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Tight bound for estimating expectation values from a system of linear equations
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The system of linear equations problem (SLEP) is specified by a complex invertible matrix A, the condition
number κ of A, a vector b, a Hermitian matrix M, and an accuracy ε, and the task is to estimate x†Mx, where
x is the solution vector to the equation Ax = b. We aim to establish a lower bound on the complexity of the
end-to-end quantum algorithms for SLEP with respect to ε, and devise a quantum algorithm that saturates
this bound. To make lower bounds attainable, we consider query complexity in the setting in which a block
encoding of M is given, i.e., a unitary black box UM that contains M/α as a block for some α ∈ R+. We show,
by constructing a quantum algorithm and deriving a lower bound, that the quantum query complexity for SLEP
in this setting is �(α/ε). Our lower bound is established by reducing the problem of estimating the mean of
a black box function to SLEP. Our �(α/ε) result tightens and proves the common assertion of polynomial
accuracy dependence [poly(1/ε)] for SLEP without making any complexity-theoretic assumptions, and shows
that improvement beyond linear dependence on accuracy is not possible if M is provided via block encoding.
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I. INTRODUCTION

Systems of linear equations are essential to nearly ev-
ery area of science, engineering, and mathematics, being
particularly valuable in numerical solutions to differential
equations and machine-learning applications [1–5]. For the
system of linear equations problem (SLEP), a size N , an
N × N complex invertible matrix A, an upper bound κ on
the condition number of A, a vector b, a Hermitian matrix
M, and an accuracy ε are given, and the task is to estimate
x†Mx, where x is the complex solution vector to the equa-
tion Ax = b. If the number of equations N is large, such as
for big-data applications, solving SLEP is intractable for the
best-known classical algorithms, which require polynomial
resources in N . The landmark quantum algorithm by Harrow,
Hassidim, and Lloyd (HHL algorithm) [6], together with its
improvements [7–9], generate, to accuracy ε, a quantum state
|x〉 encoding the solution x using time and space resources
that are polylogarithmic in N and 1/ε, which is denoted
by polylog(N, 1/ε). SLEP can be solved by estimating the
expectation value x†Mx using such quantum algorithms for
generating |x〉. Although it is commonly asserted that estimat-
ing x†Mx requires poly(1/ε) resources [10–12], this assertion
is proven only under the assumption that A is given by oracles
[6]. To this end, we establish a lower bound for the complexity
of SLEP with respect to ε if M (instead of A) is given by an
oracle, and we saturate this bound by constructing an end-to-
end quantum algorithm for SLEP.
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We now summarize the state of the art for the hardness
of SLEP in terms of ε. Hardness results were proved for a
restricted version of SLEP in which b is fixed to be a vector
with a 1 in its first entry and zeros elsewhere, and M is
fixed to be the diagonal matrix containing a 1 in the first
N/2 = 2n−1 diagonal entries and zeros in all other diagonal
entries [6]. We refer to this restriction of SLEP with fixed M
and b as F-SLEP (see Table I for a list of problems considered
in this paper). Under a reasonable complexity-theoretic as-
sumption (BQP �= PP), a polylog(1/ε) dependence was ruled
out for any quantum algorithm for F-SLEP that achieves
poly(log N, κ ) dependence. Furthermore, any quantum algo-
rithm solving F-SLEP with poly(log N, κ ) dependence cannot
achieve runtime faster than O(1/ε) if A is provided by an
oracle. As F-SLEP is a restriction of SLEP, these hardness
results extend to SLEP as well. However, complexity lower
bounds that do not rely on complexity-theoretic assumptions
are not known in the case that A is fixed. Moreover, whether a
quantum algorithm with subpolynomial accuracy dependence
can solve SLEP is not known in this case.

We next discuss previously developed end-to-end quantum
algorithms for SLEP, which mirror the literature on SLEP
lower bounds in their focus on restricted cases. For F-SLEP, M
is the matrix representation of the observable |0〉 〈0| ⊗ 1n−1

in the computational basis. Therefore, the expectation value
x†Mx can be computed by repeatedly preparing the solution
state |x〉 and measuring the first qubit in the computational
basis, then recording the fraction of measurements that yield
a 0 outcome [6]. Efficient quantum algorithms were developed
for estimating |xi|2 or |xi − x j |2 for some indices i, j, with xi

the ith entry of x [13]. These cases, which are solved using
amplitude estimation, are restrictions of SLEP to instances
where entries of M are zero except for a single 1 on the
diagonal, or except for a single 1 and a single −1 on the
diagonal, respectively. In a quantum algorithm developed for
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TABLE I. Abbreviation, name, and defining feature of all restrictions of SLEP and relevant computational problems considered in this paper.

Abbreviation Problem name Number Comment

B-SLEP Block-access system of linear equations problem 5 SLEP with block access to A, M
F-SLEP Fixed System of Linear Equations Problem 2 SLEP in sparse-access setting

with the restriction M = |0〉 〈0| ⊗ 1n−1

S-EVHM Sparse-access expectation value of a Hermitian matrix 6 Expectation value of a sparse M
B-EVHM Block-access expectation value of a Hermitian matrix 4 Expectation value of a block encoded M
S-QLSP Sparse-access quantum linear system problem 1 Output is an approximation of |x〉

data fitting, fit accuracy is computed by solving SLEP in the
case M = A, i.e., the case that 〈x|M|x〉 ∝ |b · x| [1], where the
expectation value is computed by the swap test [14]. As these
algorithms apply only to a few restrictions of SLEP, comput-
ing expectation values in general could still be prohibitively
expensive [15]; therefore, unclear complexities for general
expectation-value estimation obfuscate potential applications
of quantum algorithms for SLEP.

We now discuss our claims and the setting in which they
are developed. We construct our lower bound and quantum
algorithm in the block-encoding framework which provides
an alternative over the sparse-access model in which matri-
ces are provided by oracles for locating and evaluating their
nonzero entries [16–21]. A block encoding UH of a Hermitian
matrix H is a unitary black box UH that contains H/αH in the
upper-left block for some αH ∈ R+ [11,22,23]. We consider
SLEP in the setting in which M is provided by block encoding
UM , a version of SLEP we refer to as B-SLEP. We show
that any quantum algorithm for B-SLEP must make �(αM/ε)
queries to UM . We then construct a quantum algorithm that
saturates this bound, thereby showing that our lower bound
for B-SLEP is tight, meaning that B-SLEP has query com-
plexity �(αM/ε). En route to deriving our lower bound for
B-SLEP, we evaluate the complexity of estimating the expec-
tation value of a block-encoded matrix M with respect to some
given quantum state. In particular, we show that the query
complexity of this problem is also in �(αM/ε). We also derive
a query-complexity lower bound for the restriction of SLEP to
the case in which A = 1n and M is provided via sparse access.
This restriction is equivalent to the problem of estimating the
expectation value of a matrix M in the sparse-access setting.
Our lower bound for this problem is �(dMβM/ε), where the
sparsity dM of M and a bound βM on the max-norm of M are
supplied as inputs to the problem. We show that this lower
bound is tight by constructing an explicit quantum algorithm.

Methodologically, we utilize the block-encoding frame-
work to limit restrictions on M and to make lower bounds
attainable. The key step for deriving our lower bound is re-
ducing the problem of computing the mean of a black-box
function to the problem of computing an expectation value
of a block-encoded Hermitian matrix (B-EVHM). This lower
bound is extended to B-SLEP by showing that B-EVHM
reduces to B-SLEP. Our algorithm saturating this lower bound
is constructed by combining a known algorithm for B-EVHM
[24] with techniques for generating |x〉.

Our complexity bound for B-SLEP makes rigorous the
common assertion of poly(1/ε) dependence for SLEP and
shows that improvement beyond linear-accuracy dependence
is impossible if M is given by oracles. Our end-to-end

quantum algorithm for solving systems of linear equations al-
lows for a variable M as input, whereas previous algorithms
consider a restricted M. Explicit complexities for SLEP are
important to assessing if the measurement step is prohibitively
resource expensive for a given application, thereby addressing
the limitation raised by Aaronson’s fourth caveat for quantum
linear-equation solvers [15].

An outline of our work is as follows. In Sec. II we give
background relevant to our results including a discussion of
matrix encodings, quantum algorithms for linear algebra, and
quantum algorithms for estimating expectation values. Next,
in Sec. III, we describe our methodology and define B-SLEP
rigorously. We present our lower bounds and quantum algo-
rithms in Sec. IV and discuss these results in Sec. V. Finally,
we give our conclusions in Sec. VI.

II. BACKGROUND

In this section, we first review the quantum linear systems
problem, which is the computational problem of generating
the solution state |x〉 given A, b, and κ , in the sparse-access
setting. We then review the block-encoding framework of
Hermitian matrices and relevant techniques for matrix arith-
metic in this framework. Next, we state results relevant for
deriving lower bound on accuracy dependence for the sys-
tem of linear equations problem. Finally, we review known
quantum algorithms for computing the expectation value of an
unknown state in the context of system of linear equations or
otherwise.

We start with some preliminaries. Denote the set of integers
and positive integers by Z and Z+, respectively, and for N ∈
Z+ define

[N] := {0, 1, . . . , N − 1}. (1)

Similarly, our convention for indexing rows and columns of a
matrix is zero based. We denote the real and complex fields
by R and C, respectively, and the set of positive real numbers
by R+. A number z̃ is an ε-additive approximation to another
number z if |z − z̃| < ε. Although we do not define a specific
bit-string representation for real numbers and complex num-
bers, our results hold for any representation in which a number
z has an r-bit representation encoding a number z′ such that
|z − z′|/|z| ∈ O(2−r ), and basic arithmetic operations on rep-
resentations can be performed to r bits of precision in poly(r)
time. These conditions hold for standard representations of
real and complex numbers [25]. For a vector |ψ〉 ∈ H in
a finite-dimensional Hilbert space H , we define ‖ |ψ〉 ‖ :=√〈ψ |ψ〉, and for operators V : H → H define ‖V ‖ to be
the corresponding operator norm. For a matrix M ∈ CN×N ,

023237-2



TIGHT BOUND FOR ESTIMATING EXPECTATION VALUES … PHYSICAL REVIEW RESEARCH 4, 023237 (2022)

denote ‖M‖max := maxi, j∈[N]{|Mi j |} as the max norm. For any
n ∈ Z+ we define 1n to be the n-qubit identity operator. If n
is clear from context, we may omit the subscript.

A. Quantum linear system problem in the sparse-access setting

We now explain the sparse-access model for access to
Hermitian matrices. Next, we review a formulation of the
quantum linear systems problem based on this model.

1. Sparse access to Hermitian matrices

The quantum linear systems problem [6,8] accepts an
N × N matrix A and an N-dimensional vector b as inputs. To
devise a quantum algorithm for generating the solution state
in polylog(N ) time, A and b must be encoded in such a way
that they can be accessed efficiently. Most notably, such an
efficiency requirement rules out encoding these inputs into a
string containing a list of entries.

The standard formulation of the quantum linear systems
problem utilizes unitary black boxes to encode A and b [6,8].
The vector b is given by a black box Ub ∈ U (H ⊗n

2 ) (n-
qubit unitary operator) such that Ub |0n〉 = |b〉, where |b〉 :=∑

i bi |i〉 /‖∑
i bi |i〉 ‖ and {|i〉} are computational basis states.

The matrix A is described by sparse-access oracles, i.e., ora-
cles for functions that provide the column index and the value
of the nonzero entries of the matrix A in each given row [16].
We next explain in detail the sparse-access setting that we use
in this paper.

