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A disciplinary profile of a country is defined as the versor whose components are the number of papers
produced in a given discipline divided by the overall production of the country. Starting from the Essential
Science Indicators (ESI) schema of classification of subject areas, we obtained the yearly disciplinary profiles of
a worldwide graph, where on each node sits a country, in the two time intervals 1988–1988 and 1992–2017, the
fall of the Berlin Wall being the watershed. We analyze the empirical pairwise cross-correlation matrices of the
time series of disciplinary profiles. The contrast with random matrix theory proves that, beyond measurement
noise, the empirical cross-correlation matrices bring genuine information. Arising from the Shannon theorem
as the least-structured model consistent with the measured pairwise correlations, the stationary probability
distribution of disciplinary profiles can be described by a Boltzmann distribution related to a generalized
nd -dimensional Heisenberg model. The set of network interactions of the Heisenberg model has been inferred and
to it, two clusterization methods, hierarchical clustering, and principal component analysis have been applied.
This allows obtaining a characterization of the worldwide bilateral interactions based on physical modeling. A
simple geopolitical analysis reveals the consistency of the results obtained and gives a boost to a deeper historical
analysis. In order to obtain the optimal set of pairwise interactions, we used a pseudolikelihood approach. We
analytically computed the pseudolikelihood and its gradient. The analytical computations deserve interest in
whatever inference Bayesian problem involving an nd -dimensional Heisenberg model.
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I. INTRODUCTION

The key role of high-level specialized knowledge in the
nowadays international political relations is an almost un-
doubted shared opinion. Beyond common sense this idea
has been formalized in a sociopolitical context by concepts
such as “soft power” [1] or “economic war” [2,3]. Scientific
research and technological innovation contribute to the pro-
duction potential of a State, in turn promoting its economic
and, consequently, political power. Losing the production po-
tential can drain it towards an actual political dependence in
the worldwide political scenario. The Lisbon European Coun-
cil held in March 2000 aimed to launch the European Union
towards a so-called knowledge-based economy [4], emphasiz-
ing how in the contemporary world the culture is somehow
thought to be linked to the economy. The strong increase
of scientific literature production of emergent countries,

*mizzo@sissa.it; izzo@diag.uniroma1.it

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

such as China or other South-East Asian countries, can be
also read under this light. Even if part of the scientific re-
search is actually financed by private companies and most
of filed patents belong to them, the role of the State in this
dynamics remains preponderant. It retains indeed power in
terms of both substantial funding of cutting edge fields and
long-term planning of research strategies. The provision of a
regulatory environment aimed to support and protect research
and innovation, e.g., patent policy, is a further prerogative
of the State. Scientific disciplines but not only come into
play in these geopolitical dynamics. The legislative system
of a country can directly act as an attractiveness of foreign
investments, generating national employment and ensuring a
tax benefit. The cultural background cast by arts or humanities
disciplines contributes to the territorial attractiveness of the
country. Economic or computer science can furnish the back-
ground for the so-called economic intelligence [5]. Big data
analytics, which requires specific informatics, technological,
and scientific competencies, can be crucial in the control
and creation of information channels. National disciplinary
profiles, intended as the high-level and shared knowledge ac-
quired in a given range of specialized fields by a given country,
and international relations are thus interconnected since high-
level knowledge acquired by the country in a given field can
be linked and can promote a specific international political

2643-1564/2022/4(2)/023224(20) 023224-1 Published by the American Physical Society

https://orcid.org/0000-0003-3878-4376
https://orcid.org/0000-0003-4976-9411
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023224&domain=pdf&date_stamp=2022-06-21
https://doi.org/10.1103/PhysRevResearch.4.023224
https://creativecommons.org/licenses/by/4.0/


M. G. IZZO et al. PHYSICAL REVIEW RESEARCH 4, 023224 (2022)

power. The specialized knowledge, furthermore, supports the
flexibility of the country in order to adapt to external changes
or to promote them at the expense of less versatile countries.
The link between national culture and international relations
has been recently the focus of several historical analysis and
specific events have been analyzed on this perspective [6–8].
The support of such a sociopolitical hypothesis by quantitative
methods has, however, not be achieved. Even the formaliza-
tion of the matter in a quantitative framework by the definition
of proper indices has been questioned [6]. Without going into
the merits of the causes, consequences and validity of the
political dynamics sketched above, we aim at establishing if
this status quo can be inferred from a quantitative analysis
of the country-level creation of high-level specialized papers.
Recently, the quantitative time series analysis and the ex-
ploitation of inference methods led to assessing a quantitative
network science and machine learning framework in order
to study social and economic issues [9]. In Ref. [10], the
dynamical structure of political corruption networks has been
obtained, the inference method based on the maximum likeli-
hood principle also allowed to obtain predictions for future
events. Interestingly, not only network quantitative charac-
terization but even mechanisms inducing the formation of a
given network structure can be analyzed [11]. Evolutionary
processes of cultural traits have been quantitatively studied
in the past [12]. A quantitative and well assessed analysis
of their relationship with worldwide geopolitical interactions
is, however, lacking. On the other hand, nowadays databases
collecting a large amount of specialized manuscripts in dif-
ferent disciplines are available and this permits to obtain
measurements of well-defined observables, e.g., bibliometric
indicators, in a given interval of time. Since the bibliometric
indicators are the a priori defined observables, grounding on
which a modeling for social analysis can be built, particular
care needs to be reserved to their definition and use in the
appropriate context [13].

On the basis of the previous observations we assume that
(i) it is possible to define a disciplinary profile related to
a given country as a vector of nd elements, being nd the
total number of disciplines taken into account. Each vector
component is the relative number of articles related to the
corresponding discipline with respect to the total country’s
production; (ii) in the perspective of analyzing the role of
specialized knowledge on the worldwide geopolitical inter-
actions it makes sense to define the disciplinary profile at
the country level. These two points permit to identify the
national disciplinary profiles as our observables with respect
to the matter under exam. Once defined the observables, we
quantify their correlations by analyzing their cross-correlation
matrices. The comparison with random correlation matrices
(RMCs) properties and random matrix theory (RMT) results
[14] permits to assess that empirical cross-correlations contain
genuine information, related to the characteristics of the un-
derlying network of interactions leading the observed national
disciplinary profiles. We further analyze the stationary in time
of the genuine information. We then apply maximum-entropy
methods derived from the Shannon theorem to model the
maximum entropy probability distribution consistent with the
measured cross-correlations, without further assumption on
nonanalyzed higher-order interactions terms. The resulting

probability distribution is the Boltzmann distribution related
to the Hamiltonian of a generalized Heisenberg model with
nd -dimensional spin variables. Development of appropriate
tools in the framework of the so-called pseudolikelihood
approach, adapted to the generalized Heisenberg model of
nd -dimensional spin variables, permitted us to infer the set of
pairwise interactions between different countries. In order to
assess the consistency of the inferred interactions and to apply
to them clusterization methods, their properties have been
contrasted with the ones of RMCs [14–16]. Finally, we apply
to the inferred interactions set algorithms usually exploited in
the analysis of cross-correlations matrices, hierarchical clus-
tering (HC) and principal component analysis (PCA) [17,18].
We obtain a division in clusters of different countries based on
their interactions profile with all the other countries.

We choose to analyze separately two different intervals of
time, i.e., 1980–1988 and 1992–2017, the fall of the Berlin
Wall being the watershed between the two time intervals. The
end of the Cold War marked a rebuilding of the geographic
borders. To separate the analysis in the two time intervals
is thus unavoidable. A comparison between the interaction
profiles inferred in the two time intervals is, however, inter-
esting because the end of the Cold War also marked a change
on the nature of international relations. From a geopolitical
and military, though not directly acted, plane they moved
towards a more distinctly geoeconomic plane. The detailed
preliminary analysis of the cross-correlations functions have
been performed only for the data referring to the time interval
1992–2017. For sake of simplicity, we analyze only lower
order correlations functions, i.e., pairwise. This choice could
be a posteriori verified if the number of acquisitions would
be large enough to obtain a reliable distribution of the N-
correlated variables, where N is the total number of variables,
as specified in the text. This is not achieved in the present
case. The preference of the bilateral interactions with respect
to multilateral ones, however, in a geopolitical plane can be
identified with a specific tendency of the contemporary world,
in particular arising after the end of the Cold War, when the
political and economic links of solidarity inside each blocs
had not met anymore. The bilateralism of the international
relations has been analyzed also in the context of soft power
[19,20]. Once consistency of the model and of the infer-
ence method has been verified in the statistical groundwork,
it is performed a simple sociopolitical analysis. The in-
ferred interactions reflect quite well the international relations
drawn by grounding on only geopolitic and geoeconomics
arguments.

