solution
ot = 2w, 2 (2)" (70)
trtB — —1 ) 53

in terms of the branch W_;(z) of the Lambert W function
[88]. This implies only a very slow logarithmic increase of
k:+€p with decreasing o /g, corresponding to the asymp-
totics W_;(x) ~ In(—x) — In[—In(—x)] for small negative
arguments x [88]. As a typical example, in the experiment
of [28] observing the turbulent Batchelor range with a solu-
tion of fluorescein in water, the Batchelor wave number was
estimated to be 2800 cm™! corresponding to £ >~ 22.44 pum
whereas the hydrodynamic radius of fluorescein is o >~ 0.50
nm [89], giving a ratio o /£p ~ 2.23 x 107>, Nevertheless,
according to (70) one obtains only the modest value k;.£p ~
16.3. Even if one assumes a very small value such as
o/lg = 10719 then k,.£3 increases only to 29.8, not quite
doubled.

The main prediction of our theory is thus that, whereas
Batchelor’s 1/k spectrum for the viscous-convective range
survives, thermal fluctuations in the viscous-diffusive range
erase entirely the rapidly decaying scalar spectra of Batche-
lor and Kraichnan and replace those with a k=2 power-law
spectrum due to giant concentration fluctuations. This occurs
at a wave number which is just slightly larger than 1/¢p,

023246-12



HIGH SCHMIDT-NUMBER TURBULENT ADVECTION AND ...

PHYSICAL REVIEW RESEARCH 4, 023246 (2022)

with £ the Batchelor dissipation length for the concentration
field.

The previous simple arguments are rigorous regarding
the asymptotic wave-number ranges 1/{x < k < 1/¢p and
1/€p < k < 1/0, but only crudely treat the critical region
near the transition wave number k;, >~ 1/£5. To obtain more
precise predictions in this region, we shall solve our model
exactly for the concentration spectrum over the entire range
1/€x < k <« 1/o. For this purpose, we note that the integral
representation

x [ p*dp
cn=5 [ S
£ Sl AP Ny

following from (61) can be evaluated exactly by the method
of partial fractions, as

(71)

— const — X[ A1 2
C(r) = const 3F|:21H[b +(r+a)l

B
+ %aretan(r—ga)] +Clnlr—ry, (72)

21 +43 B= I
374030 P T 262443
sionless constants. Note that the cubic polynomial r* + ¢2r —
%06123 has negative discriminant, so that it has one real root r;
and a complex pair of roots —(a £ ib), where a = %rl, »: =
212 + €2, and ¢ = a* + b*. The real root is given by Vieta’s
formula as

612; 5370 1 9 /s0\2
T A AT NN LAY
3w 4 ZB 27 16 \¢ B
(73)
From this exact solution we can readily verify our previous
limiting results. First we observe that for r >> ¢ the two log-
arithmic terms dominate and, using the relation A+ C =1,
one recovers (62) for the viscous-convective range. If instead
one sets 0 = 0, then also r; = 0 and the solution (72) reduces
to

2
where A = and C = 371 are dimen-
ri+ey

C(r) = const — 6% In (2 + £3), (74)
which is the physical-space analog of the scalar spectrum (2)
found by Kraichnan [25]. The correction due to thermal noise
in the viscous-diffusive range can be evaluated by a joint
expansion of the exact solution (72) in r/€p and € = o /{p
and, using | /¢p = %e + O(€?), one recovers the result (65).
As we show in the next subsection, the concentration spectrum
E (k) corresponding to (72) by Fourier transform can be found
exactly and this result yields the two limiting power laws (64)
and (66), thus verifying the giant concentration fluctuations in
the viscous-diffusive range but further describing in detail the
transition between the two power-law regimes.

C. Concentration spectrum

In this subsection, we discuss the concentration spectrum
E (k) of our high Schmidt-number model (41), which is ob-
tained from the concentration correlation function C(r) by the
isotropic Fourier transform relation (63). As in the previous
subsection, we shall here neglect the molecular noise term
in Eq. (41), which allows us to obtain an exact result for

E (k) in the range 1/¢x < k < 1/o by Fourier transform of
the formula (72) for C(r). The result is easiest to express in
terms of the “one-dimensional spectrum” given by the Fourier
cosine transform

F(k) = % /00 cos(kr)C(r)dr (75)
0

in terms of which

3
Ec(k) =~k F (k) (76)

[see [87], Eq. (3-231]. The result of a somewhat lengthy
calculation is that

F(k) = Fa(k) + Fp(k) + Fe(k),

where the three terms correspond to the three terms in Eq. (72)
for C(r) and are given explicitly by

(77)

Fatk) = 2 A Re(fitk(a + ib)).

78
37" k (78)
Fis(k) X B ka+ b)) (79)
=————- a+i s
B 37T b k
and
1
Fo(k) = ——2—C=(fitkry) — 7 cos(kry)),  (80)
37l k
where fi(z) denotes the auxiliary sine integral function
® sint o
fiz) = dt = ——dt, R 0. (81
@ /0 t+z /0 1412 °(2) > S

See [90] (Sec. 5, formula 5.2.12) and [91] (Sec. 38:13). We
consulted many tables of integrals and collections of integral
transforms (such as [92]), but we were unable to find the
above results in the published literature. We therefore give a
complete derivation of (78)—(80) in Sec. III C 1.

However, the reader who is not interested in this derivation
can skip to Sec. IIIC2 where we discuss the behavior of
E_ (k) in the three limiting cases k¢p < 1,0 =0, and 1/£p K
k < 1/0. We then put together our various results to obtain
a global picture of the concentration spectrum and we study
systematically the effect of varying € = o /€p, exploiting our
exact solution (78)—(80) to plot the results for E.(k) with €
varying over realistic values.

1. Evaluation of integrals

The three formulas (78)—(80) are direct consequences of
the following two integrals:

n—0

] oo
lim |:§ / e " log((r + a)* + b*) cos(kr)dr
0

o b
+ i/ e M arctan( )cos(kr)dri|
0 r+a
1
= —zﬁ(k(a + ib)) (82)
and
o0
lim e ™In|r — ri|cos(kr)dr
n—0 Jo
1
= L lfikr) — 7 cos(kr)]. (83)
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FIG. 2. The contours used in (84) and (85). Here, a + ib = ce'®
in terms of the constant ¢ = +/a? + b? and ¢ = arctan(b/a).

Here p is an infrared regulation scale whose role in the phys-
ical problem is played by 1/L and 1/£g. Since the results
for u < k do not depend upon the particular regularization
adopted, however, we chose the above exponential IR cutoff
for mathematical convenience. The key idea in the evaluation
of the first integral (82) was to realize that the two integrands,
1log[(r + a)* + b*] and arctan(r%a) = Z — arctan(*£%), are
the real and imaginary parts, respectively, of In(r 4+ a + ib)
and the combined integral may thus be expressed as the con-
tour integral of analytic functions Inz cos(kz), Inz sin(kz)
along the path C; in the complex plane which is illustrated
in Fig. 2. A convenient change of the contour allows us to
reduce the integral to standard formulas, which we explain in
more detail below. The second integral (83) is simpler and will
be discussed briefly at the end.

The first integral (82), which we call [;, can be directly
written as the following complex contour integral:

I} = lim dze *Inz
u—=0 C1:R*+a+ib

x [cos(kz) cos(kyc) 4 sin(kz) sin(kyc)],  (84)

where ky := ke'® and ¢ = arctan(b/a), noting that a + ib =
ce'®. Because the integrand is analytic in the complex plane
with a branch cut along the negative real axis, the integration
contour can be shifted to C; + C; as illustrated in Fig. 2. This
yields directly

I = _—]/Cdr[(a Inr —be)+i(bInr+ agp)]
¢ Jo

x [cos(kyr) cos(kyc) + sin(kyr) sin(kyc)]
o0
+ lim dre ™" Inr
u—>0 Jo
x [cos(kyr) cos(kyc) 4 sin(kyr) sin(kyc)].  (85)

The first of these integrals resulting from contour C, can now
be evaluated using [92], formulas 1.5(1) and 2.5(1), while the
second integral resulting from contour C3 can be evaluated

using [92], formulas 1.5(6) and 2.5(7)], giving
I = L[ (sitkta + i) — =) coslk(a + ib
| = %[( ilk(a + ib)] — E)COS[ (a +ib)]
+ (Cinlk(a + ib)] — y — In[k(a + ib)]) sin[k(a + ib)]].

Here we use the trigonometric integral functions Si(z) and
Cin(z) with also Cin(x) = y + In(x) — Ci(x) where y is the
Euler-Mascheroni constant (see [90], Sec. 5.2; [91], Chap. 38;
or [93], Sec. 9.8). Finally, a standard formula

fi(z) = Ci(z) sin(z) + (g ~Si(2)) cos@),  (36)

for the auxiliary sine integral function [see [90] (formula
5.2.6) or [91] (formula 38:13:7)] yields (82).

The second integral (83) can be straightforwardly decom-
posed into two contributions for r < r; and r > r;:

[ee]

lim e " lIn|r—r|cos(kr)dr
u—>0 Jo

= / l Inr cos[k(r — ry)]dr
0

o]

+lim | e Inr coslk(r +r)ldr.  (87)

u—=>0 Jo

The part for r < r; can be evaluated as
/ Inr cos[k(r — ry)]dr
0
1 .
= % In ry sin(kry)

— i[Si(krl )cos(kry) + Cin(kry) sin(kry)] (88)

using  cos[k(r — r;)] = cos(kr)cos(kry) + sin(kr) sin(kr;)
and [92], formulas 1.5(1) and 2.5(1), while the part for r > r
can be evaluated as

o0

lim e "lInr cos[k(r + r)]dr
n=0 Jo

1
= £y +Ink)sin(kr,) - ;—k costkr)  (89)

using coslk(r +r)] = %(eik(r-&-rl) + e—ik(r+r1)) and?

o0
1
/ e’”lnrdr:—y+nz, Rez > 0. (90)
0 z

This result can be obtained, in principle, by combining two re-
sults in [92], formulas 1.5(6) and 2.5(7). Note, however, that there
is a typographical error in the second of these formulas and, in
fact, a surprising number of misprints for these formulas in stan-
dard sources. Thus, in [92], formula 2.5(7), the quantity tan~'(C/et)
should instead be tan~' (y/«). Likewise, in [134], formula 4.441(1),
In(p? — ¢*) should instead be In(p* + ¢?). Finally, in [92], formula
4.6(1), log(y p) should instead be y + log p. The correct result can
be easily obtained from the standard integral for Euler’s I" function

o0
/ et 1dt =T'(s)/z*, Rez >0
0

by differentiating both sides with respect to s and setting s = 1.
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E.(k)
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FIG. 3. Plots of the exact solution for the concentration spectrum E.(k) with (a) € = 107, (b) € = 107°, (c) € = 1078, (d) € = 1071°,

The solid black line (—) is the exact result from (78)—(80), the green dashed line (

) is Kraichnan’s spectrum (92), and the red dashed line

(- --) is the power-law spectrum (93) associated to GCF’s. The vertical gray dotted line marks the prediction in (70) for the transition wave

number k;,..

