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Superconductivity in monolayer FeSe enhanced by quantum geometry
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We formulate the superfluid weight in unconventional superconductors with k-dependent Cooper pair po-
tentials based on the geometric properties of Bloch electrons. We apply the formula to a model of monolayer
FeSe obtained by first-principles calculation. Our numerical calculations point to a significant enhancement of
the Berezinskii-Kosterlitz-Thouless transition temperature due to the geometric contribution to the superfluid
weight, which is not included in the Fermi liquid theory. The k dependence of the gap function also stabilizes
the superconducting state. Our results reveal that the geometric properties of Bloch electrons play an essential
role in superconducting materials and pave the way for clarifying hidden aspects of superconductivity from the
viewpoint of quantum geometry.
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I. INTRODUCTION

Monolayer FeSe grown on SrTiO3 has been reported to
experience a superconducting transition at the transition tem-
perature Tc higher than 65 K [1–3] in stark contrast to
Tc ∼ 8 K of the bulk FeSe [4]. Such a significant enhancement
of transition temperature has attracted much attention, and it
is pointed out that the film thickness [5] and the effect of
the substrate [6–9] are essential in the enhancement of the
superconducting mean-field transition temperature. However,
this high-temperature superconductivity in monolayer FeSe
remains to be an unclarified issue as follows.

In two-dimensional superconductors, the resistive tran-
sition is determined by the Berezinskii-Kosterlitz-Thouless
(BKT) transition [10,11], where the BKT transition temper-
ature TBKT is given by the superfluid weight Ds(T ) according
to the formula Ds(TBKT) = 8TBKT/π [12–14]. Considering
that superconductivity emerges with the BKT transition, the
study of the BKT transition and the superfluid weight is
another key issue, different from studies of the mean-field
transition temperature, to understanding the high-temperature
superconductivity in monolayer FeSe. It should also be noted
that the superfluid weight is essential for the Meissner effect
and is related to the magnetic penetration depth by λ(T ) =
1/

√
4πDs(T ). Considering the temperature dependence of

Ds(T ) and λ(T ) is closely related to the gap structure , the
superfluid weight is a useful probe of the pairing symme-
try [15–19]. Thus, the evaluation of the superfluid weight is
essential to explore the nature of high-temperature supercon-
ductivity in monolayer FeSe.
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In the Fermi-liquid theory, the superfluid weight has been
believed to be determined by the density of electrons n∗
and the effective mass m∗, i.e., n∗/m∗ [20–22]. However,
recent studies have revealed that the geometric properties
of Bloch electrons can contribute to the superfluid weight
in multiband superconductors [23,24]. When the bands are
sufficiently apart from each other, this contribution reduces
to the quantum metric of the Bloch wave function [24].

The quantum metric is closely related to the Berry cur-
vature through the quantum geometric tensor [25,26]. The
imaginary part of the quantum geometric tensor is widely
known as the Berry curvature [27], which appears in various
Hall responses [28–30]. The real part is the quantum metric,
which also appears in physical properties of solids [31–37].
The quantum metric can be divided into the contribution
from each band, which is specially called the band-resolved
quantum metric. The band-resolved quantum metric has been
revealed to be an essential ingredient of nonlinear optical re-
sponses [38,39]. The quantum geometry is a purely interband
effect of Bloch electrons, which comes from mixing degrees
of freedom, such as the orbitals.

The importance of the geometric contribution to the su-
perfluid weight was discussed for the first time in the Lieb
optical lattice of cold atoms [40,41], where the flat band
has been realized [42,43]. In the flat-band limit, the con-
ventional contribution disappears because m∗ → ∞ leads to
n∗/m∗ → 0; this implies the dominant geometric contri-
bution. Furthermore, in superconducting twisted bilayer
graphene [44], in which the moiré flat-band appears [45,46],
the geometric contribution is shown to be dominant [47–50].
Thus, an essential role of the geometric properties of Bloch
electrons has been recognized for the superconductivity in
artificial quantum systems.

In this paper, we show that the monolayer FeSe on SrTiO3

with high transition temperature manifests the geometric
contribution to the superfluid weight without artificial elec-
tronic structure. Because FeSe is a multiband superconductor
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and the mother compound of a topological superconduc-
tor candidate FeSe1−xTex [51–55], the geometric properties
of Bloch electrons should be nontrivial and may cause in-
triguing phenomena. Furthermore, FeSe has a small carrier
density n∗, and thus in the Bardeen-Cooper-Schrieffer to
Bose-Einstein-Condensation (BCS-BEC) crossover regime
[56–60]. Therefore, the geometric contribution to the super-
fluid weight is naturally expected to have a significant effect
on the superconducting FeSe. Thus, FeSe may offer a promis-
ing platform to study the geometric effects in nonartificial
superconductors.

II. FORMULATION OF SUPERFLUID WEIGHT

In the previous study based on the BCS theory [24], the
superfluid weight with the k-independent pairing is divided
into two terms: One is the conventional term while the other
is the geometric term. We extend the formulation to describe
unconventional superconductivity. The superfluid weight will
be divided into four terms as will be shown later in Eqs. (4)–
(8).

We start from the Bogoliubov–de Gennes (BdG) Hamilto-
nian, ĤBdG = ∑

k ψ̂
†
k HBdGkψ̂k, with

HBdGk =
(

H0k �k

�†
k −HT

0−k

)
, (1)

where k is the wave vector and ψ̂k is the Nambu spinor writ-
ten by ψ̂k = (ĉ1↑k, · · · , ĉ f ↑k, ĉ†

1↓−k, · · · , ĉ†
f ↓−k)T . Here, ĉ†

iσk
(ĉiσk) is the creation (annihilation) operator, i = 1, 2, · · · f
shows the orbital and sublattice indices, and σ =↑,↓ repre-
sents the spin. We ignore the spin-orbit coupling and assume
spin-singlet superconductivity with iron-based superconduc-
tors in mind. H0k and �k are the matrix representation of the
Fourier transform of hopping integrals and the gap function,
respectively.