The paper is organised as follows. Section II contains a
definition of the countries disciplinary profiles and describes
the database from which the bibliometric data have been
extracted and the classification schema. In Sec. III, it is de-
scribed the analysis of empirical cross correlation matrices. In
Sec. IV, it is introduced the inference method, the probability
density distribution of the countries disciplinary profiles and
the related generalized Heisenberg model with multidimen-
sional spin variables. Furthermore, the analytical computation
of pseudolikelihood and its gradient for the generalized
Hesenberg model are presented. In Sec. V, the inferred inter-
actions network is characterized applying to it HC and PCA.
Section VI contains a simple geopolitical analysis of the
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TABLE I. ESI fields used to define the disciplinary profiles.

ESI discipline Abbreviation

Agricultural Sciences AGR. SCI.
Biology and Biochemistry BIO. and BIOC.
Chemistry CHE.
Clinical Medicine CL. MED.
Computer Science COMP. SCI.
Economics and Business ECO. and BUS.
Engineering ENG.
Environment/Ecology ENV. ECO.
Geosciences GEO.
Immunology IMMU.
Materials Science MAT. SCI.
Mathematics MATH.
Microbiology MICRO-BIO.
Molecular Biology and Genetics MOL. BIO. and GEN.
Neuroscience and Behavior NEUROS. and BEH.
Pharmacology and Toxicology PHAR. and TOX.
Physics PHYS.
Plant and Animal Science PLANT. and AN. SCI.
Psychiatry/Psychology PSYC.
Social Sciences SOC. SCI.
Space Science SPACE SCI.

inferred interactions set. Concluding remarks and outlooks are
presented in Sec. VII.

II. DATABASES AND OBSERVABLES

The data analyzed in this paper were extracted from
InCites, which is a web-based tool including bibliometric
indicators about scientific production and citations of institu-
tions and countries. The indicators are generated from the Web
of Science (WoS) documents.1 The indicators at the country
level are created based on address criteria using the whole
counting method, i.e., counts are not weighted by numbers of
authors or number of addresses, and all addresses attributed to
the papers are counted. As subject area scheme for this study,
we use the Essential Science Indicators (ESI) schema which
comprises 22 subject areas in science and social sciences
and is based on journal assignments. Arts and Humanities
journals are not included because their coverage, in terms
of publication outputs, is lower compared with other subject
areas. Each journal is found in only one of the 22 subject
areas and there is no overlap between categories. Essential
Science Indicators is 22 scientific fields categories in which
journals are classified. Only one ESI is assigned to each
journal, thus the ESI of a paper will be only one, i.e., the
ESI of the journal where it is published. Only papers and
reviews from Science Citation Index Expanded and Social
Science Citation Index are mapped to ESI. Arts and Hu-
manities, Conference Proceedings Citation Index, and Book
Citation Index are excluded. Publications in journals such as

1The elaborations reported in this paper are based on indicators
exported the 2017-09-26 from InCites dataset updated at 2017-09-23
which includes Web of Science content indexed through 2017-07-31.

TABLE II. List of countries over the time period [1980-1988].

COUNTRY ISO Code

Argentina ARG
Australia AUS
Austria AUT
Belgium BEL
Brazil ARG
Bulgaria BGR
Canada CAN
Chile CHL
China CHN
Czechoslovakia CZS
Denmark DNK
Egypt EGY
Finland FIN
France FRA
Germany DEU
Great Britain GBR
Greece GRC
Hungary HUN
India IND
Ireland IRL
Israel ISR
Italy ITA
Japan JPN
Mexico MEX
Netherlands NLD
New Zealand NZL
Nigeria NGA
Norway NOR
Poland POL
South Africa ZAF
Soviet Union USSR
Spain ESP
Sweden SWE
Switzerland CHE
Usa USA
Yugoslavia SFRJ

Nature or Science, which are multidisciplinary, are assigned
by Clarivate Analytics to the most pertinent one using the
citations of each publication [21]. The ESI fields used to
define the disciplinary profiles are shown in Table I. Over
the period 1980–1988, we analyze the scientific production
of the 36 countries in Table II and over the period 1992–2017
of the 50 countries reported in Table III. InCites indicators
are quite used. Bornmann and Leydesdorf [22], for instance,
using InCites indicators, compare normalized citation impact
values calculated for China, Japan, France, Germany, United
States, and the UK throughout the time period from 1981 to
2010. Since the pioneering works, Refs. [23,24], the charac-
teristics of the disciplinary structure at the country level has
been investigated in many studies [25–34]. The analysis of
the disciplinary profiles of Eastern Europe contries and Soviet
Union and its evolution after the breakup of the Soviet Union
has been the subject of several studies [35–39]. Harzing and
Giroud [27] comparing the profiles of 34 countries across 21
disciplines showed that nations with the fastest increase in
their scientific productivity during the periods 1994–2004 and
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TABLE III. List of countries over the time period [1992-2017].

COUNTRY ISO Code

Argentina ARG
Australia AUS
Austria AUT
Belgium BEL
Brazil BRA
Bulgaria BGR
Canada CAN
Chile CHL
China CHN
Colombia COL
Czech Republic CZE
Croatia HRK
Denmark DNK
Egypt EGY
Finland FIN
France FRA
Germany DEU
Great Britain GBR
Greece GRC
Hong Kong HKG
Hungary HUN
India IND
Iran IRN
Ireland IRL
Israel ISR
Italy ITA
Japan JPN
Malaysia MYS
Mexico MEX
Netherlands NLD
New Zealand NZL
Norway NOR
Pakistan PAK
Poland POL
Portugal PRT
Romania ROU
Russia RUS
Saudi Arabia SAU
Singapore SGP
South Africa ZAF
South Korea KOR
Slovenija SLO
Spain ESP
Sweden SWE
Switzerland CHE
Taiwan TWN
Thailand THA
Turkey TUR
Ukraine UKR
Usa USA

2002–2012, which tidied up their disciplinary profile towards
a more uniform one, then continued relatively unchanging in
their well-proportioned disciplinary structures. Almeida et al.
[40] and Bongioanni et al. [26] examined disciplinary profiles
of European countries across 27 disciplines. Thelwall and
Levitt [41] analyzed 26 scientific fields in 25 countries and

Pinto and Teixeira [31] examined disciplinary profiles of 65
countries over a broad period of time (1980–2016). Different
works analyzed the 16 G7 and BRICS countries [25,39,42,43]
exploring the disciplinary profiles of 45 countries. Recently,
the disciplinary profiles of countries from all over the world
over the years 2009–2019 for the 22 ESI categories from
Clarivate Analytics were investigated in Ref. [44].

Our observable is the so-called country disciplinary profile,
which is the nd -dimensional vector,

si = (si(1), . . . , si(k), . . . , si(nd )), (1)

where i is the index of country, si(k) = ni(k)/[
∑

k ni(k)2]1/2

being ni(k) the number of articles created by the country ith
in the kth discipline. The vector si has magnitude equal to
one, |si| = 1. In the following, a μ suffix will denote a given
realization of the variable si. The index μ in the present case
coincides with a temporal index t . Thus sμ

i is a time series
related to the ith country. The sampling period of the time
series we acquired is one year. The single country can be
identified with the node identified by the index i of a network
or a graph (world). The number of countries is N, whereas the
length of a time series is M. We define furthermore the set of
matrix S = (S(1), . . . , S(k), . . . , S(nd )). The matrix S(k) has
N rows, the ith row is the time series of the ith country.

III. ANALYSIS OF THE CROSS-CORRELATION
MATRICES

The analysis of the spectral measure and of eigenvectors
statistics of the empirical cross-correlation functions, together
with the contrast with RMT, permits to deal with the following
points: (i) to assess if any and identify what features of the
measured cross-correlation functions contain genuine infor-
mation, discerning them from noise content; (ii) to analyze
the stationarity in time of the genuine information; (III) to
apply under reliable and verified conditions, as stated in the
points (i) and (ii) above, maximum-entropy based inference
methods under stationarity condition in order to infer the
underlying network of interactions generating the observed
variables configurations; and (iv) to reduce the number of free
parameters in the inference procedure, i.e., to lower the rank
of the matrix of interactions, thus possibly allowing inference
on shorter time series.

In the following, we will deal only with the first three
points above, while leaving the forth point for further devel-
opments and only commenting on it in Sec. VII.