For any n ∈ Z+, an n-qubit Hermitian matrix H is a 2n ×
2n Hermitian matrix. An n-qubit Hermitian matrix H is dH

sparse for dH ∈ [2n] if each row of H has at most dH nonzero
entries. We call dH the sparsity parameter of H . In the sparse-
access setting, the matrix values {Hjk} are encoded into both
standard unitary oracles [21]

OHval | j〉|k〉|z〉 = | j〉|k〉|z ⊕ Hjk〉, (2)

OHloc | j〉|l〉 = | j〉|Hloc( j, l )〉, (3)

where the function Hloc maps a row index j and a number l ∈
[dH ] to the column index Hloc( j, l ) of the lth nonzero element
in row j. Observe that the oracle OHloc computes the location
of entries in place, i.e., in the same quantum register as l . The
oracle OHval accepts a row j and column k index and returns
the value Hjk in some binary format. The pair of oracles OHval

and OHloc are a sparse-access encoding of H . For convenience,
we make the following definition.

Definition 1. Sparse access to a Hermitian matrix H is a
4-tuple (dH , βH , OHval , OHloc ), where βH � ‖H‖max is an upper
bound on the max-norm of H , dH is the sparsity parameter of
H , and where OHval and OHloc are unitary black boxes that form
a sparse-access encoding of H .
We frequently turn to this definition in the description of
inputs for computational problems in the sparse-access model.

We always assume that, if any unitary black box O ∈
U (H ⊗n

2 ) is given, then unitary black boxes O†, c-O, and
c-O† are also given where c-O := |0〉 〈0| ⊗ 1n + |1〉 〈1| ⊗ O.
Consequentially, if we are reporting complexities, we equate
the cost of a query to O†, c-O, and c-O† to the cost of
single query to O. The motivation for this assumption is that
oracles model subroutines that have unknown internal struc-

ture and, given a description of a circuit for O, circuits for
each O†, c-O, and c-O† can always be constructed using a
procedure independent of the specific circuit for O [26]. In
particular, the circuit for c-O is found by replacing each gate
G in the circuit for O with c-G. The circuit for O† is found by
reversing the circuit for O and replacing each gate G with its
inverse G†. Finally, the circuit for c-O† is found by replacing
each gate G in the circuit for O† with c-G.

2. Complexity and limitations of the HHL algorithm

We now state the quantum linear system problem rigor-
ously. Next, we review the complexity of the HHL algorithm
[6], which solves the quantum linear systems problem. We
then discuss limitations and caveats of this quantum algo-
rithm.

Given a system of linear equations

Ax = b, (4)

define the solution state |x〉 to be the quantum state |x〉 :=∑
i xi |i〉 /‖∑

i xi |i〉 ‖. The following problem statement is
adapted from Ref. [8].

Problem 1 (Sparse-access quantum linear system problem
(S-QLSP)). Given n qubits, a κ � 1, sparse access
(dA, βA, OAval , OAloc ) to a 2n × 2n invertible Hermitian matrix
A satisfying ‖A‖ � 1 and ‖A−1‖ � κ , an accuracy ε ∈ (0, 2],
and an n-qubit unitary black box Ub, generate with probability
at least 2

3 , and return “failure” otherwise, a state |x̃〉 such that
‖ |x̃〉 − |x〉 ‖ � ε where |x〉 is the solution state to the system
of linear equations Ax = b and b is the 2n-dimensional vector
with entries bi = 〈i|Ub|0n〉.

Tables II and III list input and output for the computational
problems discussed in this paper. The crucial step in the
HHL algorithm is a call to the phase-estimation algorithm,
which in turn makes use of a quantum algorithm for sparse
Hamiltonian simulation. The complexity of the HHL algo-
rithm is poly(log N, κ, 1/ε), where the poly(1/ε) dependence
comes from the phase-estimation step. This complexity has
been improved to poly( log N, κ, log(1/ε)) by replacing phase
estimation with quantum-walk techniques for implementing
A−1 [8]. These techniques have been generalized to the larger
class of block-encoded matrices [22], which we discuss in the
next section.

The HHL algorithm has four key limitations on its ability
to solve linear equations in practice [15]. First, this algorithm
only maintains an exponential speedup over classical tech-
niques for instances of S-QLSP for which κ ∈ O(log(N )).
Next, the algorithm only applies to systems of linear equa-
tions in which the oracle Ub can be efficiently constructed.
Similarly, the algorithm is only applicable if A can be en-
coded by sparse-access oracles, and the speedup is lost if dA /∈
polylog(N ). Finally, the output of HHL is a quantum state
|x〉 encoding the solution x. As a result, the HHL algorithm
is only useful for finding quantities that can be efficiently
computed using |x〉. The purpose of our work is to address
this final caveat by evaluating the complexity of estimating
the quantities of the form x†Mx given M.
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TABLE II. Input and output for the computational problems listed in Table I. Here n is the number of qubits; κ is an upper bound on the
condition number; A and M are Hermitian matrices of size 2n × 2n; x and b are vectors of length 2n; αA (αM ) is the scaling factor for the block
encoding of A (M); aA (aM ) is the number of ancilla qubits for block encoding of A (M); UA (UM ) is the unitary block encoding of A (M); dA

(dM ) is the sparsity of A (M); βA (βM ) is an upper bound on the max-norm of A (M); OAval (OMval ) is an oracle that returns the entry of A (M) in
a given row and column; OAloc (OMloc ) is an oracle that returns the non-zero entries of A (M) in a given row; ε is an additive error tolerance; Ub

is a black-box unitary, which generates the vector b; V is another black-box unitary.

Abbreviation Input Output (approximation of)

B-SLEP (n, κ, (αA, aA, 0,UA), (αM , aM , 0,UM ), ε,Ub) x†Mx
F-SLEP (n, κ, (dA, βA, OAval , OAloc ), ε,Ub) x†(|0〉 〈0| ⊗ 1n−1)x
S-EVHM (n, (dM , βM , OMval , OMloc ), ε,V ) 〈0n|V †MV |0n〉
B-EVHM (n, (αM , aM , 0,UM ), ε,V ) 〈0n|V †MV |0n〉
S-QLSP (n, κ, (dA, βA, OAval , OAloc ), ε,Ub) |x〉

B. Block-encoding techniques for the quantum linear
system problem

Quantum-walk techniques for implementing H−1 and
Hamiltonian simulation (implementing eiH ) are applicable not
only to sparse matrices, but to all matrices that can be en-
coded efficiently as blocks of larger unitary matrices. This
realization has fueled development of quantum algorithms for
linear algebra in which input matrices are provided through
a block encoding [11,22,23]. We also derive our results in
the block-encoding setting. In this section, we review block
encoding of Hermitian matrices and describe techniques for
matrix arithmetic that we use in the derivation of our results.

1. Block encoding for Hermitian matrices

Block encoding is a way of specifying a matrix input to a
computational problem, and therefore provides an alternative
to sparse-access encoding reviewed in Sec. II A 1. Intuitively,
a block encoding of a Hermitian matrix H is a unitary matrix
UH which contains H as an upper-left block. We now adapt a
rigorous definition of block encoding [22].

Definition 2. Let H be an n-qubit Hermitian matrix,
αH , δH > 0 and aH ∈ Z+. A UH ∈ U (H ⊗(n+aH )

2 ) is an
(αH , aH , δH )-block encoding of H if

‖H − αH 〈0aH |UH |0aH 〉 ‖ � δH , (5)

where 〈0aH |UH |0aH 〉 := ∑
i, j∈[2n](〈0aH | 〈i|UH |0aH 〉 | j〉) |i〉 〈 j|.

As αH , aH , and δH are provided along with UH as inputs
to a problem, we use the following convention.

Definition 3. Block access to a Hermitian matrix H is a
tuple (αH , aH , δH ,UH ), where UH is a unitary black box that
is a (αH , aH , δH ) block encoding of H .

If block access (αH , aH , δH ,UH ) to H is given, we assume
that U †

H , c-UH , and c-U †
H are also given. If a Hermitian matrix

is given by sparse-access oracles, then a previously developed
algorithm can be used to construct a block encoding for the
same Hermitian matrix [22]. We now state a previously known
lemma [22] that gives the query complexity of obtaining a
block encoding from a sparse-access encoding. We adapt this
lemma to include the complexity in terms of 2-qubit gates.

Lemma 1. Given a number of qubits n ∈ Z+ and sparse
access (dH , βH , OHval , OHloc ) to an n-qubit Hermitian matrix
H , block access (dHβH , 2, ε,UH ) to H can be constructed
such that UH can be implemented with O(1) queries to

sparse-access oracles for H and O(n + log2.5( dH βH

ε
)) addi-

tional 2-qubit gates.
Proof. Define {|ψ j〉 := |0〉 ⊗ | j〉 ⊗ |ϕ j〉 ∈ H2 ⊗ H ⊗n

2 ⊗
H ⊗n+1

2 : j ∈ [2n]}, where

|ϕ j〉 := 1√
dH

∑
k=Hloc ( j,�)

�∈[dH ]

⎛⎝√
H∗

jk

βH
|0〉 |k〉 +

√
1 − |Hjk|

βH
|1〉 |k〉

⎞⎠
∀ j ∈ [2n], (6)

with
√· denoting the principal square root.1 Let T ∈ U (H2 ⊗

H ⊗n
2 ⊗ H ⊗(n+1)

2 ) be a unitary operator with action

T : |0n+2〉 | j〉 �→ |ψ j〉 ∀ j ∈ [2n], (7)

which prepares the state |ψ j〉 conditional on the third register
being in the state | j〉. Let

RT := 2T T † − 1 =
2n∑

j=1

| j〉〈 j| ⊗ (2|ϕ j〉〈ϕ j | − 1) (8)

be the controlled Householder reflection [27], i.e., a reflection
about |ϕ j〉 conditional on the state | j〉 of the third register.
Let Uswap ∈ U (H2 ⊗ H ⊗n

2 ⊗ H ⊗n+1
2 ) be the operator that

swaps the first n + 1 qubits with the remaining n + 1 qubits,
respectively. Then a (dHβH , n + 2, ε) block encoding of B is
given by the unitary operator (Lemma 6, [22])

UH = T †UswapRT T . (9)

We next explain how to implement this unitary operator.
A procedure for preparing |ϕ j〉 from the |0〉 state is key to

performing T and RT . A reflection about |ϕ j〉 is achieved by
performing inverse state preparation, reflecting about |0〉, and
then performing state preparation. Note that implementing T
is equivalent to preparing the state |ϕ j〉 conditional on the
third register being in the state | j〉. Following the procedure
given in the proof of Lemma 10 [21], the operator T can be
implemented as follows. First, a Hadamard gate is performed
on �log dH� qubits, and then the oracle Hloc is applied to obtain

1Note that special care must be taken in choosing the sign of the
square root if Hjk ∈ R− [28].
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the state

1√
dH

∑
�∈[dH ]

|0〉 |Hloc( j, l )〉 . (10)

The final step consists of using the oracle OHval and applying
controlled rotation to the ancilla qubit to prepare the desired
state. The unitary operators T , T †, and W can be implemented
up to error at most ε in operator norm using O(1) queries to
the oracles encoding H and O(n + log2.5(dHβH/ε)) additional
2-qubit gates [28]. As Uswap requires O(n) 2-qubit gates, the
complexities follow readily. �

This lemma concludes our discussion of block access to a
Hermitian matrix.

2. Matrix arithmetic in the block-encoding setting

We now review the matrix arithmetic techniques that we
use for constructing a quantum algorithm for solving B-SLEP
and for constructing our lower bound. Quantum algorithms for
solving a system of linear equations can be reduced to using a
block encoding of a matrix A to construct a block encoding of
A−1. The block encoding of A−1 can be obtained by an algo-
rithm for quantum signal processing [22], which maps a block
encoding of a given matrix H to that of P (H ) for some given
polynomial P of fixed degree and fixed coefficients. We also
review a result that provides a polynomial for approximating
the inversion function inv : x �→ 1/x.