The current response of superconductors to the vec-
tor potential Aμ(q, ω) is described by the Meissner kernel
Kμν (q, ω), as jμ(q, ω) = −Kμν (q, ω)Aν (q, ω). The superfluid
weight Ds

μν is defined by its q limit, Ds
μν = limq→0 Kμν (q, 0).

According to the Kubo formula, the superfluid weight is
obtained as

Ds
μν =

∑
kαβ

f (Eαk) − f (Eβk)

Eαk − Eβk

× (〈ψαk| ∂μHpk |ψβk〉 〈ψβk| ∂νHpk |ψαk〉
− 〈ψαk| ∂μHBdGk |ψβk〉 〈ψβk| ∂νHmk |ψαk〉), (2)

where we introduced block-diagonal matrices:

Hp(m)k =
(

H0k 0
0 (−)HT

0−k

)
. (3)

The wave function and the energy eigenvalue of the BdG
Hamiltonian are denoted by HBdGk |ψαk〉 = Eαk |ψαk〉.

To classify the superfluid weight by the geometric proper-
ties of the normal state, we introduce the energy and the Bloch
wave function, i.e., H0k |unk〉 = εnk |unk〉, following Ref. [24].
For simplicity, we assume the time-reversal symmetry, under
which H0k = HT

0−k is satisfied. Using the matrix elements

φ
i↑(↓)
nk of the unitary matrix which diagonalizes the BdG

Hamiltonian, the wave function of the BdG Hamiltonian is
expanded by the normal state Bloch wave function as |ψαk〉 =
(
∑

n φ
α↑
nk |unk〉

∑
n φ

α↓
nk |unk〉)T . By using this relationship,

the superfluid weight for unconventional superconductors is
divided into four parts as follows:

Ds
μν = Dconv

μν + Dgeom
μν + Dmulti

μν + Dgap
μν , (4)

Dconv
μν = 2

∑
nmk

C↑↑↓↓
nnmmk(Jμ

nnkJν
mmk + Jν

nnkJμ

mmk ), (5)

Dgeom
μν = 2

∑
n �=m,l �=sk

C↑↑↓↓
nmlsk (Jμ

nmkJν
lsk + Jν

nmkJμ

lsk ), (6)

Dmulti
μν = 2

∑
nl �=sk

(
C↑↑↓↓

nnlsk (Jμ

nnkJν
lsk + Jν

nnkJμ

lsk )

+C↑↑↓↓
lsnnk (Jμ

lskJν
nnk + Jν

lskJμ

nnk)
)
, (7)

Dgap
μν =

∑
nmlsσk

S
(
C↑↓σσ

nmlsk δ�
μ

nmk + C↓↑σσ

nmlsk δ�
†μ

nmk

)
Jν

lsk, (8)

where S takes −(+) when σ =↑ (↓). Here, Jμ

nmk =
〈unk| ∂μH0k |umk〉, δ�

(†)
nmkμ = 〈unk| ∂μ�

(†)
k |umk〉 and

Cσ1σ2σ3σ4
nmlsk = ∑

αβ

f (Eαk) − f (Eβk)

Eαk − Eβk
φ

ασ1∗
nk φ

βσ2

mk φ
βσ3∗
lk φ

ασ4
sk .(9)

The details of the derivation are shown in Appendix A.
The conventional term Dconv

μν is found in the first term of
Eq. (4). Since Jμ

nnk = ∂μεnk, this term is essentially deter-
mined by the energy dispersion. Only this term is studied in
the Fermi-liquid theory. The second term Dgeom

μν of Eq. (4)
is the interband effect. This term is called the geometric
term, as the interband velocity operator appears in Eq. (6),
Jμ

nmk = (εm − εn) 〈unk|∂μumk〉, which represents the geometric
properties of the Bloch wave function. In the absence of the
interband pairing, the terms with n �= l, m �= s vanish, and
Eq. (6) is represented by the band-resolved quantum metric
(see Appendix A). The third term Dmulti

μν , called the multigap
term, vanishes in the case of band-independent pairing. We
show that this term is negligible in monolayer FeSe later.

The fourth term Dgap
μν of Eq. (4) comes from the k depen-

dence of the gap function and directly reflects the pairing
symmetry. We call this term the gap term. This term has been
neglected in previous studies [48]. However, various pairing
states, such as an extended s-wave [61–72] or nodeless d-
wave state [73–75], have been suggested for monolayer FeSe
[5,76], where k-dependent gap functions are assumed. Fur-
thermore, this term is required to reproduce the conventional
formula, D ∝ n∗/m∗ (see Appendix A).

III. TEN-ORBITAL MODEL

To calculate the superfluid weight of monolayer FeSe, we
construct a realistic ten-orbital tight-binding model for Fe 3d
orbitals. The first-principles electronic structure calculation is
performed using the WIEN2k code [77], and the tight-binding
models based on the maximally localized Wannier functions
[31,78] are constructed by the WANNIER90 code [79]. The
presence of two iron atoms in the unit cell doubles the number
of orbitals as 2 × 5 = 10.
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FIG. 1. Fermi surfaces of the model for monolayer FeSe.
(a) n = 6.1 and (b) 6.06. The holelike Fermi surfaces disappear in
all cases.

