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The two classes of membrane transport, namely, secondary active and passive transport, are understood as
different reaction pathways in the same protein structure, described by the 16-state model in this paper. To
quantify the thermodynamic difference between secondary active transport and passive transport, we extend the
second law of information thermodynamics of the autonomous demon in the four-state model composed of two
subsystems to the 16-state model composed of four subsystems representing the membrane transport. We reduce
the 16 states to 4 states and derive the coarse-grained second law of information thermodynamics, which provides
an upper bound of the free energy transport by the coarse-grained information flow. We also derive an upper
bound on the free energy transport by the multi-body information flow representing the two-body or four-body
correlations in the 16-state model by exploiting the cycle decomposition. The coarse-grained information flow
and the multi-body information flows express the quantitative difference between secondary active and passive
transport. The numerical analysis shows that the coarse-grained information flow is positive for secondary active
transport and negative for passive transport. The four-body correlation is dominant in the multi-body information
flows for secondary active transport. In contrast, the two-body correlation is dominant for passive transport.
This result shows that both the sign of the coarse-grained information flow and the difference of the four-body
correlation and the two-body correlation explain the difference of the free energy transport in secondary active
and passive transport.
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I. INTRODUCTION

In living cells, the transport of small molecules across
cell membranes is essential to maintain cell homeostasis
and communicate information [1]. Thermodynamically, small
molecules should be transported passively down the concen-
tration gradient without the external driving force. This type
of membrane transport without the external driving force is
called passive transport. A protein that transports a single
species of substrate (uniport) is a simple example of the pas-
sive transport. We can also see a different kind of membrane
transport against the concentration gradient with the external
driving force, called active transport, which is also vital for
the cell’s physiology. The types of external driving forces
classify this active transport. Primary active transporters are

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the protein machinery that typically uses the hydrolysis of
adenosine triphosphate (ATP) energy source for transporta-
tion. Other transport proteins, which use the electrochemical
potential generated by this primary active transporter are
called secondary active transporters. They couple the trans-
port of their substrates with the movement of solutes down
their electrochemical potential. Some of them transport their
substrate in the same direction of the movement of the driver
solute (symport), while others transport in the opposite direc-
tion (antiport).

Membrane transporters are commonly referred to as solute
carrier (SLC) transporter superfamily, which evolved for the
transport of a large variety of different small molecules [2–5].
Traditionally, they have been classified into three distinct
classes: Uniporters, symporters, and antiporters. Stoichiom-
etry or the coupling between the driver transport and the
substrate transport are regarded as tightly fixed. The differ-
ences among the three classes of transports (symport, antiport,
and uniport) are distinct, and three different mechanisms
were assumed. Recent structural studies, however, revealed
that SLC proteins share same or similar molecular struc-
tures [6], though their functional roles are scattered among
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symport, antiport, or uniport. Quantitative kinetic measure-
ment of transport also revealed that the coupling between the
driver and cargo transports can be variable according to the
environmental conditions. In some conditions, the movement
of the driver is totally uncoupled from the transport of the sub-
strate. The same protein can show all three modes, antiport,
symport, and uniport, and the difference between symport,
antiport, and uniport is understood as the difference between
their main pathways [7–9].

Based on these findings, SLC transporter proteins are re-
cently regarded to share the conserved structural mechanisms
for transport. The different modes of transportation (symport,
antiport, and uniport) would reflect the difference in the main
reaction pathways of conformational changes. Intermediate
state structures for various SLC proteins have been solved
so far, and many molecular dynamics simulation studies have
been performed [10–14]. Many mechanical or kinetic models
have been proposed for each specific transport mode or trans-
porter protein. For example, a model was recently proposed
to model the leaky coupling in a proton-coupled multi-drug
transporter protein in bacteria by including all bidirectional
transitions between the observed ten states [15]. This model
explained various aspects of the experimental results for this
specific protein. Still, it is unclear how the qualitative dif-
ference of the main reaction pathway makes the quantitative
difference in the free energy transport. Thus, a general and
unified theoretical framework is awaited to explain the role of
the main reaction pathway for free energy transport quantita-
tively and predictably.

The framework of stochastic thermodynamics has been
developed to describe the thermodynamics of mesoscopic
molecular processes [16,17], which would naturally be ap-
plied to the solute transport by the SLC proteins. The recent
studies of Maxwell’s demon [18] in stochastic thermody-
namics, namely information thermodynamics [19–27], reveal
the thermodynamic role of multi-body correlation between
several subsystems. The second law of information ther-
modynamics for autonomous systems [28–43] implies the
entropy changes in one subsystem and bathes attached to this
subsystem are generally bounded by information flow from
other subsystems, which quantifies the multi-body correlation
between several subsystems. The results of information ther-
modynamics can be applied to biological systems [29,33,44–
56] and have been experimentally tested in artificial [57–62]
and biological systems [63]. The transport driven by the
interaction between multiple subsystems has been studied, es-
pecially in the model of autonomous demon [31,64–67]. The
thermodynamic role of information flow in a cyclic pathway
has been discussed [30,68,69] based on stochastic thermody-
namics for cyclic pathways, namely Schnakenberg network
theory [70]. Considering that the coupling between the mul-
tiple transport processes, namely driver and cargo, plays an
essential role in the secondary active transport, we can intro-
duce the model of autonomous demon for membrane transport
and discuss the thermodynamic role of information flow cor-
responding to the main reaction pathway in the passive and
active transport. Although there are previous works trying to
understand membrane transport as Maxwell’s demon [71–73],
here we investigate the quantitative role of information flow

in membrane transport using the stochastic thermodynamic
model of autonomous demon.

Information thermodynamics would provide a reasonable
way to evaluate a thermodynamic difference between sec-
ondary active transport (antiport and symport) and passive
transport (uniport). To discuss these differences based on
information thermodynamics, we need to introduce two ex-
tensions of the discussion for the autonomous demon. One is
to extend the 4-state model [31,64–66] or the 8-state model
[67] to the 16-state model as the model of the autonomous
demon because we need to discuss the main pathway in pos-
sible 16 states of SLC transporter proteins, which is larger
than the observed ten states in the model [15]. To introduce
several information flows, which quantify four-body correla-
tion and two-body correlation, the second law of information
thermodynamics can be generalized for this 16-state model.
The other extension is to introduce the concept of coarse-
graining, where the 16-state model is reduced to the 4-state
model. For this coarse-grained 4-state model, we newly obtain
the coarse-grained information flow and the coarse-grained
second law of information thermodynamics. Based on two
new extensions, we discuss thermodynamic role of the cyclic
pathway in membrane transport. The free energy transport in
membrane transport is generally bounded by the information
flow due to the second law of information thermodynamics.
Thermodynamic differences between the secondary active and
passive transports can be characterized by the coarse-grained
information flow in the coarse-grained model and information
flow in the 16-state model. The coarse-grained information
flow is negative for the passive transport, which means that
the passive transporter does not perform as the autonomous
demon. The major contribution of information flow in the
16-state model is the two-body correlation for this passive
transport. On the contrary, the coarse-grained information
flow is positive for the secondary active transport, which
means that the secondary active transporter performs as the
autonomous demon. The major contribution of information
flow in the 16-state model is the four-body correlation for this
secondary active transport. This fact implies that the different
modes of transportation in SLC transporter proteins can be
characterized by information flow. Our result can lead to a
unified framework for membrane transport that can model all
possible spectrum of transport modes from the viewpoint of
information flow quantitatively.

This paper is organized as follows. In Sec. II, we state the
mechanism of the passive and secondary active transports in
a unified way by introducing possible 16 states. In Sec. III,
we define the 16-state model and describe the passive and
secondary active transports in the 16-state model. We show the
cycles of the 16-state model corresponding to the main reac-
tion pathway of the passive and secondary active transporters.
In Sec. IV, we introduce the coarse-graining of the 16-state
model to reduce the 16 states to 4 states. We derive the coarse-
grained second law of information thermodynamics, which is
analogous to the second law of information thermodynamics
for the 4-state model of the autonomous demon. In Sec. V,
we choose an appropriate cycle basis of the 16-state model
and discuss the second law of information thermodynamics
for the steady-state using the cycle basis. In the steady-state,
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the information flows according to the several cycles quan-
tify the multi-body correlation and correspond to the main
reaction pathways in the passive and secondary active trans-
ports. In Sec. VI, we numerically show that the coarse-grained
information flow and the information flow in the 16-state
model quantifies the difference between the passive and
secondary active transports. In Sec. VII, we conclude the main
results.

II. 16 STATES IN SECONDARY ACTIVE TRANSPORT
AND PASSIVE TRANSPORT

We here discuss and model the mechanisms of the proton-
lactose symporter (LacY) [74], the phosphate-G3P antiporter
(GlpT) [75], and the glucose uniporter (GLUT) [76] as exam-
ples of secondary active transporter and passive transporter.
Although their modes of transport are very different, their
protein structures are very similar, belonging to the major
facilitator superfamily (MFS) fold family [6,8,9]. Structural
analyses by crystallography and cryoelectron microscopy
have established that the protein transports the solute by
switching among three conformational states. The protein
opens toward the outside of the cell for solute binding and re-
leasing. After transiently closing from both sides, the protein
then opens to the inside of the cell for the solute exchange
with the cytoplasm. The transporter protein would control the
ligand binding/release and conformational changes to enable
solute transport. As discussed below, we model this process
by introducing ratchets. A transport process for one solute can
be modeled by one ratchet and two particle baths (inside and
outside). Thus, the transport of two solutes by these proteins
would be modeled with four particle baths and two ratchets in
a unified manner. This model can have 16 internal states since
each ratchet can have four states. It should be noted here that
this generalized abstract model can be applied not only to the
MFS fold family transporters but any molecular machines that
transport one or two solutes.

