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Volumes of parent Hamiltonians for benchmarking quantum simulators
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We investigate the relative volume of parent Hamiltonians having a target ground state up to some fixed error
ε, a quantity which sets a benchmark on the performance of quantum simulators. For vanishing error, this relative
volume is of measure zero, whereas for a generic ε we show that it increases with the dimension of the Hilbert
space. We also address the volume of parent Hamiltonians when they are restricted to be local. For translationally
invariant Hamiltonians, we provide an upper bound to their relative volume. Finally, we estimate numerically the
relative volume of parent Hamiltonians when the target state is the ground state of the Ising chain in a transverse
field.
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I. INTRODUCTION

Quantum simulators aim at implementing nontrivial many-
body Hamiltonians the ground state, low-energy physics, and
dynamics of which are not well understood. The interactions
embedded in such Hamiltonians give rise to highly complex
quantum correlations, making analytical or numerical solu-
tions in general unfeasible. Often, however, the problem of
interest is the inverse one: given a specific relevant many-body
ground state, which are the parent Hamiltonians that generate
it?

Generic properties of Hamiltonians without a prior knowl-
edge of their explicit form can be derived from a measure
theoretical approach, as shown in random matrix theory to
study level repulsion [1], transport phenomena [2], or atomic
spectra of complex atoms [3]. Also, such technique was
employed to analyze storage capacities of attractor neural
networks [4].

We use a measure theoretical approach to calculate the
probability that by randomly sampling a Hamiltonian one
obtains the parent Hamiltonian of a targeted ground state.
That is, for a given set of Hamiltonians with some speci-
fications (e.g., dimensions, symmetries, number of parties,
locality, etc.), we estimate the proportion of them that have
a ground state which is sufficiently close to the target one.
For general Hamiltonians with the only restriction of constant
dimensionality, this quantity can be viewed as the probability
that a given quantum state of that dimension appears as a phys-
ically meaningful state. Furthermore, for a universal quantum
simulator, such probability provides one possible benchmark
on its minimal performance at implementing quantum states,
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i.e., it tells how likely a target quantum state can be sufficiently
well approximated.

Our problem bears resemblances with estimating the vol-
ume of quantum states [5,6], the volume of quantum maps
realizing a given task [7], or the volume of their corresponding
Choi states [8]. What is different here is that Hamiltonians
present a richer internal structure arising, for instance, from
locality constraints or frustration [9]. Moreover, the diago-
nalization of a Hamiltonian provides eigenstates which are
endowed with a physical meaning, while for a quantum state
it yields one of the possible equivalent ensembles that realizes
it.

A particularly relevant set of many-body Hamiltonians is
those the interactions of which take place between a restricted
number of parties. Such local structure of the Hamiltonian has
profound implications on the entanglement and correlations of
their corresponding eigenstates. Finding the ground state of
such Hamiltonians, the so-called local Hamiltonian problem,
is NP-hard [10,11]. The analysis of the volume of local parent
Hamiltonians, which is dual to the volume of such special
ground states, thus provides an alternative perspective on the
local Hamiltonian problem.

Before proceeding further, let us summarize our main re-
sults. Here we restrict ourselves to nondegenerate bounded
Hamiltonians in arbitrary finite dimension. Despite the phys-
ical relevance of gapless Hamiltonians, its volume is of
measure zero in the manifold of Hamiltonians. Under such
premises, we first show that the relative volume of parent
Hamiltonians with an exact target ground state is of mea-
sure zero. When allowing for some deviation from the target
ground state, though, this volume is finite and increases with
the dimension of the Hilbert space. This implies that imple-
menting a ground state up to some fixed tolerance is more
likely in higher-dimensional spaces than in lower-dimensional
ones. We then address the problem of computing the relative
volume of local Hamiltonians. The locality restriction renders
the problem far more difficult. Nevertheless, we provide an
upper bound for the specific case of t-local translationally
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invariant (TI) Hamiltonians. Finally, we numerically tackle
the relative volume for the ground state of the quantum
transverse Ising model, and compute how many two-local
nontranslationally invariant Hamiltonians are parent to it up
to some fidelity. For ease of exposition, we defer the proofs of
theorems and propositions to the Appendices.

II. VOLUME OF THE MANIFOLD OF HAMILTONIANS

Let HN be an N-dimensional Hilbert space and B(HN )
the set of its bounded operators. We denote by HN,k :=
{H ∈ B(HN ) : H > 0; TrH � k}, the manifold of positively
defined Hamiltonians with trace equal to or smaller than k >

0. Since any nonpositive definite Hamiltonian H ′ can always
be transformed into a positive one by freely shifting up its
eigenenergies, it suffices to calculate the volume of HN,k for k
sufficiently large.

