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Transport of spin and mass at normal-superfluid interfaces in the unitary Fermi gas
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Transport in strongly interacting Fermi gases provides a window into the nonequilibrium behavior of strongly
correlated fermions. In particular, the interface between a strongly polarized normal gas and a weakly polarized
superfluid at finite temperature presents a model for understanding transport at normal-superfluid and normal-
superconductor interfaces. An excess of polarization in the normal phase or a deficit of polarization in the
superfluid brings the system out of equilibrium, leading to transport currents across the interface. We implement
a phenomenological mean-field model of the unitary Fermi gas, and investigate the transport of spin and mass
under nonequilibrium conditions. We consider independently prepared normal and superfluid regions brought
into contact, and calculate the instantaneous spin and mass currents across the normal-superfluid (NS) interface.
For an unpolarized superfluid, we find that spin current is suppressed below a threshold value in the driving
chemical potential differences, while the threshold nearly vanishes for a critically polarized superfluid. The mass
current can exhibit a threshold in cases where Andreev reflection vanishes, while in general Andreev reflection
prevents the occurrence of a threshold in the mass current. Our results provide guidance to future experiments
aiming to characterize spin and mass transport across NS interfaces.
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I. INTRODUCTION

Experiments on quantum gases of atoms enable strong tests
of many-body theories. Studies of ultracold Fermi gases have
provided insight into the thermodynamics, excitation spectra,
and bulk transport properties of strongly interacting fermions,
e.g., [1–16]. Measurements of fermion transport through
quantum point contacts [17–23] and Josephson junctions
[24–28] have extended atomic Fermi gas experiments into the
domain of structured devices. Meanwhile, strongly correlated
electron materials such as high-temperature superconduc-
tors have gained growing interest for application in devices,
such as Josephson junctions [29,30], spin valves [31,32],
and semiconductor-superconductor junction devices [33], that
feature normal-superconductor interfaces. Experiments on
cold-atom-based systems that emulate normal-superconductor
junctions can therefore provide valuable insight into the ef-
fects of strong correlations on transport in such devices.
More fundamentally, atomic gas experiments provide a plat-
form for controlled studies of strongly interacting systems
out of equilibrium, and can therefore aid in the development
of theoretical techniques for understanding the dynamics of
many-body systems.

Spin-imbalanced unitary Fermi gases provide a natural
model system in which to study strongly correlated normal-
superfluid junctions. At low temperatures, when the difference
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in chemical potential between the two spin components ex-
ceeds the Chandrasekhar-Clogston limit, the system phase
separates into a weakly polarized superfluid and a strongly
polarized normal fluid that coexist at equilibrium [1,3,34–
39]. Spin-imbalanced Fermi gases therefore naturally form
a normal-superfluid (NS) interface akin to the ferromagnet-
superconductor interfaces employed in superconducting spin
valves [40–43]. Transport across NS interfaces results from
nonequilibrium conditions, making strongly interacting Fermi
gases an interesting model of nonequilibrium behavior in
strongly correlated systems.

Several previous works have considered aspects of trans-
port across NS interfaces in strongly interacting Fermi gases.
Calculations of thermal conductivity across the NS inter-
face predicted a suppression of thermal conduction across
the interface in chemical equilibrium [44,45]. Analysis of
evaporation dynamics in trapped spin-imbalanced gases pre-
dicted a modification of the apparent critical polarization
due to nonequilibrium spin distribution [46]. Experiments
on spin-imbalanced Fermi gases observed metastability of
nonequilibrium NS interfaces, which the authors attributed
partly to inhibition of spin transport at the interface [47].
Measurements of spin transport coefficients found strong
damping of the spin dipole mode in spin-balanced [10] and
spin-imbalanced gases with and without a superfluid core
[11], and experiments on fermionic quantum point contacts
observed suppressed spin conductance with decreasing tem-
perature [19]. Numerical simulations have recently predicted
metastable spin-polarized droplets in superfluid Fermi gases
[48].

In this paper, we investigate theoretically the transport of
spin and mass across the NS interface in the spin-imbalanced
unitary Fermi gas. We address three main questions: How

2643-1564/2022/4(2)/023231(17) 023231-1 Published by the American Physical Society

https://orcid.org/0000-0003-3390-4455
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023231&domain=pdf&date_stamp=2022-06-21
https://doi.org/10.1103/PhysRevResearch.4.023231
https://creativecommons.org/licenses/by/4.0/


DING ZHANG AND ARIEL T. SOMMER PHYSICAL REVIEW RESEARCH 4, 023231 (2022)

much spin and mass current flows across the interface under
a given set of conditions? Under what conditions does the
superfluid excitation gap significantly inhibit spin or mass
transport? And to what extent does Andreev reflection cause
the mass current to behave differently from the spin current?
To address these questions, we consider the interface between
normal and superfluid regions out of chemical equilibrium
and calculate the instantaneous spin and mass currents by em-
ploying a phenomenological mean-field model. We consider
two situations: first, the case of normal and superfluid regions
separated by a tunneling barrier potential, and second, the case
without a barrier, where the normal and superfluid regions
are in mechanical equilibrium. Our calculations provide guid-
ance to future experiments on nonequilibrium NS interfaces
by establishing the expected magnitude and behavior of the
transport currents.

Our results show that the spin current flowing into a
superfluid is suppressed below a threshold in the driving
chemical potential difference. The predicted threshold is anal-
ogous to the threshold in the current-voltage (I-V) curve
of normal-superconductor junctions at large barrier strength
[49], employed in scanning tunneling spectroscopy to mea-
sure superconducting gaps [50]. In analogy with scanning
tunneling spectroscopy, the threshold is related to the mini-
mum in the superfluid excitation spectrum. We find that, for
an unpolarized superfluid in contact with a highly polarized
normal region, the threshold in chemical potential differences
between normal and superfluid regions matches the super-
fluid gap parameter (Sec. IV), up to a temperature-dependent
correction that we identify in Sec. IV B. For a critically po-
larized superfluid (at finite temperature), the minimum in the
superfluid excitation spectrum is significantly reduced, lead-
ing to a significant reduction in the threshold for transport
current. The existence of a threshold supports the notion that
nonequilibrium NS interfaces can persist in a metastable con-
figuration. The transport threshold applies specifically to the
non-Andreev portion of the current and therefore always af-
fects the spin current. On the other hand, the net (mass) current
can have a significant Andreev component, and therefore does
not always exhibit a threshold.

The remainder of the paper is structured as follows. In
Sec. II we introduce our phenomenological mean-field model,
and in Sec. III we outline the calculation of the transport
currents. In Sec. IV we present and discuss our results, and
we conclude in Sec. V.

II. THEORETICAL MODEL

A. Description of the problem

We consider a unitary Fermi gas confined in a three-
dimensional box potential [51] at low temperature, divided
into left and right regions. The confining potential has a
uniform cross section perpendicular to the z axis. In the left
region (z < 0), the gas has a large spin polarization and is
in the normal phase. In the right region (z > 0), the gas has
a smaller spin polarization and is in the superfluid phase.
The densities of spin-up and spin-down fermions are uniform
within a given region. The temperatures of the two regions
can in general differ, but we will consider the case of equal

FIG. 1. Schematic of nonequilibrium and equilibrium states of
a phase-separated spin-imbalanced Fermi gas at finite temperature.
Blue: Majority (spin up), yellow: minority (spin down); lines repre-
sent Cooper pairing.

temperatures for the two regions. Due to phase separation
below the tricritical point [1,52], the system can be in equi-
librium or out of equilibrium, depending on the degree of
polarization in each region. Figure 1 illustrates qualitatively
the equilibrium and nonequilibrium configurations of the sys-
tem under consideration. We will focus on calculating the
instantaneous currents of spin-up and spin-down fermions
across the interface between the two regions.