A. Symport

We first discuss the lactose/proton symporter LacY. LacY
transports lactose into the cell by coupling the transport of
proton as illustrated in Fig. 1(a). The outside of the plasma
membrane (exterior) is kept at a higher proton concentration
by proton pump protein (primary active transporter). LacY
uses this electrochemical potential for the uptake of lactose
into the cell (cytosol). Alternating access model has been
proposed to explain this process based on the protein structure
[74]. First, the protein opens the gate toward the exterior,
enabling proton binding. Proton binding triggers to open the
second gate to facilitate lactose binding. Lactose binding
closes the gates, and the protein now opens the gates toward
the cytosol to release proton and lactose. The empty protein
returns to the initial outward-open state.

We abstract this mechanism to obtain a general model for
secondary active transport [77] made of two coupled ratchets
[the right panel of Fig. 1(a)]. We show a list of the essential
characteristics of the proton-lactose symporter.

cargo
transporter
(Lactose)

driver
transporter
(     )

(a) Exterior
Cytosol Cytosol

Lactose
(cargo) (driver)

Exterior

Cytosol

cargo
transporter
(G-3-P)

driver
transporter
(Pi)

(b) Exterior
Cytosol

CytosolG-3-P
(cargo)

Pi
(driver)

Exterior

Cytosol

cargo
transporter
(Lactose)

driver
transporter
(     )

(a) Exterior
Cytosol Cytosol

Lactose
(cargo) (driver)

Exterior

Cytosol

cargo
transporter
(G-3-P)

driver
transporter
(Pi)

(b) Exterior
Cytosol

CytosolG-3-P
(cargo)

Pi
(driver)

Exterior

Cytosol

Exterior

FIG. 1. Schematics of the secondary active transporters. (a) Left
panel: The reaction pathway of the lactose/proton symporter LacY.
The exterior is at a higher proton concentration and a lower lac-
tose concentration than the cytosol. Lactose is transported from
the exterior to the cytosol using the free energy generated by the
proton transport. Right panel: The symport model of four particle
baths and two coupling ratchets. Lactose moves from the exterior to
the ratchet when a proton is coupled with the ratchet, and it moves
to the cytosol when a proton is released. As a result, one lactose
molecule is transported from the exterior to the cytosol. (b) Left
panel: The reaction pathway of the glycerol-3-phosphate (G-3-P)
transporter GlpT. G-3-P is transported into the cytosol against its
concentration gradient by coupling with the transport of the inorganic
phosphate (Pi) from the cytosol. Right panel: The antiport model
with the same frame as the symport (a).

1. The exterior and the cytosol have different chemical
potentials.

2. The transporter has binding sites for proton and glu-
cose.

3. The binding sites for proton and lactose interacts with
each other through the conformational changes of the trans-
porter.

4. Each binding site has two gates toward the exterior and
the cytosol.

5. Open and close of the gates are regulated by the confor-
mational changes of the transporter.

The exterior and the cytosol can be modeled as particle
baths with different chemical potentials. We consider two par-
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ticle baths for each solute molecule (e.g., proton and lactose).
Each solute is transported between the two baths. In order to
simplify the model without loosing generality, we put a higher
concentration compartment on the left side of the model and
a lower concentration compartment on the right. Hence, in
the case of symport, the driver solute is transported from
left to right, and the cargo solute is transported from right to
left.

The transporter can be modeled as coupled ratchets, each
of which has one binding site. For simplicity, we assume
that there is one binding site for each solute molecule. We
represent the open and close of the gates, which regulate
the direction of the transport, by the barrier heights between
the ratchet and the particle baths. Again, for simplicity, we
assume that each ratchet has two conformational states, deter-
mining the binding energy and the barrier heights. Finally, to
represent the interaction of proton and lactose binding sites
through the conformational change, we consider the inter-
action energy between two ratchets, which depends on the
conformational states of the two ratchets.

The system can take possible 16 states in total. For the
cargo transporter, lactose in the example of LacY, its state
can be expressed by two binaries: The existence of the lactose
in the binding site {0, 1} and the direction of the opening of
the gate {l, r}. The first binary 0 and 1 imply the number
of the cargo solute (lactose) in the binding site. The second
binary l implies that the gate is open to the left bath (cytosol),
and r implies opening to the right bath (exterior). The states
for the driver transporter (proton) are similarly expressed by
two binaries: {0, 1} and {l, r}. These binaries have the same
meaning (number of solute in the binding site and direction of
the opening of the gate). But it should be noted that the higher
concentration compartment is put on the left in our definition.
Namely, the left bath for proton corresponds to the exterior,
and the right bath corresponds to the cytosol [the right panel
of Fig. 1(a)]. Thus, the system can take the possible 16 states
s ∈ {0, 1}2 × {l, r}2.

This coupled-ratchet model with 16 possible states can
explain the lactose-proton symport as follows. The binding
of a proton from the exterior is coupled to the conforma-
tional changes in the lactose ratchet to raise the left barrier
and to lower the right barrier, which facilitates the binding
of lactose from the exterior. The binding of lactose triggers
the conformational changes in the proton ratchet to raise the
right barrier and to lower the left barrier to enable the proton
release to the cytosol. The proton release, again, coupled to
the switching of the barrier heights in the lactose ratchet to
release the lactose to the cytosol [the right panel of Fig. 1(a),
see Appendix A for a more detailed discussion on the relation
to the conventional alternating access model]. As a result,
one lactose molecule and one proton are transported from
the exterior (at a low lactose concentration and a high proton
concentration) to the cytosol (at a high lactose concentration
and a low proton concentration). Since the transport of the
driver and cargo solutes is one-by-one, the chemical potential
differences of the solutes should satisfy a certain condition
due to the second law of thermodynamics. Suppose �μa and
�μb be the cargo and driver transporter’s chemical potential
differences, respectively. We assume that �μa and �μb are
constant [78]. Since the free energy of the whole system must

decrease, the chemical potentials should satisfy

�μa � �μb. (1)

We assume this condition throughout this paper.

B. Antiport

We next show that the same model can be applied to the
antiporters [8]. We take glycerol-3-phosphate (G-3-P) trans-
porter GlpT [75] as an example [Fig. 1(b)]. Here, both the
driver solute inorganic phosphate (Pi) and the cargo solute
G-3-P are at higher concentrations in the cytosol than the ex-
terior. Therefore, the left and right baths correspond to the
cytosol and the exterior for both G-3-P and Pi, respectively.
By this setting, the same two coupled ratchets model (16-state
model) can be applied to this antiport. The release of Pi from
the ratchet to the exterior triggers the conformational changes
in the G-3-P ratchet to raise the left barrier and lower the right
barrier to facilitate the binding of G-3-P from the exterior to
the ratchet. The binding of G-3-P lowers the right barrier and
raises the left barrier to enable the binding of Pi from the
cytosol. After phosphate binding, the right barrier is raised,
and the left barrier is lowered, and G-3-P moves from the
ratchet to the cytosol [the right panel of Fig. 1(b)]. As a result,
GlpT transports one G-3-P molecule from the exterior (at
a low G-3-P concentration) to the cytosol (at a high G-3-P
concentration) and one phosphate molecule from the cytosol
(at a high phosphate concentration) to the exterior (at a low
phosphate concentration). It should be noted here that both
symport and antiport are described similarly in this 16-state
model. The driver solute is transported from the left bath to the
right bath down the concentration gradient, which is coupled
to the leftward transport of the cargo against the gradient. This
is because we assigned the left and right baths as the higher
and lower concentration compartments, respectively. By this
definition, both symport and antiport can be described in the
same 16-state framework [compare (a) and (b) of Fig. 1].

C. Uniport

Before closing this section, we also show that the same
model can be applied to uniport (Fig. 2). For example, the
glucose transporter GLUT facilitates the uptake of glucose
into the cell down the concentration gradient [9,76]. Here,
the minimal model would need only one ratchet with possible
4 states {0, 1} × {l, r}. Yet, such a minimal model obscures
the relation between uniport and symport/antiport. Instead,
we would model uniport by the same 16-state model for
symport/antiport. Theoretically, uniport can be described by
the 16-state model by introducing the second imaginary trans-
porter that has two imaginary binary states: {0, 1} × {l, r}.
Then, we can discuss the possible 16 states s ∈ {0, 1}2 ×
{l, r}2 in parallel with symporter and antiporter.

Then, uniport can be regarded as the case of a weak or bro-
ken interaction between the two ratchets. The two ratchets are
not coupled and move independently. The chemical potential
difference of cargo solute (glucose) drives the transport. In
the case of GLUT uniporter, glucose moves into the ratchet
from the left bath (exterior) when the left barrier is down and
flows out to the right bath (cytosol) when the right barrier is
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Cytosol
Exterior

Glucose

Exterior

Cytosol

Cytosol
Exterior

Glucose

Exterior

Cytosol

passive
transporter
(Glucose)

imaginary
ratchet

FIG. 2. Schematics of passive transporter. Left panel: The reac-
tion pathway of the glucose uniporter GLUT. The exterior is at a
higher glucose concentration than the cytosol. Glucose is transported
from the exterior to the cytosol down the concentration gradient.
Right panel: The same model as the symport with a weak interaction
between the ratchets (glucose transporter and imaginary ratchet)
can explain this uniport. Since the ratchets are decoupled, glucose
transport is driven by the chemical potential difference, and glucose
exhibits passive transport.

down. This movement of glucose ratchet is uncoupled from
another (imaginary) ratchet. As a result, one glucose molecule
moves from the higher concentration compartment (left bath
= exterior) to the lower concentration compartment (right
bath = cytosol) in one reaction cycle, i.e., glucose exhibits
passive transport (Fig. 2).

