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Generalized hyper-Ramsey-Bordé matter-wave interferometry:
Quantum engineering of robust atomic sensors with composite pulses
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A new class of atomic interferences using ultranarrow optical transitions are pushing quantum engineering
control to a very high level of precision for the next generation of sensors and quantum gate operations. In
such context, we propose a new quantum engineering approach to Ramsey-Bordé interferometry introducing
multiple composite laser pulses with tailored pulse duration, Rabi field amplitude, frequency detuning and
laser phase step. We explore quantum metrology with hyper-Ramsey and hyper-Hahn-Ramsey clocks below
the 10−18 level of fractional accuracy by fine-tuning control of light excitation parameters leading to spinor
interferences protected against light-shift coupled to laser-probe field variation. We review cooperative composite
pulse protocols to generate robust Ramsey-Bordé, Mach-Zehnder, and double-loop atomic sensors shielded
against measurement distortion related to Doppler and light shifts coupled to pulse area errors. Fault-tolerant
autobalanced hyperinterferometers are introduced eliminating several technical laser pulse defects that can occur
during the entire probing interrogation protocol. Quantum sensors with composite pulses and ultracold atomic
sources should offer a new level of high accuracy in the detection of acceleration and rotation inducing phase
shifts, a strong improvement in tests of fundamental physics with hyperclocks while paving the way to a new
conception of atomic interferometers tracking space-time gravitational waves with very high sensitivity.

DOI: 10.1103/PhysRevResearch.4.023222

I. INTRODUCTION

More than seventy years ago, Ramsey established the first
quantum mechanical description of an interferometric res-
onance with the method of separated oscillating fields [1].
Ramsey spectroscopy with coherent radiation and phase ma-
nipulation became an effective tool to investigate internal
properties of nuclei, atoms and molecules [2–4] while opening
a revolution in quantum metrology with atomic fountains as
primary frequency standards reaching today a fractional fre-
quency accuracy of 2 × 10−16 [5].

By labeling internal states with external momentum, Bordé
has extended the method of separated oscillating field to
atomic interferometry with optical transitions realizing laser
beam splitters and mirrors for matter waves [6–8]. Pioneering
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works were also made by Chebotayev and Dubetsky based on
separated optical fields with standing waves [9,10]. Ramsey-
Bordé interferometers using cold and ultracold atoms have
reached high sensitivity to rotation [11,12], local acceleration
[13–15], accurate determination of the fine structure constant
[16–21], or optical clock realization with supersonic beams
reaching a fractional frequency instability around 2 × 10−16

[22]. Mach-Zehnder type quantum sensors have thus been
developed for gravitational field measurements [14,23,24].

In parallel to laser spectroscopy and atom interferometry,
composite pulses in nuclear magnetic resonance (NMR) be-
came a powerful tool to compensate for several imperfections
due to radio-frequency (rf) pulses applied on large samples of
nuclear spins [25,26]. Various signal distortions from rf field
inhomogeneities, off-resonance effects and field amplitude
error were reduced to a very low order of correction by means
of complex sequences of pulses adapted to single or even dual
compensation of these systematics. Composite pulses have
also demonstrated to be useful for robust error compensation
in high-fidelity qubit gates dedicated to quantum computation
[27–31].

So far, understanding how to improve the robustness of
precision measurements while reducing laser-probe-induced
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FIG. 1. Generalized hyper-Ramsey-Bordé building block de-
noted as q

pM(↑)(↓) for composite pulse matter-wave interferometry
with optical traveling waves. Arbitrary composite pulses are intro-
duced by pulse area ϑ̃ ′

l=1,...,p and ϑ̃l=1,...,.q around a single Ramsey
free evolution time T . Pulse parameters are phases ϕ′

l and ϕl , fields
excitation �′

l and �l , pulses duration τ ′
l and τl , and frequency detun-

ings δ′
l and δl including transverse Doppler shifts kvz related to arrow

orientation ↑↓, atomic recoil δr and a potential residual uncompen-
sated part of light shift �′

l and �l . During the free evolution time
T, the detuning is δ′

l ≡ δl = ±δ free from the light shift induced by
laser pulses.

systematics still remains a critical goal for quantum sensing.
But contrary to recent composite NMR-like pulse techniques
applied in interferometers [32–35], composite laser pulses
are required to compensate or eliminate residual phase-shifts
leading to distortions of interferometric resonances. A major
step in that direction was realized in 2010 with the introduc-
tion of the hyper-Ramsey scheme to experimentally reduce
laser-probe induced frequency shifts by several orders of
magnitude in optical clocks requiring large probe intensities
[36–38]. A sequence of two Ramsey pulses was used where an
additional third one acts like a spin echo compensation of field
amplitude error. This extra pulse can be inserted either before
or after the free evolution time [39]. Moreover, new gener-
alized hyper-Ramsey protocols have extended robustness of
probing clock transitions against residual light shifts coupled
to dephasing effect [40,41].

The main motivation of this original work is to bring
optical composite pulses to matter-wave interferometry with
efficient nonlinear compensation of pulse-defect induced
phase shifts, while these methods are usually absent in mod-
ern treatment of atomic interferometry [42–44]. We will
revisit the Ramsey-Bordé interferometry, light shift, Doppler
shift, and atomic recoil with arbitrary sequences of compos-
ite pulses around a single free evolution time. A universal
building block with two-level operators, shown in Fig. 1, is
developed through Sec. II, offering an efficient computational
algorithm to explore interferometric resonances and phase
shifts produced by composite pulses manipulating matter
waves. We will review some robust composite pulse schemes
including one or two free-evolution zones for robust hyper-

clocks purpose in Sec. III. Beside well-known results on clock
interferometry with multipulses, the another goal of this sec-
tion is to validate our computational method of elementary
building block decomposition when concatenated pulses are
interleaved with several free evolution times. Robust gener-
alized hyper-Ramsey and hyper-Hahn-Ramsey interrogation
protocols are presented using appropriate laser phase steps
eventually associated to alternating clock detunings with op-
posite sign eliminating frequency drifts in the probe laser. In
Sec. IV, we extend the method of composite pulses to hyperin-
terferometers with matter waves which act against laser pulse
errors induced by laser intensity variation during interroga-
tion protocols. Robust Ramsey-Bordé, Mach-Zehnder, and
butterfly (or double-loop) interferometer schemes are studied
and the interferometric phase shifts are derived. We demon-
strate an upgrade of metrological performances for quantum
sensing using particular phase-shifted interferences against
detrimental errors in pulse parameters. Finally in Sec. V,
we develop the concept of autobalanced hyperinterferometers
with composite pulses allowing an efficient compensation of
systematics with a rapid convergence rate to fault-tolerance.
We conclude about the potential impact of applying composite
pulses within Ramsey-Bordé matter-wave interferometry in
Sec. VI.

II. HYPER RAMSEY-BORDÉ BUILDING BLOCK

A. SU(2) quantum engineering model

We present here a universal framework relying on concepts
of hyper-Ramsey probing schemes for clock interferometry
using two-level operators that simplify the description of
matter waves propagating through several optical compos-
ite pulses. One can address first a large variety of multiple
probe excitation pulses inducing technical shifts and de-
fects that are leading to significant measurement errors in a
conventional atomic interferometer. Then our computational
algorithm allows us to explore clusters of multicomposite
pulses interleaved with several free evolution times that may
provide a better compensation of errors in laser parameters
perturbing the matter-wave amplitude probability.

The formal derivation of the generalized Ramsey-
Bordé amplitude probability �(t ) is based on Cayley-Klein
parametrization of rotation spinors as [45]

M(ϑ̃l ) =
(

cos ϑ̃l eiφl −ie−iϕl sin ϑ̃l

−ieiϕl sin ϑ̃l cos ϑ̃l e−iφl

)
, (1)

with the action of a phase ϕl on the Rabi frequency �l . Phase
angles are introduced by

ϑ̃l = arcsin

[
�l

ωl
sin θ̃l

]
, (2a)

φl = arctan

[
δl

ωl
tan θ̃l

]
. (2b)

Such a parametrization emphasizes the role of any residual
light-shift correction as an additional phase factor acting on
diagonal elements of the interaction matrix. The effective
pulse area is θ̃l = θl/2 = ωlτl/2 with a generalized Rabi fre-

quency denoted as ωl =
√

δ2
l + �2

l . The effective detuning
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δl = δ + �l is a free clock detuning δ including a residual
uncompensated part of the light shift �l [37]. It is replaced by
δl �→ δl ∓ kvz − δr if external Doppler shift kvz and quantized
atomic recoil δr = h̄k2/2m are required for atomic interfer-
ometry [46–48].

Our model is based on the exact description of a full
composite wave-function with spinors [45–47] incorporating
independent control and fine tuning of coherent radiation pa-
rameters in the following form:

�(t ) =
[←−∏

q
l=1M(ϑ̃l )

]
· M(δT) ·

[−→∏
p
l=1M(ϑ̃ ′

l )

]
�(0), (3)

Each arrow indicates the direction to develop the product of
matrices around a single free evolution time matrix M(δT)
where laser fields, thus the light shifts, are switch-off.

Complex amplitudes of �(t ) for a two-level spin system
being initially prepared in �(t = 0), can be obtained by the
application of successive p pulses before and q pulses after the
free evolution time (see Fig. 1) leading to a complex matrix
given by [49]

�(t ) = q
pM · �(0), (4a)(

Cg(t )

Ce(t )

)
=

(q
pCgg

q
pCge

q
pCeg

q
pCee

)
·
(

Cg(0)

Ce(0)

)
. (4b)

The matrix q
pM is a special unitary operator and relations

between the matter-wave components are given by [49]

q
pCgg = q

pC
∗
ee, (5a)

q
pCge = −q

pC
∗
eg, (5b)∣∣q

pCgg

∣∣2 + ∣∣q

pCge

∣∣2 = 1. (5c)

The complex probability amplitude associated to q
pCgg and

q
pCge can be recast into a symmetric canonical form following
Refs. [45,50]:

q
pCgg = q

pαggeiδT/2
[
1 − ∣∣q

pβgg

∣∣e−i(δT+q
p�gg)

]
, (6a)

q
pCge = q

pαgeeiδT/2[1 + ∣∣q
pβge

∣∣e−i(δT+q
p�ge )]. (6b)

Remarkably, we found that the complex parameters α and
β driving the overall envelop and composite phase shifts can
be separated in two independent contributions from p pulses
driven by pulse area ϑ̃ ′

l and q pulses driven by ϑ̃l as following:

q
pαgg = α

′p
l (gg) · α

q
l (gg), (7a)

q
pβgg = β

′p
l (gg) · β

q
l (gg), (7b)

q
pαge = α

′p
l (ge) · α

q
l (gg), (7c)

q
pβge = β

′p
l (ge) · β

q
l (gg). (7d)

Envelop terms q
pαgg and q

pαge have been explicitly developed
for arbitrary cases in Appendix A 1 following Ref. [51]. From

Eqs. (6a) and (6b), it follows that interferometric phase shifts
affecting the central interference q

p�gg or q
p�ge are given by

q
p�gg = ϕL + φL − Arg

[
q
pβgg

]
, (8a)

q
p�ge = ϕL + φL − Arg

[
q
pβge

]
, (8b)

with a remnant phase definition ϕL ≡ ϕ1 − ϕ′
1 corrected by a

light-shifted contribution φL ≡ φ′
1 + φ1 from pulses forming

the original two-pulse Ramsey configuration. Note that phase-
factors are now including a contribution from an arbitrary
number of optical composite pulses extending previous results
with three pulses [45]. Let’s now derive the formal expression
of complex factors β

′p
l (gg) and β

q
l (gg) leading to a main dis-

tortion of matter-wave interferences. Composites phase shifts
q
p�gg and q

p�ge are driven by a truncated continued fraction
expansion with p, q pulses as following:

β
′p
l (gg) =

tan ϑ̃ ′
1 + e−i�′

12
tan ϑ̃ ′

2+e−i�′
23

tan ϑ̃ ′
3+...