The complexity of quantum signal processing is given in
the following theorem.

Theorem 1. (Reference [11]). Given block access
(αA, aA, δA,UA) to a Hermitian matrix A of any size, an
error σ > 0 and a polynomial P : R → R of degree d
satisfying |P (x)| � 1

2 for all x ∈ [−1, 1], then block access
(1, aA + 2, 4d

√
δA/αA + σ,UP (A/αA ) ) to P (A/αA) can be

constructed such that UP (A/αA ) makes 2d + 1 queries to UA

and O(aAd ) additional 2-qubit gates.
The original proof of Theorem 1 constructs a circuit for

implementing UP(A/αA ). Circuits for U †
P(A/αA ), c-UP(A/αA ), and

c-U †
P(A/αA ) can be constructed using the procedure explained

in the preliminaries. Note that c-c-UA can be constructed using
c-UA and two Toffoli gates.

We use the following corollary about approximation of the
function inv(x) with polynomials.

Corollary 1 (Reference [11]). For any ε, δ ∈ (0, 1
2 ], a

polynomial P : R → R with odd degree O( 1
δ

log( 1
ε

)) exists
such that for all x ∈ [−1, 1] \ [−δ, δ] then |P (x)| � 1 and

|P (x) − f (x)| < ε, (11)

where f (x) = 3δ
4 inv(x).

This corollary concludes our discussion of block-encoding
techniques for matrix arithmetic.

C. Complexity of solving a system of linear equations

We now review the results that describe the hardness of
solving restrictions of SLEP with respect to accuracy. We also
state a previously known query-complexity lower bound for
computing the mean of a black-box function that we later use
to derive a new lower bound for SLEP.

1. Previous results on the accuracy dependence of system
of linear equations

It is often asserted that quantum algorithms for solving
SLEP must have poly(1/ε) accuracy dependence due to the
cost of estimating 〈x| M |x〉 [6,7,10–12]. However, this asser-
tion is proven to hold only under certain restrictions. One of
the existing results shows that polylog(1/ε) dependence of the
time complexity is not achievable under complexity-theoretic
assumptions. Another previous hardness result shows that any
quantum algorithm with polylogN dependence has runtime in
O(1/ε); however, as this result is derived by bounding queries
to oracles for A, it is not applicable if A is fixed. We now
review these two results in detail.

We adopt the standard big-O definition for single variables
and the following definition for multiple variables [29].

Definition 4. Let f , g : {R+}m → R+. Then f (x1, x2, . . . ,

xm) ∈ O(g(x1, x2, . . . , xm)) if there exist constants η,C ∈ R+
such that for all x1, x2, . . . , xm > η,

f (x1, x2, . . . , xm) � Cg(x1, x2, . . . , xm). (12)

We define multivariate � analogously.
We now rigorously define F-SLEP, a previously studied

problem [6] which we first reviewed in Sec. I.
Problem 2 (Fixed M and b system of linear equations

problem (F-SLEP)). Given N ∈ Z+, a κ � 1, sparse access
(dA, βA, OAval , OAloc ) to an N × N matrix A with ‖A‖ � 1 and
‖A−1‖ � κ , and an accuracy ε ∈ (0, 1], return an ε-additive
approximation of 〈x|M|x〉 with probability at least 2

3 , where
|x〉 is the unit vector proportional to A−1 |0〉 and M is the
diagonal matrix containing a 1 in the first N/2 diagonal entries
and a zero in all other entries.

Two hardness results are known for F-SLEP [6]. The first
result establishes a lower bound on the oracle queries to A,
and its proof relies on a query-complexity lower bound for
computing the parity of a Boolean expression.

Theorem 2 (Reference [6]). A quantum algorithm can
solve F-SLEP using ν queries to oracles for A with ν ∈
Nc1 poly(κ )/εc2 only if c1 + c2 � 1.

The original statement of this theorem refers to the time
complexity of quantum algorithms for SLEP rather than num-
ber of queries [6]. However, the proof given is for a stronger
statement in terms of queries to oracles for A that we give in
Theorem 2.

The next hardness result for F-SLEP is in terms of time
complexity and relies on the complexity-theoretic assumption
BQP �= PP.

Theorem 3 (Reference [6]). If BQP �= PP, then there does
not exist a quantum algorithm that solves F-SLEP running in
time poly(κ, log(N ), log(1/ε)).

In fact, the proof of this theorem proves the complexity
polylog(N, 1/ε) for the restriction A = 1, which is a stronger
result. Note that BQP = PP contradicts the widely held con-
jecture BQP �= NP.

2. Query complexity of approximating the mean of a
black-box function

We now review a query-complexity lower bound for com-
puting the approximate mean of a black-box function [30]. We
use this lower bound to later derive a lower bound for B-SLEP
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Algorithm 1. Amplitude-estimation algorithm.

Intput: A number of qubits n ∈ Z+, an accuracy ε ∈ (0, 1), two n-qubit unitary black boxes V,W
Output: With probability at least 2

3 , an ε-additive approximation r̃ to the amplitude r = |〈0|W †VW |0〉|
Procedure:
1: Construct a quantum circuit for c-S where S = W P0W †VW P0W †V † and P0 = 1 − 2 |0n〉 〈0n|.
2: Apply phase estimation with input (n, 2ε, c-S,W ) to obtain with probability at least 2

3 a (2ε)-additive approximation θ̃ of some
eigenphase θ of S.

3: return r̃ = | cos(θ̃/2)|.

in Sec. IV A. As is standard, we say an oracle O f encodes [31]
a discrete function f : {0, 1}r1 → {0, 1}r2 for r1, r2 ∈ Z+ if

O f : | j〉 |s〉 �→ | j〉 | f ( j) ⊕ s〉 , ∀ j ∈ {0, 1}r1 , s ∈ {0, 1}r2 ,

(13)
where ⊕ denotes bitwise XOR operation.

We are now ready to state the approximate-mean (AM)
problem.

Problem 3 (Approximate mean). Given N ∈ Z+ and ε ∈
(1/2N, 1] and given an oracle O f encoding a function f :
[N] �→ [0, 1], return, with probability at least 2

3 , an ε-additive

approximation of μ f := (
∑N−1

j=0 f ( j))/N .
A query-complexity lower bound for this problem is given

by Nayak and Wu ([30], Corollary 1.12).
Corollary 2. The query complexity of the problem AM is

�(1/ε).
This concludes our review of relevant hardness results.

D. A reformulation of amplitude-estimation algorithm

We now review a reformulation [32] of the amplitude-
estimation algorithm [33]. This reformulation is used in some
quantum algorithms for expectation-value estimation that we
review in this section. We begin by reviewing the complex-
ity of the standard phase-estimation algorithm [31]. Next,
we describe how phase estimation is used to construct the
amplitude-estimation algorithm.

Phase estimation is a key subroutine in many quantum
algorithms that achieve superpolynomial speedup over clas-
sical algorithms. The inputs, output, and complexity of the
phase-estimation algorithm are given by the following theo-
rem, which is an adaptation from the standard description of
the algorithm [31].

Theorem 4 (Phase-estimation algorithm). There exists a
quantum algorithm that accepts n-qubits, an accuracy ε, and
n-qubit unitary black boxes V and W , that, with probabil-
ity at least 2

3 , samples an ε-additive approximation to the
eigenphase θ of V corresponding to the eigenvector |ψ〉
with probability | 〈ψ |W |0〉 |2. This algorithm makes O(1/ε)
queries to V , a single query to W , and O(log2(1/ε)) additional
2-qubit gates.

Now we show how phase estimation is used to per-
form amplitude estimation. In amplitude estimation [32],
the inputs are n qubits, an accuracy ε ∈ (0, 1), and
two n-qubit unitary black boxes V and W . The out-
put is an ε-additive approximation to the amplitude r :=
| 〈0|W †VW |0〉 | with probability at least 2

3 . Define |ψ0〉 :=
W |0〉 , |ψ1〉 := V |ψ〉 , P0 := 1 − 2 |0n〉 〈0n|, and define two
reflection operators S0 := 1 − |ψ0〉 〈ψ0| = W P0W † and S1 :=
1 − |ψ1〉 〈ψ1| = VW P0W †V †. The composition of these two

reflection operators S := S0S1 is a rotation operator in the
two-dimensional space spanned by |ψ0〉 and |ψ1〉 that rotates
|ψ0〉 toward |ψ1〉 by angle 2θ := 4 arccos(r). This implies
that the eigenvalues of S are eiθ , and the amplitude returned
by amplitude estimation is r = | cos(θ/2)|. Therefore, phase
estimation can be used to estimate r by estimating an eigen-
phase of the operator S. Note that this call to phase estimation
uses c-S, which can be constructed by replacing each factor
of V and W in the definition of S with c-V and c-W . The
complexity of this algorithm is given in the following lemma,
which follows readily from the analysis in Ref. [32].

Lemma 2. Algorithm 1 with input (ε,V,W ) makes O( 1
ε

)
queries to V and W and uses O( n

ε
) additional 2-qubit gates.

Proof. The complexity for queries to V and W follows
directly from the complexities in Theorem 4. Note that P0 can
be implemented using O(n) 2-qubit gates ([31], p. 251) which
means the call to the phase-estimation algorithm uses a total of
O(n/ε) 2-qubit gates for queries to P0 and log2(1/ε) 2-qubit
gates for other operations. �

This lemma concludes our review of amplitude estimation.

E. Quantum algorithms for computation of expectation value

Quantum algorithms for estimating expectation values
have been developed both in the context of SLEP [1,6,13]
and in a variety of other applications [24,32,34–36]. We now
review quantum-algorithmic techniques for estimating expec-
tation values and discuss limitations of these techniques.

1. Estimating expectation values in restrictions of SLEP

We begin by discussing techniques for estimating expecta-
tion values that occur in quantum algorithms for SLEP. We
review three techniques. These techniques use single-qubit
computational-basis measurements, the swap test, and phase
estimation, respectively.

We now discuss the first technique. In F-SLEP (Problem
2), M is the matrix representation of the operator |0〉 〈0| ⊗
1n−1 which is the orthogonal projector on the first qubit. As
a result, the expectation value of a state |x〉 with respect to
M can be estimated by repeatedly preparing |x〉, measuring
the first qubit in the computational basis, and averaging the
outcomes [6]. This approach requires O(1/ε2) preparations of
|x〉 to obtain an estimate of the expectation value up to additive
error ε [6].

We now discuss the second technique. If M = A−1, where
A defines the system of linear Eq. (4), then a swap test can
be used to estimate 〈x|M|x〉 = 〈x|b〉, as was demonstrated
in an application of the HHL algorithm to least-square fit-
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ting [1]. This estimation is achieved by first preparing the
state |+〉 |b〉 |x〉 using an algorithm for QLSP, with |+〉 :=
(|0〉 + |1〉)/

√
2, followed by a controlled-swap operation,

with control on the first qubit, to obtain the state (|0〉 |b〉 |x〉 +
|1〉 |x〉 |b〉)/

√
2. Finally, the first (control) qubit is measured

in the computational basis. The probability that this measure-
ment returns the outcome 0 is (1 + | 〈x|b〉 |2)/2. To obtain an
estimate of | 〈x|b〉 |2 to additive error ε, the swap test needs to
be carried out O(1/ε2) times.

If every entry of M is zero except for a single 1 on
its ith diagonal entry, then the expectation value 〈x|M|x〉 =
| 〈x|i〉 |2 can be estimated by a direct application of the
amplitude-estimation algorithm [33]. This technique was used
for constructing an algorithm for computing the effective
resistance in a given electrical network [11,13]. The time
complexity of this method scales as O(1/ε) with respect to
the additive error ε.