As a rationale for putting efforts on the first two points we
notice that difficulties on applying inference methods based
on maximum entropy models is mostly related to the fact
that environment conditions can change in time and the re-
sulting cross-correlations may not be stationary. The finite
length of the time series, secondly, introduces measurements
noise. If a long time series is used in order to circumvent
the problem of finite length, the trouble of nonstationarity
of the empirical cross-correlations could in place emerge.
The contrast between the spectral measure of the empiri-
cal correlations with the one (universal) of RMCs, so-called
Wishart matrices, permits to identify the nonrandom compo-
nents of the measured cross-correlations, which can be thus
related to genuine information. As general trend, empirical
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FIG. 1. (a) Histogram representation of the eigenvalues distribution of the empirical correlation matrix C of disciplinary profiles in the
time interval 1992–2017 (white bars) and of the isomorphic finite-dimensional RCM R (red bars). (b) Histogram representation of eigenvalues
distribution of the matrix C̃ (white bars), obtained from standardized data, and R̃ (red bars). The solid curve shows theoretical predictions of
RMT, obtained from the free convolution of Marchenko-Pastur distributions by R transform. It describes quite accurately the RCM eigenvalues
distribution. Discrepancies are observed between the eigenvalues distribution of the empirical cross-correlation matrices and of RCMs in both
the low-value and high-value eigenvalues regions (see also the insets). (c) Eigenvalues distribution of C(k) corresponding to MAT. SCI.
(light-grey bars) and of R(k) (light-red bars). The solid curve shows the Marchenko-Pastur distribution. (d) Eigenvalues distribution of C̃(k)
corresponding to MAT. SCI. (light-grey bars) and of R̃ (light-red bars). The solid curve shows the Marchenko-Pastur distribution. The insets
show a zoom of the large-eigenvalues region of the eigenvalue distribution of empirical covariance matrices.

cross-correlation matrices bringing genuine information are
systematically characterized by high-value eigenvalues de-
viating from the spectral measure of RMCs, which instead
matches the so-called bulk-eigenvalue region of the spectral
measure [15,16,45]. Furthermore, we will analyze the stability
in time of the genuine information contained in the time-
dependent cross-correlation matrices, thus allowing the use of
results holding for stationary states.

A. Cross-correlations and genuine information

In the following we analyze the properties of the pairwise
cross-correlation matrix C = ∑nd

k=1 C(k) = ∑nd
k=1 S(k)S(k)T ,

where the suffix “T” stands for transpose, in the period 1992–
2017. The elements of the matrix C are

Ci j = 1

M

M∑
μ=1

sμ
i · sμ

j =
nd∑

k=1

Ci j (k) =
nd∑

k=1

1

M

M∑
μ=1

sμ
i (k)sμ

j (k).

(2)

The symbol “·” stands for scalar product. In order to
construct RCM isomorphic to the data cross-correlation

matrices we consider a set of nd independent matrices � =
(�(1), . . . ,�(k), . . . ,�(nd )). The matrix �(k) is a N × M
matrix of random elements. The mean value and variance of
the entries of each matrix �(k) is equal to that of S(k). The
σ

μ
i (k) entries of the matrix �(k), are then properly normalized

so that the vector σ
μ
i = (σμ

i (1), . . . , σμ
i (k), . . . , σμ

i (nd )) :
|σμ

i | = 1. The RCM R = ∑nd
k=1 R(k) has elements

Ri j = 1

M

M∑
μ=1

σ
μ
i · σ

μ
j =

nd∑
k=1

Ri j (k) =
nd∑

k=1

1

M

M∑
μ=1

σ
μ
i (k)σμ

j (k),

(3)

Figure 1(a) shows the eigenvalues distribution P(λ) of the
data covariance matrix, C, defined in Eq. (2) contrasted with
the eigenvalues distribution of the RCM, PRCM(λ). We also
compare the eigenvalues distribution of a single component
of C, C(k), the index k identifying here MAT. SCI. discipline,
with the one of a single term of R, R(k), see Fig. 1(c). The
matrix R(k) is a Wishart matrix W, defined in multivari-
ate statistics [46,47]. The random matrix R is the sum of
Wishart matrices with independent entries, R = ∑nd

k=1 W(k).
Each matrix W(k) has covariance α(k). The probability
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distribution of eigenvalues of a Wishart matrix is asymptot-
ically described, in the limit N → ∞ with β = M/N kept
constant, by a free Poisson distribution of rate 1/β and vari-
ance α(k). It is known as Marchenko-Pastur distribution,

ρα,β (λ) =
{
ρ̃α,β (λ), 0 � β � 1,(
1 − 1

β

)
δ0 + 1

β
ρ̃α,β (λ), β > 1,

(4)

where ρ̃α,β (λ) = 1
2παλ

√
4βα2 − [λ − α(1 + β )]2. The sym-

bol δ0 is the Kronecker delta. We omitted the index k of α(k)
in Eq. (4) to make the notation unclaterd. The measure ρ̃α,β (λ)
is supported on the interval [α(1 − √

β )2, α(1 + √
β )2]. In

Fig. 1(b), it is shown the Marchenko-Pastur distribution (full
black line) describing the eigenvalues distribution of W(k).
The random matrix R is the sum of selfadjoint matrices with
spectral measure given by the Marchenko-Pastur distribution.
They are characterized by the same parameter β and dif-
ferent variance α(k). The spectral measure of the sum of
selfadjoit matrices is given by the free convolution of the
spectral measures of each matrix when their size goes to
infinity [47,48]. Free convolution can be performed by ex-
ploiting the so-called R-transform introduced by Voiculescu
[47,49]. In order to gain more insight from RMT predictions
we further consider the eigenvalues distribution of cross-
correlation matrix, C̃, generated by the set of matrices S̃ =
(S̃(1), . . . , S̃(k), . . . , S̃(nd )), as C is generated by S following
Eq. (2). The entries of the matrices S̃(k) satisfy the condition
|s̃μ

i | = 1. A further normalization protocol has been applied to
S̃(k): the average value and variance of its entries is zero and
one respectively (standardized data). The eigenvalues distribu-
tion of C̃ is compared to that of a random matrix R̃ generated
by the matrices set �̃ = (�̃(1), . . . , �̃(k), . . . �̃(nd )). The en-
tries of each random matrix �̃(k) have zero average and
unitary variance, i.e., α is independent from k. The advantage
of using the standardized data is that the free convolution of
Marchenko-Pastur distributions with same variance α can be
easily obtained by using the R transform, differently from
when α = α(k). The probability distribution obtained by the
free convolution has the same functional form of Eq. (4), but
the parameter β is replaced by ndβ. The asymptotic analytical
expression of the spectral measure of R̃ is thus computed and
shown by a full black line in (b) of Fig. 1. In all the analysed
cases P(λ) shows significant deviations from the correspond-
ing PRCM(λ). In particular we notice a deviating behavior of
P(λ) of C and C̃ in the region of low eigenvalues values,
less pronounced in the one-dimensional case [Figs. 1(c) and
1(d)]. Furthermore, it is observed the presence of high-value
eigenvalues in the empirical cross-correlation matrices (see
the insets in Fig. 1) not reproduced neither by the RMT pre-
dictions nor by the spectral measure of the finite-dimensional
RCMs.

In order to confirm that the deviating eigenvalues bring
genuine information we further analyze the statistics of the
corresponding eigenvector components, contrasting it with
the one of RCMs and RMT predictions. Figure 2 shows the
distribution of components of selected eigenvectors of C cor-
responding to (i) its largest eigenvalue max[λ], much larger
than the largest of the RCM’s eigenvalues, λ+, (ii) a bulk
eigenvalue falling inside the RCM band [λ−, λ+], being λ−
the lowest RCM’s eigenvalue, and (iii) an eigenvalue lower

than λ−. Only in the case of the highest eigenvalue significant
deviations from RCM’s statistics, which is well described
by RMT, are observed. Since no information is contained
in an eigenvector of a RCM its N-component distribution is
a maximum entropy distribution [50], i.e., a Gaussian dis-
tribution with zero mean and variance 1/

√
N . In Fig. 2(d),

it is finally reported the so-called Inverse Participation Ra-
tio (IPR) of eigenvectors of C and R as a function of the
corresponding eigenvalues. The IPR, Ik , of the eigenvector
ξk is defined as Ik = ∑N

i=1 ξ i
k

4. It quantifies the reciprocal
number of eigenvector components significantly contributing
to it. As it is possible to infer from Fig. 2, the IPR of RCM
are localized around an average value, 〈I〉R = 3

N . The IPR of
the eigenvectors of C corresponding to the largest eigenvalue
significantly deviate from 〈I〉R and points out a high degree
of delocalization of the related eigenvectors. The value of
the IPR is indeed well represented by 1/N showing that all
the components contribute equally. This behavior reveals the
delocalized character of the eigenvector, which thus brings
information on collective modes of the system [15,16,45,50].
The IPR associated to the lowest eigenvalues also shows
deviations from RMT. Since their IPR is larger than 〈I〉R

the related eigenvectors are, however, localized on only few
nodes. It is worth to observe that the two largest components
of eigenvectors corresponding to lowest eigenvalues, ξ i

