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Small mode volume topological photonic states in one-dimensional lattices
with dipole-quadrupole interactions
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We study the topological photonic states in one-dimensional lattices analog to the Su-Schrieffer-Heeger model
beyond the dipole approximation. The electromagnetic resonances of the lattices supported by near-field inter-
actions between the plasmonic nanoparticles are studied analytically with coupled dipole-quadrupole method.
The topological phase transition in the bipartite lattices is determined by the change of Zak phase. Our results
reveal the contribution of quadrupole moments to the near-field interactions and the band topology. It is found
that the topological edge states in nontrivial lattices have both dipolar and quadrupolar nature. The quadrupolar
edge states are not only orthogonal to the dipolar edge states, but also spatially localized at different sublattices.
Furthermore, the quadrupolar topological edge states, which coexist at the same energy with the quadrupolar
flat band have shorter localization length and hence smaller mode volume than the conventional dipolar edge
states. The findings deepen our understanding in topological systems that involve higher-order multipoles, or in
analogy to the wave functions in quantum systems with higher-orbital angular momentum, and may be useful in
designing topological systems for confining light robustly and enhancing light-matter interactions.
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I. INTRODUCTION

Topological insulators are a class of matter which are
insulating in the bulk but conducting at the boundary with
the backscattering-immune states that are robust against local
perturbations [1]. The concepts of topological phases are not
restricted to fermionic systems, but they also can be realized
in bosonic and classical waves systems [2]. In particular, topo-
logical photonics [3] complements the electronic counterpart
and has been theoretically proposed [4–6] and experimentally
realized [7] in two-dimensional (2D) photonic crystals. The
Su-Schrieffer-Heeger (SSH) model [8], which originates from
the study of solitons in polyacetylene, is the simplest sys-
tem demonstrating nontrivial topological bands. The photonic
analog of SSH model has been realized in photonic crystals
[9,10], chains of plasmonic [11–17] and dielectric [18–20]
nanoparticles, and gyromagnetic lattices [21].

In 1D systems, the topological edge states existing within
the band gaps are localized at the boundary of the system with
distinct topological phases [22]. The spatial confinement of
light by topological edge states enhanced light-matter interac-
tions in subwavelength scale which leads to applications such
as lasing [23–25] and sensing [26]. Ideally, photonic states
with high quality factor and small mode volume are desirable
for such applications [27–34]. Recently, bound states in the
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continuum (BICs) in photonic systems are of great interest
due to their infinitely high quality factor [35–39]. In particular,
the topological nature of BICs has been revealed [35] and
observed experimentally [37]. However, topological BICs are
different from the topological edge states in the way that
while the former originates from the topological charges in the
polarization vectors of the far-field radiation, the latter is from
the closing of the band gaps arising from the mismatch be-
tween the band topologies of two physically joint bulk bands.
Currently, cavities made by plasmonic resonators are still the
state of the art to obtain small mode volume [40–43]. On the
other hand, the exponentially localized topological edge states
in 1D lattices may provide an alternative way to confine light
in small mode volume while at the same time topologically
protected.

Conventionally, the SSH model with dipole approximation
is sufficient in studying the dipolar topological edge states in
nontrivial systems [11–21]. The solutions of the edge states
under the dipole approximation have characteristic that the
dipole moments are localized in only one of the sublattice
sites. This result is verified in several works [12,14–17,21]
including those where long-range interactions are included
[15,16,21]. The fields from the dipole moments are similar
to the sp2 hybridized orbital electron wave functions in the
polyacetylene. Although dipolar topological edge states have
been widely studied, there is a lack of studies on the topolog-
ical states that involve higher-order multipoles, or in analogy
to the wave functions in quantum systems with higher-orbital
angular momentum. As such quantum systems are hard to
be realized, photonic crystals or metamaterials may provide
a feasible platform for us to explore them.

Previously, the quadrupole dispersion in three-dimensional
(3D) lattices of plasmonic sphere is shown to be
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intrinsically anisotropic, which defies a simple isotropic
effective medium description without spatial dispersion [44].
The coupling strength between quadrupole resonance and
external electromagnetic waves can be on the same order
of magnitude as the magnetic dipole [44]. In particular,
it is shown that the quadrupolar resonance leads to large
bandwidth in 1D periodic arrays of plasmonic nanoparticles
due to strong coupling [45]. Recently, the multipolar
resonances in 2D lattices have been studied [46–49]. The
coupling between the dipolar modes and the quadrupolar
modes gives rise to interesting physics such as lattice anapole
effect [49]. Furthermore, sensing applications is proposed
due to the higher sensitivity of the diffractive quadrupole
resonance than the dipole resonance [46].

In this work, we study the 1D plasmonic lattices analog
to the SSH model that go beyond the dipole approximation
by including dipole-quadrupole interactions. The electromag-
netic resonances of the lattices by near-field interactions
between the plasmonic nanoparticles are studied analytically
with coupled dipole-quadrupole method. Our results reveal
the contribution of quadrupole moments in the near fields.
The topological phase transition in the bipartite lattices is
demonstrated by calculating the Zak phase. It is found that,
the topological edge states in nontrivial lattices have both
dipolar and quadrupolar nature. Surprisingly, the quadrupole
edge states are not only orthogonal to the dipole edge states,
but also spatially localized at different sublattice. Further-
more, the quadrupolar topological edge states, which coexist
at the same energy with the quadrupolar flat band have shorter
localization length and hence smaller mode volume than the
conventional dipolar edge states. Our findings may be useful
in designing topological systems for confining light robustly
and enhancing light-matter interactions.