1−...

1−e−i�′
23 tan ϑ̃ ′

2
tan ϑ̃ ′

3+...

1−...

1 − e−i�′
12 tan ϑ̃ ′

1
tan ϑ̃ ′

2+e−i�′
23

tan ϑ̃ ′
3+...

1−...

1−e−i�′
23 tan ϑ̃ ′

2
tan ϑ̃ ′

3+...

1−...

, (9a)

β
q
l (gg) =

tan ϑ̃1 + e−i�12
tan ϑ̃2+e−i�23

tan ϑ̃3+...

1−...

1−e−i�23 tan ϑ̃2
tan ϑ̃3+...

1−...

1 − e−i�12 tan ϑ̃1
tan ϑ̃2+e−i�23

tan ϑ̃3+...

1−...

1−e−i�23 tan ϑ̃2
tan ϑ̃3+...

1−...

, (9b)

β
′p
l (ge) = 1{

β
′p
l (gg)

}∗ , (9c)

where {}∗ means complex conjugate. Phase-factor expressions
are respectively �′

l,l+1 = ϕ′
l − ϕ′

l+1 + φ′
l + φ′

l+1 and �l,l+1 =
ϕl+1 − ϕl + φl + φl+1. Note that Eqs. (9a) and (9b) have the
same form than the Fresnel reflection complex coefficients of
a plane wave propagating through multiple planar interfaces
[52].

Turning to applications, we demonstrate the capacity of
composite pulses to reduce or eliminate laser-probe induced
systematics on matter-wave quantum interferences. We ex-
plore first clock interrogation protocols limited in accuracy
by laser-probe-intensity drifts. Then we will extend our
analysis on atomic interferometers limited in accuracy by
residual Doppler and light shifts induced by pulse area
modification between sets of beam splitters from different
Ramsey-Bordé building blocks. Generalized transition proba-
bilities related to laser pulse protocols are analytically derived
in the Appendix [Appendix A 2 for the hyperclock inter-
rogation scheme with one interaction matrix including p =
q = 4 pulses, Appendix A 3 for a generalized hyper-Hahn-
Ramsey laser pulse protocol (GHHR) including a double
free evolution zone, section S3 for a generalized hyper-
Ramsey-Bordé (GHRB) interferometer with two interaction
matrices including p = 1, q = 2 pulses and Appendix A 5 for
hyper-Mach-Zehnder (HMZ) and hyperbutterfly (HB) config-
urations].
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TABLE I. Composite pulse protocols for hyperclocks. Pulse area
θ ′

l (θl ) is given in degrees and phase steps ±ϕ′
l (ϕl ) are indicated in

subscript brackets with radian unit. The standard Rabi frequency for
all pulses is � = π/2τ , where τ is the pulse duration reference. The
elementary block, used to perform calculation, is characterized by a
q
pM interaction matrix including p and q pulses around a single free
evolution zone δT. Reverse protocols in time are denoted by (†).

Protocols Composite pulse building block q
pM

R1(ϕ) 90◦′
±ϕ � δT  90◦

0

(ϕ = π/2) (†) 90◦′
0 � δT  90◦

∓ϕ

R2(ϕ) 90◦′
±ϕ � δT  270◦

0

(ϕ = π/2) (†) 270◦′
0 � δT  90◦

∓ϕ

HR3π (ϕ) 90◦′
±ϕ � δT  180◦

π 90◦
0

(ϕ = π/2) (†) 90◦′
0 180◦′

π � δT  90◦
∓ϕ

HR5π (ϕ) 90◦′
±ϕ � δT  360◦

π 540◦
0360◦

π 90◦
0

(ϕ = π/2) (†) 90◦′
0 360◦′

π 540◦′
0 360◦′

π � δT  90◦
∓ϕ

GHR(ϕ) 90◦′
0 � δT  180◦

±ϕ90◦
0

(ϕ = π/4, 3π/4) (†) 90◦′
0 180◦′

∓ϕ � δT  90◦
0

HHRπ (ϕ) 90◦′
±ϕ90◦′

0 � δT  180◦
π 90◦

0

(ϕ = π/2) (†) 90◦′
0 180◦′

π � δT  90◦
0  90◦

∓ϕ

B. Qubit trajectories on the Bloch sphere

Composite pulses can be analyzed by following the trajec-
tory of the Bloch vector over a unitary sphere called the Bloch
sphere, starting from a given initial condition and verifying,
visually or by geometric construction, which trajectories on a
curved space are less sensitive to errors in the driving param-
eters. Further applications of a geometric approach, usually
with the assistance of computer simulation, can produced a
stream of composite pulses with different properties [25],
as those listed in Table I. Still, the basic idea to test the
efficiency of a given pulse sequence is to verify if, under
nonideal conditions like offset detuning error induced by a
residual uncompensated light shift or a small distortion ap-
plied during free evolution time that the trajectories on the
Bloch sphere are refocusing closely to the ideal one, or deviate
largely from it.To describe any protocol from a geometrical
point of view, we introduce a representation of the interaction
matrix based on multiple laser pulses shown in Fig. 1. The
rotation of the state vector of a two-level system under the
effect of composite pulses is described using the Feynman-
Vernon-Hellwarth parametrization [53]. We have applied this
geometrical approach to test the sensitivity of different optical
clock composite pulse protocols to small variations in the
pulse parameters, and more precisely in the laser detuning and
the pulse area. The (U, V, W) components of the Bloch vector
read [53]

U =q
p C∗

gg
q
pCge +q

p Cgg
q
pC

∗
ge,

V = i
(q

pC
∗
gg

q
pCge −q

p Cgg
q
pC

∗
ge

)
,

W = ∣∣q
pCgg

∣∣2 − ∣∣q
pCge

∣∣2
. (10)

A composite pulse sequence produces a temporal evolu-
tion on the unitary sphere starting from the upper pole with
W = +1 denoted by the blue arrow in Fig. 2. For the ideal
resonant case with no detuning, fixing the laser phase step as

ϕ = 0 for simplicity, the Bloch vector evolution takes place
on the (U, W) plane. A Ramsey double-pulse R1 protocol
transfers the Bloch vector from the top to the bottom of the
Bloch-sphere. The Bloch vector temporal evolution is rep-
resented by blue dashed and gray dashed semicircle lines in
Fig. 2(a). When a small detuning error is added to the pulse
protocol, trajectories move away from the unperturbed one
and are represented by green lines like those in Fig. 2(a) after
application of the first 90◦′

0 Ramsey pulse. Finally a second
90◦

0 Ramsey pulse rotates the vector to the lower pole and due
to variation in pulse area, different arrows are scattered away
from the ideal inversion.

The R2 protocol is shown in Fig. 2(b) where the second
Ramsey pulse is three times longer replacing the second 90◦

0
by a 270◦

0 pulse. In such a case, the vector is forced to come
back to the initial position indicated by the blue arrow orien-
tation. The consequence of this modified Ramsey scheme is
that the dispersion of misaligned arrows is reduced along the
(V, W) plane, moving closer to the ideal trajectory, but still
suffering from pulse area variation indicated by shorter and
longer paths along the (U, W) plane.

The trajectories of the HR3π three-pulse and HR5π five-
pulse composite protocols are presented in Figs. 2(c) and 2(d).
Those composite sequences, because of their total pulse area
as a multiple integer of π ≡ 360◦, transfer the Bloch vec-
tor back to the initial orientation. Notice the different Bloch
sphere trajectories for the HR3π and HR5π protocols, the later
exploring both south and north hemispheres, while the first
one is restricted to half part of the unitary sphere.

Small variations in the detuning and pulse area laser pa-
rameters of each protocol transfer the Bloch vector to the
final orientations denoted in the figure by multiple arrows
along the trajectories indicated by the dashed lines. The spatial
distributions of these arrows over the surface of the sphere are
an indication of the instability of the vector temporal evolution
against errors in the laser parameter settings. Notice the pro-
gressive reduction in the arrow spreading when progressing
from the Ramsey R1 protocol, to the HR3π and HR5π ones.
The difference between the last two ones is linked to the
exploration by the Bloch vector of a limited Bloch sphere
area around the starting point. Small variations in laser pulses
parameters are compensated by generating sophisticated path
trajectories on a Bloch’s sphere reducing any distortion of vec-
tor components over the entire pulse interrogation protocol.
A systematic exploration of arrows orientations for different
variations of the laser parameters allows to derive a quanti-
tative comparison between protocols, for instance, producing
2D maps of the clock frequency shift through contour plots
with different laser parameters.

C. 2D clock frequency-shift diagrams

Composite pulses can be optimized by looking at 2D
phase-shift or frequency-shift diagrams that are helpful to
identify some key parameters (pulse area and laser phase
steps) in order to increase the robustness of clock interferom-
eters to some detrimental effects from the probe laser itself.
Such an optimization has been recently applied to hyperclocks
using three and five composite pulses [50]. Spinor rotation is
described with a representation of the Pauli spin matrices basis
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FIG. 2. Trajectories of the U, V, W Bloch vector components for different laser pulse interrogation protocols reported in Table I. For
visualization, the phase-step modulation and free evolution in the equatorial plane are ignored. A small relative clock detuning offset about
δ�/� = ±15% is splitting the Bloch vector components into two symmetrical trajectories after an initial 90◦′

0 pulse. A variation of the pulse
area by �θ/θ = ±10% is visualized by different arrows that are pointing along different directions from the unperturbed trajectory followed
by the central blue arrow. (a) R1, (b) R2, (c) HR3π , and (d) HR5π . The efficient refocusing of final trajectories, merging all arrows, is clearly
visible in (c) and (d).

of the SU(2) group of rotations. It is extended to multiple exci-
tation pulses by a recursive Euler-Rodrigues-Gibbs algorithm
describing a composition of rotations with different rotation
axis orientation. A general analytical formula for the phase
shift associated with the clock’s interferometric signal is used
to identify particular pulse areas that are either optimizing the
clock signal amplitude, the clock frequency-shift or eventually
both of them.

The same strategy can be applied within the SU(2) quan-
tum engineering model presented in the previous section.
When the overall pulse duration is short relatively to the free
evolution time, the clock frequency shift associated to any

small deviation of the Bloch vector trajectory from the ideal
one can be reconstruct with the following relation:

�νgg = q
p�gg/(2πT), (11a)

�νge = q
p�ge/(2πT). (11b)

where phase shifts expressions are given by Eqs. (8a) and
(8b).

