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Reducing unitary coupled cluster circuit depth by classical stochastic amplitude prescreening
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Unitary coupled cluster (UCC) approaches are an appealing route to utilizing quantum hardware to perform
quantum chemistry calculations, as quantum computers can in principle perform UCC calculations in a poly-
nomially scaling fashion, as compared with the exponential scaling required on classical computers. Current
noisy intermediate scale quantum computers are limited by both hardware capacity in number of logical qubits
and the noise introduced by the deep circuits required for UCC calculations using the variational quantum
eigensolver (VQE) approach. We present a combined classical-quantum approach where a stochastic classical
UCC preprocessing step is used to determine the important excitations in the UCC Ansatz. The reduced number
of selected excitations are then used in a UCC-based VQE calculation. This approach gives a systematically
improvable approximation, and we show that significant reductions in quantum resources can be achieved, with
simulations on the CH2, N2, and N2H2 molecules giving submillihartree errors.
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I. INTRODUCTION

Quantum chemistry, which often concerns itself with solu-
tions to problems with exponentially scaling Hilbert spaces,
has long been identified as a good target for quantum com-
putation, which would allow the encoding of such problems
in a linear number of qubits. For example, algorithms such
as quantum phase estimation [1,2] have been suggested as
means of efficiently computing the ground state energies
of molecular systems [3]. However, this approach would
require fault-tolerant quantum computers. In the current
noisy intermediate-scale quantum (NISQ) regime, the field
of quantum chemistry calculations on quantum computers
is dominated by hybrid quantum-classical approaches and
particularly the variational quantum eigensolver (VQE) [4],
which requires a parameterized wave function. Various pa-
rameterized Ansatz schemes have been proposed, such as
the hardware-efficient Ansatz [5], the hardware-variational
Ansatz [6], the symmetry-preserving Ansatz [7], and the uni-
tary coupled cluster (UCC) Ansatz [8–11]. UCC has seen a
resurgence as a convenient parametrization for VQE [4,12]
due to its ability to be easily encoded into a quantum
circuit. While its physical origin leads to a series of ap-
pealing features, including a relatively well-behaved energy
landscape, the qubit encoding of the fermionic operators
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in the UCC Ansatz produces very deep circuits, which are
challenging for currently available quantum architectures.
Work has been done to decrease the depth of these cir-
cuits while maintaining the physicality of the Ansatz, for
example, by using Moller-Plesset [13] (MP2) theory re-
sults to screen amplitudes [14,15] or using adaptive Ansätze
such as ADAPT-VQE [16]. While the latter does gener-
ate shorter, highly accurate Ansätze, it does so at the cost
of an increased number of measurements relative to the
standard UCC approach. Other approaches which select con-
tributing amplitudes based on their energy gradient have
been developed, such as qubit coupled cluster [17,18] or
energy-sorted UCC [19], but like ADAPT-VQE, they require
additional quantum computation to obtain the screened set of
operators.

In this paper, we propose using the recently developed
UCC Monte Carlo [20] (UCCMC) approach to screen am-
plitudes for a UCC-based VQE calculation. Quantum Monte
Carlo (QMC) methods [21,22] take advantage of the sparsity
of most chemical Hamiltonians to generate compact wave
functions, thereby lowering memory requirements relative
to the corresponding classical algorithms. Additionally, the
Monte Carlo (MC) approach naturally samples important
contributions to the wave function—determinants with large
Hamiltonian coupling terms to the reference determinant—
first, and therefore, while fully converging a QMC calculation
may be time consuming, short runs may be used to quickly
identify the most important contributions to a given wave
function [23]. We use this property of the UCCMC method
and particularly its Trotterized approximation to provide an
initial set of amplitudes for a VQE calculation. We screen
amplitudes based on these initial values and assess the effect
of using the screened parameter sets on the accuracy of the
obtained energy, comparing with the equivalent result from
MP2 screening.
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In Sec. II, we review the underlying theory of both the
UCC-based VQE and the UCCMC method. Section III com-
prises results and discussion for a range of small molecules in
a variety of scenarios, and Sec. IV presents our conclusions.

II. THEORY

Coupled cluster (CC) theory [24,25] has become well es-
tablished as the gold standard of ab initio quantum chemistry
methods. The exponential Ansatz:

|�CC〉 = exp(T̂ ) |�0〉 , (1)

where T̂ = ∑
i T̂i, and T̂i is composed of all valid excita-

tion operators of order i, naturally maintains size-consistency
when the operator T̂ is truncated at some excitation level, with
the most commonly employed truncations being CC singles
and doubles (CCSD) and CC singles, doubles, and triples
(CCSDT). Such methods are polynomially scaling with sys-
tem size and systematically improvable, both highly desirable
properties. However, the exponential operator in this form is
nonunitary, and therefore, it cannot be directly implemented
on a quantum computer.

A. The UCC Ansatz

We can construct the anti-Hermitian operator T̂ − T̂ †, the
exponential of which gives a unitary operator. The UCC wave
function is therefore

|�UCC〉 = exp(T̂ − T̂ †)|�0〉, (2)

and its energy can be found variationally as

E0 = min
t

〈�0| exp[−(T̂ − T̂ †)]Ĥ exp[T̂ − T̂ †]|�0〉. (3)

Although exp[−(T̂ − T̂ †)]Ĥ exp(T̂ − T̂ †) has a nontermi-
nating Baker-Campbell-Hausdorff expansion, which makes
the implementation of UCC costly on a classical computer,
the unitary operator exp(T̂ − T̂ †) can be decomposed as a
series of universal quantum gates on a quantum computer.
We start by writing the cluster operator in terms of individual
excitations:

U (t) = exp

[∑
n

tn(τ̂n − τ̂ †
n )