We first construct a model of the bulk FeSe. The results
of angle-resolved photoemission spectroscopy are known to
be slightly different from first-principles calculations [80,81].
To reproduce the experimentally observed Fermi surfaces,
we take into account an additional hopping parameter (see
Appendix B).

In monolayer FeSe grown on SrTiO3, the holelike Fermi
surfaces at � point disappear owing to the excess electron
doping [82], which can be reproduced by shifting the chem-
ical potential. In this paper, we consider three values for the
particle number, n = 6.1, 6.08, and 6.06, corresponding to the
excess electron doping n − 6. The electron doping can also
be caused by the K doping [82] and the gate voltage [83,84].
In addition, taking into account the mass enhancement by the
electron correlation [80,85,86], we renormalize the normal-
state Hamiltonian as zĤ0 instead of the bare one Ĥ0, with
choosing z = 1/5 or 1/8. It is known that the conventional
term of the superfluid weight is renormalized by z while the
geometric terms are hardly affected. Therefore, the renormal-
ization effect may be essential for the origin of the superfluid
weight. The Fermi surfaces of the models are shown in Fig. 1.

IV. SUPERFLUID WEIGHT IN MONOLAYER FESE

In the ten-orbital tight-binding model, the gap functions
may be orbital and k dependent, making the multigap and
gap terms finite. To determine the gap function and the mean-
field transition temperature Tc, we solve the gap equation
�i jk = ∑

k′ Vi jkk′ 〈ĉ j↓−k′ ĉi↑k′ 〉 self-consistently, with Vi jkk′ the
pairing interaction. We examine some candidates of the pair-
ing state, namely, the s++-wave [61,67,71,72] and incipient
s±-wave [62,68–70] states [63–66]. Qualitatively, the same
results are obtained for the d-wave state [73–75] as shown
in Appendix C. Furthermore, we study the k-independent
gap function as well for comparison. For all the cases, we
determine the attractive interaction Vi jkk′ so as to reproduce
the mean-field transition temperature Tc ≈ 83 K because it is
considered to be among 65 K to 83 K in monolayer FeSe
on SrTiO3 [1–3]. Thus, strong coupling effects, such as an
increased electron-phonon coupling by substrates, are phe-
nomenologically included in the high mean-field transition
temperature. Similar results are obtained for Tc = 65 K as
shown in Appendix D.

FIG. 2. Superfluid weight for k-independent gap functions. The
blue, green, and red lines show the conventional term (Dconv), con-
ventional + geometric term (Dconv + Dgeom), and the total superfluid
weight (Ds), respectively. The red and green lines almost coincide
because Dmulti is negligible. The purple straight line shows 8T/π

and the intersection with the red line determines the BKT transition
temperature. The orange dashed line in panel (a) shows the universal
jump of the superfluid weight at T = TBKT. We adopt the renormal-
ization factor z = 1/5 in (a) n = 6.1, (b) n = 6.08, and (c) n = 6.06,
while z = 1/8 and n = 6.06 in (d).

First, we show the results for the k-independent gap func-
tion, corresponding to the isotropic s-wave superconductivity.
We consider an orbital-independent on-site pairing interac-
tion, Vi jkk′ = V0δi j . The gap term Dgap

μν disappears in this
case. The temperature dependence of the superfluid weight is
shown in Fig. 2. Owing to the fourfold-rotational and mirror
symmetries of the system, Ds

xx = Ds
yy and Ds

xy = 0 are sat-
isfied. Thus, the BKT transition temperature TBKT is given
by the relation Ds

xx(TBKT) = 8TBKT/π , and the intersection
between the purple straight line and the red solid line indicates
the BKT transition temperature. This is also valid for the
k-dependent gap functions discussed below.

For all parameter sets in Fig. 2, we see a significant ge-
ometric contribution to the superfluid weight, whereas the
multigap term is negligible in all the results of this paper.
While the conventional term is suppressed as expected, the
geometric term is enhanced by decreasing the electron num-
ber. This contrasting behavior leads to a particularly sizable
contribution from the geometric term to the superfluid weight
in the low electron-doping region. Accordingly, the geometric
term enhances the BKT transition temperature by approxi-
mately 24% for the case of n = 6.06 and z = 1/8, as shown in
Fig. 2(d). The geometric term is furthermore significant at low
temperatures because the geometric term is higher order in
terms of �/EF, where � is the magnitude of superconducting
gap and EF is the Fermi energy. We see that the geometric
term determines nearly 45% of the superfluid weight at T = 0
in Fig. 2(d). In this parameter set, the superconducting gap on
the Fermi surface is approximately 10 meV, consistent with
angle-resolved photoemission spectroscopy (ARPES) studies
reporting the gap from 8 meV to 20 meV [1–3,82]. These
results reveal that the superfluid weight in realistic monolayer
FeSe is not determined sorely by the conventional term, and
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FIG. 3. k-resolved contribution to the superfluid weight from
(a) the conventional term and (b) the geometric term. The parameters
are n = 6.08, z = 1/5, and T ≈ 2.3 K.

the geometric properties of Bloch wave functions play an
essential role.

To obtain further insights, we show the k-resolved contri-
butions of the conventional and geometric terms in Fig. 3. We
see significant contributions from near the M point in both
terms, as expected from the presence of the Fermi surfaces.
Interestingly, there are also sizable contributions from near the
� point, where the Fermi surface is absent, and it is dominant
in the geometric term. This implies that the hole bands below
the Fermi level have geometrically nontrivial properties and
are essential for enhancing superconductivity in monolayer
FeSe.