The introduction of imaginary ratchet might be justified
from the evolution of the SLC transport proteins. SLC pro-
teins share similar protein structures and mostly serve as
secondary active transporters (symporters or antiporters), but
there are many uniporters as well. The bacterial orthologues
of GLUT protein are mostly sugar-proton symporters, while
mammalian GLUT proteins are mostly uniporters [9,76]. In-
terestingly, a bacterial protein GlcP shows an incomplete or
loose coupling between proton and sugar transport [7]. This
wide variety of GLUT protein relatives can be described by
a single 16-state model. The above explained LacY model
explains the tightly coupled sugar-proton symport. Loose cou-
pling in GlcP can be explained by weakening the coupling
between the sugar transporter and the proton transporter.
Then, sugar uniport by GLUT can be understood as the
extreme case of the weak coupling. The uncoupled proton
channel would have lost its function during evolution [9].

III. THE 16-STATE MODEL FOR MEMBRANE
TRANSPORT

A. Setup

We introduce the 16-state model to describe stochastic
dynamics of possible 16 states in the membrane transport.
The 16-state model is composed of two interacting ratchets,
and we assign an index i ∈ {a, b} to the two ratchets (Fig. 3).
For the secondary active transporter, the ratchets a and b
correspond to a cargo transporter and a driver transporter,
respectively. For the passive transporter, the ratchet a corre-

FIG. 3. The interaction among the system and the particle baths
when the state of the system is s = (xa, xb, za, zb). A particle is bound
to the ratchet with a bond energy εz. The height of the barrier between
the ratchet and the particle bath ν is �(ν )

z . The interaction energy
between the two ratchets is parameterized by E .

spond to the passive transporter and the ratchet b is the pseudo
(nonfunctional) transporter whose function might have been
lost in the evolutionary process. Each ratchet is in contact
with two particle baths ν ∈ {L, R} at inverse temperature β.
The chemical potential of the particle bath ν attached to the
ratchet i is given by μ

(ν)
i . We set that the chemical potential in

the particle bath L is larger than the chemical potential in the
particle bath R, i.e.,

μ
(L)
i � μ

(R)
i . (2)

For the cargo transporter of the LacY, the particle bathes
L and R correspond to the cytosol and exterior, respectively.
For the driver transporter of the LacY, the particle bathes L
and R correspond to the exterior and cytosol, respectively
[see also Fig. 1(a)]. For the driver and cargo transporters
of the GlpT, the particle bathes L and R correspond to the
cytosol and exterior, respectively [see also Fig. 1(b)]. For the
passive transporter of the GLUT, the particle bathes L and R
correspond to the exterior and cytosol, respectively (see also
Fig. 2). For the secondary imaginary transporter of the GLUT,
we also assume that the particle bathes L and R correspond to
the exterior and cytosol, respectively.

As shown in Fig. 3, we illustrate the particle baths L and
R on the left and right sides of each ratchet, respectively.
Each ratchet has a site of transporter that can exchange one
particle with the attached particle baths. There are barriers
between each ratchet and the attached particle baths, and the
barrier heights determine the mobility of a particle between
the ratchet and the particle baths. The barrier heights corre-
spond to the conformation changes of the transporters.

The state of each ratchet i is represented by two variables
xi ∈ {0, 1} and zi ∈ {l, r}. The variable xi is the number of
particles bound to the ratchet i. The variable zi represents
the barrier height attached to the ratchet, and zi = l (zi = r)
means that the barrier of the ratchet i against the particle
bath R (L) is higher than that against the particle bath L (R).
We call the variable zi the potential profile of the ratchet i.
The potential profile zi fluctuates stochastically by a single
heat bath ν = L. The state of the entire system is denoted as
s = (xa, xb, za, zb) ∈ {0, 1}2 × {l, r}2 = S .

We describe the energetics of the 16-state model. The
binding energy of the ratchet i is given by εzi , i.e., the
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energy of the ratchet i is εzi when a particle is bound to the
ratchet, and zero when it is not. The interaction energy of the
ratchets a and b is given by Eδza,zb using a constant E > 0.
Here δx,y is the Kronecker delta, which is defined by δx,x = 1
and δx,y = 0 for x �= y. In other words, the system is more
stable when they have different potential profiles. In total, the
energy Exaxbzazb of the system in the state s = (xa, xb, za, zb) is
given by

Exaxbzazb = εza xa + εzbxb + Eδza,zb . (3)

The height of the barrier between the ratchet i and the particle
bath ν is denoted by �(ν)

zi
. The values of εz,�

(ν)
z are common

for the ratchets a and b. Because the variable zi represents the
barrier height, the barrier height �(ν)

zi
satisfies the following

condition:

�
(L)
l < �

(R)
l , �(R)

r < �(L)
r . (4)

To achieve the secondary active transport possibly, we as-
sume that the chemical potentials satisfy

0 < μ(L)
a − μ(R)

a < μ
(L)
b − μ

(R)
b , (5)

i.e., the chemical potential difference of the cargo transporter
a should be smaller than the chemical potential difference of
the driver transporter b [see also Eq. (1)]. We also assume the
condition

εl < 0 < εr (6)

to induce secondary active transport in the steady state as
discussed in Sec. III B.

To discuss nonequilibrium dynamics of the membrane
transport, we introduce the master equation for stochastic
dynamics of the membrane transport. Let ps be the probability
of being in state s. If the stochastic process is Markovian, the
time evolution of the probability distribution ps(t ) is described
by the following master equation:

d ps(t )

dt
=

∑
ν,s′

[
W (ν)

s′→s ps′ − W (ν)
s→s′ ps

]
, (7)

where W (ν)
s→s′ represents the transition rate from state s to state

s′ by bath ν. We assume the following bipartite condition [64]
of the transition rates:

W (ν)
s→s′ = W A(ν)

xa→x′
a|xbzazb

δza,z′
a
δzb,z′

b
δxb,x′

b

(
1 − δxa,x′

a

)
+ W B(ν)

xb→x′
b|xazazb

δza,z′
a
δzb,z′

b
δxa,x′

a

(
1 − δxb,x′

b

)
+ wA

za→z′
a|xaxbzb

δxa,x′
a
δxb,x′

b
δzb,z′

b

(
1 − δza,z′

a

)
δν,L

+ wB
zb→z′

b|xaxbza
δxa,x′

a
δxb,x′

b
δza,z′

a

(
1 − δzb,z′

b

)
δν,L, (8)

where s = (xa, xb, za, zb), s′ = (x′
a, x′

b, z′
a, z′

b) and
(W A(ν),W B(ν) ) corresponds to the transition rate for the
exchange of particles, and (wA,wB) corresponds to the
transition rate for the change of the potential profile.
The bipartite condition means that only one of Xa,
Xb, Za, and Zb changes in a single-state transition. In
stochastic thermodynamics, we assume the local detailed
balance conditions [17] to describe the energetics of
the stochastic process. For the membrane transport, the
local detailed balance conditions of each transition rate

(W A(ν),W B(ν),wA,wB) are given by

ln
W A(ν)

0→1|xbzazb

W A(ν)
1→0|xbzazb

= −β
(
E1xbzazb − E0xbzazb − μ(ν)

a

)
,

ln
W B(ν)

0→1|xazazb

W B(ν)
1→0|xazazb

= −β
(
E1xbzazb − E0x′

bzazb − μ
(ν)
b

)
,

(9)

ln
wA

za→z′
a|xaxbzb

wA
z′

a→za|xaxbzb

= −β
(
Exaxbzazb − Exaxbz′

azb

)
,

ln
wB

zb→z′
b|xaxbza

wB
z′

b→zb|xaxbza

= −β
(
Exaxbzazb − Exaxbzaz′

b

)
.

These conditions mean that the dynamics of the 16-state
model respects the energetics shown in Eq. (3). Note that they
also imply that all transitions are bidirectional, i.e., W (ν)

s→s′ �=
0 ⇔ W (ν)

s′→s �= 0 for all s, s′, and ν. We set the transition rates,
which satisfy the detailed balance conditions (9) as

W A(ν)
0→1|xbzazb

:= 1

τ0
exp

[−β
(
�(ν)

za
− μ(ν)

a

)]
,

W A(ν)
1→0|xazazb

:= 1

τ0
exp

[−β
(
�(ν)

za
− εza

]
,

W B(ν)
0→1|xazazb

:= 1

τ0
exp

[−β
(
�(ν)

zb
− μ

(ν)
b

)]
,

(10)

W B(ν)
1→0|xazazb

:= 1

τ0
exp

[−β
(
�(ν)

zb
− εzb

)]
,

wA
za→z′

a|xaxbzb
:= 1

τ1
exp

[
β
(
xaεza + Eδza,zb

)]
,

wB
zb→z′

b|xaxbza
:= 1

τ1
exp

[
β
(
xbεzb + Eδza,zb

)]
,

using the time constants τ0 and τ1.