Combining the two parts and again using (86) yields the
second integral (83).

2. Model spectrum for 1/4;x < k < 1/o

We now consider the limits of our exact solution (78)—(80)
in the viscous-convective and viscous-diffusive ranges. First,
however, we verify that our solution recovers the result of
Kraichnan [25] when setting o = 0. In this case, a = %rl =
0, b=tp A=1B=3 C=0,and

x Re(fi(iktp))  x e
FoO =51 k eIk Ob
using definition (81) of fi(z) and [92], formula 1.2(11). The
standard concentration spectrum obtained from (76) then re-
produces exactly the result of Kraichnan

1
E.k) = %(% + eB)e—“B ©=0.  ©

See Egs. (2.27) and (5.14) in [25]. Note that in terms of the
notations used in Kraichnan’s original work, his constants A,
(a), a, and k are related to our constants as I' = A/30 = (a)/6

and (3 = 20 = 30« /A, with his bare diffusivity « replaced
by our renormalized diffusivity D. We recover also (2) in the
Introduction if, following [24], we introduce Cp = y /61" and
if the Batchelor length is redefined in the more conventional
way as £ := (D/y)"/? = (D/6CpT")'/2.

The result of Batchelor for the concentration spectrum in
the viscous-convective range can be recovered, however, when
kg < 1 for all finite o without taking the limit o = 0. This
result follows from our exact solution (78)—(80) using fi(0) =
7 /2, which gives

Fa(k) >~ (x/6D)Ak™",  Fo(k) >~ (x/6T)Ck ™"
and Fg(k) >~ o(1/k). Using A+ C = 1 we obtain in general
F(k) = (x/6T)k™" so that

E (k) >~ (x/6D)k™" = Cp(x/v)k™", Ky <1

in agreement with (1) and (64). As already emphasized,
the Batchelor spectrum in the viscous-convective range is
unaltered by the sub-Kolmogorov scale thermal velocity fluc-
tuations.
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The behavior of our model in the viscous-diffusive range
for small finite o, on the other hand, is completely different
than that obtained by Kraichnan for o = 0. The limit 1 /{5 <
k <« 1/0 of our exact solution (78)—(80) can be obtained from
the standard asymptotic expansion of fi(z) for large arguments
z. We are further interested in the limit € = o /¢ < 1, so that

a=1r=30[1+0()], b==t[l+0()]
and
A=140(e), Bri/b=3e+0(), C=0().

In that case, the contributions to F (k) at leading order in € are
obtained from

Re(fi(k(a + ib))) ~ —kaRe(gi(iklg)) + O(e?)

and
Im(fi(k(a + ib))) ~ Im(fi(ik€g)) + O(e),

where we have introduced the auxiliary cosine integral func-
tion gi(z) = —fi'(z). Invoking the asymptotic expansions
fi(z) ~ 1/z and gi(z) ~ 1/7* at large arguments z satisfying
largz|] < m [90], 5.2.34 and 5.2.35, and [91], 38:13:10 and
38:13:11, we then obtain
X0

Falk) ~ Fp(k) ~ —

k2022,
47T B

Fe(k) ~0

and finally
X0 . o
E(k) >~ n_Dk . <k <K 1/0. 93)

Thus, we confirm the spectrum (66) with k=2 power law
associated to giant concentration fluctuations.

The effect of varying € = o /£ can be illustrated by plot-
ting our exact solution over a range of possible values (see
Fig. 3). For details of the numerical method used in construct-
ing the plots, see Appendix E. The first observation from the
figure is that the spectrum E.(k) given by (78)—(80) is almost
perfectly represented, on the log-log scale of the plots, by the
superposition of the Kraichnan spectrum (92) and the power-
law spectrum (93), with transition at the wave number k;,
predicted by (70). The second conclusion is that the Kraichnan
exponential decay spectrum will generally exist for only a
very narrow range of wave numbers with k¢z 2> 1. From a
review of the past experiments on turbulent high Schmidt
mixing, we find that the ratio € = o /€p ranges over values
between 10~* and 10~7. In the latter extreme case, k;fp =
22.3 and the Kraichnan spectrum exists over just a bit more
than a decade of wave numbers. However, even if one con-
siders a very unrealistic value € = 107'°, then k. £z = 29.8
and the extent of the Kraichnan spectrum is barely increased.
These considerations suggest that an exponential decay of
the concentration spectrum will generally hold in physical
fluid mixtures for at most a decade of wave numbers in the
viscous-diffusive range.

IV. PHYSICAL PREDICTIONS

We now develop concrete predictions of our theory for
two specific binary mixtures: water-glycerol and water-
fluorescein. We note that water-glycerol solutions are very
commonly employed in fluid turbulence experiments as a
means to vary the viscosity by changes in concentration, e.g.

see [57,94]. Giant concentration fluctuations have also been
seen experimentally in water-glycerol solutions by a variety
of observational techniques [44,95-97]. For prior experiments
on the turbulent Batchelor regime, solutions of disodium flu-
orescein (or, in shorthand, fluorescein) in water have been
popular [28,33,34,98] because of the ease of visualization by
laser fluorescence. It is worth emphasizing that the Stokes-
Einstein relation for the diffusivity is observed to be valid for
both mixtures, water-glycerol [99,100] and water-fluorescein
[89,101], at sufficiently high temperatures well above the
glass transition. The measured hydrodynamic radii in water
are 0 = 0.35 nm for glycerol [100] and ¢ = 0.50 nm for
fluorescein [101], relatively consistent with the molecular
volumes. Since the molar masses of water (H,O), glycerol
(C5Hg03), and disodium fluorescein (CooH,Na,Os) are 18.0
g/mol, 92.1 g/mol, and 376.3 g/mol, respectively, the hy-
drodynamic Stokes-Einstein prediction should be expected to
be even more accurate for the water-fluorescein mixture. Our
predictions can be easily extended to other binary mixtures.

Before we can discuss our detailed predictions, however,
we must first discuss the equilibrium fluctuations of the con-
centration which we have so far ignored. As is well known, the
fluctuations in thermal equilibrium correspond to the structure
function (4) given by

ksT

Seelk) = ——7—
® P(aﬂ/ac)fﬁ

(94)

which is independent of wave number k, where p, ¢, etc.,
are the mean values in the equilibrium state and u(T, p, c¢) is
the chemical potential of the mixture for given temperature
T, pressure p, and mass concentration c. See [50], Eq. (5.34),
and references therein. At the hydrodynamic level of descrip-
tion, these fluctuations are due to the molecular noise term in
Eq. (12) for concentration, whose general form is

3 u-Ve+ V- [DyVe+ 2D (x,1)
c=-u-Vc . c _ ,
f ° p@ufoc),

(95)
(see [50,69,70,72]). In the prior discussion, following DFV
[56] and [102], we have considered for simplicity the special
case of an ideal solution of two equal-mass molecules, e.g.,
the self-diffusion of tagged particles in a single-component
fluid. In this setting, we provide in Appendix A a self-
contained derivation of (94) from (95), as a convenience for
readers. It is important to note, however, that the high Schmidt
asymptotics of DFV in Appendix B can be carried out for
the general equation (95) and does not require the special
assumptions of (12).
The structure function (94) corresponds to a scalar spec-
trum

kT .

5O = oo,

(96)

This equilibrium spectrum is growing in wave number and
it must thus exceed the spectrum (66) of the nonequilib-
rium fluctuations above some sufficiently high-transition wave
number, which we call k;,. We can estimate the latter by
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FIG. 4. The nonideality factor B for a water-glycerol solution,
from [103] [Eq. (11)], plotted versus mass concentration of glycerol.

equating the two spectra, which yields

Y = dryo (Ou 4
" LDksT \dc )7 ,]

To make a quantitative determination of k;,, we must evaluate
the derivative of the chemical potential. For this purpose, we
note the general result

o7

(3_M> B B kgT
dc T_p_ c(1 —o)moe +m(1 — )]’

where my is the molecular mass of the solute (water), m; is
the molecular mass of the solvent (glycerol/fluorescein), and
B = B(T, p, c¢) is a factor which accounts for the nonideality
of the mixture, with B = 1 in the ideal case. See Appendix F
for the derivation of this equilibrium thermodynamic result. In
addition, estimation of k;, requires the diffusion coefficient D.

For water-glycerol solutions at temperature 25 °C and at
atmospheric pressure (1 bar) experimental values of both
quantities D and B are conveniently provided by the paper
[103], in parametrized form as functions of the molar con-
centration n. We plot in Fig. 4 the factor B versus mass
concentration ¢, where it can be observed that the deviation
from ideality is at most about 28.8%. Because of the detailed
information provided in [103], we shall present our results
for the concentration spectrum of water-glycerol solutions at
T =25°C and p = 1 bar. For water-fluorescein we shall use
the value of diffusivity D = 5.54 x 107® cm?/s at T = 30°C
and p = 1 bar reported in [101]. There has not been much
experimental investigation of thermodynamic properties of
water-fluorescein solutions and we are unaware of any mea-
surements of the nonideality factor B for that mixture. Here
we may remark that the thermodynamics and diffusive trans-
port of an electrolyte such as disodium fluorescein in water
may be treated as a binary mixture, at least at not too low
concentrations (see [104], Chap. 8). In the lack of precise in-
formation, one may simply take B = 1. In fact, the deviations
from ideality must be much larger for water-fluorescein than
for water-glycerol because the differences between water and

(98)

fluorescein molecules and their interactions are considerable.
However, B is unlikely to be orders of magnitude different
from unity and, since it appears in formula (97) to the ‘lT power,
setting B = 1 should result in just slight inaccuracy of ;.