Next, we discuss superconducting states of k-dependent
paring. Here, we consider the pairing on the nearest- and
next-nearest-neighbor bonds in addition to the on-site pairing.
The attractive interaction is assumed as Vi jkk′ = V0δi j +
V1(δi, j+5 + δi+5, j ) cos kx/2 cos ky/2 cos k′

x/2 cos k′
y/2 +

V2δi j (cos kx + cos ky)(cos k′
x + cos k′

y), where V1 and V2

represent the inter- and intrasublattice attractive interactions,
respectively. The superconducting state belongs to the
totally symmetric A1g representation irrespective of the
parameters V0, V1, and V2. Figure 4 shows the superfluid
weight for (a) V1 = V2 = 0.2V0 and (b) V1 = V2 = 10V0.
The gap function is nearly k independent in Fig. 4(a),
while it is a highly k-dependent in Fig. 4(b). Thus,
Figs. 4(a) and 4(b) correspond to the s++-wave and
incipient s±-wave pairing states, respectively (see Appendix E
for details).

In all figures, we can see significant geometric contribu-
tions to the superfluid weight as we see in the case of the
k-independent pairing. Therefore, we conclude that the geo-
metric term plays an essential role in the superconductivity

FIG. 4. Superfluid weight for the k-dependent gap functions. We
set z = 1/8 and n = 6.06. The attractive interactions are (a) V1 =
V2 = 0.2V0 and (b) V1 = V2 = 10V0. The lines with different colors
indicate the same quantities as Fig. 2.

of monolayer FeSe regardless of pairing symmetry. This is
also true for the d-wave pairing as shown in Appendix C.
On the other hand, the gap term shows a contrasting behav-
ior between the s++-wave pairing and the incipient s±-wave
pairing. The gap term gives a non-negligible correction in
the incipient s±-wave state, although it is negligible in the
s++ state. The contribution to the superfluid weight by the
gap term is about 8% and cannot be ignored in the low-
temperature regime of Fig. 4(b). Thus, the k-dependence in
the gap function enhances the superfluid weight and BKT
transition temperature through the gap term Dgap, which is
different from the known effects of thermal excitation due to
the anisotropic superconducting gap.

V. CONCLUSION

We formulated the superfluid weight of unconventional
superconductors by taking into account the geometric term
due to the nontrivial structure of Bloch wave functions and the
gap term arising from the k-dependence of the gap function.
Then, applying the formula to the first-principles model, we
found that the geometric properties of Bloch electrons sig-
nificantly enhance the superconductivity in monolayer FeSe.
In particular, the geometric term enhances the BKT transition
temperature by nearly 14 K for a typical parameter set.

This high BKT transition temperature can be observed, for
example, through the universal jump of the superfluid weight.
In our calculations, collecting the data in all figures, we pre-
dict the ratio of the universal jump to the total superfluid
weight as from 47% to 58%, which the experiments can test.
While the enhancement of the BKT transition by interband
scatterings was pointed out [87], the geometric properties are
completely neglected in Ref. [87]. Thus, the quantum geo-
metric origin clarified here has not been uncovered in such
a previous study.

A surprisingly high transition temperature in monolayer
FeSe is realized by two origins. One is the enhancement
of mean-field transition temperature, probably owing to the
excess electron doping or increased electron-phonon coupling
[5–7,82–84]. The other is the enhancement of BKT transition
temperature attributed not only to the conventional Fermi
liquid properties but also to the geometrically nontrivial prop-
erties arising from the multiband structure.

The quantum geometrical enhancement of two-
dimensional superconductivity is attributed to two necessary
conditions: one is suppressing the conventional Fermi liquid
term of superfluid weight and the other is the enhancement
due to the geometric contribution. The intriguing nature of
superconductivity close to the BCS-BEC crossover plays
a central role in these properties of monolayer FeSe [88].
Unlike the previous studies on artificial flat-band systems,
the former condition is satisfied due to the small Fermi
surfaces. The latter is realized by a large �/μ and the
nontrivial band structure near the � point below the Fermi
level. Such geometrical enhancement is a universal property
of monolayer FeSe, independent of the superconducting
symmetry. In conclusion, the monolayer FeSe is an intriguing
platform in which the geometric properties of Bloch electrons
enhance the superconductivity.
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APPENDIX A: DERIVATION OF THE SUPERFLUID
WEIGHT

We derive the superfluid weight for unconventional super-
conductors, including k-dependent Cooper pairs, using the
Kubo formula and the BCS mean-field theory. For simplic-
ity, we consider the time-reversal symmetric superconductors.
First, we derive a formula of the superfluid weight. Then we
divide it into four terms. Finally, we show that the conven-
tional term added to the gap term is reduced to the known
formula n∗/m∗ when �†

k = �k = 1 × �k, while the geomet-
ric term is attributed to the band-resolved quantum metric.

1. Superfluid weight via Kubo formula

We start from a model with an attractive interaction,

Ĥ =
∑

k

∑
i jσ

ĉ†
iσkhi jkĉ jσk +

∑
kk′

∑
i j

ĉ†
i↑kĉ†

j↓−kVi jkk′ ĉ j↓−k′ ĉi↑k′ ,

(A1)

where hi jk is the Fourier transform of the hopping integral
and Vi jkk′ represents an attractive interaction. ĉ†

iσk (ĉiσk) is
the creation (annihilation) operator, and i, σ , and k represent
the orbital and sublattice index, the spin index, and the wave
vector, respectively. We apply the BCS mean-field theory to
the Hamiltonian:

Ĥ =
∑

k

∑
i jσ

ĉ†
iσkhi jkĉ jσk +

∑
k

∑
i j

(�i jkĉ†
i↑kĉ†

j↓−k + c.c.)