]
, (4)

where τn represents a fermionic excitation operator and tn its
corresponding cluster amplitude. We can take a Trotter-Suzuki
expansion [26,27] of U (t) such that

|�UCC〉 ≈ |�tUCC〉 =
( ∏

n

exp

[
tn
ρ

(τ̂n − τ̂ †
n )

])ρ

|�0〉, (5)

with equality achieved as ρ → ∞. We can take ρ = 1, which
has been shown [12] to be a good approximation, leading to
negligible errors in the resulting energy, to obtain

|�tUCC〉 ≈ U1(t)|�0〉 =
∏

n

exp[tn(τ̂n − τ̂ †
n )]|�0〉, (6)

also known as the disentangled UCC Ansatz [28]. For the case
of UCCSD, the singles are represented by

T̂1 =
∑
i,α

tα
i (â†

i âα − â†
α âi ), (7)

and doubles are represented by

T̂2 =
∑

i> j,α>β

tαβ
i j (â†

α â†
β âiâ j − â†

j â
†
i âα âβ ), (8)

where the Latin indices represent occupied spin orbitals, and
the Greek indices represent virtual spin orbitals. This can be
easily implemented on a quantum computer via an appropri-
ate transformation of the fermionic operators to the unitary
bosonic qubit operators using schemes like Jordan-Wigner
[29] or Bravyi-Kitaev [30], where algebraic compilation
strategies based on the ZX calculus have been proposed [31].

B. Quantum computing and the UCC Ansatz

NISQ hardware is characterized by small qubit counts and
high noise levels due mainly to short qubit coherence times,
quantum gate errors, faulty readout operations, and crosstalk
between qubits during operation. These limitations prevent
the use of error-correction protocols that would enable large
quantum computations. Thus, it is advantageous to reduce
the amount of quantum computation to a minimum. As a
result, there is a strong research effort dedicated to the devel-
opment of hybrid quantum-classical algorithms. One of the
main algorithmic workhorses of this field is the VQE [4],
where a minimizer run on a classical machine optimizes a cost
function evaluated by the quantum computer. In chemistry
problems, this corresponds to finding the expected value of the
energy with respect to a parameterized Ansatz wave function.
Alternative approaches have appeared in recent years; we
highlight methods based on imaginary time propagation of a
trial wave function, either via a variational principle [32] or
approximating the nonunitary evolution with an appropriate
quantum circuit [33], and techniques to variationally optimize
the reduced density matrix of the system [34].

The UCC Ansatz is attractive for this kind of quantum
algorithm, as it has a reduced number of parameters to opti-
mize and a more favorable energy-search landscape compared
with hardware-tailored Ansätze [5]. It also naturally con-
serves the number of electrons and the Mz spin projection
quantum number during the calculation, thus helping to pre-
vent convergence to unwanted states or avoiding the barren
plateau problem observed for hardware-efficient Ansätze [35].
However, these advantages are obtained at the cost of large
circuit depths. For example, in the Jordan-Wigner mapping,
fermionic creation and annihilation operators may be ex-
pressed as

â†
j =

j−1⊗
i

Zi

⊗ 1

2
(Xj − iYj ), (9)

â j =
j−1⊗

i

Zi

⊗ 1

2
(Xj + iYj ). (10)

Therefore, a single fermionic excitation operator becomes

tα
i (â†

i ââ − â†
ââi ) = itα

i

2

α−1⊗
k=i+1

Zk (YiXα − XiYα ), (11)
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FIG. 1. Pauli gadget for exp[−i θ

2 (Z0 ⊗ X1 ⊗ X2 ⊗ Y3)].

while a double excitation is given by

tαβ
i j (â†

α â†
β âiâ j − â†

j â
†
i âα âβ )

= itαβ
i j

8

j−1⊗
k=i+1

Zk

β−1⊗
l=α+1

Zl (XiXjYαXβ + YiXjYαYβ

+ XiYjYαYβ + XiXjXαYβ − YiXjXαXβ − XiYjXαXβ

−YiYjYαXβ − YiYjXαYβ ). (12)

Therefore, each excitation included in the Ansatz contributes
with a series of Pauli gadgets (see Fig. 1), requiring a large
number of two-qubit gates. These gates are responsible for
most of the noise produced during a quantum computation on
NISQ devices, so it is very important to reduce their number.
The ability to identify which excitations have a negligible
contribution to the total energy would enable their elimination
in the Ansatz and reduce the overall circuit depth of the state
preparation step in variational quantum algorithms. Success-
ful screening of excitations aims to bring the circuit execution
time within the coherence time of near-term hardware with
maximal fidelity with the unscreened Ansatz, incurring a min-
imum energy penalty.

C. QMC algorithms

MC algorithms have become popular approaches to more
effectively use classical computational resources for quan-
tum chemistry. Real-space approaches such as diffusion MC
(DMC) [36,37] suffer from the so-called sign problem, which
causes them to naturally converge to bosonic solutions. This
can be somewhat mitigated by using arbitrary nodal surfaces;
however, this introduces an uncontrolled approximation. Re-
cently, Hilbert space QMC methods have been developed that
naturally avoid the DMC sign problem. Full configuration
QMC (FCIQMC) [21] encodes a stochastic solution to the
full configuration interaction (FCI) equation. The FCI wave
function is expressed as a linear combination of a reference
determinant [usually the Hartree-Fock (HF) wave function]
and all possible excited determinants starting from it:

|�FCI〉 = (1 + Ĉ) |D0〉 , (13)

where Ĉ = ∑
i,α Cα

i âα
i + 1

4

∑
i, j,α,β Cαβ

i j âαβ
i j + ..., and âα

i , âαβ
i j

are excitation operators. The coefficients C can be optimized
by minimizing the energy with respect to them. This gives the
following set of equations:

〈Di|Ĥ − E |�FCI〉 = 0, (14)

where |Di〉 span the full Hilbert space of the system. Equiva-
lently,

〈Di|1 − δτ (Ĥ − E )|�FCI〉 = 〈Di|�FCI〉 , (15)

which can be written in an iterative form as

Ci(τ ) − δτ 〈Di|Ĥ − E |Di〉Ci(τ )

−
∑

j

δτ 〈Di|Ĥ |Dj〉Cj(τ ) = Ci(τ + δτ ). (16)

This equation can be solved stochastically by sampling the
population dynamics of a set of walkers (psips) in the Hilbert
space of the system, which undergo the following processes
[21]:

(1) spawning from |Di〉 to |Dj〉 with probability:

pspawn(j|i) ∝ δτ |Hij|; (17)

(2) death with probability:

pdeath(i) ∝ δτ |Hii − S|; (18)

(3) annihilation of particles of opposite sign on the same
determinant.

In the death step, the shift S replaces the unknown exact
energy E . This acts as a population control parameter and,
once the system has reached a steady state, converges to the
true energy. Another estimator for E is the projected energy:

Eproj = 〈D0|Ĥ |�〉
〈D0|�〉 =

∑
i 	=0

NCI
i Hi0

N0
. (19)

A set of equations like Eq. (14) holds for the CC wave
function given in Eq. (1). Since 〈Di|�CC〉 = ti + O(t2), we
can write

ti(τ ) − δτ 〈Di|Ĥ − E |�CC〉 ≈ ti(τ + δτ ). (20)

This can be described stochastically by the same three pro-
cesses considered for FCIQMC, leading to an algorithm
known as CCMC [22]. However, one must also consider con-
tributions from composite clusters. For example,〈

Dαβ
i j

∣∣�CC
〉 = tαβ

i j + tα
i tβ

j − tβ
i tα

j , (21)

and therefore, any of these three terms may contribute to death
on tαβ

i j or to spawning onto some excitor coupled to it by
the Hamiltonian. The selection process is therefore somewhat
more complicated than for FCIQMC, originally consisting of
the steps below [22]:

(1) a cluster size s is selected with probability:

p(s) = 1

2s+1
; (22)

(2) a particular cluster of s distinct excitors is selected with
probability:

p(e|s) = s!
s∏

i=1

|Ni|
|Nex| ; (23)

where Nex is the total population on excitors. The total selec-
tion probability is therefore

psel(e) = p(e|s)p(s). (24)
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FIG. 2. Frozen core (left) and all-electron (right) LiH STO-3G energies, computed with pUCCMCSD (orange circles = projected energy,
green squares = variational energy) and tpUCCMCSD (blue circles = projected energy, red crosses = variational energy). In the left panel,
the black line corresponds to UCCSD VQE. In the right figure, the black dashed line corresponds to the deterministic UCCSD benchmark of
Cooper and Knowles [45] and the black solid line line to UCCSD VQE. In both cases, the stochastic energies agree with the VQE results to
within 50 μEh.

Improvements have since been made to this selection algo-
rithm to better importance-sample the wave function [38].

Recently, some of us have implemented a stochastic ver-
sion of UCC and its Trotterized approximation [20], the
details of which are expanded upon in the following section.

1. Projected UCCMC

While the UCC wave function is generally found by varia-
tionally optimizing the parameters, it is also possible [39,40]
to solve a set of projected UCC (pUCC) equations:

〈Di|Ĥ − E |�UCC〉 = 0. (25)

This projective method is naturally more amenable to the
QMC algorithms described above, as it leads to similar pop-
ulation dynamics to those in Eq. (20). However, the presence
of de-excitation operators T̂ † in the full UCC Ansatz substan-
tially changes the structure of the allowed clusters, removing
the constraint that cluster sizes must be at most equal to
the maximum excitation level considered in the calculation.
However, the expansion can be truncated to a finite cluster
size which, if large enough, does not significantly affect the
accuracy of the obtained answer. The selection scheme for
UCCMC is then as follows:

(1) Select a cluster size s with probability p(s) = 1
2s+1 .

(2) For all but the first excitor in the cluster, decide with
probability 1

2 whether it will be an excitation or de-excitation
operator.

(3) A particular cluster is selected as before, with proba-
bility given by Eq. (23).

Having selected the cluster, it undergoes stochastic spawn-
ing and death as before. Overall, this constitutes the projected
UCCMC (pUCCMC) algorithm. The final aspect one must be
careful of is the projection of the wave function onto the HF
reference, as this includes contributions beyond the reference
population. This projection may be sampled stochastically
during the course of the calculation concurrently with the

reference population and the NCI
i Hi0

N0
terms.

2. Trotterized pUCCMC

Consider once again the Trotterized UCC Ansatz with
ρ = 1:

|�tUCC〉 =
∏

n

exp[tn(τ̂n − τ̂ †
n )]|�0〉. (26)

This Ansatz now depends on the order of excitors in the
product, with different orders leading to different cluster am-
plitudes and potentially different energy values [41]. In recent

TABLE I. Size of the totally symmetric 	+ UCCSD Hilbert space and number of amplitudes above different thresholds for LiH in the
STO-3G basis at a range of bond lengths, together with the percentage of the correlation energy recovered using each of the thresholds as a
cutoff for amplitudes included in the VQE UCCSD Ansatz, relative to the completer VQE UCCSD calculation.