Any H ∈ HN,k can be expressed as H = UDU †, where
D = diag(λ1, λ2, . . . , λN ), with λi > 0 ∀i, λi �= λ j ∀i, j,
TrH = ∑

i λi � k, and U is a unitary matrix. The volume
of this (convex) manifold can be computed with respect to
several bona fide metrics, such as the ones induced by the
Hilbert-Schmidt (HS), the Bures, or the trace distance [6].
The main results of our paper do not depend on the choice
of the metric, as shown later. Here we choose the measure
generated by the HS distance, dHS(A, B) =

√
Tr(A − B)2,

for two Hermitian operators A and B; inasmuch as the HS
distance is simpler to deal with, it induces the Euclidean
geometry into the manifold of Hermitian operators [12,13],
and it is widely used in quantum information tasks [14–17].
The first step to estimate the volume of the manifold is to
obtain the infinitesimal distance dHS(H, H + dH ), giving rise
to its line element ds2 := d2

HS(H, H + dH ) = Tr[(dH )2],
where dH = U (dD + U †dUD − DU †dU )U †, leading to

ds2 =
N∑

i=1

(dλi)
2 + 2

N∑
i< j

(λi − λ j )
2|(U †dU )i j |2, (1)

where we have used UdU † = −dUU † (see [12] for more
details). Notice that the two sets of variables {dλi} and
{Re(U †dU )i j, Im(U †dU )i j} do not get mixed up in the line
element, yielding a block-diagonal metric tensor the determi-
nant (in absolute value) of which corresponds to the squared
magnitude of the Jacobian determinant of the transformation
H → UDU †. Hence, the volume element of the manifold
reduces to the product form dV = dμ(λ1, . . . , λN ) × dνHaar,
where the first factor depends only on the eigenvalues of H
and the second one corresponds to the Haar measure on the N-
dimensional complex flag manifold Fl (N )

C := U (N )/[U (1)N ],
where U (N ) denotes the unitary group in dimension N . In-
deed, a volume element of the referred form is specific to
all unitarily invariant measures, since the Haar measure is
unitarily invariant. After integration we arrive to the following
proposition.

Proposition 1. The HS volume of the manifold HN,k

amounts to

volN (HN,k ) = I1(N, k)I2(N ), (2)

where

I1(N, k) =
√

N

N2! N!
ξNξN−1kN2

, (3)

with ξn = �n
j=1 j!, comes from the integration over the sim-

plex of eigenvalues, and

I2(N ) = volN
(
Fl (N )

C

) = (2π )N (N−1)/2

ξN−1
(4)

corresponds to the Haar volume of the unitaries over the
complex flag manifold.

In passing we stress that the volume of the set of
density matrices [12], ρ ∈ B(HN ) such that ρ � 0 with
Tr(ρ) = 1, is the boundary surface of Eq. (2) for k = 1, i.e.,
∂kvolN (HN,k )|k=1.

III. RELATIVE VOLUME OF HAMILTONIANS
WITH A TARGET GROUND STATE

The relative volume gives the probability of randomly
sampling a Hamiltonian H ∈ HN,k that is parent to a target
state |ψ0〉. Such Hamiltonians constitute the manifold H|ψ0〉

N,k ⊂
HN,k , the volume of which results from integrating over all
unitaries in U (N − 1). Since the volume of a manifold is basis
independent, one can always choose a basis where |ψ0〉 :=
|0〉 = (1, 0, . . . , 0)T . As the columns of U have to form an
orthonormal basis, it follows that U = 1 ⊕ U ′, where U ′ ∈
Fl (N−1)

C (recall that U is uniquely specified if it belongs to the
complex flag manifold). Thus, integrating over U ′ leads to a
volume in one dimension less, that is, an (N − 1)-dimensional
hypersurface of HN,k .

Proposition 2. The HS hypersurface of the manifold HN,k

with a target ground state |ψ0〉 is given by

S(1)
N

(
H|ψ0〉

N,k

) = I1(N, k)I2(N − 1). (5)

Accordingly, the volume of N-dimensional Hamiltoni-
ans with L fixed eigenstates is actually a hypersurface
S(L)

N (H|ψ0〉,...,|ψL−1〉
N,k ) = I1(N, k)I2(N − L). By construction, the

hypersurface of (unrestricted) Hamiltonians with a specified
ground state does not depend on the choice of the latter. This
will not be the case when imposing further structure on H|ψ0〉

N,k ,
e.g., when considering local Hamiltonians. For instance, ma-
trix product state ground states are unique ground states of
local, gapped, frustration-free Hamiltonians [9].