The key limitation of all three techniques discussed above
is that they each apply only to some limited class of matri-
ces; the first technique applies if M represents the orthogonal
projector on the first qubit, the second technique applies if
M = A−1, and the final technique applies if M has entries that
are all zero except for a single 1 on the diagonal. Moreover, the
first two techniques, which rely on classical sampling, achieve
O(1/ε2) rather than O(1/ε).

2. Estimating expectation values of simulatable
Hermitian matrices

We now discuss techniques for estimating expectation val-
ues, all of which are outside of the context of solving SLEP.
The four techniques rely on the Hadamard test and algorithms
for Hamiltonian simulation, phase estimation, and amplitude
estimation.

We now review the first technique, which is a quantum
algorithm for estimating 〈0n|V †UV |0n〉, where U and V are
given n-qubit unitary black boxes. One common method for
this estimation is the Hadamard test and proceeds as follows
[37]. First prepare the state |+〉 |ψ〉, and then apply the con-
trolled unitary operator c-U (with control on the first qubit)
to obtain the state (|0〉 |ψ〉 + |1〉U |ψ〉)/

√
2, where |ψ〉 :=

V |0〉. Next, apply a Hadamard gate H on the first qubit and
measure this qubit in the computational basis. The expecta-
tion value of the output is Re 〈ψ |U |ψ〉 = Re 〈0n|V †UV |0n〉.
To obtain an ε-additive approximation of the real part of
the expectation value, O(1/ε2) runs of the Hadamard test
are required. The imaginary part of the expectation value
can be estimated similarly by instead starting with the state
(|0〉 − i |1〉) |ψ〉 /

√
2.

The second technique for estimating the expectation value
of U relies on amplitude estimation [32]. Reduction to ampli-
tude estimation makes use of the relations

Re(〈ψ |U |ψ〉) = (4|〈+| 〈ψ | c-U |+〉 |ψ〉|2
− |〈ψ |U |ψ〉|2 − 1)/2,

Im(〈ψ |U |ψ〉) = (4| 〈+| 〈ψ | (eiσzπ/4 ⊗ 1n)c-U |+〉 |ψ〉 |2
− | 〈ψ |U |ψ〉 |2 − 1)/2. (14)

The terms | 〈+| 〈ψ | c-U |+〉 |ψ〉 |2, | 〈+| 〈ψ | (eiσzπ/4 ⊗
1n)c-U |+〉 |ψ〉 |2, and | 〈ψ |U |ψ〉 |2 on the right-hand sides

of Eq. (14) can each be estimated by making one call each
to the amplitude-estimation algorithm. We review amplitude
estimation in Sec. II D. This approach yields an algorithm for
computing the expectation value 〈ψ |U |ψ〉 with complexity
O(1/ε).

Whereas the two techniques above apply only to estimat-
ing the expectation value of unitary matrices, they are used
as subroutines in other techniques for estimating expectation
values of Hermitian matrices. We now review a technique for
estimating the expectation value of any simulatable matrix M
[32]. A N × N matrix M is simulatable if, for any t ∈ R+
and ε ∈ (0, 1), the propagator eiMt can be implemented by a
poly( log(N ), t, 1/ε)-sized circuit [16]. The expectation value
〈ψ |M|ψ〉 is then obtained by using the approximation [32]

| 〈ψ |e−iMt |ψ〉 − 1 + it 〈ψ |M|ψ〉 | ∈ O(t2). (15)

The term 〈ψ |e−iMt |ψ〉 is computed by using one of the
techniques for estimating the expectation value of a uni-
tary matrix, which we discussed above. If M is simulatable
by a poly(n, t, log(1/ε))-sized circuit, then 〈ψ |M|ψ〉 can be
computed to additive approximation ε in Õ((1/ε)1+α ) time
for arbitrarily small α using an improved version of this
technique. Here Õ is called soft O and indicates suppression
of logarithmic factors.

An alternative technique for estimating the expectation
value of a Hermitian and simulatable M employs the phase-
estimation algorithm applied to the operator eiMt [35].
Suppose M has spectral decomposition M = ∑

j λ j |v j〉 〈v j |,
and suppose |ψ〉 has decomposition |ψ〉 = ∑

j α j |v j〉. One
application of the phase-estimation circuit results in a state
close to |ψM〉 = ∑

j α j |v j〉 |λ j〉. Measuring the final regis-
ter in the computational basis yields λ j with probability
approximately |α j |2 for each j. The expectation value
〈ψ |M|ψ〉 = ∑

j |α j |2λ j can then be estimated by repeating
the above procedure O(1/ε2) times and averaging the mea-
surement outcomes. Assuming that M is simulatable by a
poly(n, t, log(1/ε))-sized circuit, the total complexity of this
algorithm is evidently Õ(1/ε3), which is not explicitly stated.

In conclusion, the first two techniques are particularly rel-
evant to our work only for building the latter two techniques.
These final two techniques for estimating the expectation
value outside of the context of SLEP apply to simulatable Her-
mitian matrices, which include all sparse matrices [16]. The
best of these techniques achieves close to linear dependence
on 1/ε. These techniques have not been combined with the
algorithms for QLSP to solve SLEP.

3. Estimating expectation values of block-encoded
Hermitian matrices

In this section, we review an algorithm for estimating the
expectation value of a block-encoded Hermitian matrix with
respect to a quantum state given by a unitary black box [24].
The algorithms developed for estimating the expectation value
of simulatable Hermitian matrices can also be used for es-
timating the expectation values of block-encoded matrices.
However, there is an elegant and more efficient way to esti-
mate the expectation value of block-encoded matrices.

We first adapt the following problem from Lemma 5 in
Ref. [24].
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Algorithm 2. Algorithm for block-access expectation value of an Hermitian matrix.

Input: n qubits, block access (αM , aM , 0,UM ) to M, an accuracy ε > 0, and a unitary black box V
Output: an ε-additive approximation ũ to u := 〈0|V †MV |ψ〉 with probability 2

3
Procedure:
1: Construct block access (1, aM , 0,UM ′ ) to M ′ = c-(M/αM ) � use Lemma 4.
2: Compute r̃ by executing Algorithm 1 with input (n + aM , ε/2αM ,UM ′ ,1aM ⊗ H ⊗ V ).
3: return ũ := αM (2r̃ − 1).

Problem 4(Block-access expectation value of a Hermitian
matrix (B-EVHM)). Given n qubits, block access
(αM, aM , 0,UM ) to a 2n × 2n Hermitian matrix M, an
accuracy ε ∈ [αM/2n, αM], and an n-qubit unitary black
box V , return with probability at least 2

3 an ε-additive
approximation to 〈0n|V †MV |0n〉.

We now review an algorithm for B-EVHM given in
Ref. [24] that achieves linear dependence on 1/ε. We in-
clude a full analysis of the complexity of this algorithm by
counting queries to V and UM , and additional two-qubit gates
separately. To simplify this analysis, we employ the standard
amplitude-estimation algorithm, as opposed to the more re-
cent amplitude-estimation algorithms which do not require the
quantum Fourier transform [38]. This change in amplitude-
estimation algorithm has no effect on complexity.

As the expectation value of M is not always positive,
it cannot be computed by a direct application of amplitude
estimation. The problem is first reduced to one solvable by
amplitude estimation in the following lemma, using a tech-
nique that employs a controlled block encoding [32].

Lemma 3. For any n-qubit Hermitian matrix M with
‖M‖ � � and for any n-qubit state |ψ〉,

〈ψ |M|ψ〉 = �[2|〈+| 〈ψ | c-(M/�) |+〉 |ψ〉| − 1]. (16)

Proof. The matrix M is Hermitian; therefore,
〈ψ |M|ψ〉 ∈ R for any |ψ〉 ∈ H ⊗n

2 . As ‖M/�‖ � 1,
we have | 〈ψ |M/�|ψ〉 | � 1 and 〈ψ |M/�|ψ〉 + 1 =
|1 + 〈ψ |M/�|ψ〉 |. Equation (16) follows from

2|〈+|〈ψ |c-(M/�)|+〉|ψ〉|
= 2|〈+|〈ψ |(|0〉〈0| ⊗ 1 + |1〉〈1| ⊗ M/�)|+〉|ψ〉|
= |1 + 〈ψ |M/�|ψ〉|
= 1 + 〈ψ |M/�|ψ〉. (17)

�
From the definition of block encoding (Definition 2) it

is evident that ‖M‖ � αM for any block encoding. For our
application of Lemma 3, αM , which is included in block access
to M, is used as the bound � on the norm of M. The next
lemma, which is a special case of Lemma 52 in Ref. [11],
shows that block access to c-(M/αM ) can be implemented if
block access to M is given.

Lemma 4 (Reference [11]). Given n qubits and block ac-
cess (αM, aM , 0,UM ) to an 2n × 2n Hermitian matrix M. Then
block access (1, aM , 0,UM ′ ) to the Hermitian matrix M ′ :=
c-(M/αM ) can be implemented such that UM ′ uses a single
query to UM .

Proof. The operator UM is an (n + aM )-qubit unitary. The
desired circuit for UM ′ acts on aM + 1 + n qubits and com-
prises only a single query to c-UM in which the (aM + 1)th

qubit is the control qubit, and the UM operation controlled
by this qubit operates on the first aM qubits and the last n
qubits. We now show that the operator UM ′ implemented by
this circuit is indeed a (1, aM , 0) block encoding of c-(M/αM ).
Let s1 and s2 be arbitrary n-bit strings. Then

〈0aM , 0, s1|UM ′ |0aM , 0, s2〉 = δs1,s2 , (18)

as the control qubit is set to |0〉, so UM is not applied. Further-
more,

〈0aM , 1, s1|UM ′ |0aM , 1, s2〉 = Ms1,s2/αM , (19)

by definition of block encoding. Finally, 〈0aM , 0,

s1|UM ′ |0aM , 1, s2〉 = 0. By Eqs. (18) and (19),

〈0aM |UM ′ |0aM 〉 =
(
1 0
0 M/α

)
, (20)

where 0 is a 2n × 2n zero matrix. As Eq. (20) gives the matrix
representation of c-(M/α), the operator UM ′ is the desired
block encoding. �

The following theorem states the complexity of solving B-
EVHM.

Theorem 5. Given n qubits, block access (αM, aM , 0,UM )
to a 2n × 2n Hermitian matrix M, an accuracy ε > 0, and a
unitary black box V , then an ε-additive approximation ũ to
u := 〈0|V †MV |0〉 can be returned, with probability at least 2

3 ,
using O(αM/ε) queries to UM , O(αM/ε) queries to V , as well
as O((n + aM )αM/ε) additional 2-qubit gates.

Proof. We prove this theorem by constructing Algorithm 2,
and now proceed to prove its correctness and complexity.

Correctness. Define r := |〈+|〈0|V †M ′V |+〉|0〉|. Then r̃
is an (ε/2αM )-additive approximation to r with proba-
bility at least 2

3 . By Lemma 3, using αM as an upper
bound on ‖M‖, we have u = αM (2r − 1). Therefore, ũ
is an ε-additive approximation to u with probability at
least 2

3 .
Complexity: As the algorithm makes only a single call to

amplitude estimation, the complexities follow directly from
Lemmas 2 and 3. �

Algorithm 2 concludes our review of algorithms for esti-
mating expectation values of block-encoded matrices.