Bond length (Å) 	+ UCCSD Hilbert Space t > 0.1 % Ecorr t > 0.01 % Ecorr t > 0.001 % Ecorr

0.995 35 0 0 8 97.43 29 99.93
1.395 35 1 71.20 8 98.75 19 99.94
1.795 35 1 70.54 8 98.94 22 99.95
2.195 35 3 88.90 8 99.13 25 99.99
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FIG. 3. CH2 singlet and triplet energy computed with UCCSD VQE across the bending mode at rCH = 1.08 Å with different coefficient
thresholds, using MP2 (blue and green circles) and tpUCCMCSD (orange and red pluses) as screening methods. From left to right, we consider
coefficients >0.1, 0.01, and 0.001, respectively. All energies in the top panel are relative to the lowest computed energy along the binding curve
obtained with the same method—in this case, the triplet energy at ∠HCH = 130◦. For all methods, the error relative to FCI is given in the
middle (for the singlet) and bottom (for the triplet) panels. In tpUCCMCSD screening, there are no amplitudes |t | > 0.1 for the triplet state.

work, Evangelista et al. [28] have defined an optimal ordering
that guarantees complete wave function expressibility in this
framework. Applying exp[ti(τi − τ

†
i )] to an arbitrary single

determinant wave function |�〉 leads to three possibilities:
(1) τ̂

†
i |�〉 = 0 and τ̂i |�〉 	= 0:

exp[ti(τ̂i − τ̂
†
i )] |�〉 = cos(ti) |�〉 + sin(ti) |�i〉 , (27)

where |�i〉 is the result of applying the excitation to |�〉;
(2) τ̂

†
i |�〉 	= 0 and τ̂i |�〉 = 0:

exp[ti(τ̂i − τ̂
†
i )] |�〉 = cos(ti) |�〉 − sin(ti) |� i〉 , (28)

TABLE II. Size of the totally symmetric UCCSD Hilbert space
and number of amplitudes above different thresholds for triplet CH2

in STO-3G at a range of CH bond lengths, with ∠HCH = 135◦.

Bond length UCCSD
(Å) Hilbert Space t > 0.1 t > 0.01 t > 0.001

1.06 31 0 24 30
1.08 31 0 25 30
1.10 31 0 26 29
1.12 31 0 26 29
1.14 31 0 25 29
1.16 31 0 26 30
1.18 31 0 26 29

where |� i〉 is the result of applying the de-excitation to |�〉;
and

(3) τ̂
†
i |�〉 = 0 and τ̂i |�〉 = 0:

exp[ti(τ̂i − τ̂
†
i )] |�〉 = |�〉 . (29)

To translate this into a stochastic algorithm, for each exci-
tor present in the wave function, the algorithm assesses which
of the cases listed above is appropriate. If the excitor cannot
be applied, the next excitor is considered. If the excitor can be
applied, this is done with probability:

pexcit = | sin(t )|
| sin(t )| + | cos(t )| , (30)

and the cluster amplitude is multiplied by ± sin(t ). With
probability 1 − pexcit , the operator is not applied, and the
cluster amplitude is multiplied by cos(t ). The cluster then
undergoes the same spawning, death, and annihilation steps
as in traditional CCMC, leading to a Trotterized pUCCMC
approach (tpUCCMC). As in the case of full pUCCMC, this
Ansatz modifies the projection of the wave function onto the
reference, making it different from the reference population.
Depending on the ordering of the excitors, a closed form for
this projection may be found, but in general, it can easily be
sampled during the stochastic propagation.
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FIG. 4. CH2 singlet and triplet energy computed with UCCSD VQE across the stretching mode at ∠HCH = 135◦ with different coefficient
thresholds, using MP2 (blue and green circles) and tpUCCMCSD (orange and red pluses) as screening methods. From left to right, we
consider coefficients >0.1, 0.01, and 0.001, respectively. All energies in the top panel are relative to the minimum energy along the binding
curve obtained with the same method - in this case the triplet energy at rCH = 1.08Å. For all methods, the error relative to FCI is given in the
middle (for the singlet) and bottom (for the triplet) panels. In tpUCCMCSD screening, there are no amplitudes |t | > 0.1 for the triplet state.

FIG. 5. Percentage of UCCSD correlation energy recovered for triplet CH2 with MP2 (blue circles) and tpUCCMCSD (orange crosses)
screening at a series of geometries. MP2 fails to converge for the triplet state, while tpUCCMCSD allows recovery of significant fractions of
the correlation energy while reducing the circuit depth by up to half for all geometries.
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FIG. 6. N2 frozen-core binding curve computed with UCCSD VQE with different coefficient thresholds, using MP2 (blue cicles) and
tpUCCMCSD (orange crosses) screening. From left to right, we consider coefficients >0.1, 0.01, and 0.001, respectively. All energies in
the top panel are relative to the energy at rNN = 1.1 Å obtained with the same method. Energies converge to the unscreened UCCSD VQE
value (solid black line) with number of parameters for both methods. At intermediate screening, tpUCCMCSD performs better than MP2 at
compressed bond lengths. CCSD energies (red line) are shown for comparison.

D. Technical details

The VQE calculations have been performed using a mini-
mal (STO-3G) basis set for all molecular species considered.
Molecular integrals and molecular orbital coefficients have
been obtained using the PySCF package [42]. The wave func-
tion Ansatz has been encoded into quantum circuits on a
qubit register using the Jordan-Wigner scheme in the EUMEN

program. For the optimization loop in the VQE procedure, the
L-BFGS method has been applied. The state vector simulator
Qulacs [43] has been used to evaluate the quantum circuits.

All QMC calculations have been carried out in a de-
velopment version of HANDE-QMC [44]. Where directly
compared, VQE and tpUCCMC calculations use the same or-
dering of excitors, applying all single (de)excitation operators
ahead of the doubles. For triplet states, restricted open-shell
HF reference states were used for all MC, MP2, and VQE
calculations. All screened VQE UCCSD calculations used the
relevant tpUCCMCSD/MP2 amplitudes as starting values for
the parameters.