Figure 2 shows the approximate phase diagram of the spin-
imbalanced homogeneous unitary Fermi gas. The polarization
p = (n↑ − n↓)/(n↑ + n↓) characterizes the degree of spin im-
balance, where nσ gives the number density of fermions with
spin projection σ . The phase diagram of Fig. 2 focuses on the
case of a spin-up majority (p > 0) and normalizes the temper-
ature by the majority Fermi temperature TF↑ = EF↑/kB. Here
kB is the Boltzmann constant and EF↑ = h̄2(6π2n↑)2/3/(2m),
where m is the mass of the fermions. As in Ref. [1], we
approximate the phase boundaries as straight lines in the p-T
plane. In the nonequilibrium two-region configuration that we
consider, each region is internally described by a point (pi, T )
on the equilibrium phase diagram, with the same absolute
temperature T . The two regions have differing polarization,
with the left (normal) side having polarization pN and the right
(superfluid) side having polarization pS .

FIG. 2. Phase diagram of the two-component Fermi mixture in
the unitarity limit, consisting of the superfluid phase (SF), the for-
bidden region (FR), and the normal phase (N) in the coordinates of p
and T/TF↑. The dashed line denotes the approximate phase boundary
beyond the tricritical temperature Tc3. Square (red): Quantum crit-
ical point from Ref. [52] at polarization pc0 = 0.39. Circle (blue):
The tricritical point from Ref. [52], at polarization pc3 = 0.24 and
temperature Tc3 = 0.06TF↑. Triangle (green): Critical temperature
Tc = 0.167TF at zero polarization from Ref. [5].
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For a given T/TF↑, the superfluid phase has a maximum
(critical) polarization of pSc, while the normal phase has a
minimum (critical) polarization of pNc. Below the tricriti-
cal temperature Tc3, the normal-to-superfluid phase transition
is first order, and the polarization is discontinuous, with
pSc < pNc. At equilibrium, a system with global polarization
(N↑ − N↓)/(N↑ + N↓) between pSc and pNc will exhibit phase
separation into a superfluid region and a normal region (here
N↑ and N↓ are the total number of spin-up and spin-down
fermions in a homogeneous box potential). At equilibrium,
the phase-separated regions attain their critical polarizations,
pS = pSc and pN = pNc, respectively.

Our analysis will focus on the temperature regime below
the tricritical point. For context, we will briefly review a
few other features of the phase diagram. Above the tricrit-
ical temperature, the phase transition is second order and
the polarization is continuous (pSc = pNc). The superfluid
region of the phase diagram above the tricritical point is pre-
dicted to feature further subdivision into a gapped superfluid
and a gapless Sarma superfluid [52,53]. For our analysis,
we focus on temperatures below the tricritical temperature,
and therefore do not consider the Sarma phase. We do not
consider the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase
[54–59], which is predicted to occur away from unitarity in
the regime of negative scattering length [54,56,57], because
we focus on the case of unitary (resonant) interactions. An
interesting p-wave superfluid phase has been predicted in
highly spin-imbalanced Fermi gases [60,61]. Theoretical cal-
culations predict that the p-wave phase should occur at low
temperatures over a range of polarizations above a polariza-
tion of about 0.8 in the unitary Fermi gas [62]. For simplicity,
we do not include the p-wave phase in our analysis, as it cov-
ers a relatively small portion of the phase diagram. However, it
would be interesting to consider transport in the p-wave phase
in future work.

In addition to the confining potential, we allow for a thin
barrier potential in the z = 0 plane separating the two regions.
We model the barrier as a Dirac delta function, V (z) = �δ(z).
For convenience, we parametrize the barrier strength as

k� = 2m�/h̄2. (1)

Experimentally, such a barrier would assist in the prepara-
tion of the nonequilibrium condition that we consider here,
by allowing the two regions to equilibrate separately before
initiating transport, similarly to Refs. [14,19]. The barrier
strength can then be reduced, or turned to zero, to allow
currents to flow as the system begins to evolve toward global
equilibrium. The temperatures of two independently prepared
regions will not in general be equal, but nearly equal tem-
peratures can be achieved through fine tuning of the cooling
process applied to each region during preparation. During
transport measurements, maintaining a nonzero barrier may
be helpful in controlling the magnitudes of the currents. We
will consider particular cases of both zero and nonzero barrier
strengths.

Our analysis will focus on the instantaneous currents un-
der a given set of conditions. Over a finite time, one would
need to consider additional dynamics. For example, the flow
of particles across the interface will generate entropy and
heat the system [63]. The final temperature could exceed the

tricritical temperature, in which case phase separation would
not be present in the final state. The final equilibrium state
will depend on the volumes of the two initial regions, whereas
the instantaneous currents that we calculate here depend only
on the local properties of the two regions. Furthermore, as
particles flow across the interface, the interface itself can
move and will therefore not always be located at z = 0. Under
conditions in which the system heats above the tricritical
temperature, the interface would not be thermodynamically
stable, and could evolve away from a planar geometry, in
analogy with the snake instability of solitons [64–69]. While
these finite-time effects will be important in understanding
the full time evolution of the system, we focus here on the
instantaneous response of the system and do not consider its
finite-time evolution. However, our results give insight into
the initial time evolution of the system at short times.

B. Phenomenological mean-field model

To carry out the calculations, we employ the Blonder-
Tinkham-Klapwijk (BTK) framework originally introduced
to describe normal-superconductor interfaces [49]. The BTK
framework describes the superconducting state using a mean-
field theory, and calculates the transport of quasiparticles
across a step function in the superconducting or superfluid
gap, with a delta-function potential at the interface. De-
spite being based on mean-field theory, the BTK framework
has been successfully used to model interfaces with high-
Tc superconductors [33,50,70], and has been extended to
spin-imbalanced unitary Fermi gases [44–46]. Similarly to
Refs. [44–46], we employ a phenomenological mean-field
model to describe excitations of the strongly interacting
fermion system, and obtain transport properties by study-
ing the scattering of quasiparticles by the NS interface. To
provide the most accurate predictions possible within a phe-
nomenological model, we choose the model parameters to
fit state-of-the-art experimental [1,3–5,7,9,71,72] and the-
oretical [52,73–75] determinations of thermodynamic and
spectroscopic quantities in the unitary Fermi gas. A variety
of other approaches have recently been pursued to study
nonequilibrium dynamics of strongly interacting fermions,
including the time-dependent superfluid local density approx-
imation (SLDA) [48,69,76–81], Keldysh Green’s function
methods [82–84], time-dependent Ginzburg-Landau theory
[66], Boltzmann equation simulations [85,86], and linear re-
sponse theory [13,87–89].

We apply a model Hamiltonian of the form [45]

H =
∑

σ

∫
d3r ψ̂†

σ H (0)
σ ψ̂σ

+
∫

d3r[�(z) ψ̂
†
↑ ψ̂

†
↓ + �∗(z) ψ̂↓ ψ̂↑]. (2)

Here H (0)
σ is the single-particle grand-canonical Hamiltonian

for spin σ :

H (0)
σ (z) = − h̄2∇2

2mσ (z)
− μσ (z) + Uσ (z) + �δ(z). (3)

The chemical potentials μσ , effective masses mσ , gap �, and
Hartree energies Uσ are modeled as step functions that are
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discontinuous across the normal-superfluid interface:

μσ (z) =
{
μNσ , for z < 0,

μSσ , for z > 0,
(4)

and

Uσ (z) =
{

UNσ , for z < 0,

USσ , for z > 0.
(5)

Here σ =↑,↓ denotes the spin. In a given region (N or S), we
also express the chemical potentials of spin up and down in
terms of their mean value μ and deviation h (also called the
Zeeman field):

μN = (μN↑ + μN↓)/2, hN = (μN↑ − μN↓)/2, (6)

μS = (μS↑ + μS↓)/2, hS = (μS↑ − μS↓)/2. (7)

In the superfluid region, a similar parametrization proves use-
ful for the Hartree energies:

US = (US↑ + US↓)/2, Uh = (US↑ − US↓)/2. (8)

Theoretical [90–92] and experimental [7,93] studies show
that the peak of the spectral function in the unitary Fermi
gas is well described by an effective mass, Hartree energy,
and gap parameter. We therefore choose the masses, Hartree
energies, and gap to reproduce known properties of the unitary
Fermi gas. Without loss of generality, we consider the case
where the majority is spin up. Minority-spin quasiparticles in
the spin-imbalanced normal region acquire an effective mass
m↓(z < 0) = m∗, where m∗ is the polaron mass [73]. We set
the effective mass m↑(z < 0) of the majority spin equal to
the bare mass m in the spin-imbalanced normal region [3,75].
Likewise, we set the effective masses of both spin states equal
to the bare mass in the superfluid phase, in accordance with
quantum Monte Carlo calculations at low temperature [91].
For simplicity, we do not account for the modified effective
mass of quasiholes in the superfluid [92,93]. While a general
mean-field Hamiltonian contains Hartree energy terms [94],
the Hartree terms vanish at the mean-field level for the unitary
Fermi gas, and generally for contact interactions in the contin-
uum limit [95]. In that sense, the Hartree energies in our model
Hamiltonian represent effects beyond the mean-field level.