λ(low)

and ξ
j
λ(low), always correspond to large cross-correlation terms

Ci j .
Finally, we observe that both the single-discipline C(k) and

R(k) have a finite number of null eigenvalues, see Figs. 1(c)
and 1(d). According to their own definition C(k) and R(k)
have rank N − M. The existence of null eigenvalues can
hamper the application of mean-field approximation to in-
fere the couplings, since it requires inverting the covariance
matrix [51–53]. In parallel, in optimization problems, such
as the maximization of the likelihood function described in
the following or minimization of the Chi-square function,
finite size effects of the time series can make the number
of observed configurations much smaller than the number
of free parameters and it can lead, e.g., to negative-valued
averaged Chi-square. In the vector case, if the components of
the vector si are uncorrelated among themselves the number
of degree of freedom of the time series of si is increased
restoring, e.g., a positive value of the averaged Chi-square.
In Ref. [54], we show the eigenvalues of C and C(k). The
analysis of low-value eigenvalues of the empirical cross-
correlation matrix can also represent a valuable tool to fix
the optimal classification scheme of disciplines in the con-
text of our inference problem. If a very dense classification
scheme is used, with a very large number of disciplines, cor-
relations among disciplines production will arose introducing
redundant information without increasing the degrees of free-
dom. If a poorly resolved classification scheme is adopted,
matters related to small number of degrees of freedom will
show up. Correlations among a couple of disciplines is high-
lighted by considering the number of eigenvalues different
from zero of the matrix sum of two single-discipline cross-
correlation matrices calculated for a given time. Dependency
between the production of the two disciplines is present if the
number of eigenvalues different from zero is one, otherwise
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FIG. 2. (a) Distribution of eigenvector components (white bars) corresponding to the largest eigenvalue of C (λ � λ+) contrasted with the
eigenvector components distribution of test RCM (red bars) and RMT predictions (solid curve). (b) Distribution of eigenvector components
corresponding to a bulk eigenvalue λ: λ− < λ < λ+. (c) Distribution of eigenvector components corresponding to an eigenvalue λ < λ−. λ+(−)

is the largest (smallest) eigenvalue of RCM. Significant deviations from RCM’s eigenvector components distribution are observed in the case
of the eigenvector of C corresponding to eigenvalue λ � λ+, in agreement with the findings shown in Fig. 1. (d) Inverse Participation Ratio
(IPR) as a function of λ of the empirical covariance matrix (open circles) and of RCM (stars). The IPR of eigenvectors corresponding to both
the largest and smallest eigenvalues show deviations with respect to the IPR characteristic of RCM’s eigenvectors. The IPR of eigenvectors
corresponding to largest and smallest eigenvalues, furthermore, point out a respectively delocalized and localized character.

independency can be assumed. Figure 3 shows at given times
for all the possible couple of disciplines the number of
eigenvalues different from zero, thus pointing out pair-wise
correlations among disciplines.

B. Stationarity properties

We verified that the empirical cross-correlations bring
genuine information, pointing out how this information is
enclosed in the largest eigenvalues of C and corresponding
eigenvectors. We analyze the stability in time of such eigen-
vectors. Since deviations from RCM outcomes imply genuine
correlations de facto related to the underlying interactions
network, they should show some degree of stability in the
time interval used to compute C if the interactions network
remains stable and if the system is in a stationary state. We
define i) the overlap matrix O(t, τ ) = V(t )VT (t + τ ), where
V(t ) is a matrix whose columns are the eigenvectors of the
correltaton matrix at time t (notice that for sake of clarity we
substitute here the index μ with the index t) corresponding to
eigenvalues sorted in ascending order; (ii) the average overlap
matrix O(τ ) = 〈O(t, τ )〉t , i.e., the overlap matrix O(t, τ ) av-
eraged over all the starting time t included in the measured

time interval. The entries of the matrix O(τ ) for selected
values of τ and of O(t, τ ) for selected values of τ and t = 1
are displayed respectively in (a), (b) and (c), (d) of Fig. 4.
If all the eigenvectors of the matrix C(t ) were nonrandom
and stationary, both O(τ ) and O(t, τ ) would be diagonal with
entries equal to one. As shown in Figs. 4 and 5, this condition
is approximately satisfied only for eigenvectors corresponding
to λ � λ+. In particular, the eigenvector related to the largest
eigenvalue remains stable for all the period under considera-
tion, see Fig. 4(d).

IV. INFERENCE METHOD

A. Maximum entropy estimates of second-order marginal
and definition of the likelihood function

The Shannon theorem [55] states that the entropy S defined
in statistical mechanics is a measure of the “amount of uncer-
tainty” related to a given discrete probability distribution p of
variables configuration s = {s1, . . . , sN },

S[p] = −K
∑
{s}

p({s}) ln[p({s})]. (5)
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FIG. 3. Number of eigenvalues different from zero in a matrix obtained by the sum of two empirical cross-correlation matrices related
to two different disciplines, C(k) + C(l ). Each cross-correlation matrix is calculated for a single time t. A number of eigenvalues different
from zero equal to one highlight a dependency between the manuscripts production of the corresponding couple of disciplines at the time t .
Though dependency between some couples of disciplines is present, the production of most of the disciplines is uncorrelated, thus supporting
the appropriateness of the classification scheme adopted.

K is a positive constant, hereafter taken equal to one. This
quantity is positive and additive for independent sources
of uncertainty. In making inference on the basis of partial
available information, the probability which maximizes the
amount of uncertainty or entropy subject to whatever is known
[56–59] has to be used. Since the empirical expectation val-
ues are known, formally this means that p({s}) is found as
a solution of a constrained optimization problem, i.e., the
entropy of the distribution should be maximized subject to
conditions that enforce the expectation values to coincide with
the empirical ones. One refer to the quantities whose averages
are constrained as “features” of the system. As emphasized
in Sec. I, we only take into account pairwise interactions, ne-
glecting higher order of interactions. Such a choice could be a
posteriori validated in the case where an empirical probability
distribution of configurations {s} can be obtained from the
data, i.e., when the number of acquisitions is large enough
[57,58]. This is not the case for the data we are handling.
We, however, shortly describe in the following the protocol
in order to assess this. The content of information enclosed
in a given order interaction (pairwise, triplet, and so on) can
be quantified by defining the maximum entropy related to
the marginal of order k, where k = 1, 2, . . . , N being N the
total number of observables. Given a joint probability distri-
bution p({s1, . . . , sN }) the marginal of order k is then defined

as pk ({s1, . . . , sk}) = ∑
s j �=s1,...,sk

p({s1, . . . , s j, . . . , sN }). The
marginal pk can be also defined as the maximum entropy
distributions that are consistent with the kth order correlations.
The marginal of order N corresponds to the exact distribu-
tion of the N correlated variables, whereas the marginal of
order 1 states for the distribution of N independent vari-
ables. The entropies related to marginals of a given order,
Sk , decreases monotonically by increasing k towards the true
entropy SN . The connected information or entropy difference,
Ik = Sk−1 − Sk , represents the amount by which the maxi-
mum possible entropy of the system decreases when one goes
from including marginals of order k − 1 to including also
marginals of order k, thus providing a characterization of the
relative importance of various orders of interaction [57,58,60].
The multi-information IN = S1 − SN instead quantify the total
amount of correlation in the network, independent of whether
it arises from pairwise or higher order interactions. The
contrast between IN and I2 permits thus to assess if the pair-
wise interaction model provide an effective description of the
system.

Observing variables only in pairs, the optimization prob-
lem reduces to

Maxp({s})S[p({s})], (6)
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FIG. 4. [(a) and (b)] Average overlap matrix, O(τ ) = 〈O(t, τ )〉t , for two different delay time τ . [(c) and (d)] Overlap matrix O(t = 1, τ ) for
two different delay time τ . The overlap matrix is O(t, τ ) = V(t )VT (t + τ ), where V(t ) is the matrix whose kth column is the kth eigenvector
of the correlation matrix at time t, ξk (t ), corresponding to the k-th eigenvalue. Eigenvalues are sorted in ascending order. A value of a diagonal
entry of the overlap matrix close to one outlines an almost stationarity condition of the corresponding eigenvector. In Sec. III A, it has
been shown that eigenvectors corresponding to the largest eigenvalues bring genuine information. Results shown in this figure furthermore
emphasize that these eigenvectors are almost stationary.

with the constraints

∑
{s}

p({s}) = 1, (7)

〈si · s j〉p({s}) = 1

M

M∑
μ=1

sμ
i · sμ

j . (8)

The features are fi j = si · s j . The sum is over all possible
configurations in the phase space. Equation (6) with the con-
straints (7) and (8) is solved by using the Lagrange multipliers
λ0, {λi j},

p({s}|{λ}) = 1

Z
e− 1

2

∑
i �= j λi j si ·s j , (9)

with Z = ∑
{s} e− ∑

i �= j λi j si·s j . The constants {λi j} are obtained
by the constraint (8). The probability distribution, Eq. (9), is

FIG. 5. O(t = 1, τ ) for only the eigenvectors corresponding to the five largest eigenvalues, i.e., the ones bringing genuine information and
fulfilling the condition of almost stationarity, at different delay time τ . The autocorrelation, |ξk (t ) · ξk (t + τ )| of the eigenvectors corresponding
to the first three largest eigenvalue is shown for t = 1 as a function of τ (right).
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a Boltzmann distribution related to a generalized Heisenberg
model with pairwise interactions λi j , nd -dimensional spin
variables and zero external field.