III. RESULTS

In this section, we assess the viability of the tpUCCSD
method as a screening technique for UCCSD-based VQE.
Given one method is based on a projective approach, while
the other is variational, we first ascertain whether the wave
functions obtained by the two approaches are sufficiently sim-
ilar for tpUCCSD amplitudes to be a good predictor of VQE
UCCSD amplitudes. To assess this, we turn our attention to
the LiH molecule. In the STO-3G basis, this system consists
of four electrons in 12 spin-orbitals, which can easily be
treated by both VQE and tpUCCMCSD. The system can be
further simplified by freezing the core Li 1s electrons. As
seen in Fig. 2, in both cases, the energies obtained by the two
methods agree within 50 μEh for both the expectation value
and the projected energy for tpUCCMCSD.

However, for tpUCCMCSD predictions to be useful as a
starting guess or screening for VQE UCCSD amplitudes, the
methods must agree not only in energy but also in individual
cluster amplitudes. For this agreement to be achieved, care
must be taken that the same ordering is used in both Ansätze.
While for such small systems any arrangement of the excitors
in the Trotterized UCC wave function will be able to describe
the ground state wave function, the individual amplitudes may
vary extensively, particularly in the more highly correlated
regime, see the Supplemental Material [46]. For frozen core
LiH, the tpUCCMCSD amplitudes agree with their determin-
istic counterparts within the 1σ -error bars.

Having convinced ourselves that the VQE UCCSD and
tpUCCMCSD results are compatible, we investigate the po-
tential of the latter as a screening technique for the former.
Table I gives the number of amplitudes in the LiH wave
function of different orders of magnitude in a stochastic snap-
shot of the tpUCCMCSD expansion. We find that the lowest
threshold (t > 0.001) recovers >99.9% of the correlation
energy at all geometries, while decreasing the size of the
considered Hilbert space by 14–43%.

Even t > 0.01 generally recovers >97% of the correlation
energy in all cases, despite only using eight parameters.

Following on from these results, we investigate the ap-
plicability of tpUCCMC-screened VQE to a series of small
molecules in different scenarios: CH2, which has a triplet
ground state; N2, which becomes increasingly strongly cor-
related as the bond between the nitrogen atoms is broken; and
N2H2, where there is a crossing of diabatic states as it rotates
from a trans to a cis geometry. In all cases, we use a snapshot
of the amplitudes at the end of a short tpUCCMCSD run for
screening.

For CH2, considered with frozen 1s electrons on the
C atom, we once again observe good agreement between
tpUCCMCSD and VQE energies and wave functions,
provided the same excitor ordering is used throughout, see
the Supplemental Material [46]. In this paper, we consider
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FIG. 7. Percentage of UCCSD correlation energy recovered for
N2 with MP2 (blue circles) and tpUCCMCSD (orange crosses)
screening near equilibrium (left) and for a stretched bond (right). Per-
formance is comparable between the two methods, with tpUCCMC
exhibiting slightly faster convergence in terms of both threshold and
depth.

both the symmetric stretch at an angle ∠HCH = 135◦ and
the bend with rCH = 1.08 Å, close to the experimental
equilibrium geometry (∠HCH = 133.9◦, rCH = 1.075 Å)
[47]. In this case, the tpUCCMCSD amplitudes are less
spread out in magnitude, and therefore, the screening is less
efficient at decreasing the number of VQE parameters to be
considered (see Table II for an example). As expected from
this distribution of amplitudes, screening at either t > 0.01 or
t > 0.001 gives errors of <1 mEh relative to the full UCCSD
VQE calculation, for both singlet and triplet CH2. Using MP2
as a screening method is competitive for the singlet state (see
Figs. 3 and 4), while for the triplet, the MP2-screened results
exhibit a systematic error of >10 mEh which persists across
all screening thresholds. Even when considering relative
energies, MP2-screened calculations overestimate the energy
of the triplet as the C-H bonds are stretched, as seen in
Fig. 4, and generally underestimate the singlet-triplet gap.
Considering quantum resources, we note that the tpUCCMC

screening described above leads to significant depth reduction
with relatively little correlation loss, as can be seen in Fig. 5,
which also highlights the unsuitable quality of MP2-screened
results independently of circuit depth.

The N2 molecule as it approaches dissociation is one of
the archetypal examples of static correlation and poses sig-
nificant challenges to methods such as CC, which are based
around the assumption that a single determinant dominates
the wave function. For example, for rNN > 3.6a0, CCSD(T)
[48] overestimates the correlation energy and diverges as the
bond length is increased [49]. As can be seen in Fig. 6, the
unitary, variationally optimized Ansatz avoids the failure of
the traditional CCSD Ansatz, with the energy consistently
above the FCI value and generally lower errors. In this case,
both MP2 and tpUCCMCSD screening provide similar quality
results, but the system highlights a few interesting differences
between the two methods. First, in the left panel of Fig. 6, we
observe that, while in MP2 there are consistently some ampli-
tudes allowed by the screening, tpUCCMCSD does not have
any amplitudes >0.1 for half of the geometries considered. As
such, the screened method cannot provide any improvement
over HF. Obviously, this threshold is too high, and the results
obtained with either MP2 or tpUCCMCSD screening all have
significant systematic and nonparallelity errors (10–500 mEh),
making it inappropriate for the treatment of this system.