Still, Eq. (5) is an absolute volume, and as such tells little
about the relative occurrence of Hamiltonians with a com-
mon ground state in a given dimension. Instead, the relative
volume volr (H|ψ0〉

N,k ) := volN (H|ψ0〉
N,k )/volN (HN,k ) is the mean-

ingful quantity. However, H|ψ0〉
N,k and HN,k refer to manifolds

of different, and thus incomparable, dimensions. We address
this issue by tolerating a small deviation ε from the ground
state |ψ0〉, that is, we consider the volume of the manifold
H|ψε

0 〉
N,k , corresponding to Hamiltonians with ground states |ψε

0 〉
such that |〈ψ0|ψε

0 〉| � 1 − ε. In doing so, we extend the hy-
persurface Eq. (5) into a volume in N dimensions which is
directly comparable with Eq. (2), enabling a proper definition
of a relative volume.

Proposition 3. The HS volume of the manifold H|ψε
0 〉

N,k with
ground state |ψε

0 〉 such that |〈ψ0|ψε
0 〉| � 1 − ε for sufficiently
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FIG. 1. Logarithm of the relative volume of the manifold H
|ψε

0 〉
N,k

as a function of the error ε for different dimensions of the Hilbert
space N .

small ε is given by

volN
(
H|ψε

0 〉
N,k

) = I1(N, k)
∫

Fl (N )
C

1[1−ε,1](|〈ψ0|U |0〉|)

×
∣∣∣∣∣∏

i< j

2Re(U †dU )i jIm(U †dU )i j

∣∣∣∣∣
≈ εI1(N, k)I2(N − 1), (6)

where 1[1−ε,1] is the indicator function.
One immediately obtains the following proposition.
Proposition 4. The relative volume of H|ψε

0 〉
N,k is

volr
(
H|ψε

0 〉
N,k

) ≈ ε
I2(N − 1)

I2(N )
≈ ε(2π )1−N (N − 1)!. (7)

As expected, this probability vanishes for ε = 0, meaning
that the subset of Hamiltonians with an exact target ground
state is of measure zero. Figure 1 shows the behavior of
the relative volume in logarithmic scale with respect to ε as
the Hilbert-space dimension increases. The relative volume
monotonically increases with the dimension of H except for
lower values of N where the monotonicity is lost due to the
singular behavior already shown by the volume of the unitary
ball in small dimensions. For sufficiently large N , a better
insight can be obtained by using Stirling’s formula leading
to volr (H|ψε

0 〉
N,k ) ≈ ε(2π/e)−N NN . Clearly, the relative volume

increases with N , for N 
 1. However, as the relative volume
should be smaller than 1, this imposes as well a restriction in
the maximal compatible error, ε � (2π/e)N N−N . Thus, for
large N , and as long as this last inequality holds, a higher-
dimensional Hamiltonian is more likely to be parent to a target
ground state up to some fixed error than the corresponding
lower-dimensional one.

The above results can be easily adapted to real Hamiltoni-
ans by properly modifying the line element of the manifold
to the real case in Eq. (1). For such a case, vol(R)

r (H|ψε
0 〉

N,k ) ≈
ε 2

(1−N )
2 π− N

2 �( N
2 ), with � the Euler gamma function [18], as

explicitly shown in Appendix A. Roughly speaking, this result
reflects the fact that the number of free parameters in real
Hamiltonians is reduced by half.

Finally, we note that although the volume of the manifold
of Hamiltonians depends on the used metric the relative
volume does not, as far as the measure is unitarily

invariant. Indeed, the dependence on the metric in
volN (HN,k ) = I1(N, k)I2(N ) appears in the term I1(N, k),
which is a function of the eigenvalues of H . The use of
another metric will lead to a different Ĩ1(N, k). As relative
volumes do not depend on this term, all unitarily invariant
measures yield the same relative volume.

IV. VOLUME OF LOCAL HAMILTONIANS

Physically relevant Hamiltonians are usually local. An n-
body t-local Hamiltonian is of the form H = ∑M

i=1 hi, where
hi is a Hamiltonian acting nontrivially on at most t parties,
and M is some positive integer. Such t-local Hamiltonian can
be viewed as a set of M constraints on the n parties, each
involving at most t of them.