It is possible to reformulate the problem of maximizing the
entropy subject to constraint on the expectation values of pair-
wise correlation functions as searching the maximum of the
so-called likelihood function within the class of Boltzmann
probability distribution related to the generalized Heisenberg
model with multidimensional spin variables. The likelihood
function is introduced in the context of Bayesian inference
[17]. Given the configuration of a set of spin variables {s} and
the data set {S} = ({s1}, . . . , {sμ}, . . . , {sM}), it is assumed
that i) each realization of {s}, {sμ}, is drawn independently,
ii) the data have been generated by a (known) model, which
depends on the set of (unknown) pairwise parameters {J}, with
generic element Ji j . One aims to find the optimal values of {J},
which maximize the conditional probability [17]

p({J}|{S}) = p({S}|{J})p({J})

p({S})
= p({S}|{J})p({J})∫

{J} p({S}|{J})p({J})
.

(10)

The probability p({J}|{S}) is called posterior, p({J}) prior,
p({S}) evidence, and p({S}|{J}) likelihood. If the prior is the
uniform distribution, as we assume here, the most probable a
posteriori set of variable is, as a consequence of Eq. (10), the
one that maximizes the likelihood function. By hypothesis the
probability distribution of a given configuration {s} belongs to
the class of Boltzmann distribution,

p({s}|{J}) = 1

Z ({J})
e−H ({s}|{J}) = 1

Z ({J})
e− 1

2

∑1,N
i �= j Ji j si·s j . (11)

The set {J} with generic elements Ji j identify the pairwise
interactions of the Heisenberg model. The partition function
Z ({J}) = ∑

{s} e−H ({s}|{J}). The Hamiltonian or cost function
is

H ({s}|{J}) = 1

2

1,N∑
i �= j

Ji jsi · s j . (12)

Given the hypothesis of independence of the data set {sμ} and
Eq. (11), the log-likelihood function (normalized to the total
number of configurations, M), l ({J}) is given by [17]

l ({J}) = ln(L({J}) = 1

M

M∑
μ=1

−H ({sμ}|{J}) − ln(Z ({J})).

(13)
It is immediate to verify, as shown in the following, that the
maximum of the log-likelihood function is given by Eq. (9)
with λi j determined by the constraints in Eq. (8), once λi j have
been identified with the pairwise interaction parameters Ji j .
The gradient of the log-likelihood function is

∂

∂Ji j
l ({J}) = 1

2

[
Ci j − 〈si · s j〉{J}

]
, (14)

where 〈 〉{J} states for ensemble average calculated with
the probability distribution p({s}|{J}), Eq. (11), and pa-
rameters {J}. Since, as demonstrated in the following, the
log-likelihood is a concave function, the optimal value of Ji j ,
which maximize the log-likelihood, are thus those for which

Eq. (14) is equal to zero, in agreement with the constraint 8
determining {λ}. Under the hypothesis of ergodicity of the
system, when the ensemble average is calculated with the
“true” set of parameters, i.e., the one whose associated dis-
tribution actually generated the data, in the limit M → ∞,
Ci j → 〈si · s j〉{J} and ∂

∂Ji j
l ({J}) → 0. The maximum of l ({J})

in the limit M → ∞ is thus obtained for those values of
{J} which generated the correlations Ci j . The hypothesis of
ergodicity is assumed without further validation.

The Ising or Heisenberg model, have been largely ex-
ploited in different fields, beyond the original application
to magnets in statistical physics, e.g., in image processing,
spatial statistics [61–63] and social networks [64]. It is how-
ever worth to observe that by exploiting the Shanon theorem,
the Ising or Heisenberg model does not arise from any spe-
cific hypotheses about the network but it comes out as the
least-structured model consistent with the measured pairwise
correlations.

B. Pseudolikelihood approach for the generalized Heisenberg
model with nd -dimensional spin variables

While the definition of the likelihood function has strong
theoretical roots, the realization of an optimization algorithm
able to draw the optimal {J} is hindered by the general
intractability of computing the partition function and its
gradient. Maximum pseudolikelihood estimation avoids this
computational issue entirely by optimizing a different objec-
tive function: the pseudolikelihood, which has the advantage
to be maximized in polynomial time [65]. The pseudolike-
lihood function is based on the local conditional likelihood
at each node of the network [17,32]. The local conditional
probability (single-variable pseudolikelihood) at the ith node
is

p(si|{s\i}, {J}) = 1

Zi({J})
e−Hi (si|{s\i},{J}), (15)

where s\i indicates the set of all input-variables ex-
cept the ith. The local hamiltonian Hi(si|{s\i}, {J}) =
−si · [ 1

2

∑1,N
i �= j Ji, js j] and the local partition function is

Zi({J}) = ∑
{si} e−Hi (si|{s\i},{J}). By defining L′(si|{s\i}, {J}) =

ln[p(si|{s\i}, {J})], the normalized log-pseudolikelihood func-
tion is

l ′({J}) = 1

M

M∑
μ=1

N∑
i=1

L′(sμ
i

∣∣{sμ

\i

}
, {J}). (16)

It is possible to show that the pseudolikelihood maximization
is exact (i.e., it is maximized by the same set of param-
eters than the likelihood function) in the limit of infinite
sampling [66,67], as discssed in the following. Because in
Eq. (12) anti-symmetric piece with respect to the index i
and j in the Hamiltonian would cancel, the interactions Ji j

can be chosen symmetric and the Hamiltonian rephrased as
H = −∑1,N

i< j Ji jsi · s j . The Hessian of both the likelihood and
pseudolikelihood functions is thus a triangular matrix. The di-
agonal elements of the Hessian of the likelihood function, e.g.,
are ∂2

∂J2
i j

l ({J}) = 〈si · s j〉2
{J} − 〈(si · s j )2〉{J}. The latter quanti-

ties, apart from some pathological cases where they could be
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FIG. 6. (a) Histogram representation of the distribution of interactions Ji j . (b) Histogram representation of the eigenvalues distribution
of the interactions matrix J (white bars). The red bars show the eigenvalues distribution of a Gaussian random matrix R’ isomorphic to J
(same average and variance of J and zero diagonal elements). The nonrandom character of J is emphasized by the discrepancies between the
eigenvalue distribution of J and R’ observed in the region of high-value eigenvalues, similarly to the case of C.

zero, are negative. Since the eigenvalues of a triangular matrix
are the entries on its main diagonal, the likelihood function is
strictly concave. Similarly, the pseudolikelihood function is
also concave. The gradient of the log-pseudolikelihood func-
tion with respect to the parameter Ji j is

∂

∂Ji j
l ′({J}) = 1

2

[
Ci j − 〈si · s j〉i,{J}

]
, (17)

where 〈 〉i,{J} states for ensemble average calculated for
the probability distribution p(si|{s\i}, {J}). It is possible to
rephrase the gradient of the log-likelihood function, Eq. (14),
obtaining

∂

∂Ji j
l ({J}) = 1

2

[
Ci j − 〈〈si · s j〉i,{J}〉{J}

]
, (18)

By comparing Eqs. (17) and (18) it is possible to infer that
in the limit M → ∞ (infinite sampling): (i) both the gradi-
ents go to zero and (ii) ∂

∂Ji j
λ({J}) → ∂

∂Ji j
l ({J}). Because of

the concavity of both functions this finally proves the exact
maximization of the pseudolikelihood function for M → ∞.