This article is organized as follows. In Sec. II, the coupled-
dipole-quadrupole method for a collection of nanoparticles
is formulated. In Sec. III, the geometry and material of the
nanoparticles is discussed. The analytical solutions of 1D
monopartite lattices are presented in Sec. IV. Then the topo-
logical phase transition in the bipartite lattices is demonstrated
in Sec. V. Finally, in Sec. VI, the topological edge states in
nontrivial lattices are studied.

II. COUPLED DIPOLE-QUADRUPOLE METHOD

We formulate the coupled dipole-quadrupole method by
considering a collection of nanoparticles in air as depicted in
Fig. 1. In the following, we work in Cartesian coordinates and
the harmonic time dependence e−iωt is assumed and omitted.
Also, SI units are used throughout this article. We approxi-
mate each nanoparticle at position r as a point electric dipole
moment p(r) = (px, py, pz )T and a point electric quadrupole
moment

Q(r) =

⎛
⎜⎝

Qxx Qxy Qxz

Qyx Qyy Qyz

Qzx Qzy Qzz

⎞
⎟⎠ (1)

at the center of the nanoparticle. The quadrupole moment Q
is traceless tr(Q) = 0 and symmetric Q = QT , such that only
five components, Qxx, Qxy, Qxz, Qyy, and Qyz are independent.

FIG. 1. Illustration of a collection of plasmonic nanoparticles on
a 1D lattice. The unit cell is indicated by the dashed box. Each sphere
is approximated as a point dipole moment and a point quadrupole
moment. The electric equipotentials of the dipole moment px and
the quadrupole moment Qxx for an nanoparticle are illustrated as blue
and red surfaces, respectively, which correspond to the longitudinal
modes.

The induced dipole moment at r is given by

p(r) = αp(ω)E(r), (2)

and the induced quadrupole moment at r is given by [44,45]

Q(r) = αQ(ω)

(∇E(r) + E(r)∇
2

)
, (3)

where αp(ω) is the dipole polarizability and αQ(ω) is the
quadrupole polarizability of the nanoparticles and we have

(∇E + E∇ )i j = ∂Ej

∂i
+ ∂Ei

∂ j
. (4)

The electric field at r from a point dipole source at r′ is given
by [50]

E p(r) = k2
0

ε0
Gp(r, r′)p(r′), (5)

where k0 = ω/c is the wave number in the background
medium and ε0 is the permittivity. The 3D Green’s tensor for
a point dipole is given by [46,48,49]

Gp(r, r′) = eik0R

4πR

[(
− 1

(k0R)2
+ i

1

k0R
+ 1

)
I

+
(

3

(k0R)2
− i

3

k0R
− 1

)
n̂ ⊗ n̂

]
, (6)

where I is the second-order identity tensor and we define
R(r, r′) := r − r′ and n̂(r, r′) := (r − r′)/|r − r′|. The com-
ponents of Gp can be represented by Gp

i j , where i and j are
Cartesian coordinates x, y, and z. Gp is symmetric such that
Gp = (Gp)T . On the other hand, the electric field at r from a
point quadrupole source at r′ is given by

EQ(r) = k2
0

ε0
GQ(r, r′)Q(r′)n̂(r, r′), (7)

and the 3D Green’s tensor for a point quadrupole is given by
[46,48,49]

GQ(r, r′) = eik0R

4πR2

[(
− 1

(k0R)2
+ i

1

k0R
+ 1

2
− i

k0R

6

)
I

+
(

5

2(k0R)2
− i

5

2k0R
− 1 + i

k0R

6

)
n̂ ⊗ n̂

]
.

(8)
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Again, the components of GQ can be represented by GQ
i j and

GQ is symmetric leading to GQ = (GQ)T . The superposition
of E p, EQ, and the external excitation field E0 yields the total
electric field at r

E(r) = E0(r) + E p(r) + EQ(r). (9)

Then the coupled dipole-quadrupole equations are given by

p(r) = αp

(
E0(r) +

∑
r′ �=r

k2
0

ε0
Gp(r, r′)p(r′)

+
∑
r′ �=r

k2
0

ε0
GQ(r, r′)Q(r′)n̂(r, r′)

)
, (10a)

Q(r) = αQ

2
(∇E0(r) + E0(r)∇ ) + αQ

2

k2
0

ε0

∑
r′ �=r

[∇(Gp(r, r′)p(r′))

+(Gp(r, r′)p(r′))∇]

+ αQ

2

k2
0

ε0

∑
r′ �=r

[∇(GQ(r, r′)Q(r′)n̂(r, r′))

+ (GQ(r, r′)Q(r′)n̂(r, r′))∇]. (10b)

By expanding and rearranging terms, we transform
Eq. (10) to a system of linear equations [46]. For a collec-
tion of N � 1 nanoparticles with positions at rn with n =
0, 1, . . . , N − 1, we define the state vector for each nanopar-
ticle as

X n = (px, py, pz, Qxx, Qxy, Qxz, Qyy, Qyz )T . (11)

Finally, we have

(A−1(ω) − �(ω))X = F, (12)

where

X =

⎛
⎜⎜⎝

X 0

X 1
...

X N−1

⎞
⎟⎟⎠, (13)

is the state vector, A(ω) is the polarizability matrix, �(ω) is
the interaction matrix, and F is the external excitation field
vector.