As mentioned above, we treat � and the Uσ as parameters
in the Hamiltonian, and choose their values to match existing
experimental data and first-principles calculations, similarly
to the treatment of the unitary Fermi gas in Refs. [45,46].
Our procedure therefore differs from weak-coupling self-
consistent mean-field theory, where � and Uσ would be
defined in terms of expectation values of the field operators,
and determined using gap and number equations. The gap �

in our calculation is therefore the spectral gap parameter rather
than the superfluid order parameter [96]. We let � = 0 in the
spin-imbalanced normal phase [97]. For the superfluid phase,
we set �/μS = 1.25 based on experimentally measured val-
ues for the unitary Fermi gas [5,7,9,71]. The latter quantity
has an experimental uncertainty on the order of 5%–10% due
to uncertainty on the gap. For simplicity, we apply the same
value in the presence of spin imbalance in the superfluid.

To diagonalize the model Hamiltonian (2), we apply a
Bogoliubov transformation to the field operators:

ψ̂↑(r) =
∑

n

un↑(r) γ̂nα − v∗
n↑(r) γ̂

†
nβ , (9)

ψ̂↓(r) =
∑

n

un↓(r) γ̂nβ + v∗
n↓(r) γ̂ †

nα . (10)

The Bogoliubov operators satisfy fermionic anticommutation
relations,

{γ̂nσ , γ̂
†
n′σ ′ } = δnn′δσσ ′ . (11)

The Hamiltonian (2) is diagonalized when the Bogoliubov
modes satisfy the Bogoliubov–de Gennes (BdG) equa-
tions [44,45]:(

H (0)
↑ �(z)

�∗(z) −H (0)
↓

) (
un↑
vn↓

)
= Enα

(
un↑
vn↓

)
, (12)(

H (0)
↓ �(z)

�∗(z) −H (0)
↑

) (
un↓
vn↑

)
= Enβ

(
un↓
vn↑

)
. (13)

In terms of the Bogoliubov operators, the Hamiltonian be-
comes

H = Egs +
∑

n

(Enαγ̂ †
nαγ̂nα + Enβ γ̂

†
nβ γ̂nβ ). (14)

Here Egs is the ground-state energy and Enα and Enβ are the
single-particle excitation energies

For clarity, and to introduce our notation, below we review
the solutions to the BdG equations in the presence of spin im-
balance [44,45]. We will refer to the solutions of (12) and (13)
as the α and β branches, respectively. We denote momentum
in the normal phase by k and in the superfluid by q.

In the normal phase (� = 0), the volume-normalized
eigenfunctions on both branches have the form(

uk(r)
vk(r)

)
= 1√

�

(
1
0

)
eik·r,

1√
�

(
0
1

)
eik·r, (15)

where � is the quantization volume. The first solution re-
quires h̄2k2/(2mσ ) > μNσ − UNσ to give a positive excitation
energy, and corresponds to a particle excitation. Likewise, the
second solution requires h̄2k2/(2mσ ) < μNσ − UNσ to give a
positive excitation energy, and corresponds to a hole excita-
tion. In the α branch (12), the particle solution excites purely
ψ↑ (i.e., a spin-up atom in an atomic system), and the hole
solution excites ψ↓, while the reverse holds in the β branch
(13).

The BdG equations for a translationally invariant super-
fluid admit plane wave solutions of the form(

uq(r)
vq(r)

)
= 1√

�

(
u(q)
v(q)

)
eiq·r. (16)

The positive eigenvalues of (12) and (13) give the energies

Eα = Es − hS + Uh > 0, (17)

Eβ = Es + hS − Uh > 0, (18)

where

Es =
√

ξ 2
s + |�|2 and ξs =

∣∣∣∣ h̄2q2

2m
− μS + US

∣∣∣∣. (19)
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At a given energy Eα(β ), Eqs. (17) and (18) admit up to two
solutions for the magnitude q of the wave vector. The smaller
value qh corresponds to quasihole excitations while the larger
value qp corresponds to quasiparticle excitations. We give ex-
plicit expressions for the wave vectors as functions of energy
in Appendix B. The eigenmodes in both the α and β branches
can then be written(

u(r)
v(r)

)
= 1√

�

(
u0

v0

)
eiqp·r,

1√
�

(
v0

u0

)
eiqh·r, (20)

corresponding to quasiparticles and quasiholes, respectively.
Here the quantities u0 and v0 are

u0 =
√

1

2

(
1 + ξs

Es

)
and v0 =

√
1

2

(
1 − ξs

Es

)
, (21)

which are functions of energy Eα(β ) on branch α (β ). Because
u0 � v0, particle-like excitations on the α branch involve
mostly ψ↑ (i.e., spin-up atoms) while hole-like excitations
involve mostly ψ↓, while the reverse holds on the β branch.

To find the Hartree energies Uσ , we equate the expression
for the densities nσ = 〈ψ̂†

σ ψ̂σ 〉 from our phenomenological
mean-field model to the expected densities based on studies
of the equation of state of the unitary Fermi gas. In particu-
lar, we consider the normal phase [3,75], balanced superfluid
[3,5], and critically polarized superfluid [52]. Details of our
procedure for determining the Hartree energies are given in
Appendix A.

C. Degrees of freedom

At a given temperature T , the two-region system in local
equilibrium has four degrees of freedom, namely the four
chemical potentials: μN↑, μN↓, μS↑, and μS↓. We nondimen-
sionalize all energies by dividing by μS . The three resulting
dimensionless parameters are μN/μS , hN/μS , and hS/μS . In
principle, the instantaneous transport currents can be calcu-
lated for arbitrary values of those parameters. We consider a
few specific cases.

We consider two cases for μN/μS . In the first case, we
consider μN = μS . The pressure in the normal and super-
fluid regions will be different in this case. Experimentally,
the pressure differential can be supported by maintaining a
nonzero barrier height between the regions. Therefore, in this
case we carry out the calculation in the presence of a nonzero
tunneling barrier. Experimentally, arbitrary ratios of μN/μS

can be achieved by tuning the densities in the two regions, for
example by moving one of the outer walls of the trap.

In the second case, we choose μN/μS for a given T/μS to
achieve mechanical equilibrium. Experimentally, this would
describe a situation where the barrier between the regions has
been removed and the system has had sufficient time to reach
mechanical equilibrium, while still being out of chemical
equilibrium [10].

After fixing μN/μS , we choose the two remaining degrees
of freedom, hN/μS and hS/μS . We consider two specific cases
for hS/μS: a spin-balanced superfluid (hS = 0) or a critically
polarized superfluid (hs = hc). In each case, we consider the
full range of hN , and calculate the transport currents as func-
tions of hN .

Chemical potential differences drive particle transport. We
therefore define δμσ as the chemical potential differences
across the interface:

δμ↑ = μN↑ − μS↑ and δμ↓ = μS↓ − μN↓. (22)

The choice of signs in (22) ensures that δμσ � 0. In the
special case of μN = μS , we have δμ↑ = δμ↓. The relation
between the δμσ and hN and hS depends on the equation of
state and is plotted for our model in Appendix F. Experi-
mentally, one typically measures density rather than chemical
potential, so we also plot the polarization pN of the normal
region versus hN in Appendix F.

III. SCATTERING FORMULATION AND CURRENT
DENSITIES

A. Scattering states and coefficients

Transport across the normal-superfluid interface can be
described in terms of quasiparticle reflection and transmission
coefficients [49]. Scattering of quasiparticles at the normal-
superfluid interface of a spin-imbalanced Fermi gas has been
discussed previously in Refs. [44–46]. We extend previous
results by including the Hartree energies and polaron effective
mass in the scattering problem, and by using the resulting
scattering coefficients to calculate the currents of spin-up and
spin-down fermions across the interface.