A way to calculate the volume of such manifold amounts
to diagonalizing each of the M t-local Hamiltonians, hi =
ui�iu

†
i , where �i are diagonal matrices of eigenvalues, and

ui are the corresponding unitary matrices. Defining dGi :=
u†

i dui, the line element of this manifold becomes

ds2 =
M∑

i=1

[
N∑

k=1

(d�ik )2 +
N∑

k �=l

(�ik − �il )
2|(dGi)kl |2

]

+
M∑

i �= j

Tr[ui(d�i + dGi�i − �idGi )u
†
i

× u j (d� j + dGj� j − � jdGj )u
†
j ]. (8)

Although the first term of the line element can be treated in the
same manner as in Eq. (1), the second one contains crossed
terms dhidh j which turn out to be an involved function of the
eigenvalues and eigenvectors both of hi and of h j , preventing
us from obtaining a valuable expression for the volume of
local Hamiltonians.

Let us restrict to TI Hamiltonians, i.e., those of the form
H = ∑

hi where all hi are locally equal, that is, hi ≡ 1 ⊗
· · · ⊗ 1 ⊗ h(i) ⊗ 1 ⊗ · · · ⊗ 1, where h is a dt -dimensional
Hamiltonian acting on t d-dimensional parties, and the
multi-index i labels the set where t acts. If we restrict to
one-dimensional models, the multi-index i refers to the first
particle in which h acts.

Even in the simplest instance of TI (n = 3, d = t = 2) the
calculation of the volume remains out of reach. Take H =
h1 + h2 = h ⊗ 1 + 1 ⊗ h with dim(h) = 22. The line element
of this manifold reads

ds2 = 4
4∑

k=1

(d�k )2 + 4
4∑

k �=l

(�k − �l )
2|dGkl |2

+ 2Tr[u(d� + dG� − �dG)u†

× Pu(d� + dG� − �dG)u†P†], (9)

where h1 = u�u†, h2 = (Pu)�(Pu)†, and dG = u†du, with u
a unitary matrix, � a diagonal matrix of eigenvalues, and P
a permutation of every row of u except for the first and last
ones. Even though the second term only depends on a single
unitary u and a permutation matrix P, the metric still involves
hundreds of terms [19]. Nevertheless, we find an upper bound
to the volume of TI Hamiltonians by considering that the local
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terms hi are equal but act in disjoint subspaces, i.e., H =⊕
i hi. For such Hamiltonians, the line element would be given

by the (corresponding) Eq. (1), permitting the computation
of the volume. Locally nonoverlapping TI Hamiltonians are
subject to fewer constraints than their generic TI counterparts,
and thus the volume of the former should upper bound that of
the latter. To see why, let us express the Hamiltonian in terms
of the generators of the corresponding algebra. Any t-local TI
Hamiltonian can be expressed as H = ∑M

l=1 hl , with hl ≡ h =∑d2−1
i, j,...,k=0 αi j...k σi ⊗ σ j ⊗ . . . ⊗ σk︸ ︷︷ ︸

t

, ∀l . The set {σm} denotes

the generators of SU (d ) and the identity, forming a proper ba-
sis of B(H). The coefficients αi j...k are real and independent.
Suppose that such a manifold is associated to some metric ten-
sor g. Now, removing the crossed terms dhidh j from the line
element in Eq. (8) results in a diagonal metric tensor g̃, such
that g = g̃ + X , where X is a matrix with vanishing diagonal.
Due to the positivity of metric tensors, Hadamard’s inequality
[20] can be applied to show that det(g) � det(g̃). Therefore,
calculating the volume associated to the line element without
crossed terms yields an upper bound for the volume of the
manifold of t-local TI Hamiltonians of dimension N (HTI

N,k,t ),
as formally demonstrated in Appendix B.

Theorem 1. The HS volume of the t-local manifold HTI
N,k,t

is upper bounded by

voldt

(
HTI

N,k,t

)
� ν

κ
2 I1

(
dt ,

k

ν

)
I2(dt ), (10)

where ν = Mdn−t and κ = d2t − 1.
Like the absolute volume of generic Hamiltonians

[Eq. (2)], this bound decreases with increasing number of
parties n. However, the prefactor ν

κ
2 makes the bound increase

with the local dimension d and with the locality factor t .
The dt -dimensional volume in Eq. (10) upper bounding the

volume of t-local TI Hamiltonians is of measure zero with
respect to the dn-dimensional volume of all Hamiltonians with
the same number of parties. Thus, an upper bound for the
relative volume cannot be defined under the TI restriction. To
shed some light on this question, we now allow for locality
to be broken up to a small extent. Consider a Hamiltonian of
the form H = hTI + δhNL, where hTI is a TI Hamiltonian, hNL

is a generic nonlocal Hamiltonian, and δ � 1. Embedding the
manifold of t-local TI Hamiltonians in such a dn-dimensional
manifold now permits the definition of a relative volume. Ap-
plying the same arguments leading to Theorem 1, one obtains
the following theorem.