A. Infinite periodic lattices

For infinite periodic lattices with position vector R, the
translational symmetry leads to

p(r + R) = eik·R p(r), (14a)

Q(r + R) = eik·RQ(r), (14b)

where k is the Bloch wave vector. Also, the dipolar and
quadrupolar Green’s tensors follow

Gp(r, r + R) = Gp(0, R), (15a)

GQ(r, r + R) = GQ(0, R). (15b)

Then Eq. (10) becomes

p(r) = αp

(
E0(r) +

∑
R �=0

k2
0

ε0
Gp(0, R)eik·R p(r)

+
∑
R �=0

k2
0

ε0
GQ(0, R)eik·RQ(r)n̂(0, R)

)
, (16a)

Q(r) = αQ

2
(∇E0(r) + E0(r)∇ )

+ αQ

2

k2
0

ε0

∑
R �=0

[∇(Gp(0, R)eik·R p(r))

+ (Gp(0, R)eik·R p(r))∇]

+ αQ

2

k2
0

ε0

∑
R �=0

[∇(GQ(0, R)eik·RQ(r)n̂(0, R))

+ (GQ(0, R)eik·RQ(r)n̂(0, R))∇]. (16b)

The 8N equations of Eq. (12) is reduced to 8, and we have

(A−1(ω) − �(k, ω))X = F, (17)

B. Quasielectrostatic limit

We will focus our study in the quasielectrostatic limit
where k0 → 0 such that Eqs. (5) and (7), the electric fields
at r from a point dipole source and a point quadrupole source
at r′, become

lim
k0→0

E p(r) = 1

4πε0

[(
− 1

R3

)
I +

(
3

R3

)
n̂ ⊗ n̂

]
p(r′), (18)

and

lim
k0→0

EQ(r) = 1

4πε0

[(
− 1

R4

)
I+

(
5

2R4

)
n̂ ⊗ n̂

]
Q(r′)n̂(r, r′).

(19)

III. GEOMETRY AND MATERIAL

Strong dipole-quadrupole coupling can be realized in
plasmonic meta-atoms such as H-like nanostructures [51],
T-shaped heterodimers [52], and nanorod dimer [53]. For
simplicity, we consider homogeneous spherical nanoparticles
with radius r. We assume the permittivity of the nanoparticle
is described by the Drude model

ε(ω)

ε0
= 1 − ω2

p

ω(ω + iγ )
, (20)

where ωp is the plasma frequency and γ is the electron scat-
tering rate. The permeability of the nanoparticle is taken to be
the same as the surrounding medium μ = μ0. The scattering
of an electromagnetic plane wave by a homogeneous sphere
can be obtained from the Mie theory. The electric dipole
polarizability

αp = i4πε0
3

2k3
0

a1, (21)
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and the electric quadrupole polarizability [48,49]

αQ = i4πε0
30

k5
0

a2, (22)

give the response of the nanoparticle to an electromagnetic
field, where an are the scattering coefficients given as

an = mψn(mx)ψ ′
n(x) − ψn(x)ψ ′

n(mx)

mψn(mx)ξ ′
n(x) − ξn(x)ψ ′

n(mx)
, (23)

in which ψn and ξn are the Riccati-Bessel functions, x = k0r
is the size parameter, and m = √

ε(ω)/ε0 is the relative re-
fractive index. We consider the power series expansion of the
scattering coefficients to terms of order x6 [54]

a1 = − i2x3

3

m2 − 1

m2 + 2
− i2x5

5

(m2 − 2)(m2 − 1)

(m2 + 2)2

+4x6

9

(
m2 − 1

m2 + 2

)2

+ O(x7), (24)

and

a2 = − ix5

15

m2 − 1

2m2 + 3
+ O(x7). (25)

For sphere small compared with the wavelength (x � 1,
|m|x � 1), we get the approximate expressions by retaining
the first term in each of the expansions. Then we obtain the
electrostatic dipole polarizability

α
p
0 = 4πε0r3 ε(ω) − ε0

ε(ω) + 2ε0
, (26)

and the electrostatic quadrupole polarizability

α
Q
0 = 4πε0r5 ε(ω) − ε0

ε(ω) + 3
2ε0

. (27)

The dipole resonant frequency ω
p
0 and the quadrupole res-

onant frequency ω
Q
0 of the nanoparticle can be found by

solving Re[αp(ωp
0 )−1] = 0 and Re[αQ(ωQ

0 )−1] = 0, respec-
tively. From the electrostatic polarizabilities, we find ω

p
0 =

ωp/
√

3 and ω
Q
0 = ωp

√
2/5. To compare the electrostatic po-

larizability with those from the Mie theory, the normalized
polarizability αp/r3 and αQ/r5 are plotted in Fig. 2. The
resonant frequencies can also be found from the peaks of
Im(αp/r3) and Im(αQ/r5) in Fig. 2(b). We find that the elec-
trostatic approximation introduces a blueshift to the resonant
frequencies.

IV. ANALYTICAL SOLUTIONS OF 1D MONOPARTITE
LATTICES

We consider 1D infinite periodic monopartite lattice of
nanoparticles. The system is depicted in Fig. 1. The unit cell
consist of one nanoparticle with radius r. The position vector
is given by R = nax̂, where a = 3r is the lattice constant and
n is an integer. The spectral properties of the systems are
scale invariance which only depend on r/a and we assume the
nanoparticles have significant quadrupole response. To obtain
the dispersion relations, we consider there is no external exci-
tation field such that F = 0. Then the longitudinal modes are

FIG. 2. Comparison of the electrostatic polarizabilities, α
p
0 and

α
Q
0 , with the polarizabilities from the Mie theory, αp and αQ. (a) Real

part of the normalized polarizability. (b) Imaginary part of the nor-
malized polarizability. The results are calculated with r = 100 nm
and γ = 0.1ωp.

given by[(
(αp)−1 0

0 (αQ)−1

)

− k2
0

ε0

∑
R �=0

eik·R
(

Gp
xx GQ

xxnx
∂Gp

xx
∂x

∂GQ
xxnx

∂x

)](
px(r)

Qxx(r)

)
= 0, (28)

and the transverse modes are given by[(
(αp)−1 0

0 (αQ)−1

)