To describe scattering at the normal-superfluid interface,
we employ energy normalization with respect to the z compo-
nent of the momentum, rather than the volume normalization
of Sec. II B. Energy normalization is helpful when dealing
with multiple scattering channels having potentially different
group velocities. Moving from the single-region solutions of
Sec. II B to an interface problem also changes the Bogoliubov
modes into scattering solutions that obey boundary conditions
at the interface. We parametrize the scattering states in terms
of their total energy and transverse momentum, which are
both conserved, as well as the incident (in) channel of the
scattering process. The α and β branches each have four
channels, corresponding to a particle or hole incident on the
interface from the left or right. Note that the α and β branches
have no cross-coupling due to conservation of spin [40].

We express the total current densities of spin up and spin
down in terms of the contributions of each Bogoliubov mode:

Jσ = 1

A

∑
n, k⊥

∫
dE ( jσnα + jσnβ ). (23)

Here n ∈ {Lp, Lh, Rp, Rh} runs over the four scattering chan-
nels (particle incident from the left, hole incident from the
left, particle incident from the right, and hole incident from
the right, respectively), k⊥ is the transverse momentum, and
E is the energy. The cross-sectional area A cancels upon
converting the sum on k⊥ to an integral. In terms of the
energy-normalized mode functions, the spin-up current per
unit energy from each mode is given by

j↑nα = h̄

2im

(
∂un↑
∂z

u∗
n↑ − ∂u∗

n↑
∂z

un↑

)
fnα, (24)

j↑nβ = − h̄

2im

(
∂vn↑
∂z

v∗
n↑ − ∂v∗

n↑
∂z

vn↑

)
(1 − fnβ ). (25)
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Similarly, the contributions to the spin-down current are

j↓nβ = h̄

2im∗

(
∂un↓
∂z

u∗
n↓ − ∂u∗

n↓
∂z

un↓

)
fnβ, (26)

j↓nα = − h̄

2im∗

(
∂vn↓
∂z

v∗
n↓ − ∂v∗

n↓
∂z

vn↓

)
(1 − fnα ). (27)

Here fnα and fnβ are the occupation probabilities of the Bo-
goliubov modes in the α and β branches, respectively. Note
that the occupation probabilities depend on E , and the mode
functions depend on E and k⊥.

Under nonequilibrium conditions, the left and right re-
gions will have different chemical potentials for a given spin.
When solving the scattering problem, we employ the tech-
nique introduced in Ref. [49] of referencing all energies to
the superfluid-side chemical potentials, and accounting for
the nonequilibrium conditions through the quasiparticle dis-
tribution functions fn. We give explicit expressions for the
distribution functions in Appendix C.

We now express the Bogoliubov modes in terms of re-
flection and transmission coefficients. We write the mode
functions for the α and β branches as

ψnα =
(

un↑
vn↓

)
and ψnβ =

(
un↓
vn↑

)
(28)

for the four channels n ∈ {Lp, Lh, Rp, Rh}. For each branch,
we construct scattering states in terms of in and out states,
which we formally assemble into vectors (dropping the α and
β subscripts):

ψin(out) =

⎛
⎜⎝

ψLp

ψLh

ψRp

ψRh

⎞
⎟⎠

in(out)

. (29)

The scattering states in each of the four channels are expressed
in terms of the in and out states and the S matrix:

ψn = ψin · en + ψout · Sen, (30)

where n is the channel index, en is the nth unit vector in R4,
and the S matrix for either branch consists of 16 scattering
coefficients:

S =

⎛
⎜⎜⎜⎜⎝

rA
pp rB

ph tC
pp tD

ph

rA
hp rB

hh tC
hp tD

hh

tA
pp tB

ph rC
pp rD

ph

tA
hp tB

hh rC
hp rD

hh

⎞
⎟⎟⎟⎟⎠. (31)

The labels A, B, C, and D refer to the four incident scattering
channels Lp, Lh, Rp, and Rh, respectively.

For the α branch, the in and out states of a particle in the
left (normal) region are

ψ
in(out)
Lpα =

√
m

2π h̄2kp↑

(
1
0

)
e±ikp↑zeik⊥·rθ (−z). (32)

For a hole in the left region, they are

ψ
in(out)
Lhα

=
√

m∗

2π h̄2kh↓

(
0
1

)
e∓ikh↓zeik⊥·rθ (−z), (33)

and for the right region,

ψ
in(out)
Rpα =

√
m Es/ξs

2π h̄2qpα

(
u0

v0

)
e∓iqpαzeik⊥·rθ (z), (34)

ψ
in(out)
Rhα

=
√

m Es/ξs

2π h̄2qhα

(
v0

u0

)
e±iqhαzeik⊥·rθ (z). (35)

Here the upper and lower signs in the exponentials correspond
to the in and out states, respectively, and θ (z) is the Heaviside
step function. The wave vectors kp↑, kh↓, qpα , and qhα are
the magnitudes of the z components of the wave vectors of
particle and hole excitations on the α branch in the normal
and superfluid phases; their dependence on the energy and
transverse momentum is given in Appendix B. Expressions
for the β-branch in and out states can be obtained by replacing
α → β, ↑↔↓ in (32)–(35) and m ↔ m∗ in (32) and (33).

The scattering coefficients are obtained by imposing
boundary conditions on the scattering states (30) at the in-
terface. The mode functions must be continuous across the
interface: ψn(z → 0−) = ψn(z → 0+). For the α branch, the
derivatives satisfy

∂ψnα

∂z

∣∣∣∣
z→0+

−
(

1 0
0 m/m∗

)
∂ψnα

∂z

∣∣∣∣
z→0−

= k�ψnα (0), (36)

where k� is defined in Eq. (1). For the β branch, the deriva-
tives satisfy

∂ψnβ

∂z

∣∣∣∣
z→0+

−
(

m/m∗ 0
0 1

)
∂ψnβ

∂z

∣∣∣∣
z→0−

= k�ψnβ (0). (37)

Note that we obtain the boundary conditions (36) and
(37) using the Hermitian kinetic energy operator ordering
1
2 p̂ m−1

σ (z) p̂ from effective mass theory [98–100].
Full expressions for the resulting scattering coefficients are

given in Appendix E. We find that the S matrix is unitary,
S†S = 1, as required by conservation of probability. We also
find that the transpose satisfies S(�)T = S(�∗), as required
by time-reversal symmetry. As S has the property S(�)∗ =
S(�∗), it follows that S is Hermitian: S† = S. The unitarity
and Hermiticity of S will assist in simplifying the expressions
for the currents. In particular, the coefficients for channels
C and D (excitation incident from the right) can be written
in terms of the coefficients for channels A and B (excitation
incident from the left), allowing us to express the currents
in terms of the coefficients for channels A and B.

The coefficient rA
hp for the α branch (which we will de-

note as rA
hpα

) represents an Andreev reflection process, where
a spin-up particle from the normal region is reflected as a
spin-down hole. Likewise, rB

phα
describes the reversed pro-

cess, or reverse Andreev reflection, where a spin-down hole
is reflected as a spin-up particle. Meanwhile, the coefficients
rC

hp and rD
ph describe Andreev-type reflection of excitations

incident from the superfluid region. Physically, a Cooper pair
is created or annihilated in the superfluid during Andreev
reflection to conserve particle number. Andreev reflections
therefore transport mass across the interface. In the forward
Andreev reflection rA

hp, a spin-up particle and a spin-down
particle leave the normal region and a Cooper pair appears
in the superfluid. In reverse Andreev reflection rB

ph, a Cooper
pair disappears and the normal region gains a spin-up and a
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spin-down particle. Andreev reflection does not transport spin,
however, as the total spin in each region remains unchanged.
Moreover, unlike a quasiparticle transmission process, An-
dreev reflection does not create or annihilate a single-particle
excitation in the superfluid, and therefore can occur at energies
within the superfluid excitation gap.