Theorem 2. The relative volume of dn-dimensional δ-TI
Hamiltonians H = hTI + δhNL, with hTI a t-local TI Hamil-
tonian such that TrhTI � k, δ � 1 and hNL a general nonlocal
Hamiltonian with TrhNL � k′ � k, fulfills

volr
(
Hδ-TI

N,k,k′,t
)

� δκ ′
ν

κ
2

I1(dt , k)I2(dt )I1(dn, εk′)
I1(dn, k + δk′)

, (11)

where ν = Mdn−t , κ = d2t − 1, and κ ′ = dn − 1.
The proof goes similarly to the one for Theorem 1. This

bound decreases with the number of parties n, and increases
with the local dimension d and the locality factor t . The factor
δdn−1, however, makes the bound very small.

FIG. 2. Approximate relative volume of H′
Ising (with periodic

boundary conditions), with Ji ∈ [0, 2] ∀i, and g = 1, such that the
state fidelity F (|φ〉, |σ 〉) = |〈φ|σ 〉|2 between its ground state and
that of H (for g = J = 1) is larger than or equal to 1 − ε (crosses),
together with the Beta CDF that approximates it (solid lines): n = 4
(blue), n = 6 (magenta), and n = 8 (black).

V. NUMERICAL STUDY: TRANSVERSE-FIELD
ISING CHAIN

To analyze the performance of a quantum simulator using
relative volumes under a more realistic scenario, we now
take a numerical route. We consider the transverse-field quan-
tum Ising model in one dimension with Hamiltonian H =∑n

i=1 Jσ z
i σ z

i+1 + gσ x
i and ground state |ψ0〉, which can be

analytically obtained using a Jordan-Wigner transformation.
Here g is the magnitude of the external magnetic field, and J
the coupling between spins. Assume now that the spin-spin
interactions deviate from the constant value J , so that the
translational symmetry is broken and the Hamiltonian reads
H ′ = ∑n

i=1 Jiσ
z
i σ z

i+1 + gσ x
i , with H′

Ising the manifold of all
such Hamiltonians. Here we estimate the probability of ran-
domly sampling a Hamiltonian with ground state |ψε

0 〉 from
the set H′

Ising (we have realistically assumed that the quantum
simulator at hand is only able to implement Hamiltonians
from the set H′

Ising). The ratio between those and the total
number of sampled H ′ gives us an estimation of the rela-
tive volume volr (H′|ψε

0 〉
Ising ) := vol2n (H′|ψε

0 〉
Ising )/vol2n (H′

Ising). Such
ratio is well approximated by a Beta cumulative distribution
function, as the Beta distribution is well suited for modeling
the behavior of random variables that are limited to inter-
vals of finite length, such as in our paper where Ji ∈ [0, 2].
The relative volume as a function of ε naturally behaves
as a cumulative distribution function, as depicted in Fig. 2.
For small ε, we can approximate the relative volume as
volr (H′|ψε

0 〉
Ising ) ≈ �(α+β )

α�(α)�(β )ε
α , where α ∼ poly(n) and α, β > 0,

making it decrease with n. Interestingly, the probability of
sampling the desired ground state up to a small error in this
setting decreases with the number of spins, which is coherent
with the observation that the TI constraint Ji = J ∀i of the
target ground state becomes more restrictive as n increases.
Although this behavior seems a priori contradictory with what
occurs when allowing for completely general Hamiltonians,
notice that the relative volume here is defined with respect to
the volume of the manifold H′

Ising. Had the relative volume
been estimated with respect to all possible Hamiltonians in
N = 2n, we would have recovered the results obtained in
Proposition 4.

023228-4



VOLUMES OF PARENT HAMILTONIANS FOR … PHYSICAL REVIEW RESEARCH 4, 023228 (2022)

VI. DISCUSSION

Measure theory is a powerful tool for tackling different
aspects of Hamiltonians of which one has limited knowledge.
Our paper provides an application of this tool for the computa-
tion of volumes of parent Hamiltonians independently of their
specific features. We have demonstrated that the HS measure,
or any other unitarily invariant one, is appropriate to compute
relative volumes of parent Hamiltonians of a target ground
state up to some error. This quantity has a direct interpretation
as a minimal benchmark to the performance of quantum simu-
lators that aim at preparing a target ground state. We have also
applied our method to the physically relevant class of local
Hamiltonians, obtaining in this case an upper bound to the
relative volume. The difficulty of computing an exact volume
under locality constraints calls for the development of more
convenient techniques, which could shed further light on the
interplay between the physics of locality and the geometry of
the underlying Hilbert space.
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APPENDIX A: PROOF OF PROPOSITIONS 1–3

Using H = UDU † one obtains dH = U (dD + U †dUD −
DU †dU )U †, which leads to

ds2 =
N∑

i=1

(dλi )
2 + 2

∑
i< j

(λi − λ j )
2|(U †dU )i j |2. (A1)

Now, differentiating the condition
∑N

i=1 λi = k̃ � k, one
gets

∑N
i=1 dλi = 0, which implies dλN = −∑N−1

i=1 dλi.