Before presenting any concrete predictions, we must first
note an important consequence of the equipartition spectrum
(96). It is easily seen that the concentration gradients become
dependent upon the UV cutoff A which is necessary for the
validity of the fluctuating hydrodynamic equation (95). See
Appendix A for a discussion of this point. The concentration
gradient develops a large contribution, diverging with A, of
the form

A 2
(|Vel?) = 2/ dk K*E, (k) ~ gAAS, (99)
0

ksT
47125(8#/35)75
equipartition spectrum (96). Note that the estimate of the “ef-
fective gradient” V¢, from Eq. (67) ignored this contribution
and is valid only if the filtering scale ¢ is chosen so that
Lky Z 1 with %Ak% = (Ve)2y = x/D. It is easy to check
from this condition that

ky/k, >~ 1)k o)/ > 1,

where A = is the constant prefactor in the

(100)

and thus it will suffice to choose k;.£ 2 1 (and £ < £p) to
ensure that V&, >~ (V¢)egt.

We first present our predictions for possible future exper-
iments on turbulent mixing with water-glycerol. In addition
to the thermodynamic parameters of the mixture, discussed
above, the two important parameters of the turbulent flow
which must be specified are the Kolmogorov turnover rate y
and the rate of injection x of concentration fluctuations. To
identify reasonable ranges for these parameters, we reviewed
a set of experimental studies of high Schmidt turbulent mixing
[27,28,30,32-34]. Extracting data from these references, we
found a range of values within the intervals 0.1 s7! <y <
102 s~ 'and 1072 s7! < x < 10? s7!, on order of magnitude
(see Appendix G). None of these experiments studied water-
glycerol mixtures, but recent laboratory experiments on fluid
turbulence in water-glycerol [57] had y = 129 s~!, near the
upper range from the experiments on turbulent mixing. We
therefore plot our predictions in Fig. 5 for y = 10 s~! and in
Fig. 6 for y = 100 s~!, which are values typical of most of
the cited experiments. We also show for both of these choices
of y, three values of x, the smallest value from the cited
experiments x = 10712 571 the largest value x = 102571,
and one intermediate value. We note that in all of our plots
the highest wave number considered is well below the value
k, = 27 /o, which is = 1.8 x 108 cm~! for water-glycerol,
and thus within the regime of validity of our theory.

The solid curves plotted in Figs. 5 and 6 are our predicted
concentration spectra E.(k), obtained simply as the maximum
of the exact solution from (76)—(80) and of the equipartition
k* spectrum (96). We plot the two curves also individually,
the exact solution of our model and the equilibrium spectrum,
as black dotted lines, and we indicate the Batchelor wave
number kg = 27 /€ by a vertical green dashed line. The most
important conclusion from these plots is that, except for very
small values of injection rate y, a few decades of GCF’s
with spectrum E_(k) ~ k=2 should occur. With decreasing
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FIG. 5. Plots of the predicted concentration spectrum for water-
glycerol mixture (T =25°C, p=1bar, ¢ =0.5) with y = 105!
and (a) x = 10%, (b) x = 1077, (c) x = 1072 s7!. The green dashed
line (- - -) marks the Batchelor wave number kg, and the red dotted-
dashed line (- - -) represents buoyancy cutoff wave number k,.

x the statistics of the concentration field become closer to
equilibrium and the equipartition k*> spectrum dominates at
increasingly smaller wave numbers. In our plots the interme-

E.(k) (cm)

E.(k) (cm)

(b) k (cm™1)

10° 102 10* 108

(c) k (cm™!)

FIG. 6. Similar to Fig. 5 but with y = 100s~! and (a) x =
10257, (b) x =107 571, (c) x = 10712 571,

diate value of x is chosen just small enough so that the range
of GCF’s entirely disappears, which is x = 1077 for y = 10
in Fig. 5 and x = 107> for y = 100 in Fig. 6. Although these
values lie within the range of those sampled in prior studies,
most experiments have larger x and thus correspond to the
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upper panels (a) in Figs. 5 and 6. We can thus expect that
future laboratory experiments with choices of parameters x
and y similar to those accessed in prior experiments will
exhibit a sizable range of power-law spectra k=2 associated
to GCF’s, appearing just above the Batchelor wave number.
With smaller x the range of GCF’s may be very short or
disappear entirely, replaced by the equipartition k> spectrum,
but, in either case, Kraichnan’s exponential decay spectrum
(2) will exist over only a very narrow range.

In the typical case where a range of CGF’s exists below the
Batchelor length, these long-range nonequilibrium correla-
tions are quenched in our theory by turbulent shear. This shear
quenching is similar to that predicted for weak perturbations
of global thermodynamic equilibrium by Wada [58], but, of
course, much stronger. Whereas the analysis in [58] could
rely on linearized fluctuating hydrodynamics, our solution for
turbulent shear requires the asymptotic method of DFV, which
treats exactly the nonlinear advection of the concentration
field by both turbulent and thermal velocity fluctuations. We
note that the effect of increasing y, with other parameters
fixed, is to decrease the Batchelor length scale and to reduce
the range of wave numbers where GCF’s appear. This effect
is seen clearly by comparing the top panels (a) of Fig. 5 for
y = 10 and of Fig. 6 for y = 100, where the sole effect is to
increase kg and push the GCF’s to a higher, narrower range of
wave numbers.

Since we could not include buoyancy in our exact mathe-
matical analysis, there remains the possibility that gravity (or
finite system size) could quench the GCF’s rather than shear,
as is typical for laminar experiments [59]. Because of the
much stronger shear in fluid turbulence compared with lam-
inar flow, one may expect that shear will in fact be dominant.
However, it is useful to make some test of this reason-
able conjecture, by considering the gravitational wave-number
cutoff

k, = (BgVe/vD)!4, (101)

below which S..(k) ~ k° and E.(k) ~ k? according to lin-

earized theory. Here B = %a—‘f is the solutal expansion

dc
coefficient and g is the acceleration due to gravity. See
[23,105,106] for detailed discussion, but note that the result
(101) follows intuitively by equating the damping rates from
diffusion and buoyancy as ygi = Dk? ~ Varav = BgVc/ vkZ.
The theory of DFV makes clear how this estimate for ygay
arises because Eq. (A.27) in [56] shows that buoyancy adds
the extra term

(B/v)(Go xc)g - Ve

to the right-hand side of the asymptotic high Sc equation (41)
for the concentration field. Here G, = o x G is convolution
of smoothing kernel o with the Oseen tensor G [see (20) and
Appendix B]. To make use of expression (101) in a forced
steady state with continuous injection of concentration fluctu-
ations, we employ the root-mean-square (rms) gradient from
the balance x = D{|Vc|?), which yields

ke = (B2’ x/v* D)%,
We shall adopt this estimate below, but note that balancing the

buoyancy term (102) against the diffusive term Dgg Ac in (41)
leads to the much smaller value k}, = (82¢*x /v>D};)"/® <

(102)

(103)

E.(k) (cm)

P e T ]
10° 102 10* 108
k (cm™)

FIG. 7. Predicted concentration spectrum for water-glycerol
(T =25°C, p=1bar, ¢ = 0.5) for the largest scalar injection rate
and smallest strain rate observed in the experiments available to us;
x =2 x 10> s7' [28], ¥ 2~ 0.2 s~! [30]. With these extreme values,
buoyancy (red dotted-dashed line) might conceivably cut off the k=2
power-law spectrum associated to GCF’s. Green dashed line marks
the Batchelor wave number kg.

k, because the effect of turbulent diffusivity implies Deg >~
Dy > D. Thus, using (103) probably greatly overestimates
the effect of gravity.

The wave number k, is marked in Figs. 5 and 6 by the
vertical red, dotted-dashed line. To calculate (103) we used
the following convenient parametrizations of the solutal ex-
pansion coefficient and kinematic viscosity of water-glycerol
solutions as functions of concentration:

B =0.2246 + 0.1c — 0.125¢2,

v = 0.01 exp(2.06¢ + 2.32¢%) (104)

(see [107]). It can be seen immediately that k, < kg in all
cases shown, which implies that the GCF’s for typical values
of y and yx are cut off by turbulent shear rather than by
buoyancy. To investigate a possible role for gravity one must
consider y as small as realistic since kg o y!/2. Furthermore,
one should consider large x because k, o x !/ 8 according to
(103). Note that also k;, oc x/* according to (97), so that in-
creasing x in addition increases the wave-number range of the
GCF’s. In Fig. 7 we plot our predicted concentration spectrum
for the smallest value ¥ ~ 0.2 s~!' [30] and the largest value
x =~ 2 x 102 s~! [28] that we found in reported experiments
on the Batchelor range. With these extreme choices we see
that k, > kg, so that gravitational effects may possibly in this
case quench the GCF’s rather than turbulent shear. Of course,
considering the effects of turbulent diffusivity Dr gives k;, <
k, and thus buoyancy effects even in this extreme parameter
range are in fact probably small compared with turbulent shear
effects.

Finally, we shall consider the predictions of our theory
for water-fluorescein solutions since this fluid mixture has
been the choice of most recent experimental studies on high
Schmidt turbulent mixing [28,33,34,98]. For specificity, we
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FIG. 8. Predicted concentration spectrum for water-fluorescein
(T =30°C, p=1 bar). The buoyancy cutoff wave number k, is
marked with vertical lines for Bg =10 G (—), 1 G (- - -); 107> G
(---) and 107 G (- - -) in units of Earth gravitational acceleration
1 G =980 cm/s>. Here, y ~7.8s7! and x ~2 x 10> s~ corre-
sponding to the experimental parameters in [28].

take y ~ 7.8 s7! and x ~ 2 x 10? s~ from the experiment
of Jullien et al. [28]. One difficulty in making concrete pre-
dictions arises from the poor state of knowledge about the
thermodynamic properties of water-fluorescein mixtures; in
particular, the solutal expansion coefficient 8 seems not to be
available in the literature. Fortunately, the real parameter of
interest is the combination B8g, in which g may be lowered
by performing low-gravity space experiments or increased by
centrifugal effect in a rapidly rotating apparatus. Thus, we
present results in Fig. 8 on our predicted spectrum for water-
fluorescein mixture at 7 = 30°C, p = 1 bar, for different
values of the quantity Bg in units of the acceleration due to
Earth gravity (1 G >~ 980 cm/s?). We expect 8 to be of order
unity (e.g., for water-glycerol g =~ (0.20-0.25), so that the
values Bg = 107%, 1073, 1, 10° G considered in Fig. 8 are
probably close to the corresponding values of g. Most impor-
tantly, we see that there are at least two decades of k~> power
law arising from GCF’s appearing just above the Batchelor
wave number kg. Furthermore, turbulent shear effects cut off
the GCF’s for wave numbers lower than kg, except possibly
for Bg > 40 G, where buoyancy could provide the cutoff, but
such large Bg would be difficult to achieve experimentally.
We want to emphasize that in the actual experiment reported
in [28], the concentration fluctuations were strongly damped
at wave numbers k > 7 cm~! because of additional shear-
enhanced diffusion, and the range above that wave number
in their setup would not be described by our theory. However,
in an ideal experiment with the same values of y and y as [28]
but avoiding such enhanced diffusion, a k2 spectrum due to
GCF’s would appear at lengths just below £z ~ 22.4 yum.