−
∑
kk′

Vi jkk′ 〈ĉ†
i↑kĉ†

j↓−k〉 〈ĉ j↓−k′ ĉi↑k′ 〉 . (A2)

Here, the gap function is determined by solving the gap equa-
tion:

�i jk =
∑

k′
Vi jkk′ 〈ĉ j↓−k′ ĉi↑k′ 〉 . (A3)

For the superconductivity, we introduce the Nambu spinor,

ψ̂
†
k = (

ĉ†
↑k, ĉ↓−k

)
, (A4)

ĉ†
σk = (

ĉ†
1σk, · · · , ĉ†

f σk

)
, (A5)

and the BdG Hamiltonian,

HBdGk =
(

H0k �k

�†
k −HT

0−k

)
, (A6)

H0k =

⎛
⎜⎜⎝

h11k h12k · · · h1 f k

h21k h22k · · · h2 f k
...

...
. . .

...

h f 1k h f 2k · · · h f f k

⎞
⎟⎟⎠. (A7)

Here, the dimension f is the total number of the orbital and
sublattice degrees of freedom. In the time-reversal symmetric
case, H0k = HT

0−k is satisfied. We can rewrite the mean-field
Hamiltonian as

Ĥ =
∑

k

ψ̂
†
kHBdGkψ̂k (A8)

by ignoring the constant term. We define the Nambu Green
function as

G(k, τ − τ ′) = 〈Tτ [ψ̂
†
k(τ ) ⊗ ψ̂k(τ ′)]〉 . (A9)

Here, ⊗ represents the tensor product; the matrix elements
for the normal part i, j � f are defined by Gi j (k, τ − τ ′) =
〈Tτ [ĉ†

jk↑(τ )ĉik↑(τ ′)]〉. Tτ represents the time ordering product
for the imaginary time τ .

The superfluid weight, Ds
μν , is defined as the q limit of the

Meissner Kernel, Kμν (q, ω):

Ds
μν = lim

q→0
Kμν (q, 0). (A10)

First, we derive the Meissner kernel, which represents the
current response to the vector potential:

jμ(q, ω) = −Kμν (q, ω)Aν (q, ω). (A11)

Here, jμ and Aν are the current density and the vector poten-
tial, respectively. In the linear response theory, the Meisner
Kernel is obtained as,

Kμν (q, τ − τ ′) = −Kpara
μν (q, τ − τ ′) + Kdia

μν (q, τ − τ ′), (A12)

Kpara
μν (q, τ − τ ′) =

∑
kk′

∑
σσ ′

〈
Tτ

[
ĉ†
σk(τ )∂μH0k+q/2ĉσk+q(τ )ĉ†

σ ′k′ (τ ′)∂μH0k′−q/2ĉσk′−q(τ ′)
]〉
,

(A13)

Kdia
μν (q, τ − τ ′) =

∑
k

∑
σ

〈
Tτ

[
ĉ†
σk(τ )∂μ∂νH0k+q/2ĉσk+q(τ )

]〉
δ(τ − τ ′). (A14)

Kpara
μν is the paramagnetic term, and Kdia

μν is the diamagnetic term. Using the block diagonal Hamiltonian,

Hp(m)k =
(

H0k 0
0 (−)HT

0−k

)
, (A15)
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these terms are written by

Kpara
μν (q, τ − τ ′) =

∑
kk′

〈
Tτ

[
ψ̂

†
k(τ )∂μHpk+q/2ψ̂k+q(τ )ψ̂

†
k′ (τ ′)∂μHpk′−q/2ψ̂k′−q(τ ′)

]〉
, (A16)

Kdia
μν (q, τ − τ ′) =

∑
k

〈
Tτ

[
ψ̂

†
k(τ )∂μ∂νHmk+q/2ψ̂k+q(τ )

]〉
δ(τ − τ ′). (A17)

In the Gorkov approximation in which we ignore the vertex correction, these terms are given by the Green’s function:

Kpara
μν (q, τ − τ ′) = −

∑
k

Tr[∂μHpk+q/2G(k, τ − τ ′)∂νHpk+q/2G(k + q, τ ′ − τ )], (A18)

Kdia
μν (q, τ − τ ′) =

∑
k

Tr[∂μ∂νHmk+q/2G(k, 0)δ(τ − τ ′)]. (A19)

Trace is taken for the orbital, sublattice, and particle-hole degrees of freedom. After the Fourier transform with respect to the
imaginary time, we have

Kpara
μν (q,�) = −

∑
k, ω

Tr[∂μHpk+q/2G(k, ω)∂νHpk+q/2G(k + q, ω − �)], (A20)

Kdia
μν (q,�) =

∑
k, ω

Tr[∂μ∂νHmk+q/2G(k, ω)], (A21)

where ω and � are the Fermionic and Bosonic Matsubara frequencies, respectively. The Nambu Green’s function with frequency
ω is written as

G(k, ω) = 1

iω − HBdGk
. (A22)

Using the eigenvalue equation for the BdG Hamiltonian, HBdGk |ψαk〉 = Eαk |ψαk〉, and taking the limit � = 0, q → 0, we get
the formula of the superfluid weight:

Ds
μν = −Dpara

μν + Ddia
μν , (A23)

Dpara
μν = −

∑
k

∑
αβ

f (Eαk) − f (Eβk)

Eαk − Eβk
〈ψαk| ∂μHpk |ψβk〉 〈ψβk| ∂μHpk |ψαk〉 , (A24)