In the case of a nd -dimensional Heisenberg model with
interaction parameters not restricted to nearest neighbor
nodes, the partition function and the gradient of the pseu-
dolikelihood function can be calculated analytically, thus
facilitating the computational solution of the inference prob-
lem through steepest descent method. The partition function is
given by

Zi =
∫ ∞

−∞
dsie

si ·Aiδ(si − 1), (19)

with Ai = − 1
2

∑N
j=1 Ji js j , si = |si|, and Ai = |Ai|. Introduc-

ing polar coordinates (z axis parallel to Ai), so that si · Ai =

siAi cos θ , it is

Zi =
∫ ∞

0
dsi snd −1

i δ(si − 1) ωnd −2

∫ π

0
esiAi cos θ (sin θ )nd −2dθ

= ωnd −2

∫ π

0
eAi cos θ (sin θ )nd −2dθ

= A
− nd −2

2
i (2π )

nd
2 J nd −2

2
(iAi ), (20)

where ωn is the area of the unit sphere in n-dimensional

space, being ωn = (2π )
n+1

2

�( n+1
2 )

with �(n) the Gamma function.

The Bessel function of order n, Jn(t ) is defined as Jn(t ) =
t n

(2π )n+1 ω2n
∫ π

0 e−it cos θ (sin θ )2ndθ . To obtain an exact expres-
sion of the gradient of the pseudolikelihood function from
Eq. (17) it is needed to calculate 〈si · s j〉i,{J}. We find

〈si · s j〉i,{J} = 1

Zi

∫ ∞

−∞
dsie

si ·Ai si · s jδ(si − 1)

= 1

Zi

nd∑
α=1

∂

∂Aα
i

Zis
α
j =

J nd +1
2

(iAi )

J nd −2
2

(iAi )
Âi · s j, (21)

where Âi = Ai
Ai

. In the case that the dimension nd is odd the
Bessel function can be analytically expressed in terms of
elementary functions, obtaining

Zi = ωnd −22
ν∑

k=0

[
ν!

k!(ν − k)!
(−1)k

×
k∑

l=0

(2k)!

(2k − 2l )!

1

Ai
2l

(
sinh Ai

Ai
− cosh Ai

Ai
2 (2k − 2l )

)]
,

(22)

where ν ∈ N : nd − 2 = 2ν + 1. Furthermore

∂

∂Aα
i

Zi = ωnd −22
ν∑

k=0

ν!

k!(ν − k)!
(−1)k

k∑
l=0

(2k)!

(2k − l )!

Aα
i

Ai
2l+1

(
sinh Ai − cosh Ai

Ai
(2k − l − 1)

− sinh Ai

Ai
2 (2k − l − 1) + 2

cosh Ai

Ai
3 (2k − l )

)
. (23)
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FIG. 7. (a) Distribution of eigenvector components (white bars) corresponding to the largest eigenvalue of the interactions matrix J, λJ �
λ+, contrasted with the eigenvector distribution of a test Gaussian random matrix (red bars) and RMT prediction (solid line). (b) Distribution
of eigenvector components corresponding to a bulk eigenvalue λJ : λ− < λJ < λ+ and λJ ∼ 0. (c) Distribution of eigenvector components
corresponding to an eigenvalue λJ : λ− < λJ < λ+. λ+(−) is the largest (smallest) eigenvalue of the test Gaussian random matrix. As in the
case of cross-correlation matrix, significant deviations from random matrix eigenvector components distribution are observed in the case of the
eigenvector of J corresponding to eigenvalue λJ � λ+, in agreement with the findings shown in Fig. 6. (d) Inverse Participation Ratio (IPR)
as a function of λJ of J (open circles) and a test Gaussian random matrix (stars). The largest and smallest eigenvalues, as in the case of C have
an IPR deviating from the one of the Gaussian random matrix, showing respectively a delocalized and localized character.

The maximization of the log-log-pseudolikelihood func-
tions has been performed by means of the MATLAB FMINUNC

package [68] by selecting a trust-region optimization algo-
rithm. A l2-regularizer (parameter 0.13) was used [69,70].

V. THE INFERRED INTERACTIONS NETWORK

A. Assessment of the inferred interactions J

In order to attest the consistency of the inference protocol
as well as to analyze the content of information contained in
the set of inferred interactions, the spectral measure and the
eigenvectors of J are contrasted with corresponding RCMs.
Figure 6(a) shows a histogram representation of the probabil-
ity distribution of the values of Ji j . We define a random matrix
R’, whose entries are extracted by a normal distribution. Its
mean value and variance are set to the ones of {J}, the diag-
onal elements are set to zero and the matrix is furthermore
made symmetric. The spectral measure of J, displayed in
(b) of Fig. 6, is compared to the one of R’. Similarly to the
case of the empirical cross-correlations matrices, the spectral
distribution of J covers larger values than the one of R’. The
comparison between the probability distribution of the eigen-
vectors (ζk) components related to selected eigenvalues (λJ )
of J and R’ confirms the nonrandom character of the eigen-

vector associated to the largest eigenvalue, see Figs. 7(a)–7(c).
The IPR of the eigenvectors of J and R’, displayed in Fig. 7(d)
as a function of λJ , further reveals a deviation from RMT
results for largest and smallest eigenvalues. As in the case
of the cross-correlations, the eigenvectors corresponding to
largest eigenvalues have a delocalized character, whereas the
ones associated to lowest eigenvalues show strong localiza-
tion. The eigenvector corresponding to the largest eigenvalues
are thus related to the whole structure of the interactions
network, so in the case of empirical cross-correlations the
eigenvector related to largest eigenvalue carry information
about collective modes of the system. Similarly to the case of
the empirical cross-correlations, the eigenvectors associated
to the lowest eigenvalues are sensitive to the largest values of
Ji j’s. Figure 8 shows the eigenvector composition of J (full
lines) and C (dashed lines) corresponding to the respective
first two lowest eigenvalues. The first two largest components
of the eigenvector related to the lowest λJ (full black line)
correspond to Russia and Ukraine and the largest interaction
Ji j is the one between the same two countries. It exists a
correlation between the values of C and of J , as it is possible to
infer by observing Fig. 9(a), which shows the values of Ji j as a
function of the values of Ci j . The nature of such a correlation
can be better understood when the absolute value of the scalar
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FIG. 8. Components of eigenvectors of J (full line) and C (dashed line) corresponding to the first two lowest eigenvalues. Eigenvectors
associated with the smallest eigenvalues of both J and C are responsive to the large values of Ji j and Ci j , respectively. For example the first
two largest components of the eigenvector related to the largest eigenvalue of J (black line) correspond to Russia and Ukraine, whose Ji j is the
largest of the elements of J.

product of the eigenvectors of respectively the matrix C and
of the matrix J , i.e., |ξi · ζ j | is taken into account. Figure 9(b)
shows the scalar product of couples of eigenvectors related to
the two matrices ordered for increasing value of eigenvalues.
The block corresponding to largest eigenvalues is nearly di-
agonal, outlining how for these eigenvalues the eigenvectors
decomposition of C and J is similar. The eigenvectors of C
and J related to lowest eigenvalues, which carry respectively
information on the couples of countries strongly interacting
and highly correlated, do not preserve such a correlation.
This emphasizes that there is not a one-to-one correspondence
between largest values of Ji j and Ci j , see also Fig. 8.

B. Hierarchical clustering and principal
components analysis of J

In the following, we apply to the set of inferred interactions
{J} two general methods usually applied to the analysis of

correlation matrices, i.e., HC and PCA [17,18]. Figures 10(a)
and 10(b) show the inferred elements of the matrix J. For sake
of clarity, the elements of the interaction matrix have been
ordered following the HC outputs described in the following.

The HC is a hierarchical clusterization method [45]. First,
it is defined a metrics and it is calulated the distance between
each two columns of the interaction matrix. In the present
case the metrics adopted is city block distance, d ( �Ji, �Jj ) =∑

α |Jiα − Jjα|, where �Ji( j) states for a column of J. At the
starting step each column of J corresponds to a different
cluster. At each step the two clusters at the shortest distance
are merged and form a cluster. This protocol allows to build a
so-called dendrogram, the tree diagram shown in Figs. 10(b)
and 10(d). The height of the link between two objects, i.e.,
the countries displayed on the horizontal axis, indicates the
distance between the objects. The dendogram can be cut at a
given height thus allowing the definition of a certain number
of clusters. The right panels of Fig. 10 show the result of the

FIG. 9. (a) Interactions Ji j plotted against Ci j . (b) Matrix reprsentation of the absolute value of the scalar product of the eigenvectors
of C and J , |ξi · ζ j | sorted by descending order of corresponding eigenvalues. While the block corresponding to the largest eigenvalues is
almost diagonal, emphasizing that the eigenvectors corresponding to the largest eigenvalues of both J and C have a similar components
decomposition, the block corresponding to the smallest eigenvalues is not. Since the components of eigenvectors corresponding to smallest
eigenvalues are related to couples of countries strongly interacting and highly correlated, respectively, this shows that, due to the existence of
indirect correlation, there is not a one-to-one correspondence between the largest values of Ji j and Ci j .
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FIG. 10. (a) Inferred interactions Ji j in the period 1980–1988. (b) Dendrogram obtained by the hierarchical clustering analysis of J in
the period 1980–1988. The height of the link between two objects (countries or clusters of countries) is proportional to the distance between
the objects. The horizontal line shows where the dendrogram can be cut and clusters identified. (c) Inferred interactions Ji j in the period
1992–2017. (d) Hierarchical clustering analysis of J in the period 1992–2017. For sake of clarity, the elements of the matrix interactions have
been sorted by following the order defined by the hierarchical clustering. The two Western clusters (including the Western Europe countries
and the USA) are clearly observable in the matrix interactions. The pairwise interactions between these countries are furthermore all positive,
outlining a tendency to alignment.