B. Current densities

Employing the scattering states in the expressions for the
current contributions (24)–(27) gives general expressions for
the currents in terms of the S-matrix elements. In particular,
we are interested in the net (mass) current and the spin current:

Jnet = J↑ + J↓ and Jspin = J↑ − J↓. (38)

Depending on the values of E and k⊥, some scattering
channels can become closed, leading to different scattering
regimes as described in Refs. [44,45]. Within intervals of E
and k⊥ where all the channels are open (denoted regime I in
Appendix D), the contributions to the net and spin currents
from the α branch are given by

jnet
α = 1

h

{(
1 − ∣∣rA

ppα

∣∣2 + ∣∣rA
hpα

∣∣2)
[ f (Eα − δμ↑) − f (Eα )]

− (
1 − ∣∣rB

hhα

∣∣2 + |rB
phα

|2)[ f (Eα − δμ↓) − f (Eα )]
}
,

(39)

jspin
α = 1

h

{(
1 − ∣∣rA

ppα

∣∣2 − ∣∣rA
hpα

∣∣2)
[ f (Eα − δμ↑) − f (Eα )]

+ (
1 − ∣∣rB

hhα

∣∣2 − ∣∣rB
phα

∣∣2)
[ f (Eα − δμ↓) − f (Eα )]

}
.

(40)

The β-branch contributions are

jnet
β = 1

h

{(
1 − ∣∣rA

ppβ

∣∣2 + ∣∣rA
hpβ

∣∣2)
[ f (Eβ + δμ↓) − f (Eβ )]

− (
1 − ∣∣rB

hhβ

∣∣2 + ∣∣rB
phβ

∣∣2)
[ f (Eβ + δμ↑) − f (Eβ )]

}
,

(41)

jspin
β = 1

h

{(
1 − ∣∣rA

ppβ

∣∣2 − ∣∣rA
hpβ

∣∣2)
[ f (Eβ ) − f (Eβ + δμ↓)]

− (
1 − ∣∣rB

hhβ

∣∣2 − ∣∣rB
phβ

∣∣2)
[ f (Eβ + δμ↑) − f (Eβ )]

}
.

(42)

In regimes where a scattering channel is closed, the corre-
sponding scattering coefficients drop out of the expressions
for the currents. Appendix D describes the regimes in more
detail.

The current density integrands (39)–(42) show that the
contributions from the β branch are small compared to the
α branch. Since Eα , Eβ , δμ↑, and δμ↓ are positive, all
the Fermi functions in the β currents have positive arguments,
while some in the α currents can have negative arguments.
With positive arguments, the Fermi function quickly drops to
zero, leading to vanishing results for the β currents. The β

FIG. 3. Thermodynamic states considered, for the case μN = μS .
For the subcase hs = 0 (unpolarized superfluid), the red dot indicates
the state of the superfluid region while the red line indicates the al-
lowed states of the normal region, given the temperature T = 0.05μS

and the condition μN = μS . For the other subcase, hs = hc (critically
polarized superfluid), the blue dot indicates the state of the superfluid
region while the blue dashed line indicates the allowed states of the
normal region. The solid black and black dashed curves show the
normal-superfluid phase boundary above and below the tricritical
point, respectively. The maximum value of hN/μN on the red solid
and blue dotted lines corresponds to pN = 0.99, while the minimum
hN/μN corresponds to the critical polarization in the normal phase of
pNc = 0.34 at T/μN = T/μs = 0.05.

branch was also found to have a small contribution to heat
current at the interface in Refs. [44,45].

The dominance of the α branch results from the po-
larization of the normal phase. Creating a large normal
(non-Andreev) current of spin σ in the α branch requires
δμσ � Eαmin, where Eαmin is the minimum of Eα . As dis-
cussed in the next section, this can be achieved sufficiently far
from equilibrium. On the other hand, because the β branch
consists of spin-up holes and spin-down particles, a large
normal current in the β branch requires δμσ � −Eαmin, which
is impossible since δμσ � 0. In addition, as mentioned earlier,
we apply the superfluid chemical potentials μSσ to the normal
side when solving the scattering problem, and implement
nonequilibrium through the quasiparticle distribution func-
tions. Consequently, on the normal side, the density of spin-up
particles formally exceeds the density of spin-up holes, and
vice versa for spin down, so that the α branch accounts for
the majority of excitations on the normal side. In our final
calculations, we confirm that for temperatures below 0.3μS ,
the α branch accounts for at least 99% of the current.

IV. RESULTS AND DISCUSSION

A. Interface away from mechanical equilibrium

In this section, we consider the case where the system is out
of mechanical equilibrium and a Dirac delta potential barrier
is applied. We analyze the particular case of μN = μS , and
barrier strength k� = 20ks, where ks = 2mμS/h̄2. We con-
sider two different conditions for the superfluid, (1) hS = 0 for
a spin-balanced superfluid, and (2) hS = hc for a maximally
polarized superfluid. In both cases, we consider a normal
region with chemical potential imbalance hN (equivalently,
polarization pN ) greater than the equilibrium value, so that
the system is out of global equilibrium. Figure 3 plots the
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FIG. 4. Net, spin, spin-up, and spin-down current densities for
the case μN = μS as functions of hN/μS , under the conditions
(a) hS = 0 and (b) hS = hc. For both plots, the temperature is T =
0.05μS . The vertical dashed line in (a) denotes the hN value at
which δμ↑ = δμ↓ = Emin, corresponding to normal-region polariza-
tion pN = 0.44. The horizontal dashed line in both plots is the Ji = 0
line. The horizontal axes start at hN = hc(T = 0.05μS ) = 0.91μs.

thermodynamic states under consideration on the phase dia-
gram in terms of T/μ and h/μ. In both cases, hs is held at a
fixed value, while hN is varied from the critical value up to a
large value corresponding to a normal-region polarization of
pN = 0.99.

In Fig. 4, we show the instantaneous net and spin currents
versus hN . The currents are normalized by a factor J0, given
by

J0 = m μ2
S

4π2 h̄3 . (43)

The currents for the unpolarized superfluid exhibit a threshold
at a critical value of hN , as shown in Fig. 4(a). To interpret the
threshold, we first note that, in the present case where μN =
μS , the chemical potential differences (22) satisfy δμ↑ = δμ↓,
as illustrated in Fig. 5. The threshold occurs at the value
of hN where δμ↑ and δμ↓ equal the superfluid minimum
excitation energy Emin. With Emin = �0 − hS + Uh, we have
Emin(hS = 0) = �0 = 1.25μs for the unpolarized superfluid,
while Emin(hS = hc) = 0.02μS for the critically polarized su-
perfluid. Accordingly, the threshold in the critically polarized
superfluid, Fig. 4(b), is too small to easily discern. The pres-
ence of a threshold implies that the system is metastable when
hs = 0: the system is out of equilibrium, but mass and spin
transport are strongly suppressed. Figure 5 shows an exam-
ple of a situation where the threshold is exceeded, allowing
currents to flow.

As mentioned earlier, the spin current results entirely from
normal (non-Andreev) transmission processes. Normal cur-
rent involves the creation or annihilation of an excitation in the
superfluid. Efficient creation of excitations in the superfluid at

FIG. 5. Chemical potentials and current densities across the in-
terface, away from mechanical equilibrium, for parameters pN =
99%, and hS = hc, μN = μS , T = 0.05μS . The left (right) side of the
figure corresponds to the normal (superfluid) region. The horizontal
axis is qualitative, showing the directions and relative magnitudes
of the currents. The vertical axis shows the chemical potentials
quantitatively.

low temperatures requires δμ↑ > Emin for spin-up excitations,
and δμ↓ > Emin for spin down (holes). The energy required to
excite the superfluid therefore explains the observed threshold
in the spin current.