− k2
0

ε0

∑
R�=0

eik·R
(

Gp
yy GQ

yynx

1
2

∂Gp
yy

∂x
1
2

∂GQ
yynx

∂x

)](
py(r)

Qxy(r)

)
= 0, (29)

where the Bloch wave vector is given by k = kx̂. The trans-
verse modes are degenerated with(

py(r)
Qxy(r)

)
=

(
pz(r)

Qxz(r)

)
. (30)
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In addition, there are localized quadrupole modes(
(αQ)−1 0

0 (αQ)−1

)(
Qyy(r)
Qyz(r)

)
= 0, (31)

which exist only in 1D lattices.
In the quasielectrostatic limit, we take the nearest neighbor

approximation, Eqs. (28) and (29) become(
1

r3

(
1 − 3 ω2

ω2
p

)
− 4

a3 cos(ka) i 3
a4 sin(ka)

−i 12
a4 sin(ka) 1

r5

(
1 − 5

2
ω2

ω2
p

)
+ 12

a5 cos(ka)

)(
px(r)

Qxx(r)

)
= 0,

(32)
and(

1
r3

(
1 − 3 ω2

ω2
p

)
+ 2

a3 cos(ka) −i 2
a4 sin(ka)

i 3
a4 sin(ka) 1

r5

(
1 − 5

2
ω2

ω2
p

)
− 4

a5 cos(ka)

)(
py(r)

Qxy(r)

)
= 0.

(33)
After solving, the dispersion relations for the longitudinal
modes are

ωl,±(k) = ωp

√
fl,b(k) ±

√
f 2
l,b(k) − fl,c(k), (34)

and the dispersion relations for the transverse modes are

ωt,±(k) = ωp

√
ft,b(k) ±

√
f 2
t,b(k) − ft,c(k), (35)

where

fl,b(k) := −1

2

[
−11

15
+ 4

3

( r

a

)3
cos(ka) − 24

5

( r

a

)5
cos(ka)

]
,

(36a)

fl,c(k) := 2

15
− 8

15

( r

a

)3
cos(ka) + 8

5

( r

a

)5
cos(ka)

− 32

5

( r

a

)8
cos2(ka) − 24

5

( r

a

)8
sin2(ka), (36b)

ft,b(k) := −1

2

[
−11

15
− 2

3

( r

a

)3
cos(ka) + 8

5

( r

a

)5
cos(ka)

]
,

(36c)

ft,c(k) := 2

15
+ 4

15

( r

a

)3
cos(ka) − 8

15

( r

a

)5
cos(ka)

− 16

15

( r

a

)8
cos2(ka) − 4

5

( r

a

)8
sin2(ka). (36d)

The eigenmodes of the longitudinal modes read(
px(r)

Qxx(r)

)
= 1√

1 + A2
l,±(k)

(
1

Al,±(k)ei π
2

)
, (37)

and the eigenmodes of the transverse modes read(
py(r)

Qxy(r)

)
= 1√

1 + A2
t,±(k)

(
1

At,±(k)e−i π
2

)
, (38)

FIG. 3. Dispersion relations of 1D infinite monopartite lattice of
nanoparticles. The longitudinal modes ωl,±(k) are plotted in blue
and the transverse modes ωt,±(k) are plotted in red. The localized
quadrupole modes ωQ = ωp

√
2/5 are plotted in green. The analytical

solutions are calculated with γ = 0, while the numerical results with
eigenresponse theory are calculated with γ = 0.001ωp. The peaks of
max(Im (αeig )) represent resonances of the eigenmodes.

where

Al,± := a

3 sin(ka)

[(a

r

)3[
1 − 3

(
fl,b

±
√

f 2
l,b − fl,c

)] − 4 cos(ka)

]
, (39a)

At,± := a

2 sin(ka)

[(a

r

)3[
1 − 3

(
ft,b

±
√

f 2
t,b − ft,c

)] + 2 cos(ka)

]
. (39b)

We see that the dipole moments and the quadrupole moments
have π/2 phase difference in both longitudinal modes and
transverse modes. In longitudinal modes, the dipole moment
px leads the quadrupole moment Qxx, while in transverse
mode, the dipole moment py lags behind the quadrupole
moment Qxy. The localized quadrupole modes of Eq. (31)
give a flat band at the quadrupole resonant frequency of the
nanoparticle

ωQ = ωp

√
2

5
, (40)

which is independent of k with quadrupole moments

Qyy(r) = 1, (41a)

Qyz(r) = 1. (41b)

All the dispersion relations are plotted in Fig. 3.
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The two longitudinal bands with solutions X l,±(k) =
(px,±(k), 0, 0, Qxx,±(k), 0, 0, 0, 0)T give pl,±(k) =
(px,±(k), 0, 0)T and

Ql,±(k) =
⎛
⎝Qxx,±(k) 0 0

0 0 0
0 0 −Qxx,±(k)

⎞
⎠, (42)

whereas the two transverse bands with solutions
X t,±(k) = (0, py,±(k), 0, 0, Qxy,±(k), 0, 0, 0)T give
pt,±(k) = (0, py,±(k), 0)T and

Qt,±(k) =
⎛
⎝ 0 Qxy,±(k) 0

Qxy,±(k) 0 0
0 0 0

⎞
⎠. (43)

At the zone center k = 0, the longitudinal eigenmodes read(
px,−

Qxx,−

)
=

(
1
0

)
, (44a)

(
px,+

Qxx,+

)
=

(
0
1

)
, (44b)

such that the lower longitudinal band is dipole dominated
and the upper longitudinal band is quadrupole dominated.
Similarly, the transverse eigenmodes read(

py,−
Qxy,−

)
=

(
1
0

)
, (45a)