We have plotted, in Fig. 3, the 2D clock frequency-shift
diagrams versus an uncompensated part of the light-shift for
some protocols reported in Table I. Amplitude of the clock
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FIG. 3. 2D clock frequency-shift diagrams of �νgg based on Eq. (11a) [or equivalently �νge with Eq. (11b)] vs uncompensated part of a
residual light shift �/2π along the horizontal axis and pulse area �τ variation along the vertical axis (see also [41]). (a) R1, (b) R2, (c) HR3π ,
and (d) HR5π . Amplitude of the clock frequency-shift is indicated by a color graded scale between −200 and 200 mHz on the right side of
the first graph. The pulse reference is introduced as �τ = n × π/2 (π/2 ≡ 90◦), where n is the parameter that is tuned along the vertical axis.
Phase shifts are evaluated modulo ±kπ, k ∈ N (see also [45]). Typical parameters are τ = 30.5 ms for the pulse duration with a free evolution
time around T = 122 ms.

frequency-shift is indicated by a color graded scale between
−200 to 200 mHz on the right side of the first graph. Better
robustness against residual light shift is achieved when graded
regions, associated to a small frequency-shift, are growing up
over a large horizontal axis scale inside the 2D diagram as
shown in Figs. 3(c) and 3(d). By tuning the pulse area with
a parameter n, defining the pulse reference as �τ = n × π/2
(where π/2 ≡ 90◦ for a standard pulse area in degrees), we
can look for particular pulse areas where the signal amplitude
can be increased or the frequency shift reduced. We have
thus presented in Figs. 3(a)–3(d) frequency shifts associated
to different laser protocols from Table I. Clearly, we can
identify the important modification of the frequency-shift sen-

sitivity to residual light shifts gradually reducing to a very
low level of distortion when replacing the two-pulse Ram-
sey (R1) sequence by a composite pulse protocol with three
pulses (HR3π ) or five pulses (HR5π ). A comparison between
Figs. 3(b) and 3(c) demonstrates that an efficient optimiza-
tion of the clock frequency shift against residual light shift
is reached by inserting an intermediate composite pulse as
270◦

0 �→ 180◦
π90◦

0. The hyper-Ramsey HR3π probing scheme
was presented for the first time in Ref. [36]. The new HR5π

protocol was recently introduced for a full optimization of
metrological performances. The more sophisticated compos-
ite pulse is now given by the following modification through
the replacement 180◦

π �→ 360◦
π540◦

0360◦
π [50]. From Fig. 3,
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FIG. 4. Four-pulse diagram with a single composite interaction
matrix 2

2M to generate R, HR3π , GHR, and HHRπ , see Table I for
more details. Each diagram introduces the action of pulse duration
τ , Rabi frequency �, phase-step modulation ±ϕ, uncompensated
residual light shift in the clock detuning ±(δ + �), and eventually
a small distortion during the free evolution zone as ±δ + ε.

any clock signal contrast is always maximized for odd values
and vanishing for even values of the tuning n parameter.

By associating qubit trajectories on the Bloch-sphere from
Fig. 2 with 2D diagrams from Fig. 3, we observe that a very
good refocusing of the Bloch vector orientation is always
related to a strong reduction of the phase accumulation related
to detuning errors and pulse area variations.

III. HYPERCLOCKS

A. Hyper-Ramsey

In order to validate our composite pulse building block
simulator, we consider a four-pulse protocol for an hyperclock
with a fine tuning of the frequency shift of clock interferences.
This general configuration allows us to retrieve any two-pulse
or three-pulse schemes reported in Table I by switching-
off appropriate pulse parameters from diagrams shown in
Fig. 4. For a clock configuration, we consider a single trapped
ion with an ultranarrow optical transition confined into a
Lamb-Dicke regime, i.e., where Doppler and recoil shifts are
eliminated [54–56].

Dispersive error signals are produced to estimate precisely
the center of the interferometric resonance eliminating any
shape distortion [2,36,39]. They are generated by applying
opposite phase steps ±ϕ on particular laser pulses and are
computed by taking the difference between two phase-shifted
transition probabilities q

pPe(±ϕ) = 1 − q
pPg as [40,41]

�E(ϕ) = q
pPe(±ϕ) − q

pPe(∓ϕ), (12)

We establish explicitly two-level operator components from
an interaction matrix 2

2M to evaluate all laser pulse hyper-
clock protocols reported in Table I. The matrix coefficients

2
2Cgg,

2
2Cge driving a four-pulse probe interrogation scheme are

computed using the following elements:

α′2
1 (gg) =

(
p=2∏
l=1

cos ϑ̃ ′
l e

iφ′
l

)
· (1 − S′

2,2), (13a)

α2
1 (gg) =

(
q=2∏
l=1

cos ϑ̃l e
iφl

)
· (1 − S2,2), (13b)

α′2
1 (ge) = −ie−i(φ′

2+ϕ′
2+�′

2 ) ·
(

p=2∏
l=1

cos ϑ̃ ′
l e

iφ′
l

)
· (

S′
2,1

)
,

(13c)

where

S′
2,2(gg) = e−i�′

12 tan ϑ̃ ′
1 tan ϑ̃ ′

2, (14a)

S′
2,1(ge) = tan ϑ̃ ′

1 + ei�′
2 tan ϑ̃ ′

2, (14b)

S2,2(gg) = e−i�12 tan ϑ̃1 tan ϑ̃2. (14c)

The corresponding complex phase factor read

β ′2
1 (gg) = tan ϑ̃ ′

1 + e−i�′
12 tan ϑ̃ ′

2

1 − e−i�′
12 tan ϑ̃ ′

1 tan ϑ̃ ′
2

, (15a)

β2
1 (gg) = tan ϑ̃1 + e−i�12 tan ϑ̃2

1 − e−i�12 tan ϑ̃1 tan ϑ̃2
, (15b)

β ′2
1 (ge) = 1{

β ′2
1 (gg)

}∗ . (15c)

We give the decomposition of phase factor expressions as
following:

�′
1 = 0, (16a)

�′
2 ≡ �′

12, (16b)

�′
12 = ϕ′

1 − ϕ′
2 + φ′

1 + φ′
2, (17a)

�12 = ϕ2 − ϕ1 + φ1 + φ2. (17b)

See also Ref. [57] as another computational way to obtain
directly 2

2Cge from 2
2Cgg.

The transition probability can be deduced by measuring
the atomic population fraction remaining in the ground state
or pushed to the excited state with appropriate normalization.
Hyper-Ramsey HR3π , HR5π , and generalized hyper-Ramsey
GHR(π/4) or GHR(3π/4) protocols are compared to a new
hybrid hyper-Ramsey HHRπ protocol using four pulses from
Table I. We employ the Beloy’s model to analyze the laser-
probe-intensity fluctuation between repetitive sequences of
composite pulses for clock interrogation [58]. The recent
hyper-Ramsey HR5π composite five pulse protocol has been
proposed to reduce by two additional orders of magnitude the
residual frequency-shift of the quantum interferences com-
pared to the original hyper-Ramsey HR3π [50]. It has been
demonstrated that the clock frequency-shift is a quintic func-
tion of the residual light shift as ∝ (�/�)5 instead of the cubic
dependence as ∝ (�/�)3 associated to the HR3π protocol
[50].
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Typical dispersive shapes for �E are presented in
Figs. 5(a)–5(c). The fractional clock error, related to the spe-
cific electric octupole (E3) clock transition of a single trapped
ion 171Yb+, is reported in Figs. 5(d)–5(f). The robustness of
the HR3π protocol exhibits a relative quartic sensitivity to
the Rabi field fluctuation δ�/� initially predicted by [58]
while a GHR(π/4) [or equivalently GHR(3π/4)] protocol
does not suffer from any residual light shift correction even for
a constrained ±10% pulse area variation. As expected, the HR
fractional clock correction requires a laser field control below
0.5% (intensity below 1%) to reach a 5 × 10−19 relative accu-
racy (grey region). In Fig. 5(b), a new hybrid HR5π protocol
which replaces the 180◦

π pulse by a composite 360◦
π540◦

0360◦
π

modifies the clock fractional error through a fine tuning con-
trol of the pulse area. This composite pulse sequence is not
only able to remove the quartic dependance of the HR3π

fractional clock error with the laser field fluctuation but is
also capable of changing the sign of the clock frequency-shift.
Similar results are obtained with the hybrid HHRπ protocol
which uses an additional 90◦′

0 laser pulse immediately after
the first 90◦′

±π/2 phase-shifted Ramsey pulse.
Inspired by the precise tuning control of residual high-

order light shifts in optical lattices offered by the trap depth
[59], we have also investigated a fine pulse area tuning con-
trol within the variation of the Rabi frequency through the
n parameter changed from 0.9 to 1.1 in Figs. 5(d) and 5(e)
and from 1.05 to 1.07 in Fig. 5(f) for different protocols. The
main result we obtain is, whatever any pulse area variation
constraint at the 1% has to be reached for a targeted fractional
level of accuracy at the 10−19 level (yellow region), all GHR
protocols with π/4 and 3π/4 phase steps remain very robust
(as long as the phase step is precisely controlled) since the
residual part of the compensated light shift is removed at all
order in the clock detuning [60].

We switch to the additional concept of composite pulse co-
operativity that is offered by GHR protocols to generate more
robust error signals [40,61]. Composite pulses can provide
significantly improved performance by compensating not only
their pulse imperfections but also by reducing or eliminating
additional distortion in a cooperative manner. For example,
when dissipative processes can not be ignored, protocols that
are relying on combination of ±π/4 and ±3π/4 laser phase
steps with their time reversal counterparts become very ef-
ficient [40]. To be more stringent, we shall now introduce
another external weak perturbation ε during the single free
evolution time. Such a perturbation is always adding construc-
tively to the free clock detuning δ like a small drift of the laser
probe frequency.

GHR circuit diagrams of laser parameters and coopera-
tive combination of error signals are reported in Figs. 6(a)
and 6(b). They are produced with ±π/4 or ±3π/4 laser
phase steps, through Eq. (12) and are mixing error signals
�EGHR(π/4) and �EGHR(3π/4) as following:

�EGHR(−) = 1

2
(�EGHR(π/4) − �EGHR(3π/4)), (18a)

�E†
GHR(−) = 1

2

(
�E†

GHR(π/4) − �E†
GHR(3π/4)

)
. (18b)

Some additional cooperative protocols are generated by
combining protocols with their time-reversal counterparts as
following:

�EGHR(+) = 1

2

(
�EGHR(−) + �E†

GHR(−)

)
, (19a)

�EGHR(−) = 1

2

(
�EGHR(−) − �E†

GHR(−)

)
. (19b)

The cooperativity of such pulse protocols provides more
degrees of freedom in optimization of the pulse sequence
against small distortions during free evolution time and laser
pulses. We have explored two configurations in Fig. 6(a)
�EGHR(+) and Fig. 6(b) �EGHR(−) without and with alter-
nating signs of clock detunings through the transformation
δ + � → −δ − �. The related error signal shifts are pre-
sented in Figs. 6(c) and 6(d) respectively under a residual light
shift �/2π and a weak distortion ε/2π during the free evolu-
tion time. By combining error signals which also use clock
detunings with opposite sign as in Fig. 6(b), an additional
suppression of the distortion shift can be realize to compensate
the central fringe shift as reported in Fig. 6(d).