III. APPROACH

In this section, we describe our formulation of SLEP in the
block-encoding setting, our methods for establishing query-
complexity lower bounds for this computational problem, and
the techniques we use in constructing a quantum algorithm
that saturates this bound. The detailed derivation of our results
is presented in Sec. IV.
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A. Query-complexity lower bound for B-EVHM

We begin by presenting our computational problem state-
ments, starting with B-SLEP, which is a formulation of
SLEP in the block-encoding setting. We then discuss two
expectation-value-estimation problems. We close by describ-
ing the reductions we use to derive our lower bounds for
B-SLEP.

In contrast to QLSP (Problem 1), the output of SLEP is a
number, not a quantum state. We formulate SLEP in the block-
encoding setting.

Problem 5 (Block-access system of linear equations prob-
lem (B-SLEP)). Given n qubits, a κ � 1, block access
(αA, aA, 0,UA) to a 2n × 2n invertible Hermitian matrix A
such that ‖A−1‖αA � κ , block access (αM, aM , 0,UM ) to a
2n × 2n Hermitian matrix M, an accuracy ε ∈ [αM/2n, αM],
and an n-qubit unitary black box Ub, return with probability
at least 2

3 an ε-additive approximation to x†Mx, where x :=
A−1b and b is the 2n-dimensional complex vector with entries
bi = 〈i|Ub|0n〉.

We require that ε � αM as otherwise the problem is triv-
ial with 0 a valid answer. We restrict to instances with ε �
αM/2n, as our query-complexity lower bound only applies
to these instances. Additionally, by Theorem 3, any quantum
algorithm solving B-SLEP for instances with ε � αM/2n must
have complexity superpolynomial in n across these instances,
under complexity-theoretic assumptions. As a result, the re-
quirement ε � αM/2n restricts only to instances for which a
quantum algorithm could have complexity in poly(n). Note
that αA and αM bound the norm of A and M, as blocks of UA

and UM do not have norm greater than 1.
It follows from the Chernoff bound ([31], p. 154) that a

constant number of repetitions of an algorithm solving Prob-
lem 5 is sufficient to boost the success probability to a constant
s ∈ [ 2

3 , 1) using a number of repetitions that are logarithmic in
1/(1 − s). Therefore, if the bound 2

3 on the success probability
is replaced by any constant in the interval [ 2

3 , 1) no changes
in complexity occur. In any problem where the output is an
ε-additive approximation, we require that the output of the
algorithm in the failed attempts is a complex number but
not necessarily an ε-additive approximation. Although A is
assumed to be Hermitian in B-SLEP, our results also apply to
non-Hermitian matrices, as they can be encoded into Hermi-
tian matrices [6].

We aim to establish a lower bound on the number of queries
to UM that any quantum algorithm for B-SLEP must make.
As the solution state |x〉 can be generated using algorithms
for QLSP without making any queries to UM , we focus on
the measurement step where queries to UM are required. The
measurement step is in fact formalized by the problem B-
EVHM discussed in Sec. II E 3. This problem is equivalent
to B-SLEP restricted to the case A = 1. Therefore, a lower
bound for B-EVHM gives a lower bound for B-SLEP.

Our lower bound for B-EVHM is found by first proving a
lower bound on the analog of B-EVHM in the sparse-access
setting, which we state below.

Problem 6 (Sparse-access expectation value of a
Hermitian matrix (S-EVHM)). Given number of qubits n,
block access (dM, βM , OMval , OMloc ) to a 2n × 2n Hermitian
matrix M, an accuracy ε ∈ [dMβM/2n, dMβM], and an n-qubit

unitary black box V , return with probability at least 2
3 an

ε-additive approximation to 〈0n|V †MV |0n〉.
To establish our query-complexity lower bound on S-

EVHM, we reduce the problem of calculating the approximate
mean of a black-box function (Problem 3) to S-EVHM. This
reduction allows us to use the known bounds for AM [30],
given in Corollary 2, to derive bounds for S-EVHM. Fur-
thermore, as S-EVHM is reducible to B-EVHM, and since
B-SLEP is reducible to B-EVHM, we can extend these lower
bounds to both B-EVHM and B-SLEP. The reduction of AM
to S-EVHM relies on the observation that the expectation
value of a Hermitian matrix M with respect to the uniform
superposition state |+n〉 := 1/

√
N

∑
j∈[N] | j〉 equals the mean

of the entries of M, i.e.,

〈+n|M|+n〉 = 1

N

∑
i, j∈[N]

Mi j . (21)

Given oracle access to a function f : [N] → {0, 1}, we
construct sparse access to a matrix M that encodes the func-
tion f in its entries. The mean of f can then be calculated
by one call to S-EVHM with U = H⊗n, which completes the
reduction. A function f can be encoded in the entries of a
Hermitian matrix in many different ways, with one way being
encoding the function values along the diagonal entries of
the matrix. Whereas such an encoding would be sufficient to
derive a lower bound for S-EVHM with respect to ε and the
max-norm βM , we employ a different reduction to achieve
a lower bound with respect to ε, dM , and βM . We encode
a function on domain [dM2n−1] in the entries of a Hermi-
tian matrix of sparsity dM . We use this encoding to prove
that the query complexity of S-EVHM is �(dMβM/ε). Our
query-complexity lower bound for B-EVHM is derived by a
reduction leveraging known methods for constructing block
encodings from sparse-access encodings given in Lemma 1.
For B-EVHM, S-EVHM, and B-SLEP, the query-complexity
lower bound yields �(1/ε) dependence on precision, which
rules out the possibility of any algorithm solving any of these
problems in superlogarithmic time.

We note that a lower bound on B-EVHM could be estab-
lished directly from the lower bound for AM. However, we opt
to first prove a lower bound on S-EVHM and then derive our
lower bound on B-EVHM. Our motivation for this choice is
that the lower bound for S-EVHM is important beyond its ap-
plication to deriving a lower bound for B-SLEP, as estimation
of expectation value of a sparse Hermitian matrix is a standard
subroutine in several algorithms [24,32,34–36].

B. Tightness of the lower bound

Our approach for proving the tightness of our query-
complexity lower bounds for B-EVHM, B-SLEP, and S-
EVHM is to give quantum algorithms that achieve these
bounds. The algorithm for B-EVHM discussed in Sec. II E
3 saturates our bound for B-EVHM. We now describe how
we design our quantum algorithms for B-SLEP and S-EVHM.
The detailed construction of these algorithms, along with their
complexities, is given in Sec. IV B and Appendix B.

We start by describing a reduction of B-SLEP to B-EVHM,
and then describe our quantum algorithm for B-EVHM. This
reduction employs a block encoding of A−1, which is known
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to be implementable with polylog(1/ε) queries to UA using
techniques reviewed in Sec. II B 1. Let UA−1 be an (α, a, 0)
block encoding of A−1. Observe that

〈0a|〈b|U †
A−1 (|0a〉〈0a| ⊗ M )UA−1 |0a〉|b〉

= 1

α2
〈b|A−1†

MA−1|b〉 = 1

α2
x†Mx. (22)

A block encoding of |0a〉〈0a| ⊗ M is implementable by a
simple circuit that queries the block encoding of M. The left-
hand side of Eq. (22) is the expectation value of |0a〉〈0a| ⊗ M
with respect to UA−1 |0a〉|b〉, and therefore can be estimated
by one call to an algorithm for B-EVHM. This completes the
reduction of B-SLEP to B-EVHM.

To design our algorithm for solving S-EVHM, we use a
known procedure for generating a block encoding of M using
the sparse-access oracles for M (Lemma 1). This block encod-
ing of M is used as an input to our algorithm for B-EVHM,
which completes the design of our algorithm for S-EVHM.
This concludes the discussion of our approach.

IV. RESULTS

In this section we prove the query complexity of B-SLEP
is �(αM/ε). In Sec. IV A we give a lower bound for B-SLEP.
Next, in Sec. IV B we describe a quantum algorithm that
saturates this bound.

A. Lower bound for B-SLEP

In this section, we derive query-complexity lower bounds
for B-EVHM, S-EVHM, and B-SLEP. We first derive a lower
bound on queries to UM for S-EVHM, which utilizes existing
query-complexity lower bound for AM [30]. Next, we use
Lemma 1 to reduce S-EVHM to B-EVHM and prove a lower
bound for B-EVHM. We extend this lower bound to B-SLEP
by reducing B-EVHM to instances of B-SLEP with A = 1.

We now derive a lower bound for S-EVHM by a reduction
of AM to S-EVHM. En route to this reduction, we define a
scaled version of AM and obtain the dependence of its query
complexity on the scaling factor and the accuracy.

Problem 7 (Scaled approximate mean (SAM)). Given N ∈
Z+, ε ∈ [β/2N, β ), β ∈ R+ and access to an oracle Qg

encoding a function g : [N] �→ [0, β], return an approxima-
tion μ̃g ∈ [0, β] of the mean μg := (

∑N−1
j=0 g( j))/N such that

|μ̃g − μg| < ε with probability at least 2
3 .

Lemma 5. Given an algorithm Q that solves SAM for any
valid input (N ′, 1/ε′, β ′, Og) by making K queries to Og, an
algorithm R can be constructed that solves AM for input
(N ′, β ′/ε′, O f ) by making K queries to O f .

Proof. Using queries to Q, we design a algorithm R to
solve the AM instance given by the input in the lemma
statement. Using the input oracle O f , construct a new ora-
cle Og encoding the function g : [N] �→ [0, β ′] : j �→ β ′ f ( j).
The algorithm R first obtains a number μ̃g by running the
algorithm Q with input (N ′, 1/ε′, β ′, Og), and then returns
μ̃ f = μ̃g/β

′.
The number μ̃g satisfies |μ̃g − μg| < ε′ with probability

at least 2
3 , where μg is the mean of g as defined in Prob-

lem 7. Therefore, with probability at least 2
3 , μ̃ f satisfies

|μ̃ f − μ f | < ε′/β ′ as required. Furthermore, each call to Og

can be implemented with one call to O f , therefore, R makes
K queries to O f . �

We prove the complexity of AM implies a lower bound for
SAM.

Lemma 6. The query complexity of SAM is �(β/ε).
Proof. From Corollary 2, there exist constants η0,C0 ∈

R+ such that any quantum algorithm solving AM on input
(N, 1/ε, O f ), satisfying N, 1/ε > η0, makes at least C0/ε

queries to O f . Our proof is by contradiction, so assume
SAM has query complexity not in �(β/ε). Then, there
exists a quantum algorithm Q that solves SAM for some
input (N ′, 1/ε′, β ′, Og), with N ′, β ′, 1/ε′ > max(η0, 1), using
fewer than �C0β

′/ε′� queries to Og. By Lemma 5, there exists
an algorithm R solving AM on input (N ′, β ′/ε′, Og) which
makes fewer than �C0β

′/ε′� = �C0/ε
′� queries to Og. As

N ′, β ′/ε′,> η0, we have a contradiction to the first statement
of the proof. �

To prove the lower bound on the query complexity of
S-EVHM, we make use of an encoding of a function into a
sparse Hermitian matrix. We first define a function ind that
maps each pair of a row and a column index of a 2n × 2n

Hermitian matrix M to an integer in [22n].
Definition 5. For n ∈ Z+, we define the index function

ind : [2n] × [2n] → [22n]

(i, j) �→ 2n
(
( j − i) mod 2n

) + i. (23)

Here mod2n : Z → [2n] is the modulo operation. For ex-
ample, for n = 2, the 2n × 2n matrix B defined by Bi j =
ind(i, j) takes the form

B =

⎛⎜⎝ 0 4 8 12
13 1 5 9
10 14 2 6
7 11 15 3

⎞⎟⎠. (24)

We prove another lemma before explaining our encoding.
Lemma 7. For n ∈ Z+
(1) ind is invertible.
(2) for i, j ∈ [2n] such that i �= j,

ind(i, j) + ind( j, i) � 22n. (25)

Proof. We prove the two statements separately.
(1) The function ind is invertible if ind(i, j) = ind(k, l )

implies i = k, j = l , which is equivalent to

2n[( j − i) mod 2n − (l − k) mod 2n] = k − i. (26)

Comparing the left- and right-hand sides of this equation to-
gether with the constraint |k − i| � 2n readily yields i = k and
j = l .