(
py,+

Qxy,+

)
=

(
0
1

)
, (45b)

such that the lower transverse band is dipole dominated and
the upper transverse band is quadrupole dominated. On the
other hand, at the zone boundary k = π/a, the longitudinal
eigenmodes read (

px,−
Qxx,−

)
=

(
0
1

)
, (46a)

(
px,+

Qxx,+

)
=

(
1
0

)
, (46b)

such that the lower longitudinal band is quadrupole dominated
and the upper longitudinal band is dipole dominated. In con-
trast, the transverse eigenmodes remain unchanged with(

py,−
Qxy,−

)
=

(
1
0

)
, (47a)

(
py,+

Qxy,+

)
=

(
0
1

)
. (47b)

The quadrupole bands with solutions XQ =
(0, 0, 0, 0, 0, 0, Qyy, Qyz )T yield pQ = (0, 0, 0)T and

QQ =
⎛
⎝0 0 0

0 Qyy Qyz

0 Qyz −Qyy

⎞
⎠. (48)

FIG. 4. Illustration of a 1D bipartite lattice. The unit cell is in-
dicated by the dashed box. The lattice constant is given by a and
the distance between nanoparticle A and nanoparticle B is given by
b = (1 − δ)a/2.

We see that X l,±(k), X t,±(k), and X Q are orthogonal to each
other.

Previous works on plasmonic nanoparticles in 1D lat-
tices are limited to either dipole-dipole interactions [55]
or quadrupole-quadrupole interactions [45] such that band
structures with only pure dipolar modes or pure quadrupo-
lar modes are studied. Our results extend those works
by including all dipole-dipole, quadrupole–quadrupole, and
dipole-quadrupole interactions, which cover all the bands
presented in previous works and in addition with an extra
quadrupolar flat band. Besides dipole moments, this also re-
veal the contribution of quadrupole moments to the near-field
interactions.

V. INFINITE BIPARTITE LATTICE

We now limit our scope in the longitudinal modes and the
localized quadrupole modes of a bipartite model as depicted in
Fig. 4. The unit cell consists of two nanoparticles, labeled as A
and B. The displacement from nanoparticle A to nanoparticle
B is given by b = bx̂, with

b = a

2
(1 − δ), (49)

where δ is a dimensionless parameter. For δ = 0, the nanopar-
ticles are in equidistance as depicted in Fig. 1, and its
band structure given in Fig. 3. For any δ �= 0, the lattices
are dimerized. For the longitudinal modes, the state vectors
of nanoparticles A and nanoparticles B are given by X A =
(pA,x, QA,xx )T and X B = (pB,x, QB,xx )T , respectively. The po-
larizabilities of nanoparticles A and nanoparticles B are given
by αA = diag(αp

A, α
Q
A ) and αB = diag(αp

B, α
Q
B ), respectively.

The coupled dipole-quadrupole equations for the bipartite
model are then formulated as

(
α−1

A 0
0 α−1

B

)(
X A

X B

)

=
∑
R�=0

eik·R
(

�AA(0, R) �AB(0, R + b)
�BA(0, R − b) �BB(0, R)

)(
X A

X B

)
.

(50)
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FIG. 5. Band structure of 1D infinite bipartite lattice of nanoparticles with (a) δ = 0 and (b) δ = 0.2. The peaks of max(Im (αeig )) represent
resonances of the eigenmodes. Only longitudinal modes are shown. The Zak phase θ for the bands with δ < 0 (δ > 0) are labeled with
corresponding band index n. The results are calculated with γ = 0.001ωp.

In the quasielectrostatic limit with nearest-neighbor approximation, we have explicitly,

1

4πε0

⎛
⎜⎜⎜⎝

α
p
A 0 − 2

b3 − 2
(a−b)3 e−ika 3

2b4 − 3
2(a−b)4 e−ika

0 α
Q
A − 6

b4 + 6
(a−b)4 e−ika 6

b5 + 6
(a−b)5 e−ika

− 2
b3 − 2

(a−b)3 eika − 3
2b4 + 3

2(a−b)4 eika α
p
B 0

6
b4 − 6

(a−b)4 eika 6
b5 + 6

(a−b)5 eika 0 α
Q
B

⎞
⎟⎟⎟⎠

⎛
⎜⎝

pA,x

QA,xx

pB,x

QB,xx

⎞
⎟⎠ = 0. (51)

In addition, the localized quadrupole modes are again given
by Eq. (31).

Instead of solving Eq. (51) directly, we use an eigenre-
sponse theory [56–59] to study the spectral response of the
system, which is based on spectral decomposition and has
been extensively used for studying plasmonic [15,60] and
gyromagnetic lattices [21]. In the eigenresponse theory, we
consider the eigenvalue problem

M(k, ω)X i = λi(k, ω)X i, (52)

where we define

M(k, ω) := A(ω) − �(k), (53)

and λi(k, ω) is the eigenvalue corresponding to the eigenmode
X i. The eigenpolarizability

αeig(k, ω) := 1

λi(k, ω)
, (54)

can be interpreted as the response function of the correspond-
ing eigenmode for an external excitation field and the peaks
of Im(αeig) represent resonances. We solve Eqs. (32) and
(33) again with eigenresponse theory numerically to show the
validity. The results are shown in the colormap of Fig. 3, in
which the peaks of max(Im(αeig)) define the resonances of
the eigenmodes. We see that the numerical results agree with
the analytical solutions.