Combining multiple error signals are not only offering
better robustness to small distortion during pulses and free
evolution time but also to the signal distortion from ion
motion heating in a single ion rf trap device. A potential
fractional clock error below 5 × 10−20 was estimated based
on Eq. (18a) in comparison to the original HR3π protocol
[62]. It has been recently demonstrated that GHR(π/4) and
GHR(3π/4) schemes have a strong robustness against resid-
ual light shift coupled to spontaneous emission in an optically
dense medium of cold atoms [63]. Indeed, there is a large
possibility of unexplored exotic composite pulse protocols for
optical clocks due to the richness of the quantum Hilbert space
engineering [64] including a manipulation of qubit detunings
with opposite sign [65].

B. Hyper-Hahn-Ramsey

Another tool in clock interferometry is the fault-tolerant
Hahn-Ramsey protocol also using frequency detunings with
opposite sign [66,67]. This scheme is designed to reduce any
error in the carrier frequency of the driving oscillating field by
applying opposite detunings during pulses and free evolution
times in a spin-echo Hahn configuration as sketched in the
panel of Fig. 7.

We have extended the fault tolerant Hahn-Ramsey ap-
proach to a generalized hyper Hahn-Ramsey (GHHR) proto-
col which employs π/4 and 3π/4 laser phase steps in order
to produce very robust error signals. This is a straightforward
modification of the generalized hyper-Ramsey spectroscopic
scheme by adding a composite phase-modulated 90◦

±ϕ90◦′
±ϕ

intermediate pulse exactly between 90◦′
and 90◦ pulses fol-

lowing the Hahn’s spin-echo scheme [68]. A reverse sign of
the clock detuning, δ + � → −(δ + �) applied during the in-
termediate pulse, is preserving the shifted resonance condition
by the residual light shift. Similarly, the free clock detuning,
corrected by a small drift ε within the first evolution zone, be-
comes δ + ε → −δ + ε during the second free evolution zone
as shown in Fig. 7. These manipulations of detunings offer an
efficient decoupling of the static distortion ε from the residual
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FIG. 5. (Left) Dispersive error signals �E generated with our computational algorithm based on a simulation of the 171Yb+ ion clock
interrogation with protocols from Table I. (a) HR3π with 3 pulses. (b) HR5π with 5 pulses. (c) HHRπ with 4 pulses. Laser pulse parameters
are τ = 30.5 ms, free evolution times around T = 122 ms under a mean compensated light shift of �LS/2π = 95 Hz. A mean Rabi frequency
�/2π = 8.20 Hz is fixed as in Ref. [58]. (Right) Corresponding fractional clock errors (d), (e), and (f) vs relative probe-laser fluctuation
δ�/�. We also report GHR(π/4) and GHR(3π/4) protocols with • black dots for comparison. The standard Rabi frequency for each pulse is
� = n × π/2τ (π/2 ≡ 90◦) and driven by the parameter n between 0.9 and 1.1 as described in Ref. [58]. Note the change in scale between the
region in grey indicating a fractional clock-frequency shift correction at the 10−18 and the yellow region for a 10−19 level of relative accuracy.
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FIG. 6. [(a) and (b)] GHR circuit diagrams of laser parameters including a combination of pulse protocols to generate more robust error
signals. Uncompensated part of a residual light shift �/2π is present during pulses while a tiny pulse distortion ε/2π can be applied during
the free evolution time. (c) Dispersive error signal �EGHR(+) generated with Eq. (19a) vs the clock detuning δ/2π for different residual
uncompensated light shifts ignoring the distortion during the free volution time (top) or with a small distortion applied during the free evolution
time while ignoring uncompensated residual light shifts (bottom). (d) Dispersive error signal �EGHR(−) generated with Eq. (19b) vs the clock
detuning δ/2π for different uncompensated parts of a residual light shift including a fixed distortion during the free volution time (top) or with
a tunable distortion applied during the free evolution time while fixing a residual uncompensated light shifts (bottom).

light shift �l affecting the driving clock frequency of the
probe pulses while restoring Ramsey interferences associated
to the free clock detuning δ at the output of the interferometer
[66].

To analytically derive the transition probability associ-
ated to the GHHR scheme, we choose to decompose the
entire sequence of four pulses into two contiguous Ramsey
interrogation zones 90◦′

0 � δT  90◦
±ϕ and 90◦′

±ϕ � δT  90◦
0

respectively modeled by two matrices 1
1MI and 1

1MII that are
only differing in sign of their corresponding clock detunings
during pulses (see Fig. 7). The intermediate reversal pulse is
changed into concatenated Ramsey pulses such that 180◦′

±ϕ ≡
90◦

±ϕ90◦′
±ϕ as reported in Table II. The full derivation can

be achieved by applying twice Eq. (4a) [Eq. (4b)] first for
evaluating the 1

1MI two-pulse Ramsey interrogation of the

TABLE II. Generalized hyper-Hahn-Ramsey (GHHR) protocols
for hyperclocks. The concatenated double pulse 90◦

±ϕ90◦′
±ϕ is equiva-

lent to a 180◦′
±ϕ pulse. See the text for explanation.

GHHR1(ϕ) 90◦′
±ϕ � δT

2  90◦
π 90◦′

π︸ ︷︷ ︸ � − δT
2  90◦

0

(ϕ = π/2) 180◦′
π

GHHR2(ϕ) 90◦′
0 � δT

2  90◦
π 90◦′

π︸ ︷︷ ︸ � − δT
2  90◦

±ϕ

(ϕ = π/2) 180◦′
π

GHHR(ϕ) 90◦′
0 � δT

2  90◦
±ϕ90◦′

±ϕ︸ ︷︷ ︸ � − δT
2  90◦

0

(ϕ = π/4, 3π/4) 180◦′
±ϕ
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FIG. 7. Four-pulse diagram generating the GHHR protocol.
Same parameters as in Fig. 4. The protocol is divided into adjacent
Ramsey two-zones with interaction matrices 1

1MI and 1
1MII. The free

evolution time is T → T/2 to obtain the same fringe periodicity as
in Fig. 4.

GHHR protocol then using wave-function solutions as initial
conditions for the second 1

1MII two-pulse Ramsey interro-
gation. We give, in this subsection, some matrix elements
that are necessary to evaluate the full transition probability
associated to the generation of Hahn-Ramsey quantum inter-
ferences. We explicitly have for 1

1MI, 1
1MII interaction zones

labeled by m = I, II:

α′1
1 (gg)m = cos ϑ̃ ′

m,1eiφ′
m,1 , (20a)

α1
1 (gg)m = cos ϑ̃m,1eiφm,1 , (20b)

α′1
1 (ge)m = −ie−i(φ′

m,1+ϕ′
m,1 ) cos ϑ̃ ′

m,1eiφ′
m,1 tan ϑ̃ ′

m,1,

(20c)

β ′1
1 (gg)m = tan ϑ̃ ′

m,1, (21a)

β1
1 (gg)m = tan ϑ̃m,1, (21b)

β ′1
1 (ge)m = 1

tan ϑ̃ ′
m,1

. (21c)

The coefficients 1
1C

m
gg,

1
1C

m
ge required to compute each 1

1MI and
1
1MII building block components, are given by

1
1C

m
gg = 1

1α
m
ggeiδmTm/2

[
1 − |11βm

gg|e−i(δmTm+1
1�

m
gg)

]
, (22a)

1
1C

m
ge = 1

1α
m
gee−iδmTm/2

[
1 + |11βm

ge|e−i(δmTm+1
1�

m
ge )

]
, (22b)

where phase shifts are �m
gg ≡ �m

ge = ϕm
L + φm

L with ϕm
L =

ϕm,1 − ϕ′
m,1 and φm

L = φ′
m,1 + φm,1. Final amplitudes of tran-

sition probability are easily computed and written as

Cg(t ) = 1
1C

I
eg ·11 CII

ge +1
1 CI

gg ·11 CII
gg (23a)

= −1
1C

I∗
ge ·11 CII

ge +1
1 CI

gg ·11 CII
gg, (23b)

Ce(t ) = 1
1C

I
eg ·11 CII

ee +1
1 CI

gg ·11 CII
eg, (23c)

= 1
1C

I∗
ge ·11 CII∗

gg +1
1 CI

gg ·11 CII∗
ge , (23d)

The set of previous equations from Eq. (20) to Eq. (23)
are general and can be also used to simulate GHR and GHHR
error signals based on one or two free evolution zones. When
two clock detunings are selected to be opposite in sign in each
free evolution zone such that δI = −δII while fixing d+T+ = 0
and d−T− = 2δT, an exact formula can be derived using some
materials given in Appendix A 3. The exact GHHR ampli-
tude is therefore reducing to an identical form adopted with
Eq. (6a) as

Cg(t ) = αgg

(
1 − βgg(T)

[
1 + tan ϑ̃ ′

I,1

tan ϑ̃II,1
e−i(2δT+�gg)

])
(24)

where envelops are now given by

αgg ≡ cos ϑ̃ ′
I,1 cos ϑ̃ ′

II,1 cos ϑ̃II,1ei(φ′
I,1+φ′

II,1+φII,1 )

× (
1 − tan ϑ̃ ′

I,1 tan ϑ̃II,1e−i�+
gg
)
,

βgg(T) ≡ tan ϑ̃ ′
II,1 tan ϑ̃II,1(

1 − tan ϑ̃ ′
I,1 tan ϑ̃II,1e−i�+

gg
)ei

(
δT+�II

gg

)
.

(25)

The βgg(T) function is still modulated by the phase factor δT.
A good approximation of the previous expression eliminating
the residual modulation is found to be

Cg(t ) ≈ αgg[1 + βgge−i(2δT+�gg)] (26)

where

αgg = cos ϑ̃ ′
I,1 sin ϑ̃ ′

II,1 sin ϑ̃II,1ei(φ′
I,1+φ′

II,1+φII,1 ),

βgg = tan ϑ̃ ′
I,1

tan ϑ̃II,1
,

(27)

and the phase shift is

�gg = −ϕ′
I,1 + 2ϕ′

II,1 − ϕII,1 + φ′
I,1 − φII,1. (28)

Note that the Hahn-Ramsey phase-shift expression is formally
equivalent to the Mach-Zehnder scheme applied in atomic
interferometry.

By producing error signals with either ±π/2 or
±π/4,±3π/4 phase steps, we generate hybrid combinations
of GHHR error signals as following:

�EGHHR(+) = 1
2 (�EGHHR1(π/2) + �EGHHR2(π/2)),

(29a)

�EGHHR(−) = 1
2 (�EGHHR(π/4) − �EGHHR(3π/4)).