V. DISCUSSION AND CONCLUSIONS

Our theoretical predictions clearly demand empirical ver-
ification. As already discussed, the prospects for direct

laboratory experiments appear remote because our predictions
all involve scales below the Batchelor length. Since ¢ < £k
and it is already difficult to get reliable experimentable mea-
surements in the turbulent dissipation range, the difficulties
are much more severe for the viscous-diffusive range. Even
in the viscous-convective range the Batchelor spectrum ock ™!
has not been observed in some experiments [33,34]. Among
experiments which report a Batchelor spectrum [27,28,30—
32], only the first [32] reported any measurements in the
viscous-diffusive range. That experiment measured fluctua-
tions of both temperature and concentration in salt water and
had Batchelor lengths from 14.8-82.5 um. Nevertheless, the
data in [32] (Fig. 9) for the viscous-diffusive range had large
scatter and the authors cautioned that “the high wave-number
data may have been affected by noise and/or spatial reso-
lution.” It is precisely because of these grave experimental
difficulties that most modern studies have turned to numerical
simulations of deterministic Navier-Stokes equations [35-38],
which have verified the Kraichnan-Batchelor predictions in
that setting. Likewise, the prospects for verification of our
predictions by numerical simulations of Landau-Lifshitz fluc-
tuating hydrodynamics appear excellent since codes have
been developed to simulate binary and multicomponent mix-
tures at low Mach numbers [69,70], especially an overdamped
scheme appropriate to high Schmidt numbers [70]. Ultimately,
of course, laboratory experiments will be absolutely essential
to determine which of the various theoretical predictions are
correct in Nature.

In addition to empirical studies, our work suggests many
interesting further theoretical investigations within the DFV
approach. Here we have studied only the second-order
correlation function and the Fourier spectrum of the concen-
tration field in a forced steady state with injection of scalar
fluctuations, but many further generalizations are possible.
Techniques exist in the Kraichnan model to study higher-order
correlations [40,83—85] and even individual realizations of
the concentration field [85,108]. Multitime correlations such
as C(x, t;x/, 1) := (c(x,t)c(X', 1)) satisfy also closed equa-
tions in the Kraichnan model

9,C(x,t;x,t")

=V, [(Do + %V(x, x)) - V4C(x, t; X, t’)] (105)

fort > t’, as a direct consequence of (44). Note that this equa-
tion expresses the temporal relaxation of fluctuations by the
renormalized diffusivity. In addition to the statistical steady
state, free decay can be studied also in the Kraichnan model
[86,109]. This is an important problem for further theoreti-
cal study because striking experimental observations of giant
concentration fluctuations have been made in transient decay
[43,96]. The current analytical theory of this problem is based
on linearized fluctuating hydrodynamics [106], but systematic
deviations are observed between linearized theory and exper-
iment at early times when concentration gradients are very
large (see [96], Fig. 8). The DFV approach is not based on
linearization and treats nonlinear advection of concentration
exactly, even if gradients are large.

Aside from analytical theory, the DFV approach yields also
an efficient numerical scheme to solve fluctuating hydrody-

023246-20



HIGH SCHMIDT-NUMBER TURBULENT ADVECTION AND ...

PHYSICAL REVIEW RESEARCH 4, 023246 (2022)

namics of binary mixtures in the asymptotic limit of high
Schmidt numbers. As emphasized in their original work [56],
numerically solving the high Schmidt limit equations (17)
and (21) is more efficient by a factor of Sc than solving the
standard equations of fluctuating hydrodynamics (9) and (12).
Unlike our analytical approach, the numerical implementation
of the DFV limit equations has no difficulty incorporating
buoyancy effects of gravity (see [56], Appendix A). A cer-
tain puzzle does exist why DFV failed to observe S..(k, 1) ~
k=* in numerical simulation of free diffusive mixing with
their high Sc limit equations (17) and (21), but instead re-
ported a scaling closer to S..(k,t)~ k=3. This is curious
because experiments [43,96] and numerical simulations with
the full fluctuating hydrodynamics equations [15,69] both
yield S..(k, 1) ~ k=* for free decay, as does our exact solution
of the DFV correlation equations for the forced steady state.
These various results suggest that the DFV theory should yield
also such a k~* scaling for free decay. It has been suggested
to us by Donev [110] that the k3 scaling reported in [56]
might be due to the fact that those numerical simulations were
performed for a 2D fluid. However, we have now solved the
closed equations of the DFV theory in 2D, for steady-state
concentration correlations with random injection of fluctua-
tions and with velocity in thermal equilibrium. Because the
calculation in 2D is more difficult than in 3D, we give details
in Appendix H. However, we verify the scaling S..(k,t) ~
k=* also for 2D, in agreement with the prediction of linearized
fluctuating hydrodynamics. We cannot advance a definitive
explanation why the numerical implementation in [56] failed
to observe this power law, but perhaps the computation ran
insufficient time or had an insufficient span of wave number.
In fact, if one fits a power law to the lower range of wave
numbers in [56], inset of Fig. 3, then the result is closer to k.

The results that we obtain in this work suggest that, very
generally, the effects of thermal noise at scales below the
Kolmogorov length in turbulent flows will be quite similar to
those that occur in laminar flows. Although the shear quench-
ing of GCF’s in the inertial-convective range is stronger than
that found by linearized fluctuating hydrodynamics for weak
shear [58], they are qualitatively similar. Furthermore, at
scales below the diffusive length analogous to 5 [which is
the length scale &, defined in [58], Eq. (45)] the predictions
for the GCF’s in the weakly sheared flow differ from ours only
by the constant prefactor in front of the power law. Thus, we
imagine that effects of thermal noise existing in laminar flows
will generally persist, in perhaps some modified form, in the
sub-Kolmogorov scales of turbulent flows. For example, it is
known that thermal noise can reduce the efficiency of combus-
tion in laminar flows, via a noise-induced bifurcation which
changes the domains of monostability and bistability of the
chemically reacting system [111]. Further, thermal noise can
accelerate the formation and growth of droplets and bubbles
in fluids rapidly cooled or heated in the multiphase regime
[112,113]. Finally, it is known that thermal noise is important
during collisions of self-propelled microorganisms in laminar
flows and strongly affects the postcollision velocity directions
of both swimmers [114]. In the sub-Komologorov range, one
can expect for all such microscale physical processes some
very interesting interplay between effects of turbulence and of
thermal noise.

Here we have considered only nonmagnetized molecular
fluids, but more generally thermal noise could play an impor-
tant role in the turbulence of magnetized plasmas at resistive
scales, as already suggested by Betchov [6]. In particular,
the kinematic magnetic dynamo regime in a turbulent plasma
at high magnetic Prandtl numbers is a close analog of the
high Schmidt turbulent mixing which we have studied in
this work. Much past theoretical work on the high magnetic
Prandtl-number dynamo [115-118] is based on the soluble
Kazantsev model [119], which is the exact analog for a pas-
sively advected magnetic field of the Kraichnan model for
a passively advected scalar [24,25]. The kinematic dynamo
eigenfunction was found in these studies to be peaked at
the resistive scale, where thermal electric-field noise must
appear acting on the magnetic field according to the general
fluctuation-dissipation relation. Furthermore, thermal random
stresses must act on the advecting velocity at the even larger
viscous scale. Recently, the theory of thermal fluctuations in a
plasma has been developed both for linearized dynamics [120]
and as well for the full nonlinear dynamics [121,122]. One
can anticipate that there will be significant modifications of
the predictions of dynamo theories that neglect such noise. It
would be interesting to investigate the effect of thermal noise
on the origin and evolution of primordial magnetic fields in
cosmology [123,124].
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APPENDIX A: FLUCTUATION-DISSIPATION THEOREM
FOR THE CONCENTRATION FIELD

We show here as an application of the phenomenological
fluctuation-dissipation theorem [50,72,74,75] that the multi-
plicative noise term in the stochastic equation

dc+u-Ve=V-(DoVe+v2mDop~le(l — ¢) n.(x, 1))
(AD)

is the unique expression which is local in x so that the
equilibrium statistics Peg[c] of the equation are given by the
Boltzmann-Einstein formula

Peylc] oc /%, (A2)

where § is the thermodynamic entropy. Here the appropriate
entropy S is the ideal entropy of mixing ([125], Appendix D.6)

Slcl = —%kB / d*x (c(x)Inc(x) + [1 — c(x)]In[1 — c(x)])

(A3)
with particle mass m and fluid density p. Note here that we
have assumed equal masses for the two species of particles,
so that mass concentration ¢ and molar concentration 7 in this
case coincide. A local equilibrium distribution has been as-
sumed in which the statistics in each subvolume is determined
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by the specific entropy s[c(x)] of the local concentration field
c(x), then integrated against dM = p d>x to give the total
entropy.