For the bipartite model described by Eq. (51), we con-
sider three cases with different dimerization parameter, δ = 0
and δ = ±0.2. For δ = 0, the system is the same as the one
discussed in Sec. IV and the corresponding band structure
is shown in Fig. 5(a). Apart from the quadrupolar flat band,
four bands are obtained for the longitudinal modes due to the
band folding, and they are physically the same as those in
Fig. 3. There is a band gap between two sets of bands, but
we will soon see that it is topologically trivial. Apart from
that, the system is gapless as there are degeneracies at the
zone boundary k = ±π/a. For δ = ±0.2, this corresponds to
a different choice for the unit cell of the system. Both band
structures are the same as shown in Fig. 5(b). In fact, for
any δ �= 0, as the inversion symmetry of the system is now
reduced, the degeneracies in Fig. 5(a) at the zone boundary
are removed resulting in a gap. We now have five bands that
are fully gapped.

The eigenmodes of the infinite bipartite lattice for δ = 0.2
at the zone center k = 0 and the zone boundary k = π/a are
shown in Figs. 6 and 7, respectively. Also, the eigenmodes
of the infinite bipartite lattice for δ = −0.2 at the zone center
k = 0 and the zone boundary k = π/a are shown in Figs. 8
and 9, respectively. We observe that, apart from Band 4, the
dipole moments and the quadrupole moments within a unit
cell always have different symmetries. This can be explained
by the analytical solution of monopartite lattice in Eqs. (37)
and (38), where there is a π/2 phase difference in the dipole

023233-7
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FIG. 6. The longitudinal eigenmodes of the 1D infinite periodic bipartite lattice of nanoparticles with δ = 0.2 at the Brillouin zone center
k = 0 corresponding to the band structures in Fig. 5(b). 20 unit cells are shown.

and quadrupole moments. At the zone center k = 0, for both
δ = ±0.2, the dipole moments are in-phase in Band 1 and
Band 3, and are antiphase in Band 2 and Band 5, while the
quadrupole moments are in-phase in Band 2 and Band 5, and
are anti-phase in Band 1 and Band 3. At the zone boundary
k = π/a, the eigenmodes behave in the same way for δ = 0.2.
In contrast, for δ = −0.2, the dipole moments are in-phase in
Band 2 and Band 5, and are antiphase in Band 1 and Band
3, while the quadrupole moments are in-phase in Band 1 and

Band 3, and are antiphase in Band 2 and Band 5. In both cases,
the quadrupole components Qyy,yz are nonzero only in Band 4,
and they are in-phase at k = 0 and are anti-phase at k = π/a.
Furthermore, we observe that Band 1 and Band 2 are dipole
dominated such that the dipole moments have higher energy,
while Band 3 and Band 5 are quadrupole dominated such that
the quadrupole moments have higher energy. It is because at
high frequency, the oscillation of higher-order multipoles is
favored.

FIG. 7. The longitudinal eigenmodes of the 1D infinite periodic bipartite lattice of nanoparticles with δ = 0.2 at the Brillouin zone
boundary k = π/a corresponding to the band structures in Fig. 5(b). 20 unit cells are shown.
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FIG. 8. The longitudinal eigenmodes of the 1D infinite periodic bipartite lattice of nanoparticles with δ = −0.2 at the Brillouin zone center
k = 0 corresponding to the band structures in Fig. 5(b). 20 unit cells are shown.

A. Topological phase transitions

We now classify the topology of the bands in Fig. 5(b). The
topological invariant for 1D system is given by the Zak phase
[61], it is defined as

θn =
∮

BZ
〈X n|i∂kX n〉 , (55)

where n is the band index and 〈X n|i∂kX n〉 is also known as
the Berry connection. The Zak phase for system with inver-
sion symmetry is a Z2 invariant and quantized as θ = qπ

mod (2π ) with integer q. We calculate the Zak phase for each
bands numerically by discretizing the first Brillouin zone with

k = 2π/Na, where N is the number of unit cells. Then the
Zak phase can be calculated using the Wilson loop approach
[2,22]

θn = − arg

(
k−
k∏

k

〈X n,k|X n,k+
k〉
‖ 〈X n,k|X n,k+
k〉 ‖

)
. (56)

FIG. 9. The longitudinal eigenmodes of the 1D infinite periodic bipartite lattice of nanoparticles with δ = −0.2 at the Brillouin zone
boundary k = π/a corresponding to the band structures in Fig. 5(b). 20 unit cells are shown.
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FIG. 10. Phase difference 
θk between the states X n,k and X n,k+
k for the bands correspond to the band structure in Fig. 5(b). The results
are calculated from k = −π/a to k = π/a − 
k with N = 1000.

It can also be expressed as

θn =
k−
k∑

k


θn,k, (57)

where 
θn,k is the phase difference between the states X n,k

and X n,k+
k . In the continuum limit, N → ∞ and 
k → 0,
then Eq. (57) recovers Eq. (55).

Since the solution of the quadrupolar flat band is indepen-
dent of k, Band 4 remains topologically trivial for all δ with
θ = 0. We show the phase difference 
θn,k for each of the
other bands in Fig. 10. The resulting Zak phases θ for all
the bands are labeled in Fig. 5(b). We see that, for δ = 0.2,
all bands have θ = 0, implying the system is topologically
trivial. On the other hand, for δ = −0.2, we see while Band
1 to 3 have θ = −π , are topologically nontrivial, Band 5
remains trivial with θ = 0. We observe that all nonzero phase
differences happens at either the zone center k = 0 or the
zone boundary k = ±π/a. In addition, the Zak phases are
consistent with the field symmetry consideration [10]. It is
known that the field symmetries at the Brillouin zone center
and boundary are the same when θ = 0 but reversed when
θ = π . Following the discussions in Sec. V, for the bipar-
tite lattice with δ = 0.2, we find from Figs. 6 and 7 that
the dipolar and quadrupolar eigenmodes for all bands have
the same symmetries at the zone center k = 0 and the zone
boundary k = ±π/a, verifying θ = 0. On the other hand, for
the bipartite lattice with δ = −0.2, we find from Fig. 8 and
Fig. 9 that their eigenmode symmetries are different, giving
θ = π .