B. The steady state of the 16-state model for secondary active
transport and passive transport

We present how secondary active transport and passive
transport are described in the steady state of the 16-state
model. We denote the probability distribution at steady state
of the 16-state model by pss

s . We define the quantity J R→L
a as

J R→L
a :=

∑
xb,za,zb

[
pss

0xbzazb
W A(R)

0→1|xbzazb
− pss

1xbzazb
W A(R)

1→0|xbzazb

]
,

(11)

which represents the net transport rate of a particle from the
particle bath R to the ratchet a. Since the system is in the
steady state, the quantity J R→L

a equals the net transport rate
of a particle from the ratchet a to the particle bath L. In
other words, J R→L

a is the transport rate of a particle from
the particle bath R (for example, the cytosol) to the particle
bath L (for example, the exterior) through the ratchet a (for
example, the cargo transporter) against the chemical potential
difference. In secondary active transport or passive transport,
J R→L

a represents the transport rate of cargo solute through the
membrane. The sign of J R→L

a is positive when the net trans-
port of cargo solute is from the particle bath R to the particle
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(a)

(b)

(c) (d)

FIG. 4. (a) When E is sufficiently large, two variables (za, zb) ∈ {l, r}2 behave like one variable zab ∈ {lr, rl} and the 16-state model can be
approximated by the 8-state model. The state of the 8-state model is described by (xa, xb, zab) ∈ {0, 1}2 × {lr, rl}. All transitions in the 8-state
model are bidirectional. For each transition, either the forward process or the backward process is shown in this figure. In this graph, each
vertex corresponds to a state and each edge corresponds to a transition with the particle bath corresponding to the color of the edge. (b) When
the conditions (5) and (6) holds, the main pathway of the 8-state model becomes the cycle C′active shown in this figure. (c) The cycle C′active

in the 8-state model corresponds to the cycle Cactive in the 16-state model shown in this figure. The cycle Cactive corresponds to secondary
active transport. Starting from one of the most stable states s = (1, 0, l, r), (i) a particle moves from the ratchet a to the particle bath L, (ii)
the potential profiles of the ratchets a and b change, (iii) a particle moves from the particle bath L to the ratchet b, (iv) a particles from the
particle bath R to the ratchet a, (v) the potential profiles of the ratchets a, b change and (vi) a particle moves from the ratchet b to the particle
bath R. In each cycle, one particle moves from the particle bath R to L via the ratchet a, and one particle moves from the particle bath L to R
via the ratchet b. (d) When E ∼ 0, the main pathway of the 16-state model becomes the cycle Cpassive

xbzb
shown in this figure. The cycle Cpassive

xbzb

corresponds to passive transport. In each cycle, one particle moves from the particle bath L to R via the ratchet a.

bath L. Since μ(R)
a < μ(L)

a holds [see Eq. (5)], the ratchet a ex-
hibits active transport when J R→L

a > 0 and passive transport
when J R→L

a < 0. We say that the system exhibits secondary
active transport when

J R→L
a > 0, (12)

and passive transport when

J R→L
a < 0. (13)

We show the pathway of the 16-state model corresponding
to secondary active transport. To this end, we assume that E
is so large that the probability that za = zb is negligible (see
Sec. VI for a more detailed condition for E where secondary
active transport occurs). In this case, the 16-state model can
be approximated by the 8-state model, where the state is
described by (xa, xb, zab) ∈ {0, 1}2 × {lr, rl} and zab = lr, rl
corresponds to (za, zb) = (l, r), (r, l ), respectively [Fig. 4(a)].
In particular, the dominant pathway in the 8-state model is
the cycle C′active shown in Fig. 4(b) (see Appendix B). The
pathway C′active is described as the cycle Cactive shown in
Fig. 4(c) in the 16-state model. See the caption of Fig. 4 for
the detail of the cycle Cactive.

In one cycle of the reaction pathway represented by Cactive,
one particle moves from the particle bath R to L via the ratchet
a, and one particle moves from the particle bath L to R via the
ratchet b. Therefore, if only the pathway Cactive occurs, the
direction of the net transport in the ratchet a is given by

J R→L
a > 0. (14)

In this sense, the cycle Cactive corresponds to the secondary
active transport [see Eq. (12)].

We also show the pathway of the 16-state model corre-
sponding to passive transport. To this end, we consider the
case where the ratchets a and b are almost decoupled, i.e.,
E ∼ 0. For the passive transport in the ratchet a, dynamics
in the ratchet a is not affected by the state of the ratchet b,
that is (xb, zb). Then, the dominant pathway for the passive
transport is given by the cycle Cpassive

xbzb with the fixed state
(xb, zb) as shown in Fig. 4(d). In one cycle of the reaction
pathway represented by Cpassive

xbzb , one particle moves from the
particle bath L to R via the ratchet a. Therefore, if only the
pathway Cpassive

xbzb occurs, the direction of the net transport in
the ratchet a is given by

J R→L
a < 0. (15)

Similarly to the cycle Cactive, we can say that the pathway
Cpassive

xbzb corresponds to the passive transport [see Eq. (13)].

IV. SECONDARY ACTIVE TRANSPORT AND PASSIVE
TRANSPORT IN AUTONOMOUS DEMON PICTURE

In this section, we show how the informational quantity
induces the free energy transport in secondary active transport.
To this end, we define the coarse-graining of the 16-state
model to reduce 16 states to 4 states, and derive an inequality
similar to the second law of information thermodynamics for
the autonomous demon in the 4-state model [30,68,69].
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FIG. 5. The transitions of the 4-state model are represented by
the graph G̃. The index L or R on each edge corresponds to the
particle bath attached when the transition happens. The cycles C̃X̃

1 ,
C̃X̃

2 , and C̃G form the cycle basis C̃.

A. Review on the autonomous demon in the 4-state model

We revisit the discussion of the autonomous demon in
the 4-state model. The 4-state model is composed of two
coupling subsystems X̃ and Ỹ , which represent an engine and
a demon, respectively. The states of X̃ and Ỹ are represented
as x̃ ∈ {0, 1} and ỹ ∈ {l, r}, respectively. The system X̃ is in
contact with two heat baths ν̃ = L, R and the system Ỹ is
in contact with a single heat bath ν̃ = L. The state of the
total system is represented by the random variable S̃ = (X̃ , Ỹ ),
whose realization is (x̃, ỹ) ∈ S̃ = {0, 1} × {l, r}. We assume
that the time evolution of this system is a Markov process.
Let ps̃ be the probability of being in state s̃. The probability
distribution ps̃(t ) is assumed to evolve according to the master
equation given by

d ps̃(t )

dt
=

∑
ν̃,s̃′

[
W̃ (ν̃)

s̃′→s̃ ps̃′ − W̃ (ν̃)
s̃→s̃′ ps̃

]
. (16)

We assume the following bipartite condition for the transition
rates W̃ (ν̃)

s̃′→s̃:

W̃ (ν̃)
s̃→s̃′ = W̃ X̃ (ν̃ )

x̃→x̃′|ỹδỹ,ỹ′ (1 − δx̃,x̃′ )

+ W̃ Ỹ
ỹ→ỹ′|x̃δx̃,x̃′ (1 − δỹ,ỹ′ )δν̃,L, (17)

where s̃ = (x̃, ỹ) and s̃′ = (x̃′, ỹ′). We also assume that W̃ X̃ (ν̃)
x̃→x̃′|ỹ

and W̃ Ỹ
ỹ→ỹ′|x̃ are nonzero. The transitions in the 4-state model

can be represented by the graph G̃ = (Ṽ, Ẽ ) shown in Fig. 5,
where Ṽ is the set of the vertices and Ẽ is the set of the edges.

A vertex s̃ ∈ Ṽ correspond to the state s̃ and an edge ẽ = (s̃
ν̃−→

s̃′) ∈ Ẽ corresponds to a transition from the state s̃ to the state

s̃′ in contact with the bath ν̃. We denote the sets of the edges
that correspond to the transitions of X̃ and Ỹ by Ẽ X̃ and ẼỸ ,
respectively.

To show the second law of information thermodynamics,
we define the current Jẽ, the affinity Fẽ, and the effective

affinity Fẽ of an edge ẽ = (s̃
ν̃−→ s̃′) as

Jẽ := W̃ (ν̃)
s̃→s̃′ ps̃ − W̃ (ν̃)

s̃′→s̃ ps̃′ , (18)

Fẽ := ln
W̃ (ν̃)

s̃→s̃′

W̃ (ν̃)
s̃′→s̃

, (19)

Fẽ := ln
W̃ (ν̃)

s̃→s̃′ ps̃

W̃ (ν̃)
s̃′→s̃ ps̃′

. (20)

We define σ X̃ and σ Ỹ as

σ X̃ :=
∑
ẽ∈Ẽ X̃

JẽFẽ, (21)

σ Ỹ :=
∑
ẽ∈ẼỸ

JẽFẽ. (22)

We call σ X̃ and σ Ỹ the partial entropy productions in X̃ and
Ỹ , respectively. The partial entropy production is nonnegative
because the sign of Jẽ is same as the sign of Fẽ, and JẽFẽ � 0
holds for all ẽ ∈ Ẽ . The nonnegativity of the partial entropy
productions is regarded as the second law of information
thermodynamics,

σ X̃ � 0, σ Ỹ � 0. (23)

The second law of information thermodynamics is a general-
ization of the second law of thermodynamics for a subsystem.

In particular, we consider the steady state, i.e., d ps̃/dt =
0. We denote the probability distribution at the steady state
by ps̃ = pss

s̃ . The condition d ps̃/dt = 0 is equivalent to the
equation given by∑

s̃′,ν̃

(Jẽ − Jẽ† ) = 0 (∀s̃ ∈ S̃ ), (24)

where ẽ† := (s̃′ ν̃−→ s̃) is the inverse edge of e = (s̃
ν̃−→ s̃′).