Secondly, in the previous examples, we have generally
found that tpUCCMCSD screening converges slightly faster
with screening threshold than MP2, or indeed MP2 fails to
converge at all. In this case, we find that tpUCCMCSD con-
verges faster than MP2 for compressed bonds, but they are
comparable in the stretched regime, as is further highlighted
in Fig. 7, which shows that, once again, screening can be
used to meaningfully reduce circuit depth without significant
accuracy loss. The behavior can be correlated to the number of
amplitudes in the Ansatz at each geometry, with tpUCCMCSD
including more parameters at shorter bond lengths than MP2
(see Table III). Both of these features emphasize the fact that
a constant amplitude threshold does not necessarily gener-
ate a consistent number of parameters across all geometries
of a given system. Where consistency is desirable, which
will often be the case when constructing a description of a
physical system, a threshold based directly on the number of
parameters included may be preferable, although it is not
without its own challenges, as we discuss below.

Finally, the energy landscape of the cis-trans intercon-
version of N2H2 allows us to investigate another highly

TABLE III. Size of the totally symmetric UCCSD Hilbert space and number of amplitudes above different thresholds for frozen core N2

in STO-3G at a range of bond lengths, screened with both MP2 and tpUCCMCSD.

Bond length UCCSD Hilbert tpUCCMCSD MP2

(Å) space t > 0.1 t > 0.01 t > 0.001 t > 0.1 t > 0.01 t > 0.001

0.9 54 0 36 52 2 24 53
1.1 54 2 44 52 2 26 49
1.3 54 0 42 53 2 30 49
1.5 54 3 47 53 4 35 53
1.7 54 0 42 53 8 39 53
1.9 54 2 34 52 12 41 53
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FIG. 8. N2H2 energy computed with UCCSD VQE with different coefficient thresholds, using MP2 (blue and green circles) and tpUC-
CMCSD (orange and red crosses) for screening. We consider two states, a closed-shell singlet state of A symmetry in the C2 point group and
a triplet state of B symmetry. The A state is the ground state around the cis and trans geometries of N2H2, but the triplet becomes favored
around a rotation angle of 90◦. From left to right, we consider coefficients >0.1, 0.01, and 0.001, respectively. In all cases, the energies in
the top panel are quoted relative to the energy of the singlet state in the trans geometry, computed with the same method. For the A state, as
with all singlet molecules so far, both MP2 and tpUCCMCSD converge toward the true UCCSD energy, although in this case, at 0.001, MP2
is noticeably worse than tpUCCMCSD. For the B state, however, MP2 is unable to capture the correlation and does not improve with added
amplitudes. This gives unphysical results, with the B state higher in energy than the A state for all geometries except ∠HNNH = 90◦ even at
the lowest threshold considered.

TABLE IV. Size of the UCCSD Hilbert space and number of
tpUCCMCSD amplitudes above different thresholds for the lowest
singlet and triplet N2H2 states in STO-3G at a range of dihedral
∠HNNH.

Dihedral UCCSD
State angle (deg) Hilbert Space t > 0.1 t > 0.01 t > 0.001

A 0 100 1 46 90
30 185 1 60 170
60 185 1 71 166
90 185 1 65 175
120 185 1 65 161
150 185 1 56 172
180 100 1 42 97

B 0 83 1 40 77
30 160 0 44 140
60 160 0 51 147
90 160 0 49 150
120 160 0 51 149
150 160 0 45 147
180 83 1 36 76

correlated regime around the transition state of this transfor-
mation. For simplicity, we investigate the rotation about the
nitrogen-nitrogen bond starting from the equilibrium geom-
etry of trans N2H2 [50], without allowing any relaxation of
other geometrical parameters. At the HF level, the singlet
state of this system would be characterized by two diabatic
states which cross at 86.8(1)◦, see the Supplemental Mate-
rial [46]. This introduces an unphysical discontinuity in the
energy surface, which often remains even after the applica-
tion of further correlated methods [51]. To be able to treat
this system using VQE, we freeze the eight lowest-energy
electrons. The resulting system exhibits an additional inter-
esting feature as two FCI states of different spatial symmetry
cross, as can be seen in Fig. 8. The conservation of vari-
ous symmetries—spin, particle number, and point group—in
quantum circuits is an interesting problem, and in this system,
it turns out to be crucial for the correct description of the
energy surface. Not enforcing point group symmetry leads
to a very compelling yet unphysical state which transitions
smoothly from the A to the B state as the system approaches a
90◦ rotation.

023243-9



MARIA-ANDREEA FILIP et al. PHYSICAL REVIEW RESEARCH 4, 023243 (2022)

FIG. 9. N2H2 percentage of UCCSD correlation energy recovered with MP2 (blue circles) and tpUCCMCSD (orange crosses) screening
for the A state at the trans geometry (left) and the B state at ∠HCH = 90◦ (right) as a function of screening threshold (top) and circuit depth
(bottom). tpUCCMCSD outperforms MP2 over the entire range of screening thresholds, and for the triplet B state, any MP2-screened state
fails to converge to the correct energy.

Once point group symmetry constraints are considered,
VQE based on the UCCSD Ansatz with the excitation symme-
try filtered correctly reproduces the behavior observed in the
exact surface; however, starting from an ms = 0 open-shell HF
reference or an ms = 1 reference leads to different energies for
the B state. For the rest of our analysis, we focus on the ms = 0
A state and the ms = 1 B state, which correspond to the two
lowest-energy states in the system. The orders of magnitude
of amplitudes in a short tpUCCMCSD run for this system
at various rotation angles are given in Table IV. This system
exhibits many of the behaviors we noted in smaller examples.
For the singlet state, both MP2- and tpUCCMCSD-screened
UCCSD VQE converge to the correct UCCSD energy with
increasing number of amplitudes, but for the triplet state, MP2
fails to converge, retaining an error of at least 30 mEh even
for the lowest threshold, see Fig. 8. As there is no systematic
error in the singlet state, this causes MP2 screening to predict
the wrong ordering of the singlet and triplet states for rotation
angles ∼90◦.