From the bulk-boundary correspondence, the existence of
topological edge states depends on the summations of Zak
phases below the gap [10]. If two systems with different
summation of Zak phases below the nth gap are connected, it
is expected that there is an edge state localized at the interface
in the nth gap. Then the band gap between Band 1 and Band
2 is topological. Although for δ = −0.2, Band 5 have trivial

Zak phase θ = 0, the band gap between Band 3 and Band 5
is also topological, while the gap between Band 2 and Band
3 is trivial. The topological phase diagram of a 1D bipartite
lattice is shown in Fig. 11. The system is topologically trivial
for δ > 0 and is topologically nontrivial for δ < 0. At δ = 0,
the system undergoes topological phase transition.

VI. TOPOLOGICAL EDGE STATES

To demonstrate the topological edge states, we consider
the finite bipartite lattice model. The finite lattice is composed
of left and right parts with different unit cells. The system is

FIG. 11. Topological phase diagram of a 1D bipartite lattice.
The system is topologically trivial for δ > 0 and is topologically
nontrivial for δ < 0. At δ = 0, the system undergoes topological
phase transition.

023233-10
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FIG. 12. Illustration of the 1D topological plasmonic lattices.
The finite lattice composed of a left and a right part with different
unit cells. The unit cells are indicated by the dashed boxes. The
lattice constant is given by a. The distance between nanoparticle A
and nanoparticle B, in the left and the right part of the lattice, is given
by bL = (1 − δL )a/2 and bR = (1 − δR )a/2, respectively.

depicted in Fig. 12. We assume there is even N unit cells and
they are indexed by the integer n = −N/2, . . . , 0, . . . , N/2 −
1. Therefore n < 0 corresponds to the left part and n � 0
corresponds to the right part of the lattice. The displacement
from the nanoparticle A to nanoparticle B in the nth unit cell
is given by bn = bnx̂, where

bn =
{

bL if n < 0,

bR if n � 0,
(58)

with

bL = a

2
(1 − δL ), (59a)

bR = a

2
(1 − δR). (59b)

In the nth unit cell, the state vector is X n =
(pA,x, QA,xx, pB,x, QB,xx )T and the polarizability is

An = diag(αp
A, α

Q
A , α

p
B, α

Q
B ). The interaction matrix can

be constructed similar to that in Eq. (50). Generally, we have

�i j =
{

0 if i = j,
� if i �= j,

(60)

and after taking the nearest-neighbor approximation, only the
terms next to the diagonal remain. Then for the finite lattices,
we have the eigenvalue problem

M(ω)X i = λi(ω)X i, (61)

where

M(ω) := A(ω) − �, (62)

is a 4N × 4N matrix.
We consider finite lattices with N = 20. First, we consider

a system with δL = 0.2 and δR = 0.2. This topologically triv-
ial system is the finite case of the bipartite model discussed in
Sec. V with δ = 0.2. The band structure for this finite system
is shown in Fig. 13(a) and their eigenmodes are shown in
Fig. 14. We observe that there are four sets of bands and
a quadrupolar flat band, which correspond to the bands in
Fig. 5(b), and their spectral positions are in good agreement.
The eigenmodes carry similar features from the infinite lat-
tice, where the dipole moments and the quadrupole moments
are always in different symmetry. The dipole moments in a
unit cell are in-phase in Band 1 and Band 3, while they are
anti-phase in Band 2 and Band 5. On the other hand, the
quadrupole moments in a unit cell are in-phase in Band 2
and Band 5, and are antiphase in Band 1 and Band 3. In
addition, the boundary conditions of the finite lattice lead to
quantization of wavelengths [55], which are different from the
infinite cases in Fig. 6 and 7.

FIG. 13. Band structures of the 1D finite bipartite lattices. (a) The topologically trivial system with both δL = 0.2 and δR = 0.2. (b) The
topologically nontrivial system with both δL = −0.2 and δR = −0.2. (c) The system with δL = 0.2 and δR = −0.2, where the left and the right
part of the lattice are topologically trivial and nontrivial, respectively. The upper and the lower triangles indicate the high and low frequency
topological edge states, respectively. The circles with band indexes indicate the bands correspond to the infinite lattices shown in Fig. 5, in
particular, the green circles indicates the quadrupolar flat bands. The results are calculated with N = 20 and γ = 0.01ωp.
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FIG. 14. The eigenmodes corresponding to the band structures in Fig. 13(a). (a)–(c), (e) The bulk eigenmodes at the band edges of the
trivial gaps. (d) The localized quadrupole modes.

Next, we consider a topologically nontrivial system with
δL = −0.2 and δR = −0.2. Again, this is the finite case of
the bipartite model discussed in Sec. V with δ = −0.2. The
band structure for this finite system is shown in Fig. 13(b) and
their eigenmodes are shown in Fig. 15. Similar to the trivial
system, there are four sets of bands and a quadrupolar flat
band, which correspond to the bands in Fig. 5(b). However,
in contrast to the trivial case, there exist topological edge
states at the non-trivial band gaps which we have identified in
Sec. V. The bulk eigenmodes at the band edge of the nontrivial

gap are shown in Figs. 15(a), 15(d), 15(e), and 15(h). The
topological edge states within the nontrivial gaps are shown
in Figs. 15(b), 15(c), 15(f), and 15(g). The topological edge
states are degenerated and localized at the end of the lattice
exponentially. We found that, the topological edge states have
both dipolar and quadrupolar nature. The topological edge
states carry the same characteristics as the bulk eigenmodes,
where the dipole moments and the quadrupole moments are
spatially localized at different sublattices. This is inherited
from the π/2 phase difference between the dipole moments

FIG. 15. The eigenmodes corresponding to the band structures in Fig. 13(b). (a), (d), (e), (h) The bulk eigenmodes at the band edges of the
nontrivial gaps. (b), (c) The coupled dipolar topological edge states. (f), (g) The uncoupled quadrupolar topological edge states.
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FIG. 16. The eigenmodes corresponding to the band structures in Fig. 13(c). (a), (d), (e), (h) The bulk eigenmodes at the band edges of the
nontrivial gaps. (b), (c) The dipolar topological edge states. (f), (g) The quadrupolar topological edge states.

and the quadrupole moments in infinite lattices as discussed
in Sec. IV.