From the steady-state condition (24), we can introduce the
cycle current from the Schnakenberg network theory [70].
To introduce the cycle current, we take a cycle basis C̃ =
{C̃1, · · · , C̃Ñ } of the graph G̃. We define the cycle matrix
S(ẽ, C̃k ) for ẽ ∈ Ẽ and C̃k ∈ C̃ as

S(ẽ, C̃k ) :=
⎧⎨⎩1 (ẽ ∈ C̃k )

−1 (ẽ† ∈ C̃k )
0 (otherwise)

. (25)

Since Eq. (24) is satisfied, the edge current Jẽ can be repre-
sented as

Jẽ =
∑
C̃k∈C̃

S(ẽ, C̃k )J (C̃k ) (26)

by assigning appropriate values to the cycle currents J (C̃k )
for C̃k ∈ C̃. We define the partial affinity F X̃ (C̃k ) and the
information affinity F I (C̃k ) for a cycle C̃k ∈ C̃ as

F X̃ (C̃k ) :=
∑
ẽ∈Ẽ X̃

S(ẽ, C̃k )Fẽ, (27)
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F I (C̃k ) :=
∑

ẽ=(s̃
ν̃−→s̃′ )∈Ẽ X̃

S(ẽ, C̃k ) ln
pss

s̃

pss
s̃′

. (28)

We here choose the cycle basis C̃ = {C̃X̃
1 , C̃X̃

2 , C̃G} of the
graph G̃ as shown in Fig. 5. Using this cycle basis, the partial
entropy production in X̃ can be written as

σ X̃ = σ X̃
r + Ĩ, (29)

σ X̃
r :=

∑
C̃k∈C̃

J (C̃k )F X̃ (C̃k ), (30)

Ĩ := J (C̃G)F I (C̃G), (31)

where σ X̃
r is the change of the entropy of the baths with the

change of X̃ , and Ĩ is the information flow. The information
flow Ĩ is interpreted as a quantity representing how Ỹ mea-
sures X̃ [30]. When Ĩ > 0, Ỹ gains the information about X̃ .
When Ĩ < 0, Ỹ consumes the information about X̃ .

Defining σ Ỹ
r in the similar way, we obtain the formula for

the partial entropy production in Y given by

σ Ỹ = σ Ỹ
r − Ĩ. (32)

Thus, the second law of information thermodynamics is
given by

σ X̃ = σ X̃
r + Ĩ � 0, (33)

σ Ỹ = σ Ỹ
r − Ĩ � 0. (34)

The second law of information thermodynamics explains a
relation between the entropy change of the subsystem σ X̃

r (σ Ỹ
r )

and the information flow Ĩ. If Ĩ > 0, the quantity σ X̃
r can be

negative and the second law of thermodynamics in the sub-
system X̃ seems to be violated apparently. In other words, the
information flow Ĩ compensates the negative entropy change
of σ X̃

r . When Ĩ > 0 and σ X̃
r < 0, we say that the system X̃ is

driven by the autonomous demon Ỹ .

B. Coarse-grained picture of the 16-state model

The driver transporter in the secondary active transport is
a possible example of the autonomous demon, because the
model of the membrane transport is analogous to the model
of the autonomous demon. Thus, we wonder that the impor-
tance of the information flow in the secondary active transport
can be discussed if we generalize the discussion of the au-
tonomous demon in the 4-state model for the 16-state model
of the membrane transport. To discuss it, we here introduce
the coarse-grained picture to reduce 16 states to 4 states, and
generalize the statement of the autonomous demon for the
coarse-grained picture.

To discuss the coarse-grained picture of the 16-state model,
we regard (Xa, Za) as a “mesostate” and (Xb, Zb) as a “mi-
crostate,” and we focus on the probability distribution of the
mesostate (Xa, Za) [79,80]. The transitions of the mesostate
(Xa, Za) can be represented by the graph G̃ shown in Fig. 5
by identifying (X̃ , Ỹ ) with (Xa, Za). We denote the probability
distribution at steady state of the 16-state model by pss

s .

We define the coarse-grained probability distribution P ss
xaza

,
the coarse-grained edge current J ss

ẽ , and the coarse-grained
transition rate W (ν)

s̃→s̃′ of the mesostate at the steady state as

P ss
xaza

:=
∑
xb,zb

pss
xaxbzazb

, (35)

J ss
ẽ :=

∑
xb,zb

[
W (ν)

s→s′ pss
s − W (ν)

s′→s pss
s′
]
, (36)

W (ν)
s̃→s̃′ :=

∑
xb,zb

W (ν)
s→s′ pss

s

P ss
s̃

, (37)

where s = (xa, xb, za, zb) and s′ = (x′
a, xb, z′

a, zb) represents
states of the 16-state model, s̃ = (xa, za) and s̃′ = (x′

a, z′
a) rep-

resents states of the mesostate, and ẽ = (s̃
ν−→ s̃′) is an edge

of the graph G̃. Since the transition rate W (ν)
s→s′ of the 16-state

model satisfies the bipartite condition (8), the coarse-grained
transition rate W (ν)

s̃→s̃′ of the mesostate also satisfies the follow-
ing bipartite condition:

W (ν)
s̃→s̃′ =W Xa (ν)

xa→x′
a|za

δza,z′
a
(1 − δxa,x′

a
)

+ W Za
za→z′

a|xa
δxa,x′

a
(1 − δza,z′

a
)δν,L, (38)

W Xa(ν)
xa→x′

a|za
:=

∑
xb,zb

W A(ν)
xa→x′

a|xbzazb
pss

s

P ss
xaza

, (39)

W Za
za→z′

a|xa
:=

∑
xb,zb

wA
za→z′

a|xaxbzb
pss

s

P ss
xaza

. (40)

Since the mesostate is in the steady state, the coarse-grained
edge current J ss

ẽ can be represented as

J ss
ẽ =

∑
C̃k∈C̃

S(ẽ, C̃k )J (C̃k ) (41)

by assigning appropriate values to the coarse-grained cycle
currents J (C̃k ) for C̃k ∈ C̃.

To show an inequality similar to the second law of infor-
mation thermodynamics in the 4-state model, we define the
coarse-grained partial affinity FXa (C̃k ) and the coarse-grained
information affinity F I (C̃k ) for a cycle C̃k ∈ C̃ as

FXa (C̃k ) :=
∑
ẽ∈Ẽ X̃

S(ẽ, C̃k ) ln
W (ν)

s̃→s̃′

W (ν)
s̃′→s̃

, (42)

F I (C̃k ) :=
∑
ẽ∈Ẽ X̃

S(ẽ, C̃k ) ln
P ss

s̃

P ss
s̃′

. (43)

We define the coarse-grained partial entropy production ṠXa

in the subsystem Xa as

ṠXa :=
∑
ẽ∈Ẽ X̃

J ss
ẽ ln

W (ν)
s̃→s̃′P ss

s̃

W (ν)
s̃′→s̃P

ss
s̃′

. (44)

Defining the coarse-grained entropy changes ṠXa
r and the

coarse-grained information flow I by

ṠXa
r :=

∑
C̃k∈C̃

J (C̃k )FXa (C̃k ), (45)

I := J (C̃G)F I (C̃G), (46)
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we can decompose the coarse-grained partial entropy produc-
tion in Xa as

ṠXa = ṠXa
r + I. (47)

Since W A(ν)
xa→x′

a|xbzazb
does not depend on xb nor zb [see Eq. (10)],

W Xa(ν)
xa→x′

a|za
= W A(ν)

xa→x′
a|xbzazb

(48)

holds. Thus, we obtain

ṠXa
r = σ Xa

r , (49)

where σ Xa
r is the change of the entropy of the heat baths with

the transition of Xa defined by

σ Xa
r :=

∑
e∈EXa

Jss
e ln

W (ν)
s→s′

W (ν)
s′→s

, (50)

where e = (s
ν−→ s′) represents the transition in the 16-state

model and EXa is the set of edges that correspond to the
transition of Xa. Since the coarse-grained edge current J ss

ẽ can
be written as J ss

ẽ = W (ν)
s̃→s̃′P ss

s̃ − W (ν)
s̃′→s̃P

ss
s̃′ ,

J ss
ẽ ln

W (ν)
s̃→s̃′P ss

s̃

W (ν)
s̃′→s̃P

ss
s̃′

� 0 (51)

holds for all ẽ ∈ Ẽ . By taking the summation over ẽ ∈ Ẽ , we
obtain the coarse-grained second law of information thermo-
dynamics,

ṠXa = σ Xa
r + I � 0, (52)

which is analogous to the second law of information thermo-
dynamics in the 4-state model given by Eq. (33). When I > 0
and σ Xa

r < 0, we also say that the system Xa is driven by the
autonomous demon Za.

We discuss a thermodynamic role of the coarse-grained
information flow in the secondary active transport. To discuss
it, we show how the transport rate J R→L

a of cargo solute
[see Eq. (11)] appears in the coarse-grained second law of
information thermodynamics given by Eq. (52). As shown in
Appendix C, the transport rate J R→L

a appears in the quantity
σ Xa

r as

σ Xa
r = J R→L

a β
(
μ(R)

a − μ(L)
a

) + J (C̃G)β(εl − εr ). (53)

Then, the coarse-grained second law of information thermo-
dynamics given by Eq. (52) becomes

J R→L
a β

(
μ(R)

a − μ(L)
a

) + J (C̃G)β(εl − εr ) + I � 0. (54)

This inequality implies that the transport rate J R→L
a is

bounded by the coarse-grained information flow I. Because
the difference between the secondary active transport and
the passive transport is characterized by the sign of J R→L

a ,
the coarse-grained information flow can quantify the differ-
ence between the secondary active transport and the passive
transport.