Then

N∑
i=1

(dλi )
2 =

N−1∑
i=1

(dλi )
2 +

(
N−1∑
i=1

dλi

)2

=
N−1∑
i, j=1

dλig
(λ)
i j dλ j,

(A2)

where g(λ) = 1N−1 + JN−1, with JN an N-dimensional matrix
of ones, is a metric tensor with determinant det g(λ) = N .

Notice that, since the two sets of variables {dλi} (with
metric tensor g(λ)) and {Re(U †dU )i j, Im(U †dU )i j} (with met-
ric tensor g(U )) do not get mixed up in the line element,
the global metric g is block diagonal and its determinant
is given by det g = det g(λ) det g(U ) = N[

∏
i< j 2(�i − � j )2]2,

which is positive since H is a Riemannian manifold.
The volume element of a Riemannian manifold gains a

factor
√| det g| [21]. Thus,

dV =
√

N
N−1∏
i=1

dλi

∏
i< j

(λi − λ j )
2|

∏
i< j

2Re(U †dU )i j

× Im(U †dU )i j |, (A3)

which has the form dV = dμ(λ1, . . . , λN ) × dνHaar, where
dμ(λ1, . . . , λN ) depends only on the eigenvalues of H and
νHaar is the Haar measure on the complex flag manifold
Fl (N )

C := U (N )/[U (1)N ]. Indeed, the following invariant
metric can be defined on the unitary group: ds2

U :=
d2

HS(U,U + dU ) = Tr(dUdU †) = Tr(U †dUdU †U ) = −Tr
(U †dU )2, where the last equality is obtained by
noting that U †U = 1 implies dU †U = −U †dU . Then,
ds2

U = ∑
i |(U †dU )ii|2 + 2

∑
i< j |(U †dU )i j |2, which induces

the Haar measure on U (N ). For unitaries with fixed diagonal,
that is, U ∈ Fl (N )

C , only the second term is retrieved, yielding
the Haar measure on Fl (N )

C (which is present in our volume
element). The Haar measure is invariant under unitary
transformations, meaning that νHaar(V ) = νHaar(UV ), where
V is a subset of U (N ).

Therefore, the volume of the manifold of N-dimensional
(complex) nondegenerate Hamiltonians with bounded trace
HN,k := {H ∈ B(HN ) : H > 0; TrH � k} amounts to

volN (HN,k ) :=
∫

H :H>0,
TrH�k

dV = I1(N, k)I2(N ), (A4)

where

I1(N, k) =
√

N

N!

∫ ∞

0

∫ k

0
δ

(
N∑

j=1

λ j − k̃

)∏
i< j

(λi − λ j )
2

N∏
i=1

dλidk̃ =
√

N

N!

∫ k

0

k̃N2−1

�(N2)

N∏
j=1

�( j + 1)�( j)

�(2)
dk̃

=
√

N

N!

1

�(N2)

N∏
j=1

�( j + 1)�( j)

�(2)

kN2

N2
=

( √
N

N2! N!

N∏
j=1

�( j + 1)�( j)

)
kN2

(A5)

[see Eqs. (3.37)–(3.44) in [22] and Eqs. (4.1)–(4.3) in [12]], and

I2(N ) =
∫

Fl (N )
C

∣∣∣∣∣∏
i< j

2Re(U †dU )i jIm(U †dU )i j

∣∣∣∣∣ = volN
(
Fl (N )

C

) = (2π )N (N−1)/2

1!2! . . . (N − 1)!
=:

(2π )N (N−1)/2

ξN−1
. (A6)
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A few remarks are in order. Notice that the diagonalization
transformation H = UDU † needs to be unique; otherwise,
the volume of H would be overestimated. For that, one first
has to fix the order of the eigenvalues (in our case, 0 <

λ1 < λ2 < · · · < λN ), since different permutations of the vec-
tor of eigenvalues pertain to the same unitary orbit. That is
why we introduce the 1/N! factor in I1(N, k). Second, since
H = UBDB†U †, where B is a diagonal unitary matrix, U is
generically determined up to the N arbitrary phases present
in B. Therefore, U is uniquely specified if U ∈ Fl (N )

C . The
volume of this manifold with respect to the Haar measure is
well known and given by Eq. (A6) [12,23]. Finally notice that
the second equality in (A5) can be read as the volume of states
(with unit trace) times the scaling factor k̃N2−1 coming from
the N2 eigenvalue factors and the delta factor that subtracts
one unit.