(2) By definition of the ind function,

ind(i, j) + ind( j, i)

= 2n[( j − i) mod 2n + (i − j) mod 2n
] + i + j. (27)

The result follows readily from the observation [( j − i) mod
2n + (i − j) mod 2n] = 2n for i �= j.

�
We are now ready to state the encoding of a function into a

matrix that we use for our reduction.
Definition 6. For n ∈ Z+, dM ∈ [2n], β ∈ R+, and a func-

tion g : [dM2n−1] → [0, β], the (n, dM )-matrix encoding of g
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is the 2n × 2n matrix M with entries

Mi j :=

⎧⎪⎪⎨⎪⎪⎩
g(ind(i, i)) if ind(i, i) ∈ [dM2n−1] and i = j,
g(ind(i, j))/2 if ind(i, j) ∈ [dM2n−1] and i �= j,
g(ind( j, i))/2 if ind( j, i) ∈ [dM2n−1] and i �= j,
0 if ind(i, j), ind( j, i) /∈ [dM2n−1] and i �= j.

(28)

Lemma 7 implies that for any i �= j, both ind(i, j) and
ind( j, i) cannot simultaneously belong to [dM2n−1], so each
entry of M is unique. We now derive relevant properties of
this matrix encoding.

Lemma 8. For n ∈ Z+, dM ∈ [2n], β ∈ R+, and a function
g : [dM2n−1] → [0, β], let 2n × 2n dM-sparse matrix M be the
(n, dM )-matrix encoding of g. Then

(1) M is a Hermitian matrix,
(2) M is dM sparse, and
(3) the entries of M satisfy∑

i, j∈[2n]

Mi j =
∑

k∈[dM 2n−1]

g(k). (29)

Proof. We provide a separate proof for each of the three
statements.

(1) First we prove that M is Hermitian. As all entries
of M are real, we only need to prove that Mi j = Mji for
i �= j. Suppose i, j are such that ind(i, j) ∈ [dM2n−1]. Then
ind( j, i) /∈ [dM2n−1] by Lemma 7. Therefore, by Eq. (28),
Mi j = Mji = g(ind(i, j))/2. A similar argument yields Mi j =
Mji if ind(i, j) /∈ [dM2n−1].

(2) To prove that M is dM sparse, we count, for each
row i, the number of column indices { j} for which Mi j is
nonzero. For an entry Mi j to be nonzero, either ind(i, j) or
ind( j, i) must belong to [dM2n−1]. We first count the num-
ber of { j} such that ind(i, j) ∈ [dM2n−1]. Note that for ( j −
i) mod 2n > dM/2, we have ind(i, j) > dM2n−1, therefore,
there are at most �dM/2� values of j satisfying ind(i, j) ∈
[dM2n−1] for any i. Similar argument can be made to show
that there are at most �dM/2� values of j for which ind( j, i) ∈
[dM2n−1]. Considering that j = i features in both these
lists, we conclude that any row i has at most dM nonzero
entries.

(3) This property is a consequence of the invertibility of
ind and the Hermiticity of M. Every k ∈ [dM2n−1] in the
domain of g is mapped to a pair of a row and a column index
(i, j) by the inverse of the ind function. Furthermore, if i �= j,
then Mi j = g(k)/2 so that Mi j + Mji = g(k) by Hermiticity
of M. �

The (n, dM )-matrix encoding M of g can be constructed
with a single query to the function oracle, as given by the
following lemma.

Lemma 9. Given n qubits, a sparsity parameter dM ∈ [2n],
a number βM ∈ R+, and an oracle Og encoding a function g :
[dM2n−1] → [0, β], sparse access (dM, βM , OMval , OMloc ) to the
(n, dM )-matrix encoding of g can be constructed with OMval

making a single query to Og and OMloc making zero queries
to Og.

Proof. The oracle for Mval can be constructed using the ex-
plicit formula Eq. (28) for the entries of M. This construction
requires first computing ind(i, j), then computing g(ind(i, j))
by making one query to Og, and finally uncomputing ind(i, j).

The function ind(i, j) can be computed using the explicit
formula Eq. (23) and requires no queries to Og.

To construct an oracle for Mloc, it suffices to provide an
explicit formula for computing Mloc. Recall that

Mloc :[2n] × [dM] → [2n]

:(i, l ) �→ Mloc(i, l ), (30)

where Mloc(i, l ) is the lth nonzero entry in the ith row of
M. From the proof of the second statement of Lemma 8, we
deduce that Mloc is given by Mloc( j, l ) = i + l − �dM/2� mod
2n. �

The function to matrix encoding in Definition 6 ensures
that the mean of a function g can be inferred from the expec-
tation value of the (n, dM )-matrix encoding of g with respect to
the equal superposition state, as stated in the following lemma.

Lemma 10. Let n ∈ Z+, dM ∈ [2n], β ∈ R+, g :
[dM2n−1] → [0, β] and let M be the (n, dM )-matrix encoding
of g. Then the mean μg of g satisfies

μg = 2

dM
〈+n|M|+n〉, (31)

where |+n〉 = Hn|0n〉.
Proof. By Lemma 8,

∑
i, j∈[2n] Mi j = ∑

i∈[dM 2n−1] g(i).
Therefore,

〈+n|M|+n〉 = 1

2n

∑
i, j∈[2n]

Mi j

= 1

2n

∑
i∈[dM 2n]

g(i) = dM2n−1

2n
μg (32)

= dM

2
μg, (33)

where the second equality follows from Lemma 8. �
We now give our reduction from SAM to S-EVHM.
Lemma 11. Given an algorithm Q that solves the problem

S-EVHM on any instance

(n, 1/ε, (dM , βM , OMval , OMloc ), H⊗n) (34)

by making K queries to the sparse-access oracles encoding
M, an algorithm R can be constructed that solves the SAM
instance with input

(dM2n−1, dM/2ε, βM , Og), (35)

by making K queries to Og.
Proof. We show how to construct an algorithm R as de-

scribed in the Lemma. Let M be the (n, dM )-matrix encoding
of g, which is given by Definition 6 and has sparse-access ora-
cles given in Lemma 9. Let R be the algorithm that queries Q
with input given by Eq. (34) to compute ũ and returns 2ũ/dM .
By Lemma 10, 〈+n|M|+n〉 = dMμg/2. Then |ũ − dMμg/2| <

ε with probability at least 2
3 , and so |2ũ/dM − μg| < 2ε/dM
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with probability 2
3 . Therefore, R solves the SAM instance

defined by the inputs in Eq. (35). Also, R makes K queries
to Og as Q makes K queries to oracles encoding M, and each
query to M requires only one query to Og by Lemma 9. �

Using this reduction, we derive the following query-
complexity lower bound.

Lemma 12. Given n qubits, sparse access (dM, βM ,

OMval , OMloc ) to a 2n × 2n Hermitian matrix M, an accuracy
ε ∈ (dMβ/2n, dMβ ), and an n-qubit unitary black box V , any
quantum algorithm that returns with probability at least 2

3 an
ε-additive approximation of 〈0|V †MV |0〉 for V = H⊗n makes
�(dMβ/ε) queries UM .

Proof. From Lemma 6, there exist constants C0, η0 ∈ R+
such that any quantum algorithm solving the SAM problem
with input (N, 1/ε, β, Og), where N, 1/ε, β > η0, makes at
least �C0β/ε� queries to Og. We proceed by contradiction.
Assume Lemma 12 is false, then there exists a quantum al-
gorithm Q which for some input

(n′, (d ′
M , β ′

M , OMval , OMloc ), 1/ε′) (36)

with n′, d ′
M , 1/ε′, β ′

M > 2η0, returns an ε-additive approx-
imation of 〈0|V †MV |0〉 using a number of queries to
oracles encoding M fewer than �C0d ′

Mβ ′
M/2ε′�. Let N ′′ :=

d ′
M2n′−1, 1/ε′′ := d ′

M/2ε0, and β ′′ := β ′
M . Then by Lemma 11

there exists an algorithm R solving SAM on input

(N ′′, 1/ε′′, β ′′, Og), (37)

which makes fewer than �C0d ′
Mβ ′

M/2ε′� = �C0β
′′/ε′′� queries

to Og. Using n′, d ′
M , 1/ε′, β ′

M > 2η0 we have N ′′, 1/ε′′, β ′′ >

η0. Therefore, the existence of R contradicts the first state-
ment of the proof. �

Lemma 12 addresses S-EVHM under the restriction V =
H⊗n. This lemma implies the following lower bound for S-
EVHM.

Corollary 3. Any algorithm that solves S-EVHM makes
�(dMβM/ε) queries to sparse-access oracles for M.

We next use Corollary 3 to prove a similar query-
complexity lower bound for B-EVHM.

Theorem 6. Any algorithm that solves B-EVHM makes
�(αM/ε) queries to the block encoding of M.

Proof. From Theorem 12, there exist constants η0,C0 ∈
Z+ such that any quantum algorithm solving the prob-
lem S-EVHM on input (n, (dM , βM , OMval , OMloc ), 1/ε,V ),
satisfying n, dM , βM , 1/ε > η0 makes at least �C0dMβM/ε�
queries to M. Our proof is by contradiction. Assume that
a quantum algorithm Q solves B-EVHM with queries
to UM not in �(αM/ε). Then there exists an input
(n′, (α′

M, a′
M , 0,UM ), 2/ε′,V ), with n′, α′

M , a′
M , 1/ε′ > (η0 +

1)2 and a′
M � 2, for which Q solves B-EVHM using fewer

than �C0α
′
M/ε′� queries to UM . For

d ′
M = η0 + 1 and β ′

M = α′
M/(η0 + 1), (38)

and following Lemma 1, block access (d ′
Mβ ′

M , a′
M , ε′/2,UM )

can be constructed such that UM makes a single query
to sparse-access oracles for M. Applying Q on the
instance defined by input (n′, (d ′

Mβ ′
M , α′

M , 0,UM ), 2/ε′,V )
gives a quantum algorithm that solves S-EVHM with
input (n′, (d ′

M , β ′
M , OMval , OMloc ), 1/ε′,V ) by making

fewer than �C0d ′
Mβ ′

M/ε′� = �C0αM/ε0� queries to M.

As n′, d ′
M , β ′

M , 1/ε′ > η0 in the input to this instance of
S-EVHM, we have a contradiction to the first statement of the
proof. �

Theorem 6 establishes a query-complexity lower bound
for the problem B-EVHM, in which the matrix M is given
via block encoding, and the state is generated by a unitary
black box V . In Appendix A, we show that the lower bound
in Theorem 6 also applies for the problem of estimating the
expectation value even if V is any fixed unitary operator and
not a black box. In particular for the restriction V = 1n, the
output of this problem is an estimate of 〈0n|M|0n〉. Interest-
ingly, the restriction of S-EVHM to V = 1n can be solved by
making just one query to the sparse oracles for M.

As B-EVHM is a restriction of B-SLEP to A = 1n, the
lower bound in Theorem 6 immediately yields a lower bound
for B-SLEP.

Theorem 7. Any quantum algorithm that solves B-SLEP
must make �(αM/ε) queries to UM .

This theorem concludes our derivation of lower bound for
B-SLEP.