We discuss a relation between the coarse-grained infor-
mation flow and the main cyclic pathway of the secondary
active transport Cactive and the passive transport Cpassive

xbzb . We
analyze the behavior of σ Xa

r when the main pathway is Cactive

or Cpassive
xbzb in the 16-state model. The cycle Cactive and Cpassive

xbzb

corresponds to the cycle C̃G and C̃G† in the coarse-grained

picture, respectively [Figs. 4(c) and 4(d) and Fig. 5]. Here,
C̃G† is a cycle whose edges are the same as those of C̃G but
in the opposite direction. Then, if the cycle Cactive is dominant
in the 16-state model, the dominant pathway in the coarse-
grained picture is C̃G, i.e., |J (C̃X̃

1 )|, |J (C̃X̃
2 )| 	 |J (C̃G)| and

J (C̃G) > 0. In this case, we obtain J R→L
a ≈ J (C̃G) > 0 that

implies the secondary active transport. Since Eqs. (5), (6), and
(53) are satisfied, we obtain

σ Xa
r < 0. (55)

Using Eqs. (54) and (55), we obtain

I > 0. (56)

When conditions (55) and (56) are satisfied, we can say that
the system Xa is driven by the autonomous demon Za.

On the other hand, if the cycle Cpassive
xbzb is dominant in the

16-state model, J R→L
a ≈ J (C̃G) < 0 holds and thus we obtain

σ Xa
r > 0. (57)

This is the case of the passive transport. In this case, the sign
of the quantity I can be negative.

As we will see in Sec. VI, I > 0 holds when secondary ac-
tive transport occurs (i.e., J R→L

a > 0) and I < 0 holds when
the passive transport occurs (i.e., J R→L

a < 0). Therefore, the
sign of the coarse-grained information flow I can distinguish
secondary active transport with passive transport.

V. MULTI-BODY INFORMATION FLOW
IN THE 16-STATE MODEL

In Sec. IV, we discuss the difference between secondary
active transport and passive transport in the coarse-grained
picture. In this picture, the free energy transport in secondary
active transport is induced by the coarse-grained informa-
tion flow I, and the sign of I distinguishes secondary active
transport with passive transport. However, the coarse-grained
information flow I does not tell which pathway has a domi-
nant correspondence on the partial entropy production in Xa.
We perform the cycle decomposition [70,81] of the graph
representing the transitions of the 16-state model to generalize
the second law of information thermodynamics and the infor-
mation flow in the 4-state model to the 16-state model in the
steady state.

We represent the transitions of the 16-state model by the
graph G = (V, E ) shown in Fig. 6(a). The set of the vertices is
given by V = {s|s ∈ {0, 1}2 × {l, r}2}. An edge e = (s

ν−→ s′)
or its inverse edge e† = (s′ ν−→ s) is in the set E if and only if
the transition rates W (ν)

s→s′ and W (ν)
s′→s are nonzero. We decom-

pose the set of the edges E into four subsets as

E = EXa ∪ EXb ∪ EZa ∪ EZb, (58)

where E	 is the set of edges that correspond to the transitions
of the system 	 ∈ {Xa, Xb, Za, Zb}. Let C = {C1,C2, · · · ,CN }
be a cycle basis of the graph G. We define the cycle current
J (Ck ) and the cycle matrix S(e,Ck ) for e ∈ E and Ck ∈ C
similarly to the definitions given by Eqs. (25) and (26) for
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(a)

(b)

(c)

FIG. 6. (a) The transitions of the 16-state model are represented by the graph G. Each edge corresponds to a transition with the particle
bath corresponding to the color of the edge. (b) The cycle CXa

xbzazb
shown in this figure defines the set CXa forming a subset of the cycle basis C

[see Eq. (65)]. (c) The cycle Cauxiliary
xb

shown in this figure is an element of the set CG forming a subset of the cycle basis C [see Eq. (66)].

the 4-state model. We define the partial affinity F Xa (Ck ) and
the information affinity F I (Ck ) as

F Xa (Ck ) :=
∑

e∈EXa

S(e,Ck ) ln
W (ν)

s→s′

W (ν)
s′→s

, (59)

F I (Ck ) :=
∑

e∈EXa

S(e,Ck ) ln
ps

ps′
, (60)

where e = (s
ν−→ s′) and Ck ∈ C. We decompose the cycle

basis into three subsets as C = CXa ∪ CG ∪ CXa , where CXa is
the set of the cycles that are composed only of elements in EXa ,
CG is the set of the cycles that are composed of both elements
in EXa and those in E \ EXa , and CXa is the set of the cycles
that do not include elements in EXa . Then, the partial entropy
production in Xa can be written as

σ Xa = σ Xa
r + I, (61)

σ Xa
r :=

∑
Ck∈CXa ∪CG

J (Ck )F Xa (Ck ), (62)

I :=
∑

CG
k ∈CG

J
(
CG

k

)
F I

(
CG

k

)
, (63)

where σ Xa
r is the change of the entropy of the baths with

the change of Xa and I is the information flow. As with
the information flow Ĩ in the four-state model, I is inter-
preted as a quantity representing how the subsystem Xa is
measured by the remaining subsystems Xb, Za, Zb. When I >

0, Xb, Za, Zb gains the information about Xa. When I < 0,
Xb, Za, Zb consumes the information about Xa. The partial
entropy production σ Xa satisfies the second law of information

thermodynamics given by

σ Xa = σ Xa
r + I � 0. (64)

As we discussed in Sec. IV B, when the cycle Cactive is
dominant, σ Xa

r < 0 holds [see Eq. (55)]. In this case, we obtain
I > 0 from the second law of information thermodynamics.
On the other hand, when the cycle Cpassive

xbzb is dominant, σ Xa
r >

0 and the sign of I can be negative. We will see that I > 0
holds when secondary active transport occurs and I < 0 holds
when the passive transport occurs from the numerical analysis
shown in Sec. VI. Therefore, the information flow I is useful
to distinguish secondary active transport with passive trans-
port.

To see how each cycle in the 16-state model corresponds
to the information flow I and the partial entropy production
σ Xa , we choose a cycle basis of the graph G. The cardinality of
C is given by N = |E | − |V| + 1 = 33 since G is a connected
graph. We choose the cycle basis such that |CXa | and |CXa | are
maximized. In other words, we take CXa as a cycle basis of
the graph GXa := (V, EXa ) and take CXa as a cycle basis of the
graph GXa := (V, E \ EXa ). Then, |CXa | = 8 and |CXa | = 18. In
particular, we take CXa and CG as

CXa ={
CXa

xbzazb
|xb ∈ {0, 1}, (za, zb) ∈ {l, r}2

}
, (65)

CG = {Cactive} ∪ {
Cpassive

xbzb
|xb ∈ {0, 1}, zb ∈ {l, r}}

∪ {
Cauxiliary

xb
|xb ∈ {0, 1}}, (66)

where CXa
xbzazb

is the cycle shown in Fig. 6(b), Cactive is the
cycle corresponding to secondary active transport shown
in Fig. 4(c), Cpassive

xbzb is the cycle corresponding to passive
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transport shown in Fig. 4(d), and Cauxiliary
xb is an auxiliary cycle

shown in Fig. 6(c) (see Table I in Appendix D).
Since the quantity σ Xa

r is given by Eq. (53), it can be written
using the cycle basis of the 16-state model as

σ Xa
r = J R→L

a β
(
μ(R)

a − μ(L)
a

) + J (Cactive )β(εl − εr )

−
∑

xb

[∑
zb

J
(
Cpassive

xbzb

) + J
(
Cauxiliary

xb

)]
β(εl − εr ).

(67)

Then, the second law of information thermodynamics given
by Eq. (64) can be written as

J R→L
a β

(
μ(L)

a − μ(R)
a

)
� I + J (Cactive )β(εl − εr )

−
∑

xb

[∑
zb

J
(
Cpassive

xbzb

) + J
(
Cauxiliary

xb

)]
β(εl − εr ). (68)

This inequality gives the upper bound of the transport rate
J R→L

a by the information flow I.
Using the cycle basis of the 16-state model, the information

flow I can be decomposed into three parts

I = Iactive + Ipassive + Iauxiliary, (69)

Iactive := J (Cactive)F I (Cactive), (70)

Ipassive :=
∑
xb,zb

J
(
Cpassive

xbzb

)
F I

(
Cpassive

xbzb

)
, (71)

Iauxiliary :=
∑

xb

J
(
Cauxiliary

xb

)
F I

(
Cauxiliary

xb

)
. (72)

When the cycle Cactive corresponding to secondary active
transport is dominant, the quantity Iactivity is dominant in the
information flow. When the cycle Cpassive

xbzb corresponding to
passive transport is dominant, the quantity Ipassive is dominant
in the information flow. The quantity Iauxiliary represents the
remaining part of the information flow. We call Iauxiliary as
the auxiliary information flow. As we will confirm from the
numerical analysis in Section VI, I ≈ Iactive > 0 holds when
secondary active transport occurs. Therefore, the quantity
Iactive is the main contribution of the information flow to drive
secondary active transport.

To see the informational meaning of the quantities Iactive

and Ipassive, we define the stochastic multi-information
i(xa, xb, za, zb) and the stochastic conditional mutual informa-
tion i(xa; za|xb, zb) as

i(xa, xb, za, zb) := ln
pss

xaxbzazb

pss,Xa
xa pss,Xb

xb pss,Za
za pss,Zb

zb

, (73)

i(xa; za|xb, zb) := ln
pss

xaxbzazb
pss,XbZb

xbzb

pss,XaZaZb
xazazb pss,XbZaZb

xbzazb

, (74)

where pss,	 is a marginal probability distribution of pss on
the subsystem 	 ∈ {Xa, Xb, Za, Zb, XbZb, XaZaZb, XbZaZb} de-
fined as

pss,Xa
xa

:=
∑

xb,za,zb

pss
xaxbzazb

, (75)

pss,Xb
xb

:=
∑

xa,za,zb

pss
xaxbzazb

, (76)

pss,Za
za

:=
∑

xa,xb,zb

pss
xaxbzazb

, (77)

pss,Zb
zb

:=
∑

xa,xb,za

pss
xaxbzazb

, (78)

pss,XbZb
xbzb

:=
∑
xa,za

pss
xaxbzazb

, (79)

pss,XaZaZb
xazazb

:=
∑

xb

pss
xaxbzazb

, (80)

pss,XbZaZb
xbzazb

:=
∑

xa

pss
xaxbzazb

. (81)

Note that the expected value of the stochastic multi-
information becomes the multi-information (or the total
correlation [82]) given by

I[Xa, Xb, Za, Zb] := H (Xa) + H (Xb) + H (Za) + H (Zb)

− H (Xa, Xb, Za, Zb), (82)

where H (·) is the Shannon entropy [83]. The multi-
information is a generalization of the mutual information,
which quantifies the amount of the multi-body correlation
[84]. We remark that the multi-information in stochastic ther-
modynamics has also been discussed in multiple coevolving
systems [85].