For the purpose of formal calculations, it is useful to
rewrite the stochastic equation by inserting a delta function
83(x — y) and integrating over y, as

B¢ 1 u-Ve = DyAc + f Py L% Y ea 1), (Ad)

with the definition

2mD
gIx, y;cl =9y, |:\/ mp e[l — c(x)]8(x — Y)}- (A5)

It is important to stress that all “delta functions” in this ex-
pression and also in the covariance (13) of the white noise 7,
should be interpreted as cutoff delta functions

1 .
Si(x) = v Z AR

k|<A

(A6)

where V is the domain volume and A is some high-wave-
number cutoff (see [74]). Here the cutoff A should be taken
S1/Amgp, the inverse of the mean-free path length. Physi-
cally, fluctuating hydrodynamic equations such as (A4) should
not be interpreted as continuum stochastic partial differential
equations but instead as low-wave-number effective field the-
ories.

To obtain the Fokker-Planck equation for the probabil-
ity distribution P[c] corresponding to the Langevin equa-
tion (A4), we convert from Stratonovich to Itd calculus. The
noise-induced drift term is

l//dSyd3zga[z’ y;c]m.

2 8c(z)
Because of locality in X it is easy to check that
8g°[x,y;c]

30, a .
5e(z) =4§"(z — y)G[X,y; c]

with G* independent of z. But in that case

/d3z ¢[z,y;cl8 @z —y)

2mD0 3
=\, (I —c(y)]1(9,,67)(0) = 0. (A7)

Therefore, in this particular problem, the noise-induced drift
vanishes and Itd and Stratonovich forms of the equation are
identical. We used above the crucial fact that

1
V53 (0) = v Z ik =0,
k|<A

which will be exploited also in the following calculations.
Because of the identity of Itdo and Stratonovich here, we
obtain easily the Fokker-Planck equation

9,P[c] = — / dx

5ex) [(—u-Vc+ DyAc)P[c]]

1 3 8 .
= / / drd'y 5SS DI yiclPleD. (4D

where

DIx, y, cl = / d*z g"x, z; clgy, z; c] (A9)
is the probability diffusion coefficient. We must now show that
the Einstein-Boltzmann distribution Pey[c] is the stationary
distribution of the Fokker-Planck equation when the noise is
chosen as in (A4) and (AS5).

Note that the contribution from the first probability drift
term vanishes because

)
/ d3x8c(x) (a- VxC(X)Peq [c])

= / d3x(u-vxai(0)+ é[u‘ch(x)]s/(c(x)))])eq[c]

=L / dPxu - V,5(c(x))Peglc] = 0,
kg

where in the second line we used

8
_Peq [C]

__r _ _
5o = m(lnc(x) In[1 — ¢(x)])Pylc]

(A10)

L5/ (c(x))Pgc]
kg
and in the last line incompressibility V - u = 0 was used.

Next we note using (AS) and (A9) that an explicit expres-
sion for the probability diffusion coefficient follows:

DIx,y, c] = / d*z¢°[x, z; clgly, z; c]

szO

By, Oy, [c()[1 — ¢(x)18” (x — y)]

2mDQ

3y, [c[1 — ()13, 8 (x — y)I. (All)

A calculation similar to the proof of It5-Stratonovich identity
gives
/ d3yLD[x, y,c] =0.
Se(y)
Finally, using (A10) and (A11)
1

1)
p— 3 [
> /d yac(y)(D[x, Y. clPeglc])

1 3
= 3 d’yDIx,y, c]

8Pg[c]
de(y)

= —£/d3yl7[x—y, c]
2m

x (Inc(y) — In[1 — c(y)]Peglc]

= Do, / d*ye(x)[1 — c(x)]8*(x —y)

1
X m 8ya C(Y)Peq [C]

= DoAc Pyy[c].
The second drift contribution in the first line of Eq. (A8) is

thus exactly canceled by the diffusion contribution in the sec-
ond line when P = Pq. Itis clear from this calculation that the
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multiplicative factor \/ 2mDop~te(x)[1 — ¢(x)] is the unique
local function of the concentration field which can be chosen
to multiply the noise term in (A1) so that exact cancellation
between drift and diffusion terms is obtained, guaranteeing
that P, is stationary.

Notice, however, that Py given by (A2) is not the only
stationary distribution for the stochastic dynamics described
by (A1) because that equation conserves the integral

M, = p/d3xc(x, 1) (A12)
which represents the total mass of species 1 of the mixture.
Conservation of the integral (A12) will hold for any boundary
conditions on scalar flux which conserve mass, such as peri-
odic or zero flux. In that case, there is a one-parameter family
of invariant distributions of the form

Pl [c] oc ¥kt (A13)

Comparison with standard equilibrium thermodynamic rela-
tions (see Appendix F) reveals that A = u/kgT, where p is
the chemical potential per mass which is thermodynamically
conjugate to the concentration c. Its value thus determines
the mean concentration through the relation u = —75'(¢) or
A= —5'(¢)/kg, with & = 3 for L = 0.

The small Gaussian fluctuations ¢’(x) around the mean
value ¢ can be obtained from the formula (A13) for the distri-
bution Pe’x(l[c] by substituting ¢(x) = ¢ + ¢/(x) and expanding
to quadratic order. Using

828l

kg F(x—x)
sc(x)sc(x)  m

m e[ = cx)]’

1
L()F = EVQ/dSX (P;jAvJ 1( )

1
43 [ s PPl @) i inx. X0

/ / Exd®x Pin P Vit (X, X') 940 (X)) 0 (X)]

the result is

o _léfd%c [c/(x)]2>
Peq[c]“”‘"( 2m -0 )

It follows that the second-order correlation is given by

( (X)¢ (X)) = %5(1 — 8 (x - x)).

Fourier transforming and using the definition (4) gives the
equilibrium structure function

Seck) = —&(1 — 7)
P

which is independent of wave number k. Using the result (F1)
for (dpu/dc)r,, from Appendix F, we see that this special case
for an ideal mixture of equal mass particles agrees with the
general result (94).

APPENDIX B: HIGH Sc ASYMPTOTICS

We give here the detailed derivation of Eq. (40) for the
reader who is interested in the mathematical details. To sim-
plify the notation, in this Appendix we shall use v,u, w
instead of vy, ug, Wy, respectively, and likewise ¢’ and ¢ will
be denoted instead as ¢ and ¢, (to remind that the latter
depends linearly on y). Our analysis follows closely that of
DFV in [56], Appendix A, and related works [126—130], so
we shall be terse.

The forward Kolmogorov operator L. which corresponds to
the Langevin equations (38) and (39) and which evolves an
arbitrary functional F'[v, c] is the sum of three terms that are
ordered in inverse powers of € as L = Lo + Lje ™! + Lye2:

82F
dv;(x)dv;(x")
2 )
+(Do+uo)/d*x Ac(x) - ——

dv;(x)dv;(x') de(x)
mD, 8°F , , 8°F
—1—70 d3xcy(x)[1 —¢,(X)]-A Se(x )2 // dxd3x U;j(x, x)[9;c(x) + y,][8 c(x') + yj]m
/d3 ( t)—+ /fd* d*x' S(]x — x| L)‘SZ—F (B1)
x s(X, 5 xd’x Xx—Xx|/ Se(Sex)’

\ 5F
LiF =— | &xuj(0ic+y)——

and

L, = v/d x (PijAvj) 81(:)

4 VheT / Fepya—T (B3)
X FijiAT——————.
p 7T 80 (x)8v;(x)

Denote by (V(x, 1), ¢(x, t)) the solution of (38) and (39)
with initial conditions (V(x, 0), ¢(x, 0)) = (v(x), c¢(x)) and
consider the functional

Glv,c,t] = (F[V(-, 1), (-, 1)]), (B4)

where (-) denotes the expectation value over the realization
of noise terms 5 and 7.. The expectation defines a time-

Sc(x)’ (B2)

(

dependent functional G of the initial conditions which satisfies

the backward Kolmogorov equation:
3,G = LoG + ¢ 'L|G + € %L,G, Glio=F. (B5)

One considers this equation in the limit ¢ — 0. Expanding the
solution G as

G=Go+eG +€G+--,

and substituting this relation in (B5) and collecting terms of
increasing power in €, one finally obtains

L,Go =0, LyG; =-L Gy,
L,G, = 0,Gy — LoGy — LGy, .... (B6)
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Because L, is the Markov generator of the equilibrium fluctu-
ating hydrodynamics equation (9) in the text, which defines an
ergodic process, the first equation in Eq. (B6), i.e., LGy = 0,
indicates that Gy is a functional of ¢(x) only and does not
depend on both v(x) and c(x):

G() = Go[C].

The second equation in (B6) requires a solvability condi-
tion as its right-hand side must be in the range of L,. Because
(RanL,)* = Ker L}, this is equivalent to the statement that
the expectation of L;Gy must vanish when averaged with
respect to the invariant Gibbs measure of V(x,t) evolving
under (9), i.e.,

Py(¥) = %exp (—ﬁ / d*x f)2>83 (/ &*x pv>5(v ).
(B7)

Denoting the expectation with respect to this measure by (f)y,
the solvability condition becomes

3G
sc(x)’

which is satisfied because (v(x))y = 0. The second equa-
tion in (B6) can now be solved for G:

Gi = —L;'L;G, (B8)

0= (LiGo)y = — / &x ), - [Vex) + 7]

where L !'is the pseudoinverse of the operator L.
The third equation in (B6) also requires a solvability con-
dition, which using (LoGp)v = LoGy and (B8), can be written

J

as

%Go = (LoGo)v + (LiG1)y = LoGy — (L1L; 'L, Gy)

v
Because the operator L; defined in (B2) is linear in u(x) =
o * V(X), one can use

L;lu(x) = L;la *V(X) = U*Lglv(x)

o0
= —a*/ dr e v(x)
0

—a*/oodr(ff(x, 7)), (B9)
0

where V(x, t) denotes the solution of (9) with initial condition
V(x, 0) = v(x) and expectation (-) is the same as in (B4). This
solution, using (9), can be written as

V(x,7) = exp (—tvAV(X) + /T dt' exp[—(t — T )vA]
0
X V- (/2vkgT p~19(z")),

in terms of the Stokes operator A = —PA. The second term
has a zero average and does not contribute to the expectation
in (B9). Combining relations (B9) and (B10), we find

(B10)

Ly'u(x) = —v7'G, * v(x),

where G, = o x G is the convolution of the smoothing kernel
o with the Oseen tensor G (Green’s function for the Stokes
flow). It follows that

—(LiL;'LiGo)y = // d3xd3x’[Vc(x)+y]L<%R(x, x) - [Viex)+y] 3Go )

= %/ / Pxdx [Ve®) + y]- R, X) - [V'e() + ]

+ fd3xV . GR(X, x)~[Vc(X)+y])

The operator Ly which emerges from this last calculation is
the generator of the Markov random process corresponding
to the following Itd stochastic differential equation for the
concentration field

dhe=V-(GRXX)- (Ve+p) —w-(Ve+p),

where w is the Gaussian random velocity, white noise in time
with spatial covariance R(x, x") which is given by Eq. (18) in
the main text.