B. Tightness of bound

In this section, we construct quantum algorithms for solv-
ing B-SLEP that achieves the query-complexity lower bounds
derived in the previous section. Our algorithm for B-SLEP fol-
lows the approach outlined in Sec. III B. We use the algorithm
for B-EVHM discussed in Sec. II E 3 as a subroutine to design
an algorithm for B-SLEP in Sec. IV B. We first show how to
construct a block encoding of A−1 using techniques discussed
in Sec. II C 1. Our algorithm for B-SLEP makes one query
to our algorithm for B-EVHM (Algorithm 2) and queries the
block encoding of A−1 as an input to this single query.

First we combine Theorem 1 and Corollary 1 to show how
block access to A−1 can be constructed using block access to
A. A more general result in this direction is given in Ref. [23].
We provide a different derivation in our setting and report
complexities for queries to block encoding of A and 2-qubit
gates separately.

Corollary 4. Given n qubits, an accuracy ε ∈ (0, 2], a κ �
1, and block access (αA, aA, 0,UA) to an invertible 2n × 2n

Hermitian matrix A such that ‖A−1‖αA � κ , then block access
(8κ/3, aA + 2, ε,UA−1 ) to A−1 can be constructed such that
UA−1 makes O(κ log(κ/ε)) queries to UA and O(κaA log(κ/ε))
additional 2-qubit gates.

Proof. Invoking Corollary 1 with the theorem’s δ parameter
equal to 1/κ and the theorem’s ε parameter equal to 3ε/(8κ ),
there exists a polynomial P with degree in O(κ log(κ/ε))
such that for all

x ∈ [−1, 1] \ [−1/κ, 1/κ], (39)

|P (x)/2| � 1/2 and∣∣∣∣P (x)

2
− 3

8κ

1

x

∣∣∣∣ <
3ε

16κ
. (40)

As the spectrum of A/αA lies in [1,−1] \ [−1/κ, 1/κ], each
eigenvector |λ〉 of A satisfies∣∣∣∣〈λ|

(
3

8κ
A−1 − P (A/αA)

2

)
|λ〉

∣∣∣∣ � 3ε

16κ
(41)
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and, consequently,∥∥∥∥ 3

8κ
A−1 − P (A/αA)

2

∥∥∥∥ � 3ε

16κ
. (42)

Next, Theorem 1 with σ = 3ε/16κ guarantees that a (1, aA +
2, 3ε/16κ ) block encoding of P (A/αA)/2 can be constructed
using O(κ log(κ/ε)) queries to UA and O(κaA log(κ/ε)) ad-
ditional 2-qubit gates. From Eq. (42), this block encoding of
P (A/αA)/2 also block encodes A−1 with the prefactor 8κ/3
and error bounded by

(8κ/3)(3ε/16κ + 3ε/16κ ) = ε. (43)

Therefore, the block encoding of P (A/αA)/2 given by Theo-
rem 1 is the required block access (8κ/3, aA + 2, ε,UA−1 ) to
A−1. �

We next prove that block access to M can be used to
construct block access to M (m) := M ⊗ |0m〉〈0m| for any given
m ∈ Z+.

Lemma 13. Given n-qubits, block access (αM, aM , 0,UM )
to a 2n × 2n Hermitian matrix M, and given an m ∈ Z+,
then block access (αM, aM + 1, 0,UM (m) ) to M (m) can be con-
structed such that UM (m) queries UM once and employs O(m2)
additional 2-qubit gates.

Proof. We show that the desired block encoding of M (m) is
given by the (1 + aM + n + m)-qubit circuit

The controlled-NOT (CNOT) gate in this circuit has m
control qubits, and only flips the target qubit if the control
qubits are in the state |0m〉. For any computational basis states
|0aM+1, s1, 0m〉 and |0aM+1, s2, 0m〉, where s1 and s2 are n-bit
strings,

〈0aM+1, s1, 0m|UM (m) |0aM+1, s2, 0m〉 = Ms1s2/αM (44)

is true. Furthermore, for any states |0aM+1, s1, r1〉 and
|0aM+1, s2, r2〉, where r1 and r2 are m-bit strings such that at
least one of r1 and r2 is not equal to 0m,

〈0aM+1, s1, r1|UM (m) |0aM+1, s2, r2〉 = 0. (45)

Equations (44) and (45) together imply

〈0aM+1|UM (m) |0aM+1〉 = (M ⊗ |0m〉〈0m|)/αM, (46)

as required. The required number of 2-qubit gates scales as
O(m2), which follows from the fact that the 0m-CNOT gate
can be implemented using O(m) 2-qubit gates and the Toffoli
gate [31]. �

Theorem 8. A quantum algorithm can be constructed that
takes n qubits, a κ � 1, block access (αA, aA, 0,UA) to a
2n × 2n invertible Hermitian matrix A such that ‖A−1‖αA � κ ,

block access (αM, aM , 0,UM ) to a 2n × 2n Hermitian ma-
trix M, an accuracy ε ∈ [αM/2n, αM], and an n-qubit unitary
black box Ub, and returns with probability at least 2

3 an ε-
additive approximation to x†Mx, where x := A−1b and b is the
2n-dimensional vector with entries bi = 〈i|Ub|0〉, by making
O(αMκ2/ε) queries to UM , O(αMκ3 log(αMκ2/ε)/ε) queries
to UA, O(αMκ2/ε) queries to Ub, and

O

{
αMκ2

ε

[
n + aM + aAκ log

(
αMκ2

ε

)
+ aA

]}
, (47)

additional 2-qubit gates.
Proof. We describe an algorithm (Algorithm 3) for

B-SLEP, and prove the correctness of this algorithm. This
algorithm makes reference to subroutines described in other
work. We end the proof by analyzing the algorithm’s com-
plexity. The algorithm is as follows.

Correctness. Let

r := 〈0n+aA+2|(1aA+2 ⊗ U †
b )(U †

A−1 )(|0aA+2〉〈0aA+2| ⊗ M )

× (UA−1 )(1aA+2 ⊗ Ub)|0n+aA+2〉. (48)

The output of B-EVHM (Algorithm 2) satisfies

|r − r̃| � (ε/2)(8κ/3)−2, (49)

with probability at least 2
3 . Let u := 〈x|M|x〉, where |x〉 is the

solution state to Ax = b, which can be expressed as

u = 〈b|A−1†
MA−1|b〉 = 〈0n|U †

b A−1†
MA−1Ub|0n〉. (50)

Define Ẽ := (8κ/3)〈0aA+2|UA−1 |0aA+2〉. Then, by the defini-
tion of block encoding (Definition 2), we have

‖A−1 − Ẽ‖ � ε/8γ κ. (51)

Furthermore, this bound gives Ẽ |b〉 − A−1|b〉 � ε/8γ κ . Ana-
lyzing Eq. (48) yields (8κ/3)2r = 〈b|Ẽ†MẼ |b〉. Therefore,

|u − (8κ/3)2r| = |〈b|A−1†
MA−1|b〉 − 〈b|Ẽ†MẼ |b〉|

� ‖M‖(|Ẽ |b〉‖2 − ‖A−1|b〉‖2|)
� ‖M‖(|‖Ẽ |b〉‖ − ‖A−1|b〉‖|)
× (‖Ẽ |b〉‖ + ‖A−1|b〉‖)

� αM
ε

8γ κ

[(
ε

8γ κ
+ κ

)
+ κ

]
� αM

γ 2

ε2

64κ2
+ αM

γ

ε

4
� ε/2, (52)

where the inequalities αM/γ , αM/γ 2 � 1 are used in the last
step. By the triangle inequality,

|ũ − u| � |ũ − (8κ/3)2r| + |u − (8κ/3)2r|
= |(8κ/3)2r̃ − (8κ/3)2r| + |u − (8κ/3)2r|
� ε/2 + ε/2 = ε, (53)

with probability at least 2
3 .

Complexity. We consider the instances with αM � 1,
which are sufficient to determine big-O scaling for queries
and 2-qubit gates used by our algorithm. For these instances,

023237-13



ABHIJEET ALASE et al. PHYSICAL REVIEW RESEARCH 4, 023237 (2022)

Algorithm 3. Algorithm for block-access system of linear equations problem.

Input: (n, κ, (αA, aA, 0,UA), (αM , aM , 0,UM ), ε,Ub)
Output: With probability at least 2

3 an ε-additive approximation to x†Mx, where x := A−1b and b is the vector with entries bi = 〈i|Ub|0〉
Procedure:

1: γ =
{

αM if αM � 1√
αM if αM < 1.

2: Construct block access (8κ/3, aA + 2, ε/8γ κ,UA−1 ) to A−1. � Use Corollary 4
3: Construct block access (αM , aM + 1, 0,UM (aA+2) ) to M (aA+2) := |0aA+2〉〈0aA+2| ⊗ M. � Use Lemma 13
4: Compute r̃ by executing the algorithm for B-EVHM with input � Use Algorithm 2

(n + aA + 2, (αM , aM + 1, 0,UM (aA+2) ), (ε/2)(8κ/3)−2, (UA−1 )(1aA+2 ⊗ Ub)).
5: return ũ = (8κ/3)2r̃.

γ = αM by the first line of Algorithm 3. Using the complex-
ities from Theorem 5, the single call made to Algorithm 3
makes

O(αM2(8κ/3)2/ε) = O(αMκ2/ε), (54)

queries to UA−1 (1aA+2 ⊗ Ub) and UM (aA+2) . Therefore, using the
complexity of UA−1 given by Corollary 4, the algorithm makes
O(αMκ2/ε) queries to each of Ub, UM , and UA−1 . Each query
to UA−1 comprises

O(κ log(8αMκ2/ε)) = O(κ log(αMκ2/ε)), (55)

queries to UA. Thus, our algorithm makes
O(αMκ3 log(αMκ2/ε)/ε) queries to UA.

Now we count the additional 2-qubit gates used by our
algorithm. We separately count 2-qubit gates used directly by
Algorithm 2, 2-qubit gates used by queries to UA−1 (1aA+2 ⊗
Ub)), and 2-qubit gates used by queries to UM (aA+2) . We then
combine these three contributions to yield the total number
of 2-qubit gates used. First, the number of 2-qubit gates used
directly by Algorithm 2 is

O(αMκ2(n + aA + 2 + aM )/ε) = O(αMκ2(n + aA + aM )/ε).
(56)

Next, UA−1 (1aA+2 ⊗ Ub) is queried O(αMκ2/ε) times by B-
EVHM. By Corollary 4, UA−1 uses

O(κaA log(8αMκ2/ε)) ∈ O(κaA log(αMκ2/ε)) (57)

additional 2-qubit gates. Consequently,

O(αMκ3aA log(αMκ2/ε)/ε) (58)

2-qubit gates are used throughout all queries to UA−1 (1(aA+2) ⊗
Ub). Finally, we count the number of 2-qubit gates used in
queries to UM (aA+2) . By Lemma 13, each query to the ora-
cle UM (aA+2) requires O(aA) gates, and this oracle is queried
O(κ2αM/ε) times by B-EVHM, which yields a total of

O(aAαMκ2/ε) (59)

additional 2-qubit gates used throughout calls to UM (aA+2) .
Combining these three contributions (56)–(59) yields the total
number of additional 2-qubit gates given by Eq. (47). �

In comparison with algorithms for QLSP [8], which have
linear dependence on κ , our algorithm has cubic dependence
on κ . This additional dependence on κ comes from the added
challenge of solving B-SLEP over QLSP. In particular, the
proportionality in the encoding of x into the quantum state
|x〉 is linearly dependent on κ . Thus, the proportionality of

〈x|M|x〉 is quadratically dependent on κ , which increases
the accuracy to which |x〉 must be computed. We end this
section by noting that the complexity of Algorithm 3 has
no dependence on αA. This is merely a consequence of the
inequality κ � αA‖A−1‖. Therefore, a block encoding of A
with large αA in the input is always accompanied by a pro-
portionally large value of κ , thereby indirectly increasing the
query- and 2-qubit gate cost of our algorithm.