Now, to calculate the volume of the manifold of Hamil-
tonians that have a specified ground state |ψ0〉, denoted by
H|ψ0〉

N,k ⊂ HN,k , one has to impose that one of the columns of
the unitaries over which we integrate coincides with |ψ0〉:

∫
Fl (N )

C

δ(|〈ψ0|U |0〉| − 1)

∣∣∣∣∣∏
i< j

2Re(U †dU )i jIm(U †dU )i j

∣∣∣∣∣
= volN−1

(
Fl (N−1)

C

) = (2π )(N−1)(N−2)/2

1!2! . . . (N − 2)!

= I2(N − 1), (A7)

where |0〉 = (1, 0, . . . , 0)T and so U |0〉 denotes the first col-
umn of U .

The integration over the eigenvalues does not change, so
we have

S(1)
N

(
H|ψ0〉

N,k

) = I1(N, k)I2(N − 1). (A8)

Note that the volume of Hamiltonians with a target ground
state is actually a hypersurface. In turn, fixing L eigenstates
implies S(L)

N = I1(N, k)I2(N − L).
If instead one wants to compute the volume of Hamiltoni-

ans with a given ground state |ψ0〉 up to error ε in overlap, one
needs to impose that one of the columns of the unitaries in I2

is approximately |ψ0〉:
∫

Fl (N )
C

1[1−ε,1](|〈ψ0|U |0〉|)
∣∣∣∣∣∏

i< j

2Re(U †dU )i jIm(U †dU )i j

∣∣∣∣∣
≈

∫
Fl (N )

C

εδ(|〈ψ0|U |0〉|−1)

∣∣∣∣∣∏
i< j

2Re(U †dU )i jIm(U †dU )i j

∣∣∣∣∣
= εI2(N − 1), (A9)

with |0〉 = (1, 0, . . . , 0)T and 1[1−ε,1](x) the indicator func-
tion being 1 for x ∈ [1 − ε, 1] and 0 otherwise. Note that the
approximation is valid for sufficiently small ε.

The integral over the eigenvalues is the same, so finally

volN
(
H|ψ0〉

N,k

) ≈ εI1(N, k)I2(N − 1). (A10)

As a consequence, the relative volume of Hamiltonians with a
target state up to error ε is given by

volr
(
H|ψε

0 〉
N,k

)
:= volN

(
H|ψε

0 〉
N,k

)
volN (HN,k )

= ε(2π )1−N (N − 1)!. (A11)

All the previous results hold when considering complex
Hamiltonians. However, it is also of interest to obtain the
relative volume of the subset of real Hamiltonians: as recently
argued in [24], it is experimentally easier to implement real
states (rebits) and real operations in a single-photon interfer-
ometer setup when compared to general states and operations.
Knowing that a real N-dimensional Hamiltonian is diagonal-
ized as H = ODOT , where O is an orthogonal matrix, suffices
to extend our results to the domain of real Hamiltonians. In
this case, I2(N ) corresponds to the volume of the real flag
manifold [12], that is,

I2(N ) = volN
(
Fl (N )

R

) = (2π )N (N−1)/4πN/2

�
(

1
2

)
. . . �

(
N
2

) , (A12)

implying

vol(R)
r

(
H|ψε

0 〉
N,k

) ≈ ε
volN−1

(
Fl (N−1)

R

)
volN

(
Fl (N )

R

) = ε 2
(1−N )

2 π− N
2 �

(
N

2

)
.

(A13)

APPENDIX B: PROOF OF THEOREM 1

For the sake of clarity, we first demonstrate Theorem 1 for
two-local Hamiltonians and eventually generalize the proof to
the t-local case.

Consider the manifold HTI
N,k,2 of two-local N-dimensional

TI Hamiltonians on a chain H = ∑M
i=1 hi, with locally

equal sub-Hamiltonians hi ≡ 1 ⊗ · · · ⊗ 1 ⊗ h(i) ⊗ 1 ⊗ · · · ⊗
1, where h is a d2-dimensional Hamiltonian acting on two
d-dimensional parties, and the multi-index i refers to the
first particle in which h acts. For the purpose of this proof,
we do not require H > 0, but only TrH � k ∈ R. Each sub-
Hamiltonian can be written as h = ∑d2−1

i, j=0 αi jσi ⊗ σ j , where
σi are the generators of SU (d ) plus the identity and αi j ∈ R.
If M = n − 1, the line element of this manifold reads

ds2 = Tr(dH2) =
M∑

i=1

Tr
(
dh2

i

) +
∑
i �= j

Tr(dhidh j )