The net current consists, in general, of both normal and
Andreev processes. Andreev reflection does not excite the
superfluid, and therefore should exhibit no threshold effects.
The presence of a threshold in the net current in Fig. 4(a)
suggests that the net Andreev current vanishes in this case.
To confirm that the Andreev current vanishes, we separate the
net current into Andreev and normal components. We identify
the Andreev current in the α branch as the sum of the terms
in Eq. (39) that are proportional to the Andreev reflection
coefficients:

jAndreev
α = 2

h

∣∣rA
hpα

∣∣2
[ f (Eα − δμ↑) − f (Eα − δμ↓)]. (44)

We have used |rB
phα

|2 = |rA
hpα

|2 from the Hermiticity of the S
matrix to simplify the expression. We verify Eq. (44) by con-
sidering the net current in the scattering regime where normal
transmission is energetically forbidden, denoted regime II in
Appendix D. We find that the net α-branch current is given by
(44) in regime II, confirming that it captures the current due
to Andreev reflection. In the present case of μN = μS , where
δμ↑ = δμ↓, Eq. (44) shows that the Andreev contribution to
the net current is indeed zero, explaining the sharp threshold
observed in the net current.

We now discuss a final point of interest regarding the re-
sults in Fig. 4. Although δμ↑ = δμ↓ for μN = μS , the spin-up
current in Fig. 4 is much larger than the spin-down current. We
attribute this asymmetry to the asymmetry in the dispersion
relations between particle-like and hole-like excitations, in
both the normal and superfluid phases. While the energy of a
particle-like excitation is unbounded, the energy of a hole-like
excitation is bounded from above. As a result, when integrat-
ing over the total energy Eα and transverse kinetic energy ξ⊥
to obtain the currents, there are regimes in which hole-like ex-
citations are forbidden in the normal and/or superfluid phase
(Appendix D). As a result, the current of hole-like excitations
is smaller than the current of particle-like excitations. On
the α branch, particle-like excitations result predominantly
from excitations of ψ↑ (i.e., spin-up atoms), while hole-like
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FIG. 6. Thermodynamic states considered, for the case of me-
chanical equilibrium at temperature T = 0.05μS . The maximum
value of hN/μN on the red solid (blue dotted) line corresponds to
pN = 0.96.

excitations result predominantly from ψ↓. Consequently, the
spin-up current is larger than the spin-down current in this
case, despite the equality of the driving chemical potential
differences.

B. Interface at mechanical equilibrium

In this section, we apply our model to the case where
the interface is at mechanical equilibrium and no potential
barriers are applied. We consider two conditions for the su-
perfluid region, as in the previous section, (1) hS = 0 for a
spin-balanced superfluid, and (2) hS = hc for a maximally
polarized superfluid. We calculate the instantaneous currents
as a function of normal-region chemical potential imbalance
hN and point out interesting features of the results.

Figure 6 shows the thermodynamic states considered for
the normal and superfluid regions on the phase diagram in the
case of mechanical equilibrium at temperature T = 0.05μS .
The condition of mechanical equilibrium causes μN/μS to
depend on hN/μS , unlike in the previous section where μN/μS

had a fixed value. As a result, the dimensionless temperature
coordinate T/μN of the normal region varies with hN/μS . The
values of T/μN in Fig. 6 for an unpolarized superfluid (hS =
0; solid red curve) differ slightly from the case of a critically
polarized superfluid (hS = hc; dotted blue curve), due to the
dependence of the superfluid pressure on polarization.

Figure 7 shows an example of the chemical potentials and
current densities at large normal-region polarization, where
μS > μN .

FIG. 7. Chemical potentials and schematic current densities
across the interface, at mechanical equilibrium, with pN = 0.96, and
hS = hc, T = 0.05μS .

FIG. 8. Net, spin, spin-up, and spin-down current densities as
functions of hN , under the conditions (a) hS = 0 and (b) hS = hc.
For both plots, temperature is T = 0.05μS . The dashed vertical line
denotes the hN value at which δμ↓ = Emin.

In Fig. 8, we show the instantaneous spin and net cur-
rents versus hN at T = 0.05μS . As in the previous section,
we observe a threshold behavior in the spin current for the
unpolarized superfluid (hS = 0) and no significant threshold
for the critically polarized superfluid (hS = hc). As before,
the threshold occurs when the chemical potential difference
for one of the spin states exceeds the minimum excitation
energy in the superfluid, which is nearly zero for the critically
polarized superfluid. The vertical line in Fig. 8(a) shows the
threshold for the spin current in the case of an unpolarized
superfluid. The threshold is given by the point at which δμ↓ =
Emin, which occurs at a lower polarization than δμ↑ = Emin.

Unlike in Fig. 4, where we considered μN = μS , here the
net current does not exhibit a threshold. The absence of a
threshold results from a nonzero Andreev current when μN �=
μS . Interestingly, for hs = 0, the sign of μN − μS changes as
hN is increased, crossing zero before the threshold, where the
sign of the net current also changes.

In Fig. 8, the spin-up current is small compared to spin-
down current at large normal-region polarization, contrary
to what we found in the μS = μN case. This is because, at
large hN , where μS > μN , the Andreev current flows from
the superfluid into the normal region through reverse An-
dreev reflection. On the other hand, the normal component
of the spin-up current flows in the opposite direction, because
μN↑ > μS↑. As a result, the normal and Andreev components
of the spin-up current nearly cancel. Meanwhile, the normal
spin-down current flows in the same direction as the Andreev
current, resulting in a larger spin-down current.

To confirm the interpretations described above we decom-
pose the net current into Andreev and normal components.
Figure 9 shows that the normal component exhibits a thresh-
old in the hS = 0 case, while the Andreev component does not.
The net current in Fig. 8(a), which is the sum of the normal
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and Andreev currents in Fig. 9(a), therefore does not have a
threshold effect. We further decompose the α-branch normal
current into spin-up and spin-down components in Fig. 10.
The total contributions to these currents entering Eqs. (24) and
(27) can be expressed as

jnormal
↑α = 1

h

(∣∣tA
ppα

∣∣2 + ∣∣tA
hpα

∣∣2)
[ f (Eα − δμ↑) − f (Eα )], (45)

jnormal
↓α = −1

h

(∣∣tB
hhα

∣∣2 + ∣∣tB
phα

∣∣2)
[ f (Eα − δμ↓) − f (Eα )].

(46)

Figure 10 and Eqs. (45) and (46) confirm that the normal spin-
up current is positive while the normal spin-down current is
negative, as mentioned in the discussion of the relative sizes
of the total spin-up and spin-down currents above. Figure 10
also shows that the normal spin-up and spin-down currents
each exhibit a threshold in the hS = 0 case.

Interestingly, the normal spin-up current in Fig. 10 exhibits
a threshold at a lower value of hN than expected based on
the condition δμ↑ = Emin. This behavior reveals the tempera-
ture dependence of the threshold. At finite temperature, the
normal current for spin σ should become significant when
δμσ � Emin − kBT . The threshold will therefore shift to lower
polarization. The size of the shift in hN depends on the sen-
sitivity of δμσ to hN . As shown in Fig. 14 (Appendix F),
δμ↑ has a much weaker dependence on hN than does δμ↓.
Therefore, the threshold value of hN changes by a larger
amount for spin up than for spin down. At low temperatures,
a first-order Taylor expansion gives the shift of the threshold
for spin σ as �hσ

N ≈ −kBT/(dδμσ /dhN ). Using this formula,
we confirm that the shift in the spin-up threshold should be
significantly larger than the shift in the spin-down threshold.
The estimated shift in the spin-down threshold (≈ −0.06μN )
is too small to observe on the scale of Fig. 10. The shift in

FIG. 9. The normal and Andreev contributions to the net current
as functions of hN , under the conditions (a) hS = 0 and (b) hS = hc.
For both plots, temperature is T = 0.05μS .

FIG. 10. Normal (non-Andreev) contributions to the spin-up and
spin-down currents on the α branch versus hN . (a) hS = 0, (b) hS =
hc. For both plots, temperature is T = 0.05μS . The dashed vertical
line denotes the hN value at which δμ↓ = Emin, while the dotted
vertical line indicates δμ↑ = Emin.

the spin-up threshold (≈ −0.3μN ) coincidentally brings the
spin-up threshold to about the same hN value as the spin-down
threshold, in agreement with the observed behavior of the
normal currents in Fig. 10(a).

Finally, we note that in both Fig. 4(b) and Fig. 8(b), the
spin current is positive when hS = hc, and, therefore, increases
the polarization in the already maximally polarized superfluid
region. The z > 0 region would have to accommodate the
influx of spin through phase separation, implying that the NS
interface should advance to z > 0 and the volume of the cri-
tically polarized superfluid should shrink as a function of time.