(29b)

When comparing these GHHR error signals in term of
robustness, they seem to be equivalent as shown in Fig. 8.
However, the second cooperative protocol �EGHHR(−) needs
only two phase steps either ±π/4 or ±3π/4 that are al-
ready simultaneously eliminating residual light shift, weak
distortion during free evolution time and eventually a small
decoherence inducing a frequency shift of interferences.
Compared to other error signals, a spin-echo-like configu-
ration, embedded into a Ramsey double pulse spectroscopic
scheme with opposite detunings, eliminates very efficiently
some systematics that can not be canceled by generalized
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FIG. 8. [(a) and (b)] GHHR circuit diagrams of laser parameters generating robust error signals against uncompensated part of the residual
light shift �/2π coupled to a potential pulse distortion ε/2π during the free evolution time. (c) Dispersive error signal �EGHHR(+) based
on Eq. (29a) versus the clock detuning δ/2π for different residual uncompensated light shifts including a fixed weak distortion during the
free volution time (top) or with a tunable distortion applied during the free evolution time including a fixed residual uncompensated light
shift within pulses (bottom). (d) Dispersive error signal �EGHHR(−) based on Eq. (29b) vs the clock detuning δ/2π for different residual
uncompensated light shifts including a fixed weak distortion during the free volution time (top) or with a tunable distortion applied during the
free evolution time including a fixed residual uncompensated light shift within pulses (bottom).

hyper-Ramsey schemes with asymmetric position of the in-
termediate reversal pulse.

We have tested these configurations when a small distor-
tion and a residual light shift are present during pulses and
free evolution zones as reported in Figs. 8(a) and 8(b). The
strong robustness of the error signal �EGHHR(±) frequency
locked-point to residual light shift is not compromised when a
small distortion is activated during free evolution as shown
in Figs. 8(c) and 8(d). These GHHR error signal are still
immune to residual light shift while exhibiting an additional
immunity against the small distortion which is active during
the free evolution time. The Hahn-echo is canceling this low
frequency perturbation by applying a refocusing pulse at the
center of the composite pulse protocol reversing the spinor
precession in the second half of the sequence [66,68]. Note
that a ±π/4,±3π/4 phase step modulation, applied during
the intermediate pulse, is eliminating a residual tiny modula-
tion of the fault-tolerant Hahn-Ramsey interferences leading
to additional errors [66].

The inherent effect of the Hahn-Ramsey scheme with op-
posite detunings was already observed within a photon-echo
pulse experiment reported in Ref. [69]. A detuned laser pulse,
generating a distortion on the final photon-echo signal ampli-
tude, is applied within a first free evolution zone 1

1MI while
a second detuned optical pulse with the same detuning is
applied in the second free evolution zone 1

1MII. The effect
of the intermediate reversal pulse is to flip the sign of the
second detuned optical pulse eliminating the overall effect
of the light shift distortion on the echo signal amplitude size
[69]. In our case, such a distortion is simulated through the
additonal ε parameter applied during free evolution zones.
Note the fault-tolerant scheme with opposite detunings was
recently successfully applied to eliminate some low frequency
noise and frequency drifts on a single trapped ion during free
evolution time while recovering Ramsey fringes at the output
of an effective Hahn-Ramsey interferometer [70].

GHHR protocols might be considered for a class of op-
tical lattice clocks using magnetically induced spectroscopy
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(MIS) with bosonic quantum systems, [71–75]. A Hahn spin-
echo scheme embedded into a Ramsey interrogation protocol
might be more resilient to residual inhomogeneous Doppler
and spatially dependent ac Stark shifts affecting clock tran-
sitions in a far detuned optical trap [76–78] or more robust
to low fluctuations of the small mixing magnetic field not
interrupted during the hyper-Ramsey spectroscopy [79]. Gen-
eralized hyper-Ramsey and hyper-Hahn-Ramsey protocols
combining π/4 and 3π/4 phase-shifted interferences should
remain very efficient to eliminate any kind of distortion induc-
ing frequency shifts that are always synchronized with laser
pulses over a wide range of frequency detunings and large
pulse area variations.

IV. HYPERINTERFEROMETERS

We propose now to transfer composite pulse protocols,
developed in Sec. III for hyperclocks, to spatial-domain in-
terferometry. We focus on the field of atomic matter-wave
interferometers where the two-pulse Ramsey configuration is
still an elementary building block of more elaborated suc-
cessive interrogation schemes including external degrees of
freedom with Doppler and recoil shifts and a residual uncom-
pensated light shift in the detuning. The mechanical effects of
light pulses were initially based on single photon transitions
and exploited as beam-splitters or mirrors to spatially sepa-
rate or recombine atomic or molecular wave packets [6,8,46].
Stimulated Raman transitions in a microwave excitation by
optical two-photon processes were pioneered by Kasevich and
Chu [12,13,16,17,20] while Bragg diffraction was preferred to
eliminate potential action of one photon light shift in atomic
states but requiring narrow momentum distribution to be very
efficient [80–82]. Two-photon optical transitions in bosonic
alkaline-earth quantum systems such as Yb, Hg, Sr, and
Mg have been already proposed as ultrarobust hyper clocks
against detrimental light shift and Zeeman effect [83]. All op-
tical composite-pulse two-photon interferometry might thus
be considered by inserting laser phase steps, Doppler shift and
atomic recoil state labeling in analogy with velocity-selective
stimulated Raman transitions in alkali atoms [84]. Indeed in
such interferometers manipulating atom-light interaction, it is
really primordial to avoid spontaneous emission that might
destroyed the spatial coherence between wave packets.

However, in all types of coherent Raman or Bragg
manipulation of matter waves, degraded performances of in-
terferometers often rely on imperfect overlapping of wave
packets due to phase-shift accumulation during light pulses
[85–88]. Revisiting Ramsey-Bordé matter-wave interferome-
try is motivated by the application of composite phase shifts
from Eqs. (8a) and (8b) to compensate simultaneously for
residual light shifts associated to nonvanishing Doppler shifts
when laser pulse area is drifting between pairs of atomic beam
splitters. Several types of interferometers have been developed
from devices sensitive to recoil frequency or devices mea-
suring rotation or acceleration. Composite pulses with Bragg
or stimulated Raman type transitions and butterfly geometry
with four pulses have already been employed to improve cur-
rent cold-atom gyroscopes in sensitivity and accuracy [89,90].
Here, sophisticated sequences of pulses with phase steps are

FIG. 9. Original Ramsey-Bordé (RB) interferometer with four
traveling waves [46]. Two counter-propagating sets of two co-
propagating laser pulses are introduced with ↑↓ arrows that are
corresponding to kvz transverse Doppler wave-vector orientation.
Laser pulse phases for each set are indicated respectively by ϕ′

I,1(ϕI,1)
with ↑ and ϕ′

II,1(ϕII,1) with ↓. We have ignored the intermediate free
evolution time T’.

rather proposed to shield matter-wave interferences against
pulse defects inside atomic interferometers.

In this context, we study an asymmetric Ramsey-Bordé
(RB) configuration used to determine the fine structure con-
stant for fundamental test in QED [19,46] and Mach-Zehnder
(MZ) and Butterfly (BU) interferometers for acceleration and
rotation measurement [14,86,91–103]. We apply composite
pulse protocols to realize a generalized hyper-Ramsey-Bordé
(GHRB) interferometer reducing or eliminating residual cor-
rections from light shift and sensitivity to residual transverse
Doppler shifts. We also present hyper-Mach-Zehnder (HMZ)
and hyper-Butterfly (HBU) interferometers to strongly reduce
the sensitivity against detrimental modification in pulse area
variation between beam splitters investigated in Ref. [86] and
more recently reported for a symmetric Ramsey-Bordé con-
figuration [87].

A. Hyper-Ramsey-Bordé

1. RB, HRB3π, HRB5π, and GHRB protocols

The original Ramsey-Bordé (RB) interferometer is based
on a four-laser pulse configuration, as reported in first line
of Table III and shown in Fig. 9. If the motion of atoms
is taking into account, the first Ramsey two-zone setup de-
noted as 1

1MI(↑), recovers a strong sensitivity to the transverse
first-order Doppler effect along the laser beam. While, with
microwaves or radio frequencies, the atomic wave packets
are still interfering over a long time after a single Ramsey
two-pulse interrogation, fringes are rapidly destroyed by opti-
cal frequencies with large wave vectors. Indeed, the splitting
between wave packets is velocity dependent and becomes
spatially too large requiring a Doppler cancellation technique
to close the interferometer avoiding the lost of quantum in-
terferences. Bordé proposed in the 1980’s a configuration
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TABLE III. Composite pulses interrogation protocols for hyper-Ramsey-Bordé atom interferometry. Pulse area θ ′
l (θl ) is given in degrees

and phase steps ±ϕ′
l (ϕl ) are indicated in subscript brackets with a radian unit. The standard Rabi frequency for all pulses is � = π/2τ,

where τ is the pulse duration reference. Free evolution time regions are given by δ↑T (δ↓T) where ↑↓ denotes the transverse Doppler shift
orientation. Each elementary building block q

pMI(↑)(↓) and q
pMII(↓)(↑) are separated by the intermediate δ↑T′ or δ↓T′ free evolution zone.

Reverse protocols in time are denoted by (†).

Protocols Composite pulse building blocks q
pMI(↑)(↓), q

pMII(↓)(↑)