Ddia
μν =

∑
k

∑
α

f (Eαk) 〈ψαk| ∂μ∂νHmk |ψαk〉 . (A25)

Equation (A25) for the diamagnetic term can be rewritten as

Ddia
μν = −

∑
k

∑
α

(∂μ f (Eαk) 〈ψαk| ∂νHmk |ψαk〉

+ f (Eαk) 〈∂μψαk| ∂νHmk |ψαk〉 + f (Eαk) 〈ψαk| ∂νHmk |∂μψαk〉),

= −
∑

k

∑
α

(∂μ f (Eαk) 〈ψαk| ∂νHmk |ψαk〉

+ f (Eαk)
∑

β( �=α)

〈∂μψαk|ψβk〉 〈ψβk| ∂νHmk |ψαk〉 + f (Eαk)
∑

β( �=α)

〈ψαk| ∂νHmk |ψβk〉 〈ψβk|∂μψαk〉),

= −
∑

k

∑
αβ

f (Eαk) − f (Eβk)

Eαk − Eβk
〈ψαk| ∂νHmk |ψβk〉 〈ψβk| ∂μHBdGk |ψαk〉 ,

= −
∑

k

∑
αβ

f (Eαk) − f (Eβk)

Eαk − Eβk
〈ψαk| ∂νHmk |ψβk〉 〈ψβk| ∂μHmk |ψαk〉

−
∑

k

∑
αβ

f (Eαk) − f (Eβk)

Eαk − Eβk
〈ψαk| ∂νHmk |ψβk〉 〈ψβk| ∂μ

(
0 �k

�†
k 0

)
|ψαk〉 . (A26)
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Here, we use the relationship, 〈∂μψαk|ψαk〉 + 〈ψαk|∂μψαk〉 =
0 since 〈ψαk|ψαk〉 = 1.

2. Superfluid weight based on geometric properties
of Bloch electrons

Next, we divide the superfluid weight into four terms
based on geometric properties of Bloch electrons. First,
we rewrite |ψαk〉 using the normal state Bloch wave func-
tion. For this purpose, we use the eigenvalue equation of
the normal Hamiltonian H0k |unk〉 = εnk |unk〉. The unitary
matrix which can diagonalize the normal Hamiltonian is
written as

Uk = (|u1k〉 , |u2k〉 , · · · , |u f k〉). (A27)

Using this unitary matrix, we get the BdG Hamiltonian of the
band representation:(

U †
k 0

0 U †
k

)
HBdGk

(
Uk 0
0 Uk

)
=

(
U †

k H0kUk U †
k �kUk

U †
k �†

kUk −U †
k H0kUk

)
.

(A28)

We consider the unitary matrix which diagonalizes Eq. (A28),

�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
1↑
1k φ

2↑
1k · · · φ

M↑
1k

φ
1↑
2k φ

2↑
2k · · · φ

M↑
2k

...
...

. . .
...

φ
1↑
f k φ

2↑
f k · · · φ

M↑
f k

φ
1↓
1k φ

2↓
1k · · · φ

M↓
1k

φ
1↓
2k φ

2↓
2k · · · φ

M↓
2k

...
...

. . .
...

φ
1↓
f k φ

2↓
f k · · · φ

M↓
f k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A29)

with M = 2 × f . Accordingly, we represent |ψαk〉 with |unk〉:

|ψαk〉 =
(∑

n φ
α↑
nk |unk〉∑

n φ
α↓
nk |unk〉

)
. (A30)

Inserting Eq. (A30) to Eq. (A24) and the first term of
Eq. (A26), we get

2
∑

k

∑
αβ

∑
nmls

f (Eαk) − f (Eβk)

Eαk − Eβk
φ

∗α↑
nk φ

β↑
mkφ

∗β↓
lk φ

α↓
sk (〈unk| ∂μH0k |umk〉 〈ulk| ∂νH0k |usk〉 + (μ ↔ ν)). (A31)

From the perspective of the interband and intraband contributions, this is divided into three terms:

Dconv
μν = 2

∑
nmk

C↑↑↓↓
nnmmk(∂μεnk∂νεmk + (μ ↔ ν)), (A32)

Dgeom
μν = 2

∑
n �=m,l �=s,k

C↑↑↓↓
nmlsk (εnk − εmk)(εlk − εsk)(〈∂μunk|umk〉 〈ulk|∂νusk〉 + (μ ↔ ν)), (A33)

Dmulti
μν = 2

∑
n,l �=s,k

(
C↑↑↓↓

nnlsk ∂μεnk(εlk − εsk) 〈∂νulk|usk〉 + C↑↑↓↓
lsnnk ∂νεnk(εlk − εsk) 〈∂μulk|usk〉 + (μ ↔ ν)

)
. (A34)

Here, we define

Cσ1σ2σ3σ4
nmlsk =

∑
αβ

f (Eαk) − f (Eβk)

Eαk − Eβk
φ

ασ1∗
nk φ

βσ2

mk φ
βσ3∗
lk φ

ασ4
sk .

(A35)

Equation (A32) shows the conventional term Dconv
μν , which

arises from the intraband effect. On the other hand, Eq. (A33)
denotes the geometric term Dgeom

μν , which is purely the in-
terband effect. It should be noticed that Dconv

μν is determined
by the band dispersion, while Dgeom

μν reflects the geometric
properties of the Bloch wave functions. In addition to these
terms, we obtain the multigap term, Dmulti

μν in Eq. (A34), which
comes from the interband pairing effect. In the absence of the
interband pairing, this term vanishes. In previous studies, this
term has been included in the geometric term [48]. However,
from the perspective of the interband and intraband effects, we
distinguish this term from the geometric term. Equation (A34)
for the multigap term reveals that both intraband and interband
effects are needed.