V. DISCUSSION

We proved two main results in this paper. First, for the
formulation of SLEP in which M is provided via block access,
namely B-SLEP, we established a lower bound on queries to
M. Second, we constructed a quantum algorithm for solving
B-SLEP that saturates this lower bound, thereby proving that
the lower bound is tight. We now discuss the implications of
these two results.

We begin by comparing our lower bound with two pre-
viously known hardness results for restrictions of SLEP, as
discussed in Sec. II C 1. The first of these results, presented
in Theorem 3 [6], rules out the existence of a quantum al-
gorithm solving SLEP with polylog(N, 1/ε) scaling of the
total runtime. This result relies on no assumptions about how
the input M is given, but instead requires the complexity-
theoretic conjecture BQP �= PP. Our derivation of the lower
bound does not make any complexity-theoretic assumption,
but instead relies on the assumption that block access to M
is given. Furthermore, our lower bound establishes a more
stringent constraint �(1/ε) on the scaling in ε of queries to M,
thereby ruling out a sublinear scaling in ε. As state-of-the-art
algorithms for generation of |x〉 run in polylog(N, 1/ε) time,
our result shows that the expectation-value-estimation step
is exponentially harder with respect to scaling in ε than the
|x〉-generation step.

The second previously known hardness result, namely The-
orem 2, states that if A is given by oracles, then no quantum
algorithm for SLEP with poly(log N, κ ) dependence can have
query complexity in O(1/ε). This result only applies to those
cases in which A is given by oracles, and does not apply, for
instance, if A is fixed or if A is given by a description of a
quantum circuit. In contrast, we establish our lower bound for
B-SLEP by first deriving a lower bound for the case in which
A = 1n is fixed. Therefore, our result shows that linear scaling
on 1/ε is optimal if either of the inputs A and M is given
by oracles. SLEP for fixed A arises, for instance, in solving
Poisson equation using the finite-element method with a fixed
choice of basis function [39].
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En route to deriving our lower bound for queries to B-
SLEP, we derive a lower bound for S-EVHM (Problem 6),
which is the problem of estimating the expectation value of
a sparse-access Hermitian matrix M with respect to the state
generated by a given unitary black box. Our lower bound for
S-EVHM is �(dMβM/ε), where dM is the sparsity of M and
βM is an upper bound on the max-norm of M. As S-EVHM
is equivalent to the restriction of SLEP to the case in which
A = 1n is fixed and access to M is given by sparse-access
oracles, the lower bound for S-EVHM also applies to SLEP
in the sparse-access setting. We also derive a lower bound for
B-EVHM (Problem 4), which is the problem of estimating
the expectation value of a Hermitian matrix M provided by
block access with respect to the state generated by a given
unitary black box. Our lower bound for B-EVHM is �(αM/ε),
where αM is the scaling factor for the block encoding of
M. As dMβM � ‖M‖ and αM � ‖M‖, a common �(‖M‖/ε)
lower bound holds for estimating the expectation value of
a black-box Hermitian matrix M irrespective of the oracle
encoding of M. Our lower bound complements the lower
bound on queries to V given by Corollary 4 in Ref. [34].
Interestingly, whereas our lower bound for B-EVHM holds
under the restriction V = 1n, our lower bound for S-EVHM
is violated under the same restriction. As previous works did
not consider the formulation of SLEP in which block access
to M is given, the optimal scaling with respect to αM was not
known. Our lower bound for B-SLEP, which follows from our
lower bound for B-EVHM, establishes a linear scaling in αM .

To close, we discuss the implications of our algorithm
for B-SLEP. Most importantly, the query complexity of our
algorithm proves that our lower bound for queries to M for
B-SLEP is tight up to a constant prefactor. Our algorithm for
B-SLEP builds on the algorithm for B-EVHM in Ref. [24].
Our algorithm for B-SLEP also achieves linear scaling with
respect to αM for queries to M, which is optimal, and saturates
the constraint on queries to A given by Theorem 2 up to
logarithmic factors. Our algorithm for B-SLEP can be used
to compute the expectation value of a smooth function of
a Hermitian matrix with respect to the solution vector x by
combining our algorithm with existing quantum algorithms
for matrix arithmetic [22,23,40]. Finally, our algorithm for
S-EVHM shows that our lower bound for the same problem
is tight. This algorithm can be used as a subroutine along
with Lemma 1 to construct an algorithm for SLEP in the
sparse-access setting with optimal queries to M, although we
do not detail this algorithm in our paper.

VI. CONCLUSION

Systems of linear equations arise in nearly all areas of
science and engineering. The HHL algorithm and its improve-
ments generate a quantum encoding of the solution vector x
to a system of N linear equations Ax = b in cost polylog(N )
[6]. This logarithmic dependence on N can be translated into
efficient solutions for practical problems if the value x†Mx
can be estimated for a given M in cost polylog(N ). However,
the cost of this estimation can be prohibitively expensive [15].
To address this caveat, we determine the complexity of the
system of linear equations problem (SLEP), in which the task
is to estimate x†Mx to an additive accuracy ε given A, M,

and b. We consider the setting in which M is given as a
block encoding [11]. Block encoding is a common method
of specifying matrix input to computational problems, and it
also allows derivation of lower bounds on the query cost.

We analyze the cost of solving SLEP in terms of queries
to the block encoding of M. Our main result is that any
quantum algorithm for solving SLEP has a cost that is of
order αM/ε if M is provided as a block encoding, where
αM is the proportionality factor of the block encoding. As
log(αM/ε) + 1 digits are sufficient to provide an estimate to
additive accuracy ε, our results imply that the cost of solving
SLEP scales exponentially with the number of digits to which
x†Mx is estimated. We also prove that our bound on the cost
is tight with respect to ε by constructing a quantum algorithm
that saturates our bound. This bound for SLEP can be used
in conjuction with previous hardness results, which bound the
queries to the encoding of A with respect to ε [6]. To prove
our lower bound for SLEP, we first prove a lower bound for
the problem B-EVHM, in which the task is to estimate the
expectation value of a block-encoded matrix M with respect to
a given quantum state. To derive a lower bound for B-EVHM,
we leverage a known lower bound for estimating the mean of
a black-box function [30]. Our algorithm for SLEP relies on a
known algorithm for B-EVHM [24].

Our results rigorously prove that if M is provided by a
block encoding and if αM/ε is superpolylogarithmic in N ,
then the cost of any quantum algorithm for solving SLEP
is also superpolylogarithmic in N . Consequently, quantum
algorithms that employ a block encoding of M show promise
only for those applications for which an accuracy with αM/ε ∈
polylog(N ) is sufficient. If the scaling of αM/ε with respect to
N is faster than polylog(N ), then an efficient solution is un-
likely unless M is further restricted. An interesting question in
this direction is whether such an efficient solution is possible
if constraints on the rank or the eigenvalue distribution of M
are known, in addition to restrictions on A and b.
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APPENDIX A: LOWER BOUND FOR B-EVHM
FOR FIXED V

In this Appendix, we show that the lower-bound B-EVHM
given by Theorem 6 also applies to the restriction of B-EVHM
in which V is a fixed input, and not a unitary black box. We
first adapt a theorem which shows that block access to two
matrices A and B can be used to construct block access to AB.

Lemma 14 (Reference [11]). Given n qubits, block access
(αA, aA, 0,UA) to 2n × 2n Hermitian matrix A and block ac-
cess (αB, aB, 0,UB) to 2n × 2n Hermitian matrix B, then block
access (αAαB, aA + aB, 0,UAB) to AB can be constructed such
that UAB uses only a single call to UA and a single call to UB.
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Algorithm 4. Algorithm for sparse-access expectation value of a Hermitian matrix.

Input: n qubits, sparse access (dM , βM , OMval , OMloc ) to M, an accuracy ε > 0, and a black-box unitary V
Output: an ε-additive approximation ũ to u := 〈0|V †MV |ψ〉 with probability 2

3
Procedure:
1: Construct block access (dMβM , 2, ε,UM ) to M. � use Lemma 1.
2: Compute ũ by executing Algorithm 2 with input (n, (dMβM , 2, ε/2,UM ), ε/2,V ).
3: return ũ.

We now show that Theorem 6 applies when to B-EVHM
under any restriction that fixes V .

Lemma 15. Let {Vn ∈ U (H ⊗n
2 ) : n ∈ Z+} be a set of uni-

tary operators. Then, any algorithm Q that solves all instances
of B-EVHM with input (n, (αM , aM , 0,UM ), 1/ε,V = Vn)
makes �(αM/ε) queries to the block encoding of M.

Proof. We first prove that given an algorithm Q as de-
scribed in the Lemma 15, any instance of B-EVHM can be
solved by making one query to Q and without making any
additional uses of the block encoding of M. The desired lower
bound then follows immediately from Theorem 6. Note that

UF = (VnV
† ⊗ |0aM 〉〈0aM |)UM (VV †

n ⊗ |0aM 〉〈0aM |) (A1)

is a (αM, aM , 0) block encoding of F = VnV †MVV †
n .

This block encoding can be instructed by Lemma 14.
Then, any instance (n, (αM, aM , 0,UM ), 1/ε,V ) of B-EVHM
can be solved by making one query to Q with input
(n, (αM , aM , 0,UF ), 1/ε). The output r of this algorithm
satisfies

|r − 〈0n|V †
n VnV

†MVV †
n Vn|0n〉| < 2/3 (A2)

which implies

|r − 〈0n|V †MV |0n〉| < 2/3 (A3)

with probability at least 2
3 as required. �

APPENDIX B: ALGORITHM FOR S-EVHM

In this Appendix, we construct an algorithm for S-EVHM
to show that the query-complexity lower bound for S-EVHM
given by Corollary 3 is tight.

Theorem 9. Given n qubits, sparse access (dM, βM ,

OMval , OMloc ) to a 2n × 2n Hermitian matrix M, an accuracy
ε > 0, and a unitary black box V , then an ε-additive ap-
proximation ũ to u := 〈0|V †MV |0〉 can be returned, with
probability at least 2

3 , using O(dMβM/ε) queries to sparse-
access oracles for M, O(dMβM/ε) queries to V as well as

O

(
dMβM

ε

(
n + log2.5

(
dMβM

ε

)))
, (B1)

additional 2-qubit gates.
Proof. The algorithm (Alg. 4) is as follows:
Correctness. Let M̂ := dMβM〈02|UM |02〉, so that ‖M̂ −

M‖ < ε/2. Then Algorithm 2 guarantees that

|ũ − 〈0n|V †M̂V |0n〉| < ε/2, (B2)

with probability at least 2
3 . We then have

|ũ − u| � |ũ − 〈0n|V †M̂V |0n〉|
+ |〈0n|V †M̂V |0n〉 − 〈0n|V †MV |0n〉|

� ε/2 + ‖M̂ − M‖ < ε, (B3)

with probability at least 2
3 as required.

Complexity. The complexity of queries to sparse-access
oracles follows directly from the complexities of Al-
gorithm 2 with αM set to dMβM . By Lemma 1, the
block encoding UM uses O(n + log2.5(dMβM/ε)) additional
2-qubit gates. Furthermore, UM is queried O(dMβM/ε)
times by Algorithm 2. Therefore, our algorithm for
S-EVHM uses the number of 2-qubit gates given in
Eq. (B1). �

The queries to the block encoding of M given in Theorem
5 saturate the lower bound for B-EVHM in Theorem 6. This
theorem concludes the proof of the tightness of our lower
bound for B-EVHM.
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