Figure 9 shows the convergence of VQE UCCSD energy as
a function of amplitude threshold and circuit depth for the A
state at 0◦ and the B state at 90◦. This highlights the same
trend as before, with tpUCCMCSD screening only slightly
more efficient than MP2 as a function of screening threshold
for the singlet state but clearly superior for the triplet. In both
cases, using tpUCCMCSD, it is possible to recover >90%
of the correlation energy with a circuit that is only half as
deep as the full VQE UCCSD implementation. In Fig. 10,
we consider the correlation energy for the trans geometry of
N2H2 and the transition state at 90◦ directly as a function of
the number of parameters in the UCCSD expansion, using
the truncation order from tpUCCMCSD. Due to the change
in point group symmetry from C2h(C2v) at the trans(cis)
geometry to C2 along the rest of the binding curve, the num-
ber of possible parameters is halved at the ends. Therefore,
where the symmetry of the system changes, computations
based on a constant number of amplitudes are nontrivial to
implement.
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FIG. 10. Convergence of the correlation energy with number of
UCCSD amplitudes in the lowest-lying electronic states of N2H2

at ∠HNNH = 0◦ and 90◦. The percentage of the energy recovered
monotonically increases with parameter number, but a large fraction
is encoded within the first few parameters to be included. Behavior
is similar between the two states at matching geometries, dominated
by the difference in the maximum number of parameters rather than
the different degrees of correlation character in the two states. Some
corresponding amplitude thresholds are marked for comparison.

As a final point, we consider the scaling of such screening
methods with basis set size. While the VQE method, even sim-
ulated on a classical machine, is currently limited to a minimal
basis for the systems considered here, the sparse tpUCCMC
approach can tackle more basis functions. Given results from
this method have been shown to agree well with VQE, we
use them to predict its expected behavior. We consider the N2

molecule in the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets.
We start by running a tpUCCMCSD calculation for these sys-
tems to convergence. We then truncate the resulting parameter
sets and rerun the calculation in this limited Hilbert space. Re-
sults are given in Table V. In all cases, the correlation energy
increases with the number of amplitudes included, but we find
that >85% of it is accounted for at a threshold of |t | > 0.001

in all cases. While at this value the number of amplitudes
required increases with basis set size, the proportion of the
Hilbert space decreases, suggesting larger relative resource
reductions are possible for larger basis sets.

IV. CONCLUSIONS

We have shown that UCCMC can be used successfully
as a screening method for UCCSD-based VQE, with short,
potentially unconverged stochastic runs providing a set of
amplitudes that may be truncated at a given coefficient thresh-
old before being further optimized by VQE. We expect the
method would also be compatible with the recently developed
projected quantum eigensolver [52]. Importantly, the classi-
cal screening approach is entirely a preprocessing step, so
requires no additional quantum resources.

Standard noise models such as amplitude and phase damp-
ing [53] predict exponential decay of the quantum signal with
time, controlled by the relaxation time T1 and dephasing time
T2 [54]. Significantly reducing the depth and therefore the
computation time of the VQE circuit, as we have seen is
possible for N2H2, where >90% of the correlation energy
could be recovered with half the circuit depth, would there-
fore lead to a major reduction in the error rates observed on
real hardware. Furthermore, two-qubit gates such as CNOTs
are responsible for most gate noise on current devices. The
number of such gates is reduced proportionally to the num-
ber of parameters removed in screened calculations. Errors
in the single-qubit gates should also be reduced, as larger
values for the angles in the Rz gates involved in the UCC
Ansatz are easier to implement with high fidelity than lower
values.

We have compared tpUCCMC screening with the preex-
istent MP2-based screening approach. In the case of singlet
states, the results using UCCMC for screening are seen to
converge slightly faster with screening threshold than the
corresponding MP2-screened values. For triplets, we have
found that the MP2-screened calculations fail to converge
to the true ground state at all. This highlights the fact that
tpUCCMC screening can be easily applied to any molec-
ular system, while more care is needed when considering

TABLE V. Screened N2 UCCMCSD correlation energy Ecorr and number of parameters Np as a function of basis set and screening threshold.
In all cases, >85% of the correlation energy can be recovered using a threshold of |t | > 0.001, which corresponds to a decreasing proportion
of the Hilbert space as the size of the basis increases. In the cc-pVQZ basis set, 98% of the correlation energy can be recovered with only 44%
of parameters.

t > 0.1 t > 0.05 t > 0.01 t > 0.005

Basis set Ecorr Np Ecorr Np Ecorr Np Ecorr Np

cc-pVDZ −0.0799(6) 3 −0.0980(5) 5 −0.260(1) 205 −0.3272(4) 607
cc-pVTZ −0.073(3) 3 −0.089(2) 5 −0.2413(6) 226 −0.300(1) 611
cc-pVQZ −0.034(1) 2 −0.091(1) 8 −0.217(2) 239 −0.279(2) 762

t > 0.001 t > 0.0005 t > 0.0001 All t

Basis set Ecorr Np Ecorr Np Ecorr Np Ecorr Np

cc-pVDZ −0.3570(7) 1547 −0.3592(5) 2047 −0.359(1) 3245 −0.3608(3) 4256
cc-pVTZ −0.4127(5) 4544 −0.422(2) 7489 −0.4367(3) 15 701 −0.437(1) 26 420
cc-pVQZ −0.426(3) 5897 −0.461(4) 12 413 −0.483(2) 43 345 −0.493(6) 97 994
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whether MP2 is suitable for a particular application. Fur-
thermore, tUCC amplitudes are often highly dependent on
operator ordering in the cluster expansion. While tpUCCMC
can be adapted to match any operator ordering, MP2 can
only generate one set of amplitudes, which may be bet-
ter or worse predictors for the corresponding tUCC values
depending on the chosen order. For all molecules we have con-
sidered, the accuracy of the results increases monotonically
with the number of amplitudes included in the Ansatz, allow-
ing one to balance result quality with resource limitations as
necessary.

tpUCCMCSD results for N2 in increasingly large basis sets
confirm our expectation that the benefits of such screening
methods get more significant as one considers larger sys-
tems. While the Hilbert spaces required for UCC calculations
will scale with high-order polynomials of the system size,
a smaller fraction of the amplitudes in this space will have
large coefficients and therefore contribute significantly to the

energy, at least in the largely single-reference, dynamically
correlated areas of the landscape where CC methods perform
well. Furthermore, it has been shown that linear scaling CC
can be achieved by careful screening of amplitudes by dis-
tance [55–59]. We expect that the Trotterized UCC approach
and its stochastic counterpart will, in principle, be able to
take advantage of this, especially on systems of multiple
molecules, and propagate these gains forward into screened
VQE calculations.