Finally, inserting Eq. (A30) to the second term of
Eq. (A26), we get the gap term,

Dgap
μν =

∑
nmlsσk

S(C↑↓σσ

nmlsk 〈unk| ∂μ�k |umk〉

+ C↓↑σσ

nmlsk 〈unk| ∂μ�†
k |umk〉) 〈ulk| ∂νH0k |usk〉 , (A36)

which comes from the k dependence of the gap function.
S takes −(+) when σ =↑ (↓). Thus, we can divide the su-
perfluid weight into the four tems as Ds

μν = Dconv
μν + Dgeom

μν +
Dmulti

μν + Dgap
μν .

3. Superfluid weight in the case of �k = diag(�k )

We can simplify the formula for Dconv
μν + Dgap

μν and Dgeom
μν

when �k = 1 × �k. We take a real-valued �k without loss
of generality. In this case, the unitary matrix which diagonal-
izes the BdG Hamiltonian of the band representation can be
written in a simple form

φ
i↑
nk = unkδn,i − vnkδn+ f ,i, (A37)

φ
i↓
nk = vnkδn,i + unkδn+ f ,i, (A38)

023232-7
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with

unk = 1√
2

√
1 + εnk

Enk
, vnk = 1√

2

√
1 − εnk

Enk
, (A39)

and Enk =
√

ε2
nk + �2

k. In this case, the multigap term van-

ishes since Cσ1σ2σ3σ4
nmlsk is finite only for n = s, m = l . Using the

above simplification, Dconv
μν , Dgeom

μν , and Dgap
μν are written as

Dconv
μν = −

∑
nσk

〈unk| ∂μH0k |unk〉 〈unk| ∂νH0k |unk〉
(

σ
|�k|2
E3

nk

f (σEnk) − |�k|2
E2

nk

f ′(σEnk)

)
, (A40)

Dgeom
μν =

∑
n �=mσσ ′k

〈unk| ∂μH0k |umk〉 〈umk| ∂νH0k |unk〉 f (σEnk) − f (σ ′Emk)

σEnk − σ ′Emk

(
σσ ′ |�k|2

EnkEmk

)
, (A41)

Dgap
μν = −

∑
nσk

〈unk| ∂μ�k |unk〉 〈unk| ∂νH0k |unk〉
(

−σ
�kεnk

E3
nk

f (σEnk) + �kεnk

E2
nk

f ′(σEnk)

)
, (A42)

where σ takes ±1.
At zero temperature, Dconv

μν + Dgap
μν becomes

Dconv
μν + Dgap

μν =
∑

nk

(
∂μεnk∂νεnk

|�k|2
E3

nk

− ∂μ�k∂νεnk
�kεnk

E3
nk

)
,

=
∑

nk

∂νεnk∂μ

( εnk

Enk

)
,

= −
∑

nk

∂νεnk∂μ

(
1 − εnk

Enk

)
,

=
∑

nk

∂ν∂μεnk

(
1 − εnk

Enk

)
. (A43)

Note that (1 − εnk

Enk
) is the expected value of the particle

number and ∂ν∂μεnk is the inverse mass tensor. Thus, Dconv
μν +

Dgeom
μν reduces to n∗/m∗. In addition, the geometric term Dgeom

μν

is written as

Dgeom
μν = 1

2

∑
nmσσ ′k

(εnk − εmk)2(〈∂μunk|umk〉 〈umk|∂νunk〉 + c.c.)

× f (σEnk) − f (σ ′Emk)

σEnk − σ ′Emk

(
σσ ′ |�k|2

EnkEmk

)
, (A44)

where (〈∂μunk|umk〉 〈umk|∂νunk〉 + c.c.) is the band-resolved
quantum metric. In the isolated-band limit, the geometric
term is reduced to the quantum metric in an original sense
[24]. We note that Eqs. (A43) and (A44) are valid even for
�k �= 1 × �k when the gap function is k independent and the

interband pairing is absent. In this case, Enk =
√

ε2
nk + |�n|2

and �n = 〈unk| � |unk〉.

APPENDIX B: TIGHT-BINDING MODEL REPRODUCING
FERMI SURFACES OF FESE

ARPES experiments observed two holelike Fermi surfaces
at the � point and two electronlike Fermi surfaces at the M
point in bulk FeSe [80,81]. However, in the first-principles
calculations, the Fermi surfaces are larger than those observed
in ARPES and an extra Fermi surface is predicted. Thus,
there is a slight discrepancy between the calculations and
experiments.

To reproduce the Fermi surfaces of the bulk FeSe observed
in the experiments, we slightly modify the hopping parameters
given by the first-principles calculation [89–91]. For this pur-
pose, the energies of the dxy-orbital band and the dxz/yz-orbital
band are shifted by (−0.28, 0, 0.20) and (−0.27, 0, 0.13) at
the (�, X , M) points in the folded Brillouin zone, respec-
tively. To realize the energy shift, the hopping parameters are
changed so as to satisfy

δEl (�) = δton−site
ll + 4δtnn

ll + 4δtnnn
ll , (B1)

δEl (X ) = δton−site
ll , (B2)

δEl (M ) = δton−site
ll − 4δtnnn

ll , (B3)

where we represent the energy shifts of the l-orbital band at
the �, X , and M points as δEl (�), δEl (X ) and δEl (M ), respec-
tively. The modification in the intraorbital hopping integral is
represented by δtll , and on-site, nn, and nnn denote the on-site,
first-nearest-neighbor, and second-nearest-neighbor hoppings,
respectively. In the ten-orbital model with two sublattices in
the unit cell, δtnn

ll (δtnnn
ll ) is the intersublattice (intrasublattice)

hopping. We also tune the chemical potential so the extra
Fermi surface near the � point vanishes and the fillings are
n = 6.06, 6.08, 6.1. Using these parameters, we can repro-
duce the Fermi surfaces of monolayer FeSe grown on SrTiO3.