V. CONCLUSIONS

In conclusion, we investigated the transport of spin and
mass across nonequilibrium normal-superfluid interfaces in
the unitary Fermi gas. We found that, when the superfluid
region is unpolarized, the spin current is strongly suppressed
below a threshold value of the normal-region polarization.
The threshold nearly vanishes in the limit of a critically po-
larized superfluid. Based on these results, we expect that,
for intermediate superfluid polarization, the threshold should
vary smoothly between the two limiting cases, following the
variation of the minimum excitation energy of the partially
polarized superfluid. Our results imply that nonequilibrium
NS interfaces below threshold can exhibit suppressed spin
transport, contributing to the metastability observed exper-
imentally [47]. However, we find that Andreev reflection
should allow mass current to flow even below the threshold for
spin transport, except when the average chemical potentials of
the normal and superfluid regions are equal. Meanwhile, the
quantitative values of the transport currents calculated here

023231-10



TRANSPORT OF SPIN AND MASS AT … PHYSICAL REVIEW RESEARCH 4, 023231 (2022)

provide guidance to future experiments on NS interfaces by
indicating the magnitudes of the expected currents.

An interesting question for future work will be the long-
time evolution of the NS interface. In particular, dissipation
will heat the system, and finite spin conductivity will limit
the rate of global equilibration. An interesting direction for
future work would be to include these effects to predict the
finite-time evolution of the nonequilibrium normal-superfluid
mixture. Another important challenge for future work will
be to incorporate additional beyond-mean-field effects in the
transport dynamics. In particular, finite quasiparticle lifetime
may soften the threshold for spin transport [50,101], po-
tentially weakening the metastability of the nonequilibrium
system. Experimentally, future work can utilize nonequilib-
rium NS interfaces as a source of current to study bulk spin
transport more precisely, and to explore the properties of
Fermi gases under nonequilibrium conditions.
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APPENDIX A: HARTREE ENERGIES FROM
THERMODYNAMICS

1. Polarized normal-phase equation of state

We solve for the Hartree energies in the normal phase by
equating the atomic densities in the phenomenological mean-
field model to the densities given by the known equation of
state at the same temperature and chemical potentials. The
equation of state for the polarized normal phase is well de-
scribed by the following expression for the pressure [3,75]:

PN = P0(μN↑) +
(

m∗

m

)3/2

P0(μN↓ − AμN↑). (A1)

Here P0(μ) = kBT λ−3
th F3/2(βμ) is the pressure in an

ideal Fermi gas at chemical potential μ, with λth =√
2π h̄2/(mkBT ), F3/2(x) the complete Fermi-Dirac integral,

and β = 1/(kBT ). While we use kB = 1 for most of the paper,
we include kB here for clarity. The polaron parameters are
A = −0.615 and m∗/m = 1.20 [3,37,72–74,102].

We obtain the majority and minority atomic densities using
nσ = ∂P/∂μσ ,

nN↑ = n0(μN↑) − A

(
m∗

m

)3/2

n0 (μN↓ − AμN↑), (A2)

nN↓ =
(

m∗

m

)3/2

n0 (μN↓ − AμN↑), (A3)

where n0 (μ) = λ−3
th F1/2 (βμ). Meanwhile, the phenomeno-

logical mean-field model gives the densities in terms of the
Hartree energies as

nN↑ = n0(μN↑ + UN↑), (A4)

nN↓ = n0(μN↓ + UN↓). (A5)

We nondimensionalize Eqs. (A2)–(A5), through multiplica-
tion by λ3

th:

ñNσ = λ3
th nNσ . (A6)

We then solve for UN↑/μN and UN↓/μN at a given T/μN and
hN/μN by equating (A2) to (A4) and (A3) to (A5).

2. Spin-balanced superfluid equation of state

The equation of state is known accurately in the balanced
case μ↑ = μ↓ = μS [5]. At low temperatures (T < 0.25μS),
the balanced equation of state is well described by the zero-
temperature expression for the pressure,

PS = 2

15π2

(
2m

h̄2

)3/2

ξ−3/2μ
5/2
S , (A7)

where ξ is the Bertsch parameter [5,71]. The total density nS

and dimensionless density ñS are then

nS = ∂PS

∂μS
= 1

3π2

(
2m

h̄2

)3/2(
μS

ξ

)3/2

, (A8)

ñS (βμS ) = 8

3
√

π

(
βμS

ξ

)3/2

. (A9)

The total density for the balanced superfluid in the phe-
nomenological mean-field model is

nMF
S = 2

∫
dq q2

4π2

{(
1 + ξs

Es

)
f (Es)

+
(

1 − ξs

Es

)
[1 − f (Es)]

}
, (A10)

where f (E ) = 1/(1 + e βE ). Equating (A9) to the nondi-
mensionalized mean-field density ñMF

S = λ3
thnMF

S then gives
US/μS for each T/μS .

3. Critically polarized superfluid equation of state

We obtain an equation of state for the critically polarized
superfluid below the tricritical point by exploiting the fact
that it is at thermodynamic equilibrium with the critically
polarized normal fluid. To model the phase diagram, we take
as input the temperature Tc/TF↑ at the tricritical point, and
the normal and superfluid critical polarizations, pSc and pNc,
at the tricritical temperature and at zero temperature from
Refs. [52,53]. As in Ref. [1], we linearly approximate pSc and
pNc as functions of T/TF↑. The resulting model phase diagram
is shown in Fig. 2.

We proceed in two stages to obtain the Hartree energies of
the critically polarized superfluid. First, we convert the bound-
ary of the normal phase from the variables (pNc, T/TF↑) in the
polarization-temperature plane to the variables (hc/μ, T/μ)
in the chemical potential difference-temperature plane using
the normal-phase equation of state. Note that, along the phase
boundary, μN = μS ≡ μ and hN = hS ≡ hc. Second, for each
value of (hc/μ, T/μ) along the phase boundary, we solve for
the nondimensionalized Hartree energies US/μS and Uh/μS

that give the correct value of (pSc, T/TF↑) in the critically
polarized superfluid. For this last step, we take advantage
of the observation that the density of majority-spin atoms is
continuous across the phase boundary [1].
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FIG. 11. Dispersion curve of superfluid excitation energy for
both branches at T = 0.05μS and maximal superfluid polarization
hS = hc. The solid line represents Eα , and the dashed line represents
Eβ . The energy and the wave vector are normalized by μS and
ks, respectively, with ks = 2mμS/h̄2 and μS the average chemical
potential (7).

In the first stage, we employ the system of equations

pNc = ñN↑(βμ↑, βμ↓) − ñN↓(βμ↑, βμ↓)

ñN↑(βμ↑, βμ↓) + ñN↓(βμ↑, βμ↓)
, (A11)

T

TF↑
= 4π

[6π2ñN↑(βμ↑, βμ↓)]2/3
. (A12)

Here the left-hand sides are known from the model phase
diagram and the right-hand sides from the normal-phase
equation of state (A2) and (A3). We solve for βμ↑ and
βμ↓, which gives hc/μ = (βμ↑ − βμ↓)/(βμ↑ + βμ↓), and
T/μ = 2/(βμ↑ + βμ↓).

In the second stage, at a given value of (hc/μ, T/μ), we
solve for US/μ and Uh/μ using the system of equations

pSc = ñMF
S↑ (US/μS,Uh/μS ) − ñMF

S↓ (US/μS,Uh/μS )

ñMF
S↑ (US/μS,Uh/μS ) + ñMF

S↓ (US/μS,Uh/μS )
, (A13)

T

TF↑
= 4π(

6π2ñMF
S↑ (US/μS,Uh/μS )

)2/3 . (A14)

The left-hand sides are again known from the phase dia-
gram. The right-hand sides contain the densities from the
phenomenological mean-field model, which depend on the
Hartree energies:

nMF
S↑(↓) =

∫
dq q2

4π2

{(
1 + ξs

Es

)
f (Eα(β ))

+
(

1 − ξs

Es

)
[1 − f (Eβ(α))]

}
. (A15)

We note that (A7) has been proposed to also apply at zero
temperature in the presence of imbalanced chemical potentials
[103]. However, it does not account for the nonzero polariza-
tion of the superfluid at finite temperatures. By contrast, the
procedure described above does account for finite polariza-
tion.