ACKNOWLEDGMENTS

M.-A.F. is grateful to the Cambridge Trust and Corpus
Christi College for a studentship and A.J.W.T. to the Royal
Society for a University Research Fellowship under Grant
No. UF160398. The VQE numerical simulations in this paper
were performed on Microsoft Azure Virtual Machines pro-
vided by the program Microsoft for Startups.

[1] D. S. Abrams and S. Lloyd, Simulation of Many-Body Fermi
Systems on a Universal Quantum Computer, Phys. Rev. Lett.
79, 2586 (1997).

[2] D. S. Abrams and S. Lloyd, Quantum Algorithm Providing
Exponential Speed Increase for Finding Eigenvalues and Eigen-
vectors, Phys. Rev. Lett. 83, 5162 (1999).

[3] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon,
Chemistry: Simulated quantum computation of molecular ener-
gies, Science 309, 1704 (2005).

[4] A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5, 4213 (2014).

[5] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[6] R. Wiersema, C. Zhou, Y. de Sereville, J. F. Carrasquilla, Y. B.
Kim, and H. Yuen, Exploring entanglement and optimization
within the Hamiltonian variational ansatz, PRX Quantum 1,
020319 (2020).

[7] B. T. Gard, L. Zhu, G. S. Barron, N. J. Mayhall, S. E.
Economou, and E. Barnes, Efficient symmetry-preserving state
preparation circuits for the variational quantum eigensolver al-
gorithm, npj Quantum Inf. 6, 10 (2020).

[8] W. Kutzelnigg, Quantum chemistry in Fock space. I. The uni-
versal wave and energy operators, J. Chem. Phys. 77, 3081
(1982).

[9] W. Kutzelnigg and S. Koch, Quantum chemistry in Fock space.
II. Effective Hamiltonians in Fock space, J. Chem. Phys. 79,
4315 (1983).

[10] W. Kutzelnigg, Quantum chemistry in Fock space.
III. Particle-hole formalism, J. Chem. Phys. 80, 822
(1984).

[11] R. J. Bartlett, S. A. Kucharski, and J. Noga, Alternative
coupled-cluster Ansätze II. The unitary coupled-cluster method,
Chem. Phys. Lett. 155, 133 (1989).

[12] P. K. Barkoutsos, J. F. Gonthier, I. Sokolov, N. Moll, G. Salis,
A. Fuhrer, M. Ganzhorn, D. J. Egger, M. Troyer, A. Mezzacapo

et al., Quantum algorithms for electronic structure calculations:
Particle-hole Hamiltonian and optimized wave-function expan-
sions, Phys. Rev. A 98, 022322 (2018).

[13] C. Møller and M. S. Plesset, Note on an approximation treat-
ment for many-electron systems, Phys. Rev. 46, 618 (1934).

[14] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J.
Love, and A. Aspuru-Guzik, Strategies for quantum computing
molecular energies using the unitary coupled cluster ansatz,
Quantum Sci. Technol. 4, 014008 (2018).

[15] M. Metcalf, N. P. Bauman, K. Kowalski, and W. A. De
Jong, Resource-efficient chemistry on quantum computers with
the variational quantum eigensolver and the double unitary
coupled-cluster approach, J. Chem. Theory Comput. 16, 6165
(2020).

[16] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall,
An adaptive variational algorithm for exact molecular simula-
tions on a quantum computer, Nat. Commun. 10, 3007 (2019).

[17] I. G. Ryabinkin, T.-C. Yen, S. N. Genin, and A. F. Izmaylov,
Qubit coupled cluster method: A systematic approach to quan-
tum chemistry on a quantum computer, J. Chem. Theory
Comput. 14, 6317 (2018).

[18] I. G. Ryabinkin, R. A. Lang, S. N. Genin, and A. F. Izmaylov,
Iterative qubit coupled cluster approach with efficient screening
of generators, J. Chem. Theory Comput. 16, 1055 (2020).

[19] Y. Fan, C. Cao, X. Xu, Z. Li, D. Lv, and M.-H. Yung, Circuit-
depth reduction of unitary-coupled-cluster ansatz by energy
sorting, arXiv:2106.15210 (2021).

[20] M.-A. Filip and A. J. W. Thom, A stochastic approach to unitary
coupled cluster, J. Chem. Phys. 153, 214106 (2020).

[21] G. H. Booth, A. J. W. Thom, and A. Alavi, Fermion monte carlo
without fixed nodes: A game of life, death, and annihilation in
Slater determinant space, J. Chem. Phys. 131, 054106 (2009).

[22] A. J. W. Thom, Stochastic Coupled Cluster Theory, Phys. Rev.
Lett. 105, 263004 (2010).

[23] J. E. Deustua, J. Shen, and P. Piecuch, Converging High-Level
Coupled-Cluster Energetics by Monte Carlo Sampling and Mo-
ment Expansions, Phys. Rev. Lett. 119, 223003 (2017).
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