The information affinity is written as a linear combination
of the stochastic multi-information and the stochastic condi-
tional mutual information given by

F I (Cactive) = i(0, 1, r, l ) + i(1, 0, l, r)

− i(1, 1, r, l ) − i(0, 0, l, r), (83)

F I (Cpassive
xbzb

) = i(1; r|xb, zb) + i(0; l|xb, zb)

− i(1; l|xb, zb) − i(0; r|xb, zb). (84)

Thus, the quantities Iactive and Ipassive are written as

Iactive = J (Cactive )[i(0, 1, r, l ) + i(1, 0, l, r)

− i(1, 1, r, l ) − i(0, 0, l, r)], (85)

Ipassive =
∑
xb,zb

J (Cpassive
xbzb

)[i(1; r|xb, zb) + i(0; l|xb, zb)

− i(1; l|xb, zb) − i(0; r|xb, zb)]. (86)

In this sense, we call Iactive and Ipassive as multi-body infor-
mation flows. The value of Iactive quantifies the four-body
correlation of Xa, Xb, Za and Zb. The value of Ipassive quantifies
the two-body correlation of Xa and Za under the condition of
Xb and Zb. Since I ≈ Iactive > 0 holds when secondary active
transport occurs, we can say that secondary active transport is
driven by the four-body correlation of Xa, Xb, Za and Zb. On
the other hand, I ≈ Ipassive < 0 holds when passive transport
occurs, and the passive transport can be characterized by the
two-body correlation of Xa and Za under the condition of Xb

and Zb.
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2-body

correlation

4-body

correlation

total

4-body correlation
(                    )

2-body correlation
(                     )

remaining part
(                        )

passive 

transport

(a) (c)

(b)

secondary 

active transport

FIG. 7. (a) The plot of the transport rate J R→L
a of cargo so-

lutes through the membrane vs E . When E < −εl , J R→L
a < 0 holds

(i.e., passive transport occurs) and when E > −εl , J R→L
a > 0 holds

(i.e., secondary active transport occurs). (b) The plot of the coarse-
grained information flow I versus E . When passive transport occurs
(E < −εl ), the coarse-grained information flow I is negative. When
secondary active transport occurs (E > −εl ), the coarse-grained in-
formation flow I is positive. (c) The plot of the information flow
I and the multi-body information flows Iactive and Ipassive and aux-
iliary information flow Iauxiliary. We plot information flows I and
Ix for x ∈ {active, passive, auxiliary} normalized by the partial en-
tropy production σ Xa vs E . The purple-solid line is the normalized
total information flow I/σ Xa , the red-dashed line is the four-body
correlation part Iactive/σ Xa , the blue dash-dot line is the two-body
correlation part Ipassive/σ Xa and the green-dotted line is the remain-
ing part Iauxiliary/σ Xa . When passive transport occurs (E < −εl ), the
information flow I is negative and the two-body correlation part is
dominant in the information flow. When secondary active transport
occurs (E > −εl ), the information flow I is positive and the four-
body correlation part is dominant in the information flow.

VI. NUMERICAL ANALYSIS

In this section, we perform numerical calculation to
demonstrate that the coarse-grained information flow I de-
fined in Eq. (46), the information flow I, and the multi-body
information flows Ipassive and Iactive distinguish secondary
active transport with passive transport (see Appendix E for the
numerical condition). To this end, we calculate the transport
rate J R→L

a of cargo solutes, the quantity I, the information
flow I and its decomposition Iactive, Ipassive, and Iauxiliary

for a certain range of E (Fig. 7). As shown in Fig. 7(a),
when E < −εl , J R→L

a < 0 holds, i.e., passive transport oc-
curs, and when E > −εl , J R→L

a > 0 holds, i.e., secondary
active transport occurs. The sign of the coarse-grained infor-
mation flow I is negative when E < −εl and positive when
E > −εl [Fig. 7(b)]. At the same time, when E < −εl , I < 0
holds and the four-body correlation Iactive is dominant in
the information flow. When E > −εl , I > 0 holds and the
two-body correlation Ipassive is dominant in the information
flow [Fig. 7(c)]. Note that we plot the value of I/σ Xa in-
stead of I in Fig. 7(c), but the sign of I/σ Xa coincides with
the sign of I since σ Xa � 0 holds [see Eq. (64)]. Therefore,
when secondary active transport occurs, I > 0, I > 0 and
I ≈ Iactive hold, and when passive transport occurs, I < 0,

I
II

III

I

II

III

(a) (b)

I

II

III

I

II

III

I

II

III

I

II

III

FIG. 8. (a) The value of the normalized information flow I/σ Xa

for (E, εl , εr ) ∈ [0, 12] × [−12, 0] × {2, 5, 8}. The (E, εl ) plane is
divided into three regions I (εl < −E), II (εl > E and I > 0) and
III (εl > E and I < 0). Secondary active transport occurs when
E > −εl and −εl is sufficiently large (region I), but it does not occur
even when E is sufficiently large when εl ∼ 0 (region III). (b) The
quantities Iactive/σ Xa , Ipassive/σ Xa and Iauxiliary/σ Xa for (E, εl ) ∈
[0, 12] × [−12, 0] and εr = 5 are plotted. In the region I, Ipassive/σ Xa

is dominant and in the region II, the cycle Iactive/σ Xa is domi-
nant. This behavior is consistent with the discussion in Sec. III B.
However, in the region III, not only the quantities Iactive/σ Xa and
Ipassive/σ Xa but also the quantity Iauxiliary/σ Xa correspond to a cer-
tain amount of I/σ Xa . In other words, the cycles Cactive nor Cpassive

xbzb

do not represent the main pathway of the 16-state model in the
region III.

I < 0 and I ≈ Ipassive hold. This result shows that secondary
active transport and passive transport can be distinguished by
the sign of I or I, and the four-body correlation Iactive is the
dominant contribution of the information flow in secondary
active transport.

We also calculate the information flow for a certain range
of (E, εl , εr ) to see when secondary active transport occurs.
As shown in Fig. 8(a), the (εl , E ) plane is divided into three
regions I (εl < −E), II (εl > E and I > 0) and III (εl > E
and I < 0). In the region I and III, I < 0 holds and in the
region II, I > 0 holds. This result shows that secondary active
transport occurs when E > −εl and −εl is sufficiently large
(region I), but it does not occur even if E is sufficiently large
when εl ∼ 0 (region III). Since the region II is larger for a
larger value of εr as shown in Fig. 8(a), secondary active
transport tends to occur when εr is large.
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To see what pathways mainly occur in the regions I,
II, and III, we calculate the quantities Iactive, Ipassive, and
Iauxiliary. As shown in Fig. 8(b), the multi-body information
flow Iactive and Ipassive are dominant in the regions I and II,
respectively. This behavior is consistent with the discussion in
Sec. III B. However, in the region III, not only the multi-body
information flows Iactive and Ipassive but also the auxiliary
information flow Iauxiliary corresponds to a certain amount
of the information flow. In other words, in the region III, the
cycles Cactive nor Cpassive

xbzb do not represent the main pathway
of the 16-state model.

This numerical result suggests the classification of all pos-
sible spectrum of transport modes in SLC transporter proteins
by the values of I or I. Though these values are difficult
to measure in the experimental setting, Eqs. (54) or (68)
gives a lower bound of I or I by free energy transport
J R→L

a (μ(R)
a − μ(L)

a ) and binding energy εz of the transporter.
Since free energy transport can be measured from experiment
[12] and free energy landscape can be obtained from the MD
calculation [86], one can obtain the lower bound of I or I for
actual membrane transport.

The lower bound of I or I also gives an insight for micro-
scopic description in membrane transport. Our result shows
that the four-body correlation Iactive is dominant in the infor-
mation flow for secondary active transport, i.e., I ≈ Iactive.
Then, Eq. (68) gives a lower bound of the four-body correla-
tion of Xa, Xb, Za and Zb. This bound gives a partial knowledge
of the probability distribution pss

s of the microscopic state
s = (xa, xb, za, zb) for actual membrane transport.

VII. CONCLUSIONS

In this paper, we obtain the second law of information
thermodynamics for the 16-state model representing the upper
bound of the free energy transfer of the membrane transport
by the coarse-grained information flow I or the information
flow I. The information flow I quantifies how the remaining
subsystems Xb, Za, Zb gains information about Xa. From the
cycle decomposition, we show the decomposition of the in-
formation flow I = Iactive + Ipassive + Iauxiliary, where Iactive

represents the four-body correlation of Xa, Xb, Za and Zb,
and Ipassive represents the two body correlation of Xa and Za

under the condition of Xb and Zb. We show that the four-body
correlation Iactive is dominant in the information flow for sec-
ondary active transport, while the two-body correlation Ipassive

is dominant in the information flow for passive transport. This
observation clarifies the role of the four-body correlation in
secondary active transport; it distinguishes secondary active
transport from uniport and determines the transport rate of
secondary active transport.