APPENDIX C: SUPERFLUID WEIGHT IN THE D-WAVE
PAIRING STATE

Since the d-wave pairing state is one of the representative
candidates for superconducting symmetry in monolayer FeSe,
we here study the superfluid weight in the d-wave pairing
state, using the pairing interaction

Vi jkk′ = V1(δi, j+5 + δi+5, j ) sin kx/2 sin ky/2 sin k′
x/2 sin k′

y/2,

(C1)

which stabilizes the gap function belonging to the B1g irre-
ducible representation.

The temperature dependence of the superfluid weight
is shown in Fig. 5. A sizable geometric contribution is
confirmed, and we conclude that the quantum geometric en-
hancement of superconductivity is a universal property of
monolayer FeSe, independent of pairing symmetry. On the
other hand, since the gap function �(k) ∝ sin kx/2 sin ky/2
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D

sxx

T(K)

FIG. 5. Superfluid weight in the d-wave pairing state. Here, we
set the parameters as n = 6.08, z = 1/5, and Tc ≈ 83 K.

vanishes at the � point, the geometric contribution from near
the � point, which is sizable in the case of s-wave symmetry, is
suppressed. Therefore, the total geometric contribution in the
d-wave pairing state is smaller than that in the s-wave pairing
state. This result supports the importance of the band near the
� point, which is below the Fermi level in monolayer FeSe.

APPENDIX D: SUPERFLUID WEIGHT FOR TC = 65K
WITH THE FIRST-PRINCIPLES MODEL

In this Appendix, we show the superfluid weight for the
mean-field superconducting transition temperature Tc ≈ 65 K
using the ten-orbital tight-binding model. In the main text, we
show the results for Tc ≈ 83 K. Below we see qualitatively the
same results.

For simplicity, we consider the k-independent pairing,
given by an on-site pairing interaction Vi jk = V0δi j , in this Ap-
pendix. The temperature dependence of the superfluid weight
is shown in Fig. 6. In all panels, the geometric term gives a
sizable correction to the superfluid weight. In Fig. 6(b), the
geometric term determines the superfluid weight about 32%
at T ≈ 2.3 K. The magnitude of the gap function on the Fermi
surface is nearly 9.3 meV in Fig. 6(b), while its experimental
values are reported as at most 20 meV [1] and at least 8 meV
[82]. Thus, a larger gap function may be realized in monolayer
FeSe. For a larger Tc and gap function, a more significant
geometric contribution to the superfluid weight is obtained,
as we see in the main text.

APPENDIX E: GAP FUNCTION IN THE S-WAVE AND
INCIPIENT S+−-WAVE STATES

Here, we explain the relationship between the gap function
and the pairing interaction adopted in this paper. A highly
k-dependent gap function may show the sign change between
the � and M points. Such a gap function corresponds to
the incipient s+−-wave pairing state proposed for monolayer
FeSe in previous studies [5]. On the other hand, the weakly
k-dependent gap function does not show the sign change,
which is regarded as the s++-wave pairing state.

We consider the k-dependent pairing interaction,

Vi jkk′ = V0δi j + V1(δi, j+5 + δi+5, j ) cos kx/2

× cos ky/2 cos k′
x/2 cos k′

y/2

+V2δi j (cos kx + cos ky)(cos k′
x + cos k′

y), (E1)

FIG. 6. Temperature dependence of the superfluid weight for k-independent pairing and z = 1/5. The blue, green, and red lines show the
conventional term (Dconv), conventional + geometric term (Dgeom + Dconv), and the total superfluid weight (Ds), respectively. The purple line
shows 8T/π . The intersection between the purple line and the red line shows the BKT transition temperature. (a)–(c) are for n = 6.1, 6.08,
and 6.06, respectively.
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FIG. 7. Gap function on the Fermi surfaces, defined as∑
m,n 4T 2 〈unk| � |umk〉 × f ′(εbulk

nk ) f ′(εbulk
mk ). Here, εbulk

nk is the single-
particle energy of the bulk FeSe. The attractive interaction is (a) V1 =
V2 = 0.2V0 and (b) V1 = V2 = 10V0. From the panels, we find that
(a) shows the s++-wave pairing state while (b) shows the incipient
s+−-wave state.

where the pairing interaction on the nearest- and next-nearest-
neighbor bonds is taken into account in addition to the on-site
pairing interaction. In Fig. 7, we plot the gap function on
the Fermi surfaces for n = 6. The parameters for the inter-
action are (a) V1 = V2 = 0.2V0 and (b) V1 = V2 = 10V0, as we
adopted in the main text. As we see from Fig. 7, the sign of
the gap function is the same between the � and M points in
Fig. 7(a), although it is opposite in Fig. 7(b). Thus, the pairing
interaction for Fig. 7(a) leads to the s++-wave pairing state,
while that for Fig. 7(b) to the incipient s+−-wave pairing state.
Note that the hole Fermi surfaces near the � point vanish when
n � 6.06 due to the electron doping as we adopt in the main
text. In this case, there is no sign change on the remaining
Fermi surfaces, although the sign reversal of the gap function
manifests on bands slightly below the Fermi level and may
affect some properties [62,68–70].
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