RB1(ϕ) 90◦′↑±ϕ � δ↑T  90◦↑
0 � δ↑T′  90◦′↓±ϕ � δ↓T  90◦↓

0

(ϕ = π/4) (†) 90◦′↓
0 � δ↓T  90◦↓∓ϕ � δ↓T′  90◦′↑

0 � δ↑T  90◦↑∓ϕ

RB2(ϕ) 90◦′↑±ϕ � δ↑T  270◦↑
0 � δ↑T′  90◦′↓±ϕ � δ↓T  270◦↓

0

(ϕ = π/4) (†) 270◦′↓
0 � δ↓T  90◦↓∓ϕ � δ↓T′  270◦′↑

0 � δ↑T  90◦↑∓ϕ

HRB3π (ϕ) 90◦′↑±ϕ � δ↑T  180◦↑
π 90◦↑

0 � δ↑T′  90◦′↓±ϕ � δ↓T  180◦↓
π 90◦↓

0

(ϕ = π/4) (†) 90◦′↓
0180◦′↓

π � δ↓T  90◦↓∓ϕ � δ↓T′  90◦′↑
0180◦′↑

π � δ↑T  90◦↑∓ϕ

HRB5π (ϕ) 90◦′↑±ϕ � δ↑T  360◦↑
π 540◦↑

0360◦↑
π 90◦↑

0 � δ↑T′  90◦′↓±ϕ � δ↓T  360◦↓
π 540◦↓

0360◦↓
π 90◦↓

0

(ϕ = π/4) (†) 90◦′↓
0360◦′↓

π 540◦′↓
0360◦′↓

π � δ↓T  90◦↓∓ϕ � δ↓T′  90◦′↑
0360◦′↑

π 540◦′↑
0360◦′↑

π � δ↑T  90◦↑∓ϕ

GHRB(ϕ) 90◦′↑
0 � δ↑T  180◦↑±ϕ90◦↑

0 � δ↑T′  90◦′↓
0 � δ↓T  180◦↓±ϕ90◦↓

0

(ϕ = π/8, 3π/8) (†) 90◦′↓
0180◦′↓∓ϕ � δ↓T  90◦↓

0 � δ↓T′  90◦′↑
0180◦′↑∓ϕ � δ↑T  90◦↑

0

GHRBπ (ϕ) 90◦′↑
π � δ↑T  180◦↑±ϕ90◦↑

π � δ↑T′  90◦′↓
π � δ↓T  180◦↓±ϕ90◦↓

π

(ϕ = π/8, 3π/8) (†) 90◦′↓
π 180◦′↓∓ϕ � δ↓T  90◦↓

π � δ↓T′  90◦′↑
π 180◦′↑∓ϕ � δ↑T  90◦↑

π

with four traveling waves consisting of two separated Ramsey
two-zones 1

1MI(↑) and 1
1MII(↓) where arrows are describing

two counter-propagating sets of co-propagating laser pulses
[6]. Within this interaction geometry, opposite sets of laser
pulse wave vectors cancel the Doppler shift and Ramsey in-
terferences are retrieved at the output of the interferometer
[46]. Inserting composite pulses in atomic interferometry is
motivated by eliminating potential uncompensated residual
part of Doppler shift sensitivity and light shift on a recoil
frequency determination when the pulse area changes over the
whole pulse interrogation. Indeed, for an original RB inter-
ferometer, a uniform distribution of laser amplitude over the
full sequence will be rejected by a differential measurement
between the two sets of shifted wave packets. These terms
drop out in any interferometric comparison between paths.
However, if pulse area of pairs of beam splitters are modified
between two Ramsey-Bordé interaction zones, a parasitic shift
may be recovered.

We consider our two-level system interacting with an ar-
bitrary number of traveling waves which may propagate in
opposite direction. Following the decomposition rules with
multiple interrogation zones from the previous section, the in-
teraction geometry of a robust hyperinterferometer (HRB3π ,
HRB5π and GHRB) is divided into two composite pulse
building blocks with interaction matrices 2

1MI(↑), 4
1MI(↑

) (1
2MI(↓), 1

4MI(↓)), and 2
1MII(↓), 4

1MII(↓) (1
2MII(↑), 1

4MII(↑
)) separated by an intermediate free evolution time T’ as
shown in Figs. 10 and 11, listed in Table III. The generalized
components of interaction matrices required to compute each
amplitude of probability associated to different path trajecto-
ries of wave packets are given in Secs. A 2 and A 4 from the
Appendix.

We evaluate first the complex coefficients q
pCI

g,−→p (t ) and
q
pCI

e,−→p +h̄
−→
k

(t ) within the first Ramsey zone q
pMI(↑) with p

and q pulses. Then we evaluate the complex coefficients for
the second interaction zone q

pMI(↓) starting from previous
solutions of interfering trajectories closing the interferometer.

The first hyper-Ramsey-Bordé q
pMI(↑) building block is thus

computed taking Cg,−→p (0) = 1,C
e,−→p +h̄

−→
k

(0) = 0 and gives

q
pC

I
g,−→p (t ) = q

pC
I
gg, (30a)

q
pC

I
e,−→p +h̄

−→
k

(t ) = q
pC

I
eg = −q

pC
I∗
ge , (30b)

where ∗ means complex conjugate. The common laser de-
tuning δI for all spinor matrix component in q

pMI(↑) zone
is defined in Appendix A 3. At the end of this first GHRB
q
pMI(↑) interaction zone, wave packets are separated in several
components in space during an intermediate T’ free evolution
time. This is seen as a simple additional phase-factor of the
form e±iδT′/2. In asymmetric or symmetric Ramsey-Bordé
interferometers, this delay allows for Bloch-oscillations to
transfer large number of photon momenta to the wave packets
[19,20].

The final complex GHRB matter-wave amplitudes
q
pCe,−→p −h̄

−→
k

(t ) and q
pCe,−→p +h̄

−→
k

(t ) after successive interaction

with q
pMI(↑) and q

pMII(↓) regions are four overlapping wave

packets centered at the recoil frequency ±δr (±h̄
−→
k ) [46]. The

final GHRB amplitude of the wave-function after successive
interaction is now given by

q
pCe,−→p −h̄

−→
k

(t ) = −q
pC

II∗
ge ·qp CI

gg, (31a)

q
pCe,−→p +h̄

−→
k

(t ) = −q
pC

II∗
gg ·qp CI∗

ge , (31b)

After some algebraic manipulation, one up-shifted wave-
packet expression q

pCe,−→p −h̄
−→
k

(t ) is expressed as

q
pC

I
gg = q

pα
I
ggeiδIT/2

[
1 − |qpβI

gg|e−i(δIT+q
p�

I
gg )

]
, (32a)

q
pC

II∗
ge = q

pα
II∗
ge e−iδIIT/2

[
1 + |qpβII∗

ge |ei(δIIT+q
p�

II∗
ge )

]
, (32b)

where αII∗
ge , βII∗

ge components from q
pCII∗

ge are analytically
derived with the proper detuning definition δII from Ap-
pendix A 3. The other down-shifted wave-packet expression
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FIG. 10. [(a) and (b)] Generalized hyper-Ramsey-Bordé
(GHRB) interferometers with multiple traveling waves designed
by p and q composite pulses. Two counter-propagating sets of
p = 1 and q = 2 or p = 1 and q = 4 co-propagating composite
laser pulses are introduced by interaction zones q

pMI(↑) and
q
pMII(↓) where ↑↓ arrows are corresponding to kvz transverse
Doppler wave-vector orientation. Laser pulse phases for each set are
indicated respectively by ϕ′

I,l (ϕI,l ) with ↑ (↓) and ϕ′
II,l (ϕII,l ) with

↓ (↑). Colored red, blue, green and yellow ⇑⇓ oriented arrows
represent different phase-shifted pulse areas used to open and close
the interferometers. We have ignored the intermediate free evolution
time T’.

q
pCe,−→p +h̄

−→
k

(t ) is

q
pC

I∗
ge = q

pα
I∗
gee−iδIT/2

[
1 + |qpβI∗

ge |ei(δIT+q
p�

I∗
ge )

]
, (33a)

q
pC

II∗
gg = q

pα
II∗
gg e−iδIIT/2

[
1 − |qpβII∗

gg |ei(δIIT+q
p�

II∗
gg )

]
. (33b)

while αII∗
gg , βII∗

gg components from q
pCII∗

gg are derived with the
proper detuning definition δII also reported in Appendix 3.

Matter-wave interferences are centered around a high-
frequency (HF) recoil term q

pCg,−→p −h̄
−→
k

(t ) and a low-frequency

(LF) recoil term q
pCe,−→p +h̄

−→
k

(t ) where we have identified com-
posite phase shifts as

q
p�e,−→p −h̄

−→
k

= ϕL + φL − Arg
[q

pβ
I
gg ·qp βII

ge

]
, (34a)

FIG. 11. [(a) and (b)] Conjugate generalized hyper-Ramsey-
Bordé (GHRB) interferometers with multiple traveling waves
designed by p and q composite pulses. Two counter-propagating sets
of p = 2 and q = 1 or p = 4 and q = 1 co-propagating composite
laser pulses are introduced by interaction zones q

pMI(↓) and q
pMII(↑

) where ↓↑ arrows are corresponding to kvz transverse Doppler
wave-vector orientation. Laser pulse phases for each set are indi-
cated respectively by ϕ′

I,l (ϕI,l ) with ↓ (↑) and ϕ′
II,l (ϕII,l ) with ↑ (↓).

Colored red, blue, green and yellow ⇓⇑ oriented arrows represent
different phase-shifted pulse areas used to open and close the inter-
ferometers. We have ignored the intermediate free evolution time T’.

q
p�e,−→p +h̄

−→
k

= ϕL + φL − Arg
[

q
pβ

I
ge · q

pβ
II
gg

]
, (34b)

with a phase composition ϕL + φL given by [42]

ϕL ≡ ϕI,L + ϕII,L = ϕI,1 − ϕ′
I,1 + ϕII,1 − ϕ′

II,1, (35a)

φL ≡ φI,L + φII,L = φ′
I,1 + φI,1 + φ′

II,1 + φII,1. (35b)

These composite phase-shift expressions are also consis-
tent with a graphical representation of strong-field density ma-
trix diagrams related to low and high frequency recoil peaks of
Ramsey-Bordé fringes when additionnal interaction matrices
are taken in to account [46–48]. Our computational algorithm
allows us to derive an analytical formulas of the compos-
ite phase shift directly acting on matter-wave interferences
based on asymmetrical generalized hyper-Ramsey-Bordé
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interferometer. The overall effect of the residual uncom-
pensated part of the light shift remnant to the original
Ramsey-Bordé scheme is finally encoded in Eq. (35b). Results
based on Eqs. (34a) and (34b) are generalizing the usual
description of atom interferometers neglecting potential light
shift distortion.

Note that there is also the RB interferometer configuration
where the last set of optical traveling waves used to close
the interferometer are not reversed. This symmetric Ramsey-
Bordé interferometer is also exploited for the fine structure
determination [20,88]. Such a geometry is not sensitive to
the net frequency dependence of the interference signal such
that the relative phase-shift accumulation between arms of this
symmetrical RB configuration is given by [42]

ϕL ≡ ϕI,L − ϕII,L = ϕI,1 − ϕ′
I,1 + ϕ′

II,1 − ϕII,1, (36a)

φL ≡ φI,L − φII,L = φ′
I,1 + φI,1 − φ′

II,1 − φII,1. (36b)

It is interesting to note that the sensitivity to resid-
ual Doppler and light shifts are equivalently coming from
Eq. (35b) for an asymmetric interferometer and from
Eq. (36b) for a symmetric configuration. These terms are
responsible for a velocity-dependent phase shift leading to an
imperfect overlapping of wave packets originally derived in
Ref. [87].

Coming back to the asymmetric RB interferometer, the
generalized hyper-Ramsey Bordé transition probability is thus
given by

q
pP

e,−→p ±h̄
−→
k

= ∣∣q

pCe,−→p ±h̄
−→
k

(t )
∣∣2

, (37)

Similar to the generation of error signals based on Eq. (12),
we also generate dispersive fringes as following:

�E =q
p P

e,−→p ±h̄
−→
k

(ϕ) −q
p P

e,−→p ±h̄
−→
k

(−ϕ). (38)

where we can apply phase step protocols reported in Table III.
Combination of phase step protocols within two-successive
building blocks following Eq. (35a), required to produce dis-
persive error signals, are using half values needed for an
hyperclock interrogation scheme based on a single building
block.

The extraction of the composite phase shift from ana-
lytical expressions of error signal shapes is not always an
easy task and sometimes requires a numerical tracking of the
central dispersive feature. In the following figures that we
have produced, we have numerically plotted the error signal
and associated frequency shifts for an accurate evaluation of
interference distortion. We have also checked that nonlinear
effects leading to these distortions are effectively related in
many part to the corrections resulting from Eqs. (34a) and
(34b).