The strategy for the cycle decomposition of the 16-state
model presented in this paper has high potentials to analyze
the role of multi-body correlations in various biological sys-
tems composed of several subsystems. For instance, bipedal
motor proteins such as kinesin-1 and myosin V and VI walk
along a filament by alternating two motor domains (legs)
with each repetition [87–89]. To understand the relationship
between the velocity of the bipedal motor proteins and the
correlation between two legs, we can define a model com-
posed of several subsystems for bipedal motor proteins and

define a multi-body correlation by the cycle decomposition of
this model similar to the cycle decomposition of the 16-state
model presented in this work. It will be an important future
problem to investigate the role of the multi-body correlation
in biological systems composed of several subsystems.

It would be an important future work to extend our results
to the analysis of the experimental results of membrane trans-
porters. Technical advancement of measurement would enable
to estimate the coarse-grained information flow I or the infor-
mation flow I by the measurement of the probability distribu-
tion pss

s of the microscopic state s = (xa, xb, za, zb). Even with
the current results, transient and steady-state kinetics mea-
surements might be used to estimate the unmeasured parame-
ters, a similar approach reported in Ref. [90]. In this paper, the
parameters for the six-state random walk model was estimated
by fitting to the experimental results. Similar estimation of
the parameters for the 16-state model by fitting to the exper-
imental results would enable us to evaluate the information
flow. Alternatively, the current analysis might be extended to
derive the second law of information thermodynamics given
only by macroscopic quantities. Recent studies on chemical
thermodynamics [91–94] have revealed the thermodynamics
inequalities of chemical reaction networks. These inequalities
are closed with macroscopic quantities, namely, concentration
distributions. Extending these inequalities to multi-body set-
tings, one might obtain the analog of the information flow that
can be measured in actual membrane transport.
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APPENDIX A: COMPARISON OF THE 16-STATE MODEL
WITH THE ALTERNATING ACCESS MODEL

We compare the 16-state model with an existing unified
model for secondary active transport and passive transport
called the alternating access model [95]. The alternating ac-
cess model comprises one ratchet and two types of particles,
A and B, and each ratchet has two sites. One site can bind
a particle A, and the other can bind a particle B. The ratchet
is in contact with two particle baths. The particle baths and
the ratchet exchange particles A and B. There are two possi-
ble forms of the ratchet: Outward-facing and inward-facing.
Therefore, the system has eight possible states. This model is
a particular case of the 16-state model if we regard a particle
in the ratchets a and b in the 16-state model as the particles A
and B in the alternating access model, respectively.

023229-14



THERMODYNAMIC ROLE OF MAIN REACTION PATHWAY … PHYSICAL REVIEW RESEARCH 4, 023229 (2022)

APPENDIX B: MAIN REACTION PATHWAY OF THE
16-STATE MODEL WHEN E IS SUFFICIENTLY LARGE

As discussed in Sec. III B, the 16-state model reduces to
the 8-state model shown in Fig. 4(a) when E is sufficiently
large. The condition (6) leads to the inequality given by

E01lr = E10rl > max
s �=(0,1,l,r),(1,0,r,l )

Es. (B1)

Then, the probability that (xa, xb, zab) = (0, 1, lr), (1, 0, rl ) is
small and we can only consider the pathways composed of
the remaining 6 states. Since the barrier height �(ν)

z satisfies
Eq. (4), we can assume that the transition of Xa occurs with the
particle bath L(R) only when za = l (r) and the transition of
Xb occurs with the particle bath L(R) only when zb = l (r) for
simplicity in this subsection. The pathway composed of the 6
states excluding the states (xa, xb, zab) = (0, 1, lr), (1, 0, rl )
is the cycle C′active shown in Fig. 4(b) or its inverse cycle. The
Gibbs energy decreases in the cycle C′active since Eq. (5) is
satisfied. Therefore, the main pathway is not the inverse cycle
but the cycle C′active itself. The pathway C′active is described as
the cycle Cactive shown in Fig. 4(c) in the 16-state model.

APPENDIX C: RELATIONSHIP BETWEEN THE
TRANSPORT RATE J R→L

a OF CARGO SOLUTE
AND THE QUANTITY σXa

r

We derive a relationship between the transport rate J R→L
a

of cargo solute and the quantity σ Xa
r shown in Eq. (53). The

quantity J R→L
a can be written as a linear combination of Jẽ

given by

J R→L
a :=

∑
xb,za,zb

[
pss

0xbzazb
W A(R)

0→1|xbzazb
− pss

1xbzazb
W A(R)

1→0|xbzazb

]
(C1)

=
∑

za

J ss
ẽza

(C2)

where ẽza is defined as ẽza
:= ((0, za)

R−→ (1, za)). Since the
cycle matrix S(ẽza , C̃k ) for za ∈ {l, r} and C̃k ∈ {C̃X̃

1 , C̃X̃
2 , C̃G}

is given by

S(ẽl , C̃k ) =
{

0 (C̃k ∈ {C̃X̃
1 , C̃G})

1 (C̃k = C̃X̃
2 )

, (C3)

S(ẽr, C̃k ) =
{

1 (C̃k ∈ {C̃X̃
1 , C̃G})

0 (C̃k = C̃X̃
2 )

, (C4)

the transport rate J R→L
a of cargo solute can be written as a

linear combination of J (C̃k ) given by

J R→L
a = J

(
C̃X̃

1

) + J
(
C̃X̃

2

) + J (C̃G). (C5)

Therefore, J R→L
a appears in the quantity σ Xa

r as

σ Xa
r = ṠXa

r

= J
(
C̃X̃

1

)
FXa

(
C̃X̃

1

) + J
(
C̃X̃

2

)
FXa

(
C̃X̃

2

) + J (C̃G)FXa (C̃G)
(C6)

= J (C̃X̃
1 )β

(
μ(R)

a − μ(L)
a

) + J
(
C̃X̃

2

)
β
(
μ(R)

a − μ(L)
a

)
+ J (C̃G)β

(
μ(R)

a − μ(L)
a + εr − εl

)
(C7)

TABLE I. The definition the cycles used in this paper. The cycles
Cactive and Cpassive

xbzb
correspond to the reaction pathways of secondary

active transport and passive transport, respectively [Figs. 4(c) and
4(d)]. The cycles CXa

xbzazb
and Cauxiliary

xb
are introduced to construct a

cycle basis of the graph representing the transitions of the 16-state
model [Figs. 6(b) and 6(c)].

Cycle Definition

{(0, 1, l, r)
L−→ (1, 1, l, r)

L−→ (1, 1, r, r)

Cactive L−→ (1, 1, r, l )
L−→ (1, 0, r, l )

R−→ (0, 0, r, l )
L−→ (0, 0, l, l )

L−→ (0, 0, l, r)
R−→ (0, 1, l, r)}

Cpassive
xbzb

R−→ (0, xb, r, zb)
L−→ (0, xb, l, zb)}

CXa
xbzazb

{(0, xb, za, zb)
R−→ (1, xb, za, zb)

L−→ (0, xb, za, zb)}
{(0, xb, l, l )

L−→ (1, xb, l, l )
L−→ (1, xb, r, l )

Cauxiliary
xb

L−→ (1, xb, r, r)
R−→ (0, xb, r, r)

L−→ (0, xb, l, r)
L−→ (0, xb, l, l )}

= J R→L
a β

(
μ(R)

a − μ(L)
a

) + J (C̃G)β(εl − εr ). (C8)

APPENDIX D: THE DEFINITION OF THE CYCLES
IN THE 16-STATE MODEL

Table I shows the definition of the cycles in the 16-state
model. The cycles Cactive and Cpassive

xbzb correspond to the re-
action pathways of secondary active transport and passive
transport, respectively. The cycles CXa

xbzazb
and Cauxiliary

xb are in-
troduced to construct a cycle basis of the graph representing
the transitions of the 16-state model.

APPENDIX E: THE DETAIL OF THE
NUMERICAL ANALYSIS

We use the constants in the 16-state model as shown in
Table II, if not explicitly mentioned. We adopt these constants
from Ref. [77]. Note that the state z = l (r) is called the re-
laxed (energized) state in Ref. [77]. We use the different set
of constants from Ref. [77], but the constants in this paper

TABLE II. The constants shown in this table are used for the
numerical analysis in Sec. VI, if not explicitly mentioned. These con-
stants are chosen such that the transition rates W (ν )

s→s′ for ν ∈ {L, R}
and s, s′ ∈ S defined in Eqs. (8) and (10) coincide with those in
Ref. [77].

zi = l zi = r

εzi −3 ln 10 2 ln 10
�(L)

zi
−2 ln 10 3 ln 10

�(R)
zi

0 0

ν = L ν = R

τ0 10−1

τ1 10−5

β 1
μ(ν )

a 0 ln 0.8
μ

(ν )
b 0 ln 0.5
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are related to the constants in Ref. [77] by the following
equations so that the transition rates W (ν)

s→s′ for ν ∈ {L, R} and
s, s′ ∈ S defined in Eqs. (8) and (10) coincide with those in
Ref. [77]. We write the subscript MS on the constants in
Ref. [77].

εz = εz,MS, (E1)

�(ν)
z = �ν,z,MS − 10 ln 10, (E2)

ln τ0 = ln τ0,MS + 10 ln 10, (E3)

ln τ1 = ln τ0,MS + ln �AT
0,0,MS, (E4)

μ(ν)
a = ln[XII,ν,MS], (E5)

μ
(ν)
b = ln[XI,ν,MS], (E6)

where z ∈ {l, r} and ν ∈ {L, R}.
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