The solvability condition thus yields the limiting equa-
tion for Gy[c] as e — 0,

9,Go = (Lo + 6Lo)Go,

which can be recognized immediately as the backward Kol-
mogorov equation for the It equation

dc = (Do +Up)Ac+ V- (FRE, x) - (Ve +p))
—(W+ur) - (Ve+p)+s(x,1) +s0(x, 1)
+V - (/2mDop=e, (1 — ¢, . (x. 1),

which is exactly Eq. (41).

Sc(x) de(x’)

ZGO
Sc(x)8c(X)
8Go

Sc(x)

= (8Lo)Go.

[
APPENDIX C: EQUATION FOR THE CORRELATION
FUNCTION IN THE ISOTROPIC KRAICHNAN MODEL

Equation (49) in the text can be written explicitly as
Vij(r) = K(r)d;; + 9,0, H(r), (ChH

where —AH(r) = K(r). Here K(r) is any positive-definite,
radially symmetric, smooth function, which means that it can
be written as a Fourier transform K (r) = [ d?k ¢ E (k) with
E (k) a positive, radially symmetric, rapidly decaying spec-
trum. For any radially symmetric function H(r) it is easy to
check that

0,0, H(r) = J(r)d;; +rJ/(r)’Afi'A'j (€2)
with J(r) = H'(r)/r, so that taking a trace gives

1 d
~K(r)=AH(r)=d-J@r)+r](r) = rd—_lﬁ[rd.l(r)]

(C3)
in d dimensions. Integration over r yields the formula (50) in
the text.
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Using (C2) and (C3) in (C1), we get
Viij(r) =[K(r) +J(N)]18ij — [K(r) +d - J(r)]#7;. (C4)
and substituting this expression into Eq. (48) in the text yields
0,C = [AK(r) + AJ(N]AC — [AK(r)+d - AJ(r)]?;Tf

+2DoAC + S(%)

where AJ(r) = J(0) — J(r), etc. Using the standard formula
for the radial Laplacian

1 9 aC d—1
AC= ——(ri' =) = ——8,Cc+d°C C5
pd=1 3r<r 8r> r to €
then gives further
d—1
8,C = ——(AK(r) + AJ(r))9,C
r
2 r
+ (1 — d)AJ(1)2C + 2Dy AC + S(Z)
d—129 aC r
= ————(AJHFT =) + 2Dy AC + S —),
rd-1 ar( ) 8r)+ oA+ (L

where we employed again (C3) to get the second equality.
Combining with the radial Laplacian (C5) gives the final result

19 ., 0C r
0C = —— = (1200 — (d = DAIOI ' ) +5( 7).

(Co)

which coincides with (52) in the text.

APPENDIX D: RENORMALIZED DIFFUSIVITY FROM
THERMAL VELOCITY FLUCTUATIONS

We here derive the scale-dependent diffusivities (56) and
(60) arising from advection by thermal velocity fluctuations.
The covariance R(x, x) defined in (19) can be evaluated for
d = 3 homogeneous, isotropic statistics in the form (49) or
(C1), with

kT
Ko(r) = o /d3ke"” & (k)| 7722
keT [ sin(k
=2 ak SInkr) = o2, (D1)
TN Jo kr

The function Jy (r) can then be obtained from the integral (50).
We now obtain concrete results for the two specific choices of
filter kernel considered in the main text.
With the choice of kernel (55) used by DFV, (D1) becomes
after the change of variables x = ko
x* sin(xr/o)

K()_Iﬂl ood
er_n%rﬁ XA+ D /L) + 24

Although we have worked out the result for finite L, we
present here only the limit case L — oo which gives
sin(xr/o)

Ko (r) kBTl/ood
r)y=—-— —
¢ T2nr Jo xx(l—l—xz)

kT 1=l

T 2y r

(D2)

(D3)

using [92], formula 2.2(20). Substituting this expression into
the definition (50) of Jy (r) gives by simple integration by parts

kgT (11 — e/
Jo(r) = — + (r ) 3
and thus the result (56) stated in the text.

2o 5; (L)2 Bl
We consider next the exponential kernel given by (59) in
the text, or 5 (k) = e~*/" . With this choice,

e’ 1

kgT [ in(k kgT
Kg(r) — B_ dkme_Z‘Tk/ﬂ — B_ arctan (ﬂ)’
w2y kr wnr 20
(D4)

using [92], formula 2.4(1). Substituting into (50), after inte-
gration by parts and some straightforward algebra, yields

Jo(r) kgT 402 e ) (rrr) 2
rN=—-————|— +r")arctan(— ) — —or
¢ 223 |\ w2 20 i

and thus the result (60) stated in the text.

APPENDIX E: NUMERICAL METHODS FOR PLOTS

In this Appendix, we describe our numerical method in
MATLAB to plot the concentration spectrum for our exact so-
lution (78)—(80). From the formula (76) for E.(k) in terms
of F(k), we need to evaluate fi(z) and its derivative fi'(z) =
—gi(z). Since the functions cosint and ssinint in MAT-
LAB evaluate the cosine and sine integral functions Ci(z)
and si(z) = Si(z) — %, respectively, the most obvious method
would be to use (86) for fi(z) and the analogous result

gi(z) = —Ci(z)cosz — si(z)sinz (ED)

(see [90], formula 5.2.7). Unfortunately, this approach does
not work in the asymptotic regime of interest, with z near
the imaginary axis and of large magnitude. In this region
cos z, sinz both grow exponentially, but these growing contri-
butions cancel identically in fi(z), gi(z), which instead decay.
Numerically, evaluating these functions using formulas (86)
and (E1) leads to large loss of significance errors in the region
of interest.

‘We have overcome this problem by alternative expressions
for fi(z), gi(z) in terms of Tricomi’s confluent hypergeometric
function U (a, b, z), as

fi(z) = é(U(l, 1,iz) = U, 1, —iz)), (E2)
1
gi(z)=E(U(l,l,iz)—FU(l,l,—iz)). (E3)

The Tricomi function decays for large z near the real axis, so
that this representation avoids inaccuracy from large cancel-
ing contributions and U (a, b, z) is simply evaluated with the
function kummerU in MATLAB.

The formulas (E2) and (E3) can be derived from the stan-
dard integral representation for Tricomi’s function:

1 [ 1 o
Ua, b,z) := —f e (1 + )P N,
C'(a) Jo

for Re(z) > 0, Re(a) > 0 and with the gamma function I'(a).
See [90], formula 13.2.5. Takinga = b = 1, and z — =iz, we
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find
o0 it

U1, 4iz) = / dt = i) Fifir), (B4
0o 2+t

where we used (81) and the corresponding integral formula

® cost © te
i(z) = dt = ——dt, Re(z 0. (E5
gi(z) /0 P /0 T e(z) > 0. (E5)

See [90], Sec. 5, formula 5.2.13, and [91], Sec. 38:13. The
formulas (E2) and (E3) follow directly from (E4).

APPENDIX F: THERMODYNAMICS OF BINARY
MIXTURES

We briefly review here the results on thermodynamics of
binary mixtures required in the main text. We start with the
first law of thermodynamics in the form

du=Tds— pdv+ puodvy + p1dvy,

where u = U /M is specific energy, s is specific entropy, v =
V/M is specific volume, and v; = N;/M, i =0, 1, are the
specific particle numbers of the two species (solvent, solute).
Mass fractions or mass concentrations of the two species are
defined by

Cc = 01=m1V1=M1/M, C():I’)’lol)o:Mo/M.

From ¢y 4+ ¢; = 1 one then easily obtains
du=Tds— pdv+ ndec,
where the chemical potential per mass is given by
_ MK
my My
(cf. [131], Chap. VI, Sec. 57). One can also introduce the

molar fractions or molar concentration n; = N;/N, i =0, 1,
which are easily related to the mass concentrations by

myc
n=——m —
moc +mi(1 —c¢)
with n := n;.
An ideal mixture by definition is one in which the chemical
potential of each component in solution satisfies
i = p} (T, p) + kT In(n;),
where ,u? is the chemical potential of the pure substance. Note
then that
kgT kT
w =T, p)+ ——In(n) — =—In(l —n).
my mo

A straightforward calculation gives

(a_“) - ksT ) (F1)
ac Tp c(1 —c)lmoc +my(1 — c)]

Chemical potentials of nonideal mixtures are generally
written in the form

wi = WN(T, p) + ksT In(nf),

where f; is the activity coefficient which takes into account
the nonideality of the solution (e.g., see [104]). Note from the

Gibbs-Duhem relation vod g + vidu = —sdT + vdp and
from the condition ng + n; = 1 that, at constant T, p,

nod(In fo) +md(In f1) = 0.
Defining

B =1
+ d lnn[ T.p

, 1=0,1

it then follows that By = B; := B. Furthermore, from this
definition, at constant 7', p,
i In(n; f;) = i In(n;)B
dc dc
and thus for a nonideal mixture
ou _ BkgT
(%)np (1 —o)mge + mi(1 — )]’

(F2)

APPENDIX G: SURVEY OF EXPERIMENTS ON
TURBULENT HIGH SCHMIDT MIXING

As a convenience for readers, we here briefly survey ex-
periments known to us on high Schmidt-number turbulent
advection. These experiments all differ considerably from
each other, both in the turbulent flows considered and also in
the fluid mixtures employed, which include water-fluorescein
[28,33,34], salt water [30,32], and ink in water [27]. We ad-
ditionally consider here experiments which studied turbulent
mixing of temperature fluctuations at high Prandtl numbers,
in order to expand our view of the range of parameters which
can be practically achieved. We shall briefly describe each
experiment and the physical parameters stated in the paper. In
addition, some further parameters could be calculated with the
reported quantities and with data extracted from the published
figures, and we describe our methods for this. We shall discuss
the main experiments of which we are aware, in chronological
order.