The dipolar topological edge states in Figs. 15(b) and 15(c)
are odd and even superpositions of states localized exponen-
tially on the left and right edge. This is the result of the
exponentially small overlap between the left and the right
edge states, which induces a small energy splitting, where the
spectral positions of the topological edges states are almost at
the resonant frequency of a single nanoparticle ω

p
0 = ωp/

√
3.

On the other hand, the quadrupolar topological edge states

shown in Figs. 15(f) and 15(g) are uncoupled. This suggests
that the high frequency quadrupolar topological edge states
have shorter localization lengths and hence different mode
volume, when comparing to the low frequency dipolar ones.

We also consider another configuration with δL = 0.2 and
δR = −0.2, where the left part of the lattice is topologically
trivial and the right part is nontrivial. The band structure
is shown in Fig. 13(c) and their eigenmodes are shown in
Fig. 16. Again there are topological edge states exist at the
nontrivial band gaps. The bulk eigenmodes at the band edge

FIG. 17. The norm of topological edge states in log scale. The localization length ξ is proportional to 1/|m|, where m is the slope of the
linear part of the envelopes. The high frequency quadrupolar topological edge states have a shorter localization length than the low frequency
dipolar ones. The results are calculated with N = 40 and γ = 0.01ωp.
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of the non-trivial gap are shown in Fig. 16(a), 16(d), 16(e),
and 16(h). The topological edge states within the nontrivial
gaps are shown in Fig. 16(b), 16(c), 16(f), and 16(g), with the
dipolar ones given in Figs. 16(b) and 16(c), and the quadripo-
lar ones given in Figs. 16(f) and 16(g). Both topological edge
states are degenerated with one solution localized at the center
and another localized at the right end, which are the positions
where mismatch between the band topologies occurred.

In both Figs. 13(b) and 13(c), the low frequency topolog-
ical edge states appear at the dipolar resonant frequency of
the nanoparticles ω

p
0 = ωp/

√
3, while the high frequency ones

appear at the quadrupolar resonant frequency of the nanopar-
ticles ω

Q
0 = ωp

√
2/5. This is a consequence of the chiral

symmetry, where the spectral positions of the topological edge
states are at the zero-energy states [22]. As long as only
nearest neighbor interactions are included in the calculations,
chiral symmetry is present [16]. As a result, the quadrupolar
topological edge states always coexist at the same energy with
the quadrupolar flat band in 1D lattices.

To verify the localization lengths of the topological edge
states, we consider finite lattices with N = 40. In particular,
for the system with δL = −0.2 and δR = −0.2, the topological
edge states localized at the left end are chosen to study, while
for the system with δL = 0.2 and δR = −0.2, the ones that lo-
calized at the center are chosen. The norm of these topological
edge states, given by ‖px‖ = √

p∗
x px and ‖Qxx‖ = √

Q∗
xxQxx,

are plotted in log scale in Fig. 17. In the SSH model, the
localization length ξ of the topological edge state depends
on the strength of the inter- and intracell interactions and it
can be obtained from ξ = 1/|m|, where m is the slope of the
envelope [22,62]. In Fig. 17(a), by fitting the linear part of the
envelope, the localization length for the low frequency dipolar
edge state is found to be ξ = 1.628, while that for the high
frequency quadrupolar edge state is ξ = 0.915, which is only
56.199% of the dipolar one. Similarly, in Fig. 17(b), the local-
ization lengths for both n < 0 and n > 0 are approximately
the same, with ξ ≈ 1.618 for the low frequency dipolar edge
state and ξ ≈ 0.898 for the high frequency quadrupolar edge

state, which is only 55.509% of the dipolar one. The dipole-
quadrupole interactions lead to a high frequency quadrupolar
edge states with smaller mode volume when comparing to
the low frequency dipolar one. Hence, topological edge states
arising from multipolar interactions provides an alternative
way to confine light with small mode volume while at the
same time are topologically protected.

VII. CONCLUSION

We studied the topological photonic states in 1D lattices
analog to the SSH model with coupled dipole-quadrupole
method. Our work extended previous works on plasmonic
nanoparticles in 1D lattices by including all the dipole-dipole,
quadrupole-quadrupole, and dipole-quadrupole interactions.
Our results reveal the contribution of quadrupole moments to
the near-field interactions and the band topology. The topolog-
ical edge states are found to have both dipolar and quadripolar
nature. Due to the π/2 phase difference between the dipole
moments and the quadrupole moments, the quadrupolar edge
states are not only orthogonal to the dipolar edge states, but
also spatially localized at different sublattices. The quadrupo-
lar topological edge states, which coexist at the same energy
with the quadrupolar flat band have shorter localization length
and hence smaller mode volume than the conventional dipo-
lar edge states. The findings deepen our understanding in
topological systems that involve higher-order multipoles, or
in analogy to the wave functions in quantum systems with
higher-orbital angular momentum, and may be useful in de-
signing topological systems for confining light robustly and
enhancing light-matter interactions.
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