Dispersive errors signals based on hyper-Ramsey-Bordé
protocols from Table III are generated following Eq. (38). We
have reported typical dispersive error signals integrated over a
narrow transverse gaussian velocity distribution around T =
250 pK using Ca atomic parameters in Fig. 12. Dispersive
error signal are shown related to the original RB interrogation
scheme in Fig. 12(a), to the GHRB interferometer in (b), to
the HRB3π and the HRB5π respectively in (c) and (d) figures.
Matter-waves are all split in two wave packets that are sepa-

rated by the atomic doublet recoil doublet around ∼23 kHz
for Ca.

We have also plotted the correction to the recoil due to
residual light shifts for two different transverse velocity dis-
tributions of the wave packet. In the ideal case T → 0 K
presented in Fig. 13(a), the HRB3π and HRB5π interfero-
metric schemes are exhibiting respectively a highly nonlinear
cubic and quintic dependence of the recoil correction to the
residual uncompensated part of the light shift �/2π . As ex-
pected, the GHRB scheme is still completely removing the
dependence in the residual light shift at all order in the detun-
ing. However, the assumption that a sample of trapped atoms
are in the T → 0 K regime is unrealistic.

By integrating the interferometric error signal over a trans-
verse gaussian distribution of velocities at T = 250 K as
shown in Fig. 13(b), the nonlinear compensation of the resid-
ual light shift is lost and a small linear dependence of the
recoil correction with �/2π is restored for both protocols.
A small asymmetry in pulse area between the two sets of
Ramsey-Bordé interaction zones also generates a small sensi-
tivity to potential residual light shifts. However, let us remark
that it is possible to cool atomic samples to ultracold temper-
atures relying on delta-kick techniques or sub-recoil cooling
to reach nK to pK temperatures with very narrow momentum
dispersion [104,105]. Reaching lower temperature is thus an
additional benefit for robust matter-wave interferometry with
composite pulses.

The hybrid GHRB circuit diagram of laser parameters in-
cluding a cooperative combination of error signals is reported
in Fig. 14(a). They are produced with ±π/8 or ±3π/8 laser
phase steps, through Eq. (38) and are mixing error signals
�EGHRB(π/8) and �EGHRB(3π/8) as following:

�EGHRB(−) = 1
2 (�EGHRB(π/8) − �EGHRB(3π/8)),

(39a)

�E†
GHRB(−) = 1

2 (�E†
GHRB(π/8) − �E†

GHRB(3π/8)),

(39b)

and equivalently

�EGHRBπ (−) = 1
2 (�EGHRBπ (π/8) − �EGHRBπ (3π/8)),

(40a)

�E†
GHRBπ (−) = 1

2 (�E†
GHRBπ (π/8) − �E†

GHRBπ (3π/8)).

(40b)

The question arises if new dispersive error signals can
be generated to be more robust to the Doppler transverse
velocity of the cold atomic sample. We have investigated the
properties of a protocol against uncompensated light shift
coupled to pulse area variation introducing a phase-jump on
laser pulses. In order to make an error signal more robust to
residual light shifts and pulse area errors, even at relatively
high temperatures, we present a robust interferometric error
signal against transverse Doppler shift. The hybrid protocol,
reported in Table III and shown in Fig. 14(a), is based on a
combination of GHRB error signals that are phase-shifted by
π on specific pulses as following:

�EHGHRB(+) = 1
2 (�EGHRB(−) + �EGHRBπ (−) ), (41a)
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FIG. 12. Resolving the 40Ca recoil doublet with matter-wave composite pulse interferometry integrated over a narrow gaussian transverse
velocity distribution around T = 250 pK vs frequency detuning δ/2π . (a) RB interferences. (b) GHRB. (c) HRB3π . and (d) HRB5π . Laser
pulse duration is τ = 0.1ms and free evolution times around T = 30/δr where we apply for the intermediate free evolution time T’ �→ 0 and
δr = h̄k2/2m.

�E†
HGHRB(+) = 1

2 (�E†
GHRB(−) + �E†

GHRBπ (−) ). (41b)

Combination of phase-shifted signals are cooperatively
working to completely cancel any residual light shifts and
transverse Doppler shifts [40,61]. We have also checked that
symmetric or asymmetric residual light shifts equivalent to
residual Doppler shifts with opposite wave vectors between
q
pMI(↑) and q

pMII(↓) building blocks are canceled when the
pulse area is changing by ±10% between the two free evolu-
tion zones. We have plotted the dispersive error signal shape
in Fig. 14(b) versus the clock detuning δ/2π centered around
each recoil frequency component for different residual light
shifts and a fixed transverse temperature about T = 250 pK.
The solid blue lines are the numerical tracking of the error
signal dispersive shape near each recoil frequency component.
Such a cooperative pulse protocol can mimic a spin-echo
configuration without reversing the pulse order timing and
changing the spatial orientation of optical traveling waves to
the opposite direction. The corresponding HGHRB error sig-
nal frequency-shift versus the residual light-shift is reported

in Fig. 15 for different transverse temperatures of the atomic
wave-packet.

We have demonstrated in this section that coherent manip-
ulation of quantum interferences with clock interferometers
can be extended to robust atomic interferometers with the
help of elaborated and cooperative sequences of composite
pulses based on specific π/8 and 3π/8 phase steps. The in-
terferometric schemes we have analyzed in this section, based
on Figs. 10 and 11, are asymmetric because atoms are not
spending the same amount of time in both arms along the
interfering paths. An hyper-Ramsey-Bordé interferometer is
thus sensitive to the global phase-shift accumulation related
to the clock frequency detuning centered at the recoil compo-
nents making possible to transfer the technique of composite
pulse protocols from clocks to Ramsey-Bordé interferometers
for recoil measurement.

B. Hyper-Mach-Zehnder and hyper-butterfly interferometers

We turn now to symmetric atomic Mach-Zehnder (MZ)
and butterfly or double-loop (BU) interferometers. Such
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FIG. 13. (a) Numerical tracking of the error signal frequency po-
sition for RB, HRB3π , HRB5π and GHRB protocols around zero for
various uncompensated part of the residual light shift for T → 0 K.
(b) Distortion effect of matter wave due to a nonzero temperature
after integration over a narrow gaussian transverse velocity distribu-
tion around T = 250 pK. All tracking points are generated with same
parameters as in Fig. 12 except pulse area variation �τ = n × π/2
(π/2 ≡ 90◦) which is driven by the parameter n from 0.9 to 1.1
between the two interaction zones 2

1MI(↑), 2
1MII(↓).

geometrical configurations are insensitive to clock detunings
and Doppler shifts making them accurate and sensitive to
acceleration and rotation [42,80]. However, variations of the
laser field amplitude between sets of pulses acting as beam
splitters may restore a parasitic distortion related to a residual
Doppler shift [86]. From an experimental view, the wavefront
distortion from imperfect optics affects the phases and the
amplitudes of the laser beams used to diffract the atomic wave
packet presenting some inhomogeneities during interrogation
protocols and magnified by expansion of the atomic cloud
over time [106–109].

So far, we will consider wave packets trajectories modified
by acceleration or rotation during pulses and the free flight.
We consider atoms interacting with traveling waves. The in-
teraction with laser pulses introduce a change in the internal
state accompanied by a change in transverse momentum. We
should replace the laser phase expression from off-diagonal

matrix coefficients M(ϑ̃l ) by space-time dependent phase
shifts including atomic trajectories. Thus the local laser phase
that the atoms experience at the lth pulse is now given by
[92,94,98,110,111]

ϕl ⇒ ϕl + kl · zl (tl ) − ωl tl , (42a)

where kl is the wave vector, ωl the laser frequency at time
tl , and zl (tl ) is the classical path describing the atomic wave-
packet motion into a frame containing local acceleration and
rotation [110,111].

We propose to remove limits to the symmetry of the origi-
nal MZ or BU type under pulse area variation between pulses.
We will consider, for simplicity, a HMZ symmetric configura-
tion to only measure a gravitational acceleration phase shift
kl · gT2 and a HBU symmetric configuration to measure a
rotation phase shift 2(kl × g) · �T3 depending on wave vector
orientation (g is the local gravitational acceleration and � is
a rotation rate, see, for example, Refs. [92,94]). We have also
ignored any asymmetric free evolution time interval between
composite pulses to avoid a simultaneous combination of ac-
celeration and rotation for the BU configuration [43].

Several options exist to reconstruct matter-wave interfer-
ences given access to acceleration or rotation phase shifts.
From a quantum engineering perspective, we decide to fo-
cus on composite pulse protocols that are offering the best
tailoring approach of atomic interferences to produce, by
pulse engineering methods, an optimization of some targeted
performances, i.e., frequency shift and signal amplitude of in-
terferences, making atomic sensors more robust to important
variations of relevant experimental parameters.

The present section starts by deriving analytically transi-
tion probabilities of beam splitters made of three composite
pulses (see Appendix, Secs. A 5 a and A 5 b with analytics
used to derive PHMZ and PHBU). Then, we will analyze the
matter-wave interferences and associated phase shifts for orig-
inal MZ and BU atomic sensors. Matter-wave interferences
are recorded by chirping the laser frequency detuning to cor-
rect for the induced Doppler shift during the free fall all over
the pulsed sequence duration. It allows us to observe small
distortions of fringes induced by residual uncompensated
Doppler shift and light shift coupled to pulse area variation
between beam splitters or set of composite beam splitters. We
will then focus on new protocols based on ±π/4, 3π/4 laser
phase steps mixed with cooperative combinations of error
signals that are able to eliminate distortions inducing residual
phase shifts. Finally, autobalanced hyperinterferometers with
composite pulses will be presented as a potential alternative
to realize a fault-tolerant interferometer against phase and
pulse area distortion that are arising along the wave-packet
trajectories.

1. Hyper-Mach-Zehnder (HMZ)

The composite pulse hyper-MZ (HMZ) interferometer is
shown in the left top panel of Fig. 16. In such a configuration
also identical to the Hahn-echo scheme, the clock frequency
dependence is removed [86]. The exact hyper transition prob-
ability PHMZ is established fixing Cg(0) = 1,Ce(0) = 0. The
analytic computation can be realized either reducing the se-
quence of pulses to a single interaction matrix 4

3M(↑) or
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FIG. 14. (a) Hybrid-GHRB (HGHRB) circuit-diagram of laser parameters including a cooperative protocol to generate a robust error signal
against residual uncompensated part of the light shift �/2π coupled to transverse velocity kvz. (b) Dispersive error signal �EHGHRB(+) based
on Eq. (41a) [or equivalently with Eq. (41b)] vs uncompensated part of the residual light shift �/2π with T = 250 pK. All plotted lines are
generated with same parameters as in Fig. 12.

decomposing the interaction geometry in a product of two
independent building blocks MI(↑) and MII(↑) respectively
with p = 3 pulses and q = 4 pulses. In all cases, we take
δ↑T �→ 0 simplifying the calculation while the intermediate
180↑

0 reverse pulse is now played by index l = 1 in the second
set of q pulses within the matrix MII(↑) (see atomic trajecto-
ries associated to the HMZ configuration in the top right panel
of Fig. 16).