We start with the experiment performed by Gibson and
Schwartz [32] who used a single-electrode conductivity probe
in a bridge circuit to measure the spectra and decay of homo-
geneous fields of both concentration and temperature behind
a grid in dilute salt water at Re ~ 10* and who reported
Batchelor spectrum in the viscous-convective range. Here v ~
1072 cm?/s and D ~ 1.5 x 107 cm?/s, thus Sc ~ 666.7.
The Batchelor scale can be obtained using xp = kx~/Sc in
terms of the Kolmogorov wave number «x (which is denoted
by k, and given in Table 1 in [32]). For six different runs in this
series of experiments, we find xz >~ 761, 2631, 4257, 2505,
1437, and 3444 cm™!, respectively, for CM1 through CM17
in Table 1 in [32]. Using y = D/¢2 = k2D, for six runs CM1
through CM17, we find y ~ 8.7, 103.8, 271.8, 94.1, 31, and
177.9 s~!, respectively. The injection rate of concentration

3U

fluctuations is given by x = 5;0_2 with the variance of con-

centration or temperature fluctuations denoted as 62, where
velocity U and distance from the grid x are given in Table 1 in
[32] for different runs. With 0.57 < % <4.7,and 2 ~ 10712
from Fig. 1, we estimate x ~ 101210~ 1 g1,

In another set of experiments, Nye and Brodkey [27]
studied commercial blue ink in water flowing through a
pipe with a fiber-optic light probe and reported a full 1.5
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decades of 1/k spectrum, starting near the velocity spec-
trum cutoff, which was observed to be at about 0.1kx with
Kolmogorov wave number kg. The diffusivity of the dye
was given as D = 2.6 x 107® cm?/s and viscosity (of water)
is v ~ 1072 cm?/s, hence, the Schmidt number should be
around Sc ~ 3800. The Kolmogorov wave number is given
as kg ~ 62 cm™ !, thus the Batchelor wave number is given
by kp= ZEI = kx~/Sc ~ 3822 cm™! using which we also find
y ~D/t3 ~ 38 s~!. The energy dissipation rate & can be
estimated using & ~ y?v ~ 14.4 cm?/s® which also agrees
with & >~ vk} as expected. Finally, using [27], Fig. 4, for
the scalar spectrum E.(k), we estimated f k*E.(k)dk for the
three cases presented, by extracting data for E.(k) and then
numerically integrating k*E.(k), and found that the scalar
injection rate should be of order xy ~ 1074~10~2 s~! in this
set of experiments.

An experiment of Grant et al. [30] measured temperature
and velocity fluctuations in the open sea and a tidal channel
and they reported observing Batchelor’s spectrum over at least
one decade in the viscous-convective range. In these exper-
iments, the injection rate for temperature fluctuations varied
from x ~ 7.2 x 1078 degC?/s to x ~ 5.2 x 10~* degC?/s
(see Table 1 in [30]). Since these experiments dealt with tem-
perature field, in order to compare the corresponding injection
rate (in units of degC?/s) to those corresponding to a con-
centration field [in units of (%concent.)?/s], we converted the
reported rates. Extracting data from Figs. 6-11 in [30], we cal-
culated the temperature fluctuations, which is given in terms
of the spectrum v (k;) as (AT?) ~ f Y (ky)dk,. For Figs. 6—
11 in [30],, respectively, we get (AT?) ~ 1073, 1072, 1073,
107, 107*, 10~* degC?. Therefore, the quantity x/(AT?)
will be in the range Xmin/ (AT?) max through xmax/ (AT?) min
which turns out to be of order ~107%~1 s~!. Also shown in
Table 1 of [30] is the energy dissipation rate &, which varies in
the range 4.4 x 1074-5.2 x 10~! (cm?/s?). Taking viscosity
of order v ~ 1072 cm?/s for water, we can use y ~ /&/v
to estimate y. Above values for ¢ translate into values in the
range y ~ 0.2 s~! through y ~ 7.2 s7!.

Miller and Dimotakis [33] used a mixture of water and
fluorescein, with diffusivity D ~ 5.2 x 10~ cm?/s, to inves-
tigate the temporal, scalar power spectra of high Schmidt-
number turbulent jets with Reynolds number of order Re =~
10* and Schmidt number Sc ~ 1.9 x 103. At the smallest
scales, the measured spectra were reported not to exhibit
Batchelor’s 1/k power-law behavior, but, rather, seemed to
be approximated by a log-normal function, over a range of
scales exceeding a factor of 40, in some cases. At x/d = 305
(x distance from the injection nozzle and d nozzle diam-
eter), the Kolmogorov scale was reported as £x >~ 2.57 x

1/4
102 cm. Using £x ~ ("8—3) ! , and taking v ~ 1072 cm?/s
for the viscosity of water, we get kinetic energy dissipa-
tion rate e~ 2.29 cm?/s?. Using £z =~ €x/~/Sc, we find
the Batchelor scale £z ~ 5.8 um. Finally, using & ~ y?v,
or equivalently using the relation y = D/¢%, we find y ~
15 s~!. In this set of experiments, unfortunately, we were
unable to obtain a certain estimate for the scalar injection
rate.

Williams et al. [34] employed fluorescein dye in a quasi-
two-dimensional turbulent flow to investigate the Batchelor

regime at Schmidt number around Sc 22 2000. They reported
that the spectrum falls below k~! at wave numbers lower than
expected from theory. In order to estimate «p, the authors first
considered the competing effects on a dye structure due to
the stretching produced by the large-scale flow and also due
to the dissipation by diffusion and found /2w ~ 35 cm™!.
They also estimated kg by measuring y: to determine the
rate of strain tensor on a regular grid, the authors obtained
the velocity derivatives from their velocity field measure-
ments, then diagonalized this tensor at each location and
finally ensemble averaged over space and time. The strain
rate determined in this way turns out to be y ~ 1.0 s7'.
Using E(k) = % exp(—=Dk?/y), with D = 5 x 107° em?/s,
and y =0.5(¢/v)"/? (and defining «xz as the wave num-
ber for which the exponent is —1) the authors found kp ~
70 cm~!. The authors reported a spectral slope steeper than
Batchelor’s value —1 and more so with increasing wave
number, while including a Gaussian tail did not improve
the fit. The inclusion of an exponential tail is reported to
yield a satisfactory fit but only when unphysical parameters
are used. The authors fit the data shown in their Fig. 17(b)
to a spectrum of the form E.(k) = Ck~'exp (—k+ /K /Vetr)
and found y. ~ 1.1 x 1072 s~!, which is drastically dif-
ferent from their directly measured value of y ~ 1.0 s7!.
Putting all this together, the value y ~ 1073 s~! for the
least strain rate seems possible, but quite small and dif-
ficult to reconcile with the value y ~ 1.0 s~! from direct
velocity derivative measurements. As for the scalar injection
rate, by extracting data from [34], Fig. 22, for E.(k), we
estimated x ~ 2D [ k*E.(k)dk ~ 107> s~ 1.

Jullien et al. [28] employed an electromagnetically driven
two-dimensional flow of a water-fluorescein mixture, in which
Batchelor’s 1/k spectrum was observed, with exponential tails
for the probability distributions of the concentration and con-
centration increments and logarithmlike structure functions.
In this set of experiments, the flow was statistically station-
ary, whereas the concentration field was in a freely decaying
quasiequilibrium regime starting from an initial circular 5-cm
blob of fluorescein. The results were also confirmed by a sim-
ulation where the scalar advection equation was solved using
observed values of the advecting velocity. The trajectories of
6 x 10° particles, located initially in a disk, 5 cm in diameter,
were calculated by integrating the experimentally measured
velocity field and used to estimate the evolved concentration
spectrum at negligible diffusivity. For this experiment, we
used Figs. 2(b) and 3 in [28] to extract data for E.(k), from
which we estimated x = 2D f E (k)k*dk by numerical inte-
gration. In this way, x turns out to be of order 2 x 102571,
roughly in agreement with the inset of [28], Fig. 2. Also, with
given kg = 2800 cm~!, and the relation x5 = /Y /x used in
[28] with diffusivity k¥ ~ 107 cm?/s, we find y ~ 7.8 s™1.

Finally, in the most recent experiment of which we are
aware, Iwano et al. [29] studied concentration fluctuations
of the fluorescent dye rhodamine 6G in an axisymmetric
turbulent water jet at the Schmidt number Sc ~ 2.9 x 10°
and Reynolds number Re >~ 2.0 x 10*. The authors observed
the 1/k Batchelor spectrum in the viscous-convective range
although they also report that the spectrum does not perfectly
follow this scaling due to “a small bump in the range.” The
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Batchelor and Kolmogorov length scales in this experiment
are given as np = 2.6 um and ng = 142 um, respectively.
For the injection rate, we have y =~ nEZD ~ 59 s~!, using
D~ 4.0 x 107° cm?s~! [132]. The latter result can be used
to obtain the energy dissipation rate: € >~ vy? = Sc x D x
y? ~40.4 cm®s~3. As for the scalar injection rate x, by
extracting data from [29], Fig. 3, for E, (k)/CO, we nu-
merically estimated the quantity [ sz (k)dk cutting off the

integral at the Batchelor wave number For different val-
ues of the initial concentration Cy, given as 1, 10, 100,
1000, the value of this integral lies roughly between 10* and
10°. Using x = 2DC} [ k*%32dk, we can estimate the range
of x values for different choices of Cy in this experiment
as 1074 s < x <10s7!

APPENDIX H: GCF’S IN A 2D QUIESCENT FLUID

We obtain here the steady-state concentration correlation
function C(r) and the corresponding spectrum E (k) for a
2D fluid, with velocity field in thermal equilibrium and with
concentration fluctuations generated by a stochastic source
(34) that is white noise in time. Similar to the 3D case dis-
cussed in Sec. III B, we will solve the general expression
(52) for the two-point correlation function and then obtain
the spectrum by Fourier transformation. However, the anal-
ysis is somewhat more difficult in 2D than in 3D. First, the
effective diffusivity Deg is well known to be logarithmically
divergent in 2D [e.g., see [56] and (H9) below]. Thus, the
calculation requires an IR cutoff L in addition to a UV cutoff
o, and we shall be concerned with evaluating C(r) only for
o K r <« L. Second, Fourier transforms of isotropic corre-
lation functions do not reduce to a Fourier cosine transform
as in 3D, but instead require in 2D a more difficult Hankel
transform.