HC protocol applied to J, different colors identify different
clusters.

The PCA is a partial eigendecomposition of the matrix
J, where only the eigenvectors corresponding to the largest
eigenvalues are considered [17,18]. The selcted eigenmodes
are those whose eigenvalues summed up descirbe with an
error small enough the trace of the original matrix. Follow-
ing this criterion we select the eigenvectors corresponding to
larger (in magnitude) eigenvalues of J. As discussed in Sec. V
such eigenmodes bring genuine information, see also Fig. 6.

A bidimensional representation of the eigenvectors of J corre-
sponding to the two largest eigenvalues is obtained by plotting
in the bidimensional plane the points whose coordinates are
the components of the two corresponding eigenvectors, as
shown in Fig. 11. This plot allows the identification of clusters
of countries which have a similar interaction with the rest of
the whole system [45], as detailed in the following. The value
of a given component of the eigenvectors related to the largest
eigenvalues bring information on how the country associated
to the given component interact with all the other countries.
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FIG. 11. PCA analysis of {J} in the time intervals 1980–1988 and 1992–2017. 2D graphycal representation of the eigenvectors related to
the first two largest eingevalues of J is shown. The distance between two countries, following the similarity criterion described in the text, can
be thus easily visualized. PCA analysis allows the identification of clusters. Elements belonging to the same cluster are identified by a given
symbol and color. Clusters centroids are shown by crosses. A map representation of the PCA clusters is shown in Fig. 12.

For example if the interaction network is such that only the
interaction between countries i and j is different from zero,
whereas all the others are zero, the eigenvector of the interac-
tion matrix corresponding to the largest eigenvalue will have
the only components i and j different from zero. A similarity
criterion can be thus established: the two countries associated
to the eigenvector’s components which have a similar value
(they are the only two different from zero) are those which
have a similar among them, but different with respect to all the
others, network of interactions (they are the only two interact-
ing with at least one other country). For more complex cases,
where the interaction matrix has more than one element differ-
ent from zero, one can assume that those countries which are
neighbors on the PCA plane are connected with other nodes
with a similar interactions network. Notice that two countries
similar following the PCA criterion can have a small pairwise
interaction. A K-means clustering procedure with a squared
euclidian metrics [17,18] is used in order to obtain the clusters
decomposition shown in Fig. 11. The number of clusters has
been chosen equal to four. The centroids of the cluster and
the attribution of a given point to a cluster are determined by
minimizing the function χK = ∑4

k=1

∑
i∈Ck

d (xi, ck ), where
i is the point’s index, k indices the cluster Ck and d (xi, ci )
is the distance between points and centroids in the specified

metrics (euclidean in the present case). l2-regularization have
been introduced in the optimization routine (parameter 0.13).
HC and K-mean clustering have been performed by MATLAB

packages [68]. Figure 12 finally shows in a geographical map
the clusters obtained by PCA.

VI. A GEOPOLITICAL FEEDBACK

Even if a geopolitical analysis of the results obtained
(Figs. 11 and 12) is beyond the aim of the present work, we
shortly point out in the following how the inferred results are
in agreement with the general lines one can draw basing only
on sinple geopolitical arguments concerning international re-
lations in a global context both before and after the fall of
the Berlin Wall. In the time interval 1980–1988, the existence
of a so-called Communistic block, including Soviet Union,
Eastern Europe countries and China (cluster 1 in Fig. 11, top
panel) can be clearly observed. Interestingly, India, China,
and Japan belong to this same cluster centered in the So-
viet Union. The existence of a similar cluster is preserved
in the period 1992–2017, following the fall of the Berlin
Wall, with the only relevant exception of Japan, which during
the more recent time interval belongs to the Western block
(cluster 2 in Fig. 11, top panel). Partnership between India,
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FIG. 12. Map representation of PCA clusters. Different colors identify different clusters.

Soviet Union (or Russia) and China, either during the Cold
War and after are well-documented [71–74], also partially
formalized in the so-called BRICS alliance [75]. The role of
Japan to the Cold War and its position change possibly dating
at its involvement to the Gulf war in 1991 [71] and at the
establishment of the Japanese-American Security Treaty in
1996 [71,76] is also a well-assessed concept in the historical
analysis.

The PCA analysis emphasizes the presence of other two
clusters in the time period 1980–1988: one including the
Central and South Europe countries (cluster 2) and a second
one including United Kindom, United States and Scandina-
vian countries (cluster 3 in Fig. 11, top panel). As it is possible
to observe in Fig. 11 the centroids of clusters 2 and 3 are closer
and they are both distant from the centroid of cluster 1. This
bipolar configuration is mostly preserved in the time period

1992–2017, where the presence of one pole encompassing the
North American and Europeans countries and the other one
the former communist block countries, is still observable, de-
spite the fall of the Berlin Wall. This result possibly supports
the hypothesis that the conflict, which took shape in the Cold
War and was also played on the plane of a territorial control,
was anyhow mantained, after the fall of the Berlin Wall, on a
sociopolitical, cultural and economic plane. It is also relevant
to observe that in the post-Wall period the distance between
United State and the Western Europe countries shortened.
Furthermore, whereas in the period 1980–1988 the Latin
America countries belonged to the same cluster than United
States and Western Europe countries, in the more recent time
interval they aggregate in a separate cluster (cluster 4 in
Fig. 11, bottom panel). This rearrangement is accompained
by the rapprochement of United States to Western Europe
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countries, as noticed above, and, similarly, of Canada and
Australia, which only in the time-period 1992–2017 belong
to the same Western countries cluster (cluster 3 in Fig. 11,
bottom panel).

Finally in the following we analyze a bit more in de-
tails the European configuration observed in the two time
period, in particular putting it in relation with the shaping
of the European Community and NATO alliance. The single
European Act of 1986 stipulated that by the beginning of
1993 free movement of goods, services, capital and labor
among the twelve member states of the so-called European
Community (EC) would be achieved. The EC refers to the
association of countries from the European Economic Com-
munity, the European Coal and Steel Community and the
European Atomic Energy Community taken place in 1967
[71]. The original nucleus of EC are the six signatories of
the Treaty of Rome (France, Germany, Italy, Belgium, the
Netherlands, Luxembourg) plus Great Britain, Ireland, Den-
mark, Greece, Spain, and Portugal. Accordingly, during the
time interval 1980–1988 the six original EC’s countries all
belong to cluster 2, together with Spain and Greece. Great
Britain, Ireland, and Denmark, although next-neighbors of the
above-cited EC countries, belong to Cluster 1. Cluster 1 fur-
thermore encompasses the states of the European Free Trade
Association (EFTA), i.e., Austria, Finland, Norway, and Swe-
den. Emerged in 1960 as a rival to the old European Economic
Community, EFTA, apart from Norway, merged into the EC in
1995 [71]. Negotiations with the four countries began in 1993.
Consistently with this scenario the core of the EC countries
and the four EFTA countries belong to different, but next
neighbors, clusters (cluster 2 and 3 in Fig. 11, top and bottom
panels) in both the periods [1980–1988] and [1992–2017].
The members of NATO after 1992 are the twelve founding
members (the United States, the United Kingdom, Belgium,
Canada, Denmark, France, Iceland, Italy, Luxembourg, the
Netherlands, Germany Norway, Portugal), Greece, Turkey,
Spain, the former Warsaw Pact countries (the three Eastern
European countries Hungary, the Czech Republic, Poland, ex
members of COMECON, accessed in 1997; Bulgaria, Roma-
nia, Slovakia, Slovenia and the Baltic states Estonia, Latvia,
and Lithuania in 2004), Albania and Croatia entering in 2009
and Montenegro in 2017. As observed above, the inclusion of
the Eastern European states in the NATO doesn’t correspond
to a migration of these states to the Western countries clusters
in the time period 1992–2017. This last point gives thought
to the relations between NATO and Eastern Europe countries
[77].