= dn

(
M

d2−1∑
i, j=0

dα2
i j + 2

[
(M − 1)

d2−1∑
j=1

dα0 jdα j0

+
(

M

2

)
dα2

00

])
. (B1)

Now, since TrH = Mdnα00 = k′ � k, dα00 = 0 and the
metric becomes g

dn = ⊕d2−1
i=1 ( M M − 1

M − 1 M ) ⊕ ⊕d4−2d2+1
i=1 M,

with determinant det( g
dn ) = (2M − 1)d2−1Md4−2d2+1. The

023228-6
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volume of this manifold is then

vol
(
HTI

N,k,2

) =
√

| det g|
∫ d2−1∏

i, j=1

dαi j

∫ d2−1∏
j=1

dα0 jdα j0

×
∫ k

Mdn

0
δ(α00 − k′)dα00dk′. (B2)

Consider now the previous line element without the term∑
i �= j Tr(dhidh j ). Such line element corresponds to some

manifold H̃:

ds̃2 =
M∑

i=1

Tr
(
dh2

i

) = dn

(
M

d2−1∑
i, j=0

dα2
i j

)
. (B3)

Its metric is given by g̃
dn = ⊕d4−1

i=1 M, with determinant

det( g̃
dn ) = Md4−1, yielding a volume vol(H̃) as in Eq. (B2)

with g̃ instead of g. Since det g � det g̃, it holds that
vol(HTI

N,k,2) � vol(H̃).
Note that this argument can be extended to t-local TI

Hamiltonians H = ∑M
i=1 hi in either one, two, or three dimen-

sions, with hi ≡ h = ∑d2−1
i, j,...,k=0 αi j...k σi ⊗ . . . ⊗ σk︸ ︷︷ ︸

t

, and any

value of M. Their associated g̃ metric is a diagonal matrix with
repeated entry Mdn, whereas g = g̃ + X , where X is a matrix
with vanishing diagonal. Now, since the metric is always
positive definite, Hadamard’s inequality [20] can be applied
to show that det(g) � det(g̃), implying vol(HTI

N,k,t ) � vol(H̃).
In conclusion, calculating the volume associated to ds̃2 will

give an upper bound for the volume of t-local TI Hamilto-
nians. In order to do so, we now impose H > 0 and rewrite
the line element as ds̃2 = ∑M

i=1

∑N
k=1(d�ik )2 + ∑

k �=l (�ik −
�il )2|(dGi )kl |2, where hi is diagonalized as hi = ui�iu

†
i with

�i = diag(�i1, . . . , �iN ), ui an N-dimensional unitary ma-
trix, and dGi = u†

i dui. Now, since the Hamiltonian is TI, it
holds that �i ≡ � ∀i, where � = ⊕dn−t

i=1 diag(�1, . . . , �dt ),
and ui = Piu with Pi a permutation matrix and u an N-
dimensional unitary. Therefore, dGi = u†

i dui = u†P†
i Pidu =

u†du ≡ dG ∀i. Then we have ds̃2 = Mdn−t (
∑dt

i=1(d�i )2 +∑dt

k �=l (�k − �l )2|dGkl |2).
Finally, imposing that the trace of h is fixed, i.e.,∑dt

i=1 d�i = 0, one obtains d�dt = −∑dt −1
i=1 d�i and so

ds̃2 = Mdn−t

⎡
⎣dt −1∑

i=1

(d�i )
2 +

(
dt −1∑
i=1

d�i

)2

+
dt∑

k �=l

(�k − �l )
2|dGkl |2

⎤
⎦ =

∑
i, j

γiqi jγ j, (B4)

with q a metric tensor and γ the vector of integration variables. The determinant of the metric tensor is det(q) =
νκdt

∏
i< j 4(�i − � j )4, where ν = Mdn−t and κ = dt − 1 + dt !

(dt −2)! = d2t − 1, so the volume element gains a factor
√| det(q)|:

dṼ = ν
κ
2 d

t
2

∏
i< j

(�i − � j )
2

dt −1∏
i=1

d�i

∣∣∣∣∣∏
i< j

2Re(dGi j )Im(dGi j )

∣∣∣∣∣. (B5)

Recalling that TrH = Mdn−t Trh � k and following the integration procedure in Sec. II, we obtain the claimed upper bound
for the volume of t-local TI Hamiltonians:

voldt

(
HTI

N,k,t

)
� ν

κ
2 I1

(
dt ,

k

Mdn−t

)
I2(dt ). (B6)
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