The covariance R(x, x’) defined in (19) can be evaluated
for homogeneous, isotropic statistics in d = 2 dimensions
using the 2D version of the expression given by the first line
of (D1) in terms of Ky (), defined by (49), and J,y (), given by
(50). We have

_ 21, ikr 2]‘3
Ko(r) = (27r)2/d ke [5G0
kgT J kr
S °( Di5wP, (H1)
n

which is a Hankel transform, with the Bessel function of the
first kind Jy(kr) [see, e.g., [93], 7.3.1(2)]. We will use an
isotropic filter & = oI whose Fourier transform is given by

k3w
Vi + L2

with IR cutoff L and UV cutoff ¢ < L. Aside from required
properties for such a smoothing filter, we have made this par-
ticular choice due to the fact that it leads to tractable Hankel
transforms. It follows that

(k) == (H2)

" oV k2+L~2

H3
k2+L2 ()

Ky(r) = —f dk Jo(kr) ——

This particular example has not been presented in standard
tables of Hankel transforms, as far as we are aware. However,
it can be obtained from formula 8.2(24) in [133], which in our
notation reads as

0 kefam e*«/m/L
———Jo(kr)dk = —,
/0 JEFL 2 Nera

by integrating over the parameter o from o to infinity. Inte-
grating the left-hand side of the above expression over ¢, from
o to 400, is straightforward and gives the integral (H3). On
the other hand, the integral of the right-hand side of the above
expression over « can be written as

TR oo
——da
«/r2+052 0o Art+a?
e~V Hr /L
— ——du
0 Nr?+a?

where the integral, from o to 400, can be obtained using [92],
formula 1.4(27), while the remaining integral in the second

line can be estimated by making use of the approximation
/22 /L

Jo do*

0 r2+ 2

we find

~ %e”/ L for o <« r.Putting all this together,

(H4)
,

Ky(r) >~ kB—T[Ko(i) - ze_r/L],
n L
where Kj(x) [not to be confused with Ky(r)] is the modified
Bessel function of the second kind (see, e.g., [93], 7.2.2). The
term proportional to ¢ is much smaller than the first term in-
volving Ky(r/L) for o < r < L, but we retain it here because
the analogous small term gave rise in 3D to a nonanalytic
contribution to C(r) which was responsible for the GCF’s.
However, we remark in advance that the contribution from this
term will be found in 2D to be negligible compared with that
from the Bessel function. The major difference from 3D is that
the larger contribution to C(r) from the Bessel function is also
nonanalytic in 7 in 2D.
With Ky(r) at hand, we can now proceed to obtain Jy(r)
[not to be confused with Bessel function Jy(kr)] using its
definition given by (50) with d = 2:

keT L [ Kl( ) —L+a(l —e—'/L)].

7 2

Jo(r) = (H5)

To get this result, we have used the relation f zKo(2)dz =
—zK1(z) in terms of the modified Bessel function of the
second kind K;(z) [see [93], 7.14.1(3)]. Note that (H4) is
valid only for r > o while to calculate Jy(r), we need to
integrate from O to . Nevertheless, the error in this calculation
is of order (o /r)?, which can be easily verified by writing
Jo(r) = 23" pKe(p)dp + [y, PKo(p)dp] in terms of a
fixed N > 1 such that our asymptotic relations used to eval-
uate the second integral remain valid. Even for a large N, we
can take o small enough such that the first integral gives a
negligible contribution of order K3 (0)(No /r)* assuming that
for r < No, Ky(r) — Ky(0). The function Ky(0) has only a
logarithmic dependence on o /L, as shown immediately be-
low.
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In order to calculate J;(0), we note that in 2D the expres-
sion (50) implies Jy(0) = —%Kg (0). We can write

kgT [ kdk = keT o
Ky(0) = B_/ me_g ke %El(z)
0

n
(H6)
The first line in the above expression in fact defines the
exponential integral function E;(x) = —Ei(—x) = fx o %

as can be seen by a simple change of variable as « =

ok? 4+ L2 [see [93], 9.7(1)]. Thus, we find Jy(0) =

_Kg(O) _ %BWT E\ (0 /L) and consequently

2

Ay (r) = ]:—:[—%El(%> + (é) B (é)I“(%)

Next, for r/L < 1, we use the asymptotic relations K (r/L) ~
L/r 4+ L (r/L)In(r/2L) where I;(x) is the modified Bessel
function of the first kind [see [93], 7.2.5(37)], and also
Ii(r/L) >~ r/2L [see [93], formula 7.2.2(12)]. In addition, we
expand the exponential function to the first order in o /r < 1;
et~ 11— r/L, to write the final expression for AJy(r) as

o= 42 46(5) - 1n ) -]

o Lr<«L. H7)

With AJy(r) at hand, we proceed to calculate the steady-
state correlation function C(r) given by the integral (52).
Analogous to the 3D calculation presented in Sec. III B, how-
ever, it is easier to work with the derivative 9,C(r) and, also,
since r <« L, to take S(r/L) ~ S(0) = 2. Hence, we proceed
by inserting (H7) in 9,C(r), obtained by taking the derivative
of (52):

_ kT
9,c ~ X~ D+B—1n(i)
2 4z \2L

kBT o -
+— . (H8)
2an r

Here we have defined the “renormalized diffusivity” D as

kgT o\ . kgT L

D =D, + —E1<—> ZDo—y+ 2l n (-) (HY)
4y L 4y o

with bare diffusivity Dy and y = —TI'/(1). Factoring out a D
from the square brackets “[-]” in (H8), note that both the
logarithmic term lIn(r/L)/In(c /L) and last term containing
o /r in this expression are small and we can expand using
1/(1 +x) >~ 1 — x for small x:

9,C(r) ~ —ﬁ[l

kBT o
2D '

kgT ( r )
— n — — [e—
4mwnD 2L 2anD r

Integrating this expression over r, from No to r, we find

1 kT
cry=-—21-2_ B—r2[2 In (i) - 1]
202"~ 16mnD 2L
kT
— ar:| + const. (H10)
2nnD

The result is very much like (65) obtained in 3D, except
that the middle term containing In(r/2L) is nonanalytic,
whereas the corresponding term in 3D was proportional to r*

and analytic. We note also that the term proportional to o has
a negative sign, opposite to that in 3D.

We can obtain the spectrum using the general expression
E.(k) = % fooo rC(r)Jo(kr)dr in 2D. Performing this Hankel
transform, the last term in (H10), which is linear in r and o,
yields a negative contribution:

k X0 kBT
22D 2nnD

xo kgT

L k2. (H11)
2D 4xnD

o0
/ r2lokr)dr = —
0

Here, we have evaluated the integral by introducing an IR
cutoff p; lim, ¢ fooo r2e " Jo(kr)dr, which can be calculated
using [133], formula 8.2(20). The quadratic term in (H10),

that is 7% (1 + Sljf—nTD)rz, will contribute only a rapidly decay-
ing spectrum. This can be easily confirmed by directly taking
the integral fooo r3Jo(kr)dr using, e.g., [133], formula 8.2(20),
once again introducing an exponential IR cutoff p and taking
the limit © — 0, which gives a vanishing contribution.

Finally, to obtain the contribution to the spectrum of the
logarithmic term in (H10), we need to evaluate

/ ~ 2 In(r/2L)Jo(kr)dr = / ” > In(r)Jo(kr)dr
0 0

— In(2L) / ” 2 Jo(kr)dr.
0

The integrals on the right-hand side both can be evaluated
using a general property of Hankel transforms, which gives
the Hankel transform (of arbitrary order v) of function x™ f (x),
m=20,1,2,..., in terms of the mth-order derivative of the
Hankel transform (of order v + m) of function f(x) [see [133],
8.1(3)]. This general property allows us to write the two inte-
grals as

00 ; B i 3 3/‘00 j|
/0 r’Jolkr)dr = (kdk) |:k ; J3(kr)dr
and
00 s d 3 ; 00
/0 r’Inrdo(kr)dr = <m> [k /0 lnrJ3(kr)dr]

in terms of the Bessel function J3(z) of the first kind. These
integrals can then be evaluated using

o0
/ J(krydr = k7!
0

from [133], 8.5(3), and
/oo In(r)Js(kr)dr = [2¢/(2) — In(k? /4)]/2k,
0

from [133], 8.6(25), for u = —%, v =3, where ¥(z) =
I'"(z)/T'(z) is the logarithmic derivative of the gamma function
I'(z). It is then readily seen that only the logarithmic term
yields a nonvanishing contribution to the required integral:

3
(i> (K2 In(k2/4)]

o0
1
3In(r/2L =
/0 r” In(r/2L)Jo(kr)dr T dk

2

= 4k~ (H12)
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and thus the contribution of the logarithmic term in (H10) to
the spectrum is given by

X kBT *© 3
- r’ In(r/2L)Jo(kr)dr = —
2D 167nD  J, 2D 4mnD
Combining this result with (H11), therefore, we find the
2D spectrum of the concentration field to be
k= 2T
2D 4nnD
It is interesting that the term proportional to ¢ has the power-
law scaling k=2, just as in 3D. However, the sign of this term
is negative in 2D and it does not become sizable compared
with the first term until k >~ 1/o, when our asymptotic ap-
proximations break down. In contrast to 3D where the leading
term in C(r) was analytic in r and gave a contribution to the
spectrum very rapidly decaying in k, this term is now non-
analytic because of the Inr and produces a power law. Note
that the resulting spectrum is again in close correspondence

X kBT k_3

kP —0ok™), 1/LL k< 1/o. (H13)

with the prediction of linearized fluctuating hydrodynamics.
Using the relation in 2D between the spectrum and the struc-
ture function,

1 1 1
E.(k) = EQT)QZﬂkSCC(k) = 17 KSec(k)

and using the relation x = D(V¢)2; just as in 3D yields
1 kgT _
Seelk) = 3 - Veligk™.

This agrees with the prediction of linearized fluctuating hy-
drodynamics up to a factor of % Based on the results in 2D
and in 3D we may conjecture that the result of the DFV
theory for the case of a random concentration gradient V¢
with homogeneous, isotropic statistics and the prediction of
linearized fluctuating hydrodynamics for a fixed mean con-
centration gradient V¢ will agree in any space dimension d,
up to a factor of (d — 1)/d.
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