APPENDIX B: ALPHA-BRANCH DISPERSION
RELATIONSHIPS

Figure 11 shows the superfluid dispersion relations for
Eα(β ) versus qα(β ), normalized by μS and ks respectively. At

a given energy Eα there are up to two solutions for the mag-
nitude of the wave vector of an α-branch excitation, obtained
from inverting Eq. (17). Likewise, the wave vectors for the β

branch are obtained from inverting Eq. (18).
In the normal phase, the wave vector solutions in the α

branch are

kp↑ =
√

2m

h̄2 (μS↑ − UN↑ + Eα − ξ⊥), (B1)

kh↓ =
√

2m∗

h̄2 (μS↓ − UN↓ − Eα ) − 2m

h̄2 ξ⊥ . (B2)

In the superfluid phase, the wave vectors are

qpα =
√

2m

h̄2 (μS − US +
√

(Eα − Uh + hS )2 − �2 − ξ⊥),

(B3)

qhα =
√

2m

h̄2 (μS − US −
√

(Eα − Uh + hS )2 − �2 − ξ⊥).

(B4)

For sufficiently large Eα , the quantities inside the square roots
of Eqs. (B2) and (B4) become negative, causing the hole wave
vectors to become imaginary and give a vanishing current.

APPENDIX C: NONEQUILIBRIUM DISTRIBUTION
FUNCTIONS

Here we give the quasiparticle distribution functions fnα

and fnβ for each channel. Using f (E ) = 1/(1 + eβE ), δμ↑ =
μN↑ − μS↑, and δμ↓ = μS↓ − μN↓, the α-branch occupation
numbers are

fLpα (Eα ) = f (Eα − δμ↑), (C1)

fLhα (Eα ) = f (Eα − δμ↓), (C2)

fRpα (Eα ) = fRhα (Eα ) = f (Eα ). (C3)

The subtraction of δμσ in Eqs. (C1) and (C2) results from
defining Eα relative to the superfluid chemical potentials μSσ

for the purpose of the scattering calculation [49]. For the β

branch,

fLpβ (Eβ ) = f (Eβ + δμ↓), (C4)

fLhβ (Eβ ) = f (Eβ + δμ↑), (C5)

fRpβ (Eβ ) = fRhβ (Eβ ) = f (Eβ ). (C6)

APPENDIX D: SCATTERING REGIMES

For a given excitation energy Eα and transverse momen-
tum k⊥, each of the four types of α-branch excitations can
be either allowed (real wave vector) or forbidden (imaginary
wave vector), leading to different scattering regimes. Table I
lists the conditions on each type of excitation. An example
of the scattering regimes is shown in Fig. 12 on the plane
of excitation energy vs ξ⊥ ≡ h̄2k2

⊥/(2m). In regime I, all
four excitation types are allowed. Regime II supports only
normal particle and hole modes and therefore only allows
transmission by Andreev reflection. Regime III allows the
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TABLE I. Conditions on Eα and ξ⊥ that determine the scattering regimes for the α branch.

Excitation (wave vector) Accessible Eα Accessible ξ⊥ (given Eα)

Particle (kp↑) [0, ∞) [0, μS↑ − UN↑ + Eα]
Hole (kh↓) [0, μS↓ − UN↓] [0, m∗

m (μS↓ − UN↓ − Eα )]
Quasiparticle (qpα) [Uh − hS + �,∞) [0, μS − US +

√
(Eα + hS − Uh )2 − �2]

Quasihole (qhα) [Uh − hS + �,Uh − hS +
√

(US − μS )2 + �2] [0, μS − US −
√

(Eα + hS − Uh )2 − �2]
Equation (17) requires Eα � Uh − hS

particle, quasiparticle, and quasihole modes, and prohibits any
transmission requiring the hole mode. Regime IV allows only
the particle and quasiparticle modes and supports only the
transmission between a particle and a quasiparticle. Regime
V allows only the particle mode and, therefore, causes total
reflection. Regime VI is the energetically forbidden regime,
where the transverse kinetic energy exceeds the total kinetic
energy. Since the Andreev current is important for the net
current contribution, we present the formula for the regime
II:

jNet
II,α = 2

h

∣∣rA
hpα

∣∣2
[ f (Eα − δμ↑) − f (Eα − δμ↓)]. (D1)

The prefactor of 2 is typical for Andreev current and indicates
the transport of two fermions per scattering event.

APPENDIX E: SCATTERING COEFFICIENTS

The scattering coefficients necessary for the determination
of the currents are

rA
ppα

= 1

c0

[
u2

0(kp↑ − qpα − ik�)

(
m

m∗ kh↓ + qhα − ik�

)

+ v2
0

(
qpα − m

m∗ kh↓ + ik�

)
(kp↑ + qhα − ik�)

]
, (E1)

rA
hpα

= 1

c0
2u0v0

√
m

m∗ kh↓kp↑ (qhα + qpα )e−iX0 , (E2)

rB
hhα

= 1

c0

[
u2

0

(
m

m∗ kh↓ − qhα + ik�

)
(qpα + kp↑ + ik�)

+ v2
0 (qhα − kp↑ − ik�)

(
qpα + m

m∗ kh↓ + ik�

)]
, (E3)

FIG. 12. Alpha-branch scattering regimes on the excitation en-
ergy Eα vs transverse kinetic energy ξ⊥ plane. The case shown has
μN = μS and pN = 0.8. The other parameters, normalized by μS , are
T = 0.05, hS = 0, US = 1.13, Uh = 0, UN↑ = 0.16, UN↓ = 2.10.

where

c0 = u2
0(kp↑ + qpα + ik�)

(
m

m∗ kh↓ + qhα − ik�

)

+ v2
0

(
qe − m

m∗ kh↓ + ik�

)
(kp↑ − qhα + ik�), (E4)

and X0 denotes the phase of the gap � = |�|eiX0 . We set X0 =
0 without loss of generality. The transmission coefficients for
channel A are

tA
ppα

= 1

c0
2u0

√
qpαkp↑

(
qhα + m

m∗ kh↓ − ik�

)√
ξs

Es
e−iX0/2,

(E5)

tA
hpα

= 1

c0
2v0

√
kp↑qhα

(
qpα − m

m∗ kh↓ + ik�

)√
ξs

Es
e−iX0/2,

(E6)

and for channel B,

tB
phα

= 1

c0
2v0

√
m

m∗ kh↓qpα (qhα − kp↑ − ik�)

√
ξs

Es
eiX0/2,

(E7)

tB
hhα

= 1

c0
2u0

√
m

m∗ kh↓qhα (qpα + kp↑ + ik�)

√
ξs

Es
eiX0/2. (E8)

With the 7 coefficients given above, the other 9 coefficients
for the α branch can be inferred from the symmetries of the S
matrix.

APPENDIX F: ADDITIONAL PLOTS

We show an example of the dependence of the spin current
on temperature in Fig. 13. In Fig. 14, we show the chemi-
cal potential differences between the normal and superfluid

FIG. 13. Spin current Jspin/J0 plotted vs temperature T/μS under
mechanical equilibrium with pN = 99%, hS = 0.
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FIG. 14. Normalized chemical potential differences δμ↑(↓) plot-
ted vs hN under mechanical equilibrium, at T = 0.05μS , for (a) hs =
0 and (b) hs = hc. The dashed line shows the minimum of the super-
fluid excitation spectrum at the given value of hs.

regions versus the normal-region Zeeman field hN under me-
chanical equilibrium.

Figure 15 shows the conversion between polarization and
Zeeman field for the normal phase. In Fig. 15(b), the su-

FIG. 15. Zeeman field hN versus normal region polarization
pN under the conditions (a) μN = μS and (b) mechanical equilib-
rium. In case (a), hN/μS is independent of hS because μN/μS is
constant.

perfluid polarization leads to a slightly different conversion
because the normal phase reacts to the increase in superfluid
pressure at higher polarization.
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