This brief and essential overview, while not at all exhaus-
tive, aims on one hand to highlight the reasonable agreement
observed between the results obtained and an elementary
geopolitical analysis and, on the other hand, to outline how
this quantitative analysis can be a valuable instrument for a
historical analysis.

VII. SUMMARY AND OUTLOOK

We defined the disciplinary profile of a country as a versor
whose elements are the number of articles published by the
given country in a given discipline divided the total number
of articles published by the country. The countries considered

are those supporting a significant number of published articles
with respect to the worldwide production. Each country can
be associated to the node of a graph. A partial definition
of cultural production of a given country, i.e., only the one
which take shape in articles production and recorded in the
specified databases, is adopted. This has to be taken in mind
if a historical analysis is done on the basis of the present
results. Time series of country-level disciplinary profiles are
acquired in the time intervals 1980–1988 and 1992–2017 with
a time step of a year. Since in between the two time inter-
vals, the fall of the Berlin Wall, with the related historical
events, caused a reorganization of the geopolitical map, the
graph under exam would need to be differently defined in
the two time intervals. For each graph the set of the pairwise
interactions has been inferred. A comparison between the
results obtained in the two time intervals, however, can be of
interest in a geopolitical perspective. A preliminary analysis
of the empirical cross-correlation matrices of the disciplinary
profiles in the more recent time interval has been performed.
By exploiting a comparison with RMT results it was possible
to establish that the cross-correlation matrices contain, beyond
noise content, genuine information, stationary in time. After
proving that the empirical cross-correlation matrices bring
genuine information, an inference procedure based on max-
imum entropy modeling of second-order marginal has been
applied to the data in order to infer the value of pairwise
interactions Ji j . The maximum entropy modeling is equivalent
to the maximization of a likelihood function belonging to
the class of Boltzmann distribution related to a generalized
Heisenberg model with nd -dimensional spin variables. In the
present case, nd is equal to the number of disciplines consid-
ered. In order to obtain a working algorithm able to draw the
optimal matrix of pairwise interactions, we used a pseudo-
likelihood maximization approach. We analytically computed
the pseudolikelihood and its gradient in order to facilitate the
computational solution of the inference problem. The analyt-
ical expressions deserve by themselves interest in Bayesian
inference framework whenever a nd -dimensional Heisenberg
model is appropriate for the inference problem one aims to
solve. We finally obtained the optimal value of the matrix
J by numerical maximization of the Log-pseudolikelihood
function. To the inferred interactions matrix they have been
applied two classification methods, Hierarchical Clustering
and Principal Component Analysis, usually exploited in the
analysis of the cross-correlation matrices. We obtained a
clusters representation of the interactions network shown in
Figs. 10–12. An elementary geopolitical analysis of the results
obtained not only emphasizes the soundness of the results
obtained but it calls for deeper historical analysis and, finally,
it support the use of physical modeling in this field.

Beyond a geopolitical analysis of worldwide international
relationships, which can be carried on by exploiting the
presented results and methodology, this study highlights the
profound question of what mechanisms drive the collective
knowledge and science, in particular, evolution. In Ref. [78],
basing on a quantitative analysis of topic words and phrases in
titles and abstracts of publications of the American Physical
Society, insights on the trends of discoveries in this discipline
has been obtained. It emerged that the rise and fall of physical
concepts are self-organized and it was possible to identify the
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onset of the so-called Matthew effect [79]. As complementary
to this study, our work pointed out how, on a lower level of
detail because disciplines rather than paradigms in a given
discipline are considered, the disciplinary profile of a country
can be also driven by exogenous factors such as international
geopolitical interactions.

Whereas the present work is aimed to the inference of the
structure of the geopolitical network from the observed cross-
correlation matrices basing on the maximum entropy principle
stated in information theory, which allows to minimize the
number of assumptions, some relevant aspects of the phe-
nomenon highlighted in the present study deserve attention
and can be the focus of further analyses. Disentangling the
role of pairwise interactions between countries from external
influences in the shaping of the disciplinary profile is one
of these. External influences enclose every possible bias that
can influences the disciplinary profile a part from pairwise
interactions, e.g., the attachment to a given disciplinary profile
model due to cultural and ideological traditions or promoted
by different amount of public investments in the academic and
research sector. External influences can be modeled by intro-
ducing an external field or dummy nodes with directed links
on which sit fixed oriented spin variables. Similar approaches
have been recently exploited in the extended voter model
[80]. A second relevant question concerns the dynamics of
the disciplinary profiles. Particularly interesting to this respect
would be the analysis of contagion, simulated as a stochastic
process, in the multidimensional Heisenberg model. Models
able to interpolate between regular and random connection
topology, such as the small-world model [81], or to account
for the heterogeneous structure of the network on the dif-
fusion dynamics [82], are particularly suitable to deal with
this issue.

We finally point out two outlooks of the present work. Cor-
relations among two variables si and s j can be caused either by
direct statistical coupling and indirect correlation effects, such
it is the case, e.g., in the Heisenberg model of two variables si

and s j not interacting among themselves but both interacting
with a third variable sk . The inference of the interactions
matrix J allows to identify variables statistically coupled.
Once the matrix J has been inferred it could be interest-
ing to disentangle direct and indirect correlations. Given
two nodes i and j of a graph this can be achieved
by defining the so-called direct information [53] DIi j =∑

{si,s j } P(dir)
i j (si, s j ) ln

P(dir)
i j (si,s j )

fi (si ) f j (s j )
, where the sum is on the

two-variables configuration space, {(si, s j )}, and fi(si ) =∑M
μ=1 δ(sμ

i − si ) is the frequency of observation in the time
series {sμ

i } of the variable value si. The so-called two-variable
direct probability P(dir)

i j (si, s j ) is the key quantity in DIi j . It can
be obtained through the definition of so-called three messages

νi→ j (si ), i.e., P(dir)
i j (si, s j ) = νi→ j (si )e

−Ji j si ·s j ν j→i (s j )∑
{si ,s j } νi→ j (si )e

−Ji j si ·s j ν j→i (s j )
[53,83].

The message νi→ j (si ) is the marginal distribution of the vari-
able si in a modified graph which does not include the node i.
The message effectively represent the contribution to the cor-
relation between the two variables not attributable to the direct
coupling between them. Once J is inferred, e.g., by exploiting
the pseudolikelihood approach as done in the present work,

the three messages can be calculated through a self-consistent
procedure, so-called belief propagation algorithm [83].

Inference method based on maximization of the likelihood
function in order to infer the interactions Ji j can be subject
to overfitting due to the small number of collected config-
urations, i.e., limitness of the time-series. A way to avoid
such a trouble is to use low-correlated data whose empirical
cross-correlation function has an effective rank high enough
[84]. Alternatively, the number of free parameters, i.e., Ji j

can be reduced, as done, e.g., in the so-called decimation
algorithm [85]. In the mean field-approximation an expres-
sion of the likelihood as a function of the eigenvalues of the
correlation matrix is obtained [86]. It is interesting to consider
the explicit result obtained in Ref. [86] for the log-likelihood
function, ln l = ∑N

i=1

∑
{si} fi(si ) ln fi(si) + 1

2

∑
n λ(n) − 1 −

ln λ(n), where λ(n) is the nth eigenvalue of C. From the expres-
sion above it follows that the single-eigenvalue contribution
to the log-likelihood can be isolated and that the larger contri-
bution comes from both largest and smallest eigenvalues of C.
This is in agreement with the results of Sec. III A showing that
these eigenvalues are those bringing the genuine information.
It can be thus defined a hierarchy of eigenvalues according
to their contribution to the log-likelihood function. To each
eigenvalue it is associated an eigenvector, whose nonnull
components define in the graph a pattern of nodes. Only pair-
wise interactions between the nodes belonging to the patterns
associated to eigenvalues significantly contributing to the log-
likelihood can be then the free parameters. This can give rise
to a kind of piloted decimation. The result sketched above, fur-
thermore, emphasizes that in the mean-field approximation to
the log-likelihood function they contribute not only the largest
eigenvalues of C but also the smallest. Performing PCA on the
cross-correlation matrix allows to identify the path of nodes
of maximum covariance. This is, however, not equivalent to
find the path of maximally interacting nodes because, it is
neglected the contribution of the lowest eigenvalues of C,
which instead in the mean field-approximation contributes
to the log-likelihood function [86] and could anyhow affect
the inferred J. This, together with the fact outlined above
that correlations can be either direct or indirect, strengthens
the need to go beyond analysis of empirical cross-correlation
matrices and instead to infer J if the aim one points to is to
analyze the properties of the underlying interactions network
generating the observed correlations.
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