Here, we employ analytical results from Appendix A 5
evaluating the single interaction matrix 4

3M(↑) for the HMZ
configuration. The matter-wave interferometric signal is com-

FIG. 15. HGHRB error signal frequency-shift versus the residual
light shift �/2π for different temperatures. The pulse area variation
�τ = n × π/2 (π/2 ≡ 90◦) is driven by the parameter n from 0.9 to
1.1 between the two interaction zones 2

1MI(↑), 2
1MII(↓). All plotted

lines are generated with same other parameters as in Fig. 12.

puted leading to the following expression:

PHMZ = |43αgg[1 − ∣∣4
3βgg|e−i4

3�HMZ ]|2, (43)

where α′3
1 (gg), α4

1 (gg) �→ α4
2 (gg) and β ′3

1 (gg), β4
1 (gg) �→

β4
2 (gg) (see Appendix A 5 a for laser index modification due to

nonoverlapping wave packets from the intermediate reversal
pulse) are

α′3
1 (gg) =

(
P=3∏

1

cos ϑ̃ ′
l e

iφ′
l

)
· (1 − S′

3,2)

S′
3,2 = e−i�′

12 tan ϑ̃ ′
1 tan ϑ̃ ′

2 + e−i�13 tan ϑ̃ ′
1 tan ϑ̃ ′

3

+ e−i�23 tan ϑ̃ ′
2 tan ϑ̃3 (44)

and

α4
2 (gg) = sin ϑ̃1

(
q=4∏

2

cos ϑ̃l e
iφl

)
· (−S4,2 + S4,4)

S4,2 = e−i�12 tan ϑ̃2 + e−i�13 tan ϑ̃3 + e−i�14 tan ϑ̃4

S4,4 = e−i�1234 tan ϑ̃2 tan ϑ̃3 tan ϑ̃4 (45)

with

β ′3
1 (gg) =

tan ϑ̃ ′
1 + e−i�′

12
tan ϑ̃ ′

2+e−i�′
23 tan ϑ̃ ′

3

1−e−i�′
23 tan ϑ̃ ′

2 tan ϑ̃ ′
3

1 − e−i�′
12 tan ϑ̃ ′

1
tan ϑ̃ ′

2+e−i�′
23 tan ϑ̃ ′

3

1−e−i�′
23 tan ϑ̃ ′

2 tan ϑ̃ ′
3

, (46a)

β4
2 (gg) = − 1

tan ϑ̃2+e−i�23
tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

1−e−i�23 tan ϑ̃2
tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

. (46b)

The HMZ composite phase shift is
4
3�HMZ = − ϕ′

1 + 2ϕ1 − ϕ2 + φ′
1 − φ2

− Arg
[
β ′3

1 (gg) · β4
2 (gg)

]
.

(47)
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FIG. 16. (Left top) Hyper-Mach-Zehnder (HMZ) and (left bottom) hyper-butterfly (HB) interferometers with composite pulses. For these
configurations, two sets of co-propagating composite laser pulses are separated by one single or two intermediate 180↑

0 pulses where ↑ arrows
are corresponding to laser detuning modified by kvz Doppler wave-vector orientation and atomic recoil (see Table IV). The full interaction
geometry can be directly evaluated either from a single interaction matrix 4

3M(↑) or from the product of two independent building blocks MI(↑)
and MII(↑) respectively with p = 3 pulses and q = 4 pulses (see Appendix section S4). Laser pulse phases are chosen to be for the first set of
pulses denoted as ϕ′

3,2,1, for the reverse pulses ϕ0 = ϕ1 = 0 and ϕ2,3,4 for the last set of pulses. We use T′ = 2T for the HBU configuration to
eliminate the sensitivity to the clock detuning.

A direct use of the HMZ phase-shift expression 4
3�HMZ may

not always correspond to the correct evaluation of the true
central fringe phase shift. The transition probability given by
Eq. (43) is a nontrivial spectral function, where the terms
α′3

1 (gg), α4
2 (gg) and β ′3

1 (gg), β4
2 (gg) depend on laser phases.

For this reason, the composite phase shift of the central fringe
can not be systematically associated to Eq. (47). The phase
shift related to the central interference is thus tracking numer-
ically when fringes are recorded by scanning the laser phase
ϕ of the HMZ composite pulse beam splitters.

As a validation of previous analytical calculations, we
rederive the original three-pulse MZ configuration with the
intermediate 180↑

0 pulse still played with index l = 1 in the
second set of q pulses (MZ from Table IV). We obtain, after
straightforward simplification on envelops α′3

1 (gg), α4
2 (gg) and

complex terms β ′3
1 (gg), β4

2 (gg), the MZ transition probability
expressed as:

PMZ =
∣∣∣∣− cos ϑ̃ ′

1 sin ϑ̃1 sin ϑ̃2 ·
[

1 + tan ϑ̃ ′
1

tan ϑ̃2
e−i�MZ

]∣∣∣∣2

(48)

where, this time, the MZ phase shift is easily identified to be

�MZ = −ϕ′
1 + 2ϕ1 − ϕ2 + φ′

1 − φ2 (49)

consistent with [42,43,110,111] when φ′
1 = φ2. An additional

MZ phase sensitivity to residual Doppler shifts is retrieved
when φ′

1 �= φ2 due to the imbalance of Rabi fields between
the first and the last beam splitter pulse as expected [86].

We point out that a MZ interferometer is a particular case of
the symmetric RB configuration. By fixing ϕ′

I,1 ≡ ϕ′
1, ϕI,1 =

ϕ′
II,1 ≡ ϕ1, ϕII,1 ≡ ϕ2 in Eq. (36a) and φ′

I,1 ≡ φ′
1, φI,1 = φ′

II,1,
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TABLE IV. A few selected composite pulses interrogation protocols for (MZ), (BU) interferometers, hyper-Mach-Zehnder (HMZ) and
hyper-Butterfly (HBU) interferometers. The laser phase is indicated as a subscript. Atomic trajectories accumulating phases that are sensitive
to acceleration or rotation can be found in the Appendix subsection S4-3. Arrow ↑ denotes the detuning corrected by Doppler shift and recoil
absorption within composite pulses and during free evolution time.

protocols composite pulse building block q
pM(↑)

MZ 90◦′↑
0 � δ↑T  180◦↑

0 � δ↑T  90◦↑
0

BU1 90◦′↑
0 � δ↑T  180◦↑

0 � δ↑T′  180◦↑
0 � δ↑T  90◦↑

0

BU2 90◦′↑
0 � δ↑T  180◦↑

0 � δ↑T′  180◦↑
0 � δ↑T  270◦↑

0

270◦′↑
0 � δ↑T  180◦↑

0 � δ↑T′  180◦↑
0 � δ↑T  90◦↑

0

BU3 90◦′↑
0 � δ↑T  180◦↑

0 � δ↑T′  180◦↑
0 � δ↑T  180◦↑

π 90◦↑
0

90◦′↑
0180◦′↑

π � δ↑T  180◦↑
0 � δ↑T′  180◦↑

0 � δ↑T  90◦↑
0

HMZ1(ϕ) 90◦′↑
0 � δ↑T  180◦↑

0 � δ↑T  180◦↑±ϕ90◦↑
0

HMZ2(ϕ) 90◦′↑
0180◦′↑±ϕ � δ↑T  180◦↑

0 � δ↑T  90◦↑
0

or or
HMZ1(ϕ) 270◦′↑

0 � δ↑T  180◦↑
0 � δ↑T  180◦↑±ϕ270◦↑

0

HMZ2(ϕ) 270◦′↑
0180◦′↑±ϕ � δ↑T  180◦↑

0 � δ↑T  270◦↑
0

(ϕ = π/4, 3π/4)
HBU1(ϕ) 90◦′↑

0 � δ↑T  180◦↑
0 � δ↑T′  180◦↑

0 � δ↑T  180◦↑±ϕ90◦↑
0

HBU2(ϕ) 90◦′↑
0180◦′↑∓ϕ � δ↑T  180◦↑

0 � δ↑T′  180◦↑
0 � δ↑T  90◦↑

0

or or
HBU1(ϕ) 270◦′↑

0 � δ↑T  180◦↑
0 � δ↑T′  180◦↑

0 � δ↑T  180◦↑±ϕ270◦↑
0

HBU2(ϕ) 270◦′↑
0180◦′↑∓ϕ � δ↑T  180◦↑

0 � δ↑T′  180◦↑
0 � δ↑T  270◦↑

0

(ϕ = π/4, 3π/4)

and φII,1 ≡ φ2 in Eq. (36b), we retrieve the MZ phase shift
given by Eq. (49).

2. Hyper-butterfly (HBU)

Here, we employ some analytic results from Appendix and
Sec. A 5 used to evaluate the single interaction matrix 4

3M(↑)
of the HBU interferometer shown in the left bottom of Fig. 16.
The matter-wave interferometric signal is computed leading to
the following expression:

PHBU = ∣∣4
3αgg

[
1 − ∣∣4

3βgg

∣∣e−i43�HBU
]∣∣2

, (50)

where α′3
1 (gg), α4

1 (gg) �→ α4
2 (gg) and β ′3

1 (gg), β4
1 (gg) �→

β4
2 (gg) (see Appendix A 5 b for laser index modification due to

nonoverlapping wave packets from the intermediate reversal
pulse) are

α′3
1 (gg) =

(
P=3∏

1

cos ϑ̃ ′
l e

iφ′
l

)
· (1 − S′

3,2),

S′
3,2 = e−i�′

12 tan ϑ̃ ′
1 tan ϑ̃ ′

2 + e−i�13 tan ϑ̃ ′
1 tan ϑ̃ ′

3

+ e−i�23 tan ϑ̃ ′
2 tan ϑ̃3 (51)

and

α4
2 (gg) = ei(ϕ1−ϕ0 ) sin ϑ̃0 sin ϑ̃1

(
q=4∏

2

cos ϑ̃l e
iφl

)
· (1 − S4,2),

S4,2 = e−i�23 tan ϑ̃2 tan ϑ̃3 + e−i�34 tan ϑ̃3 tan ϑ̃4

+ e−i�24 tan ϑ̃2 tan ϑ̃4 (52)

with

β ′3
1 (gg) =

tan ϑ̃ ′
1 + e−i�′

12
tan ϑ̃ ′

2+e−i�′
23 tan ϑ̃ ′

3

1−e−i�′
23 tan ϑ̃ ′

2 tan ϑ̃ ′
3

1 − e−i�′
12 tan ϑ̃ ′

1
tan ϑ̃ ′

2+e−i�′
23 tan ϑ̃ ′

3

1−e−i�′
23 tan ϑ̃ ′

2 tan ϑ̃ ′
3

, (53a)

β4
2 (gg) =

tan ϑ̃2 + e−i�23 tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

1 − e−i�23 tan ϑ̃2
tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

. (53b)

The HBU composite phase shift is
4
3�HBU = − ϕ′

1 − 2ϕ1 + 2ϕ0 + ϕ2 + φ′
1 + φ2

− Arg
[
β ′3

1 (gg) · β4
2 (gg)

]
.

(54)

The original four-pulse BU configuration (BU1 and BU2
from Table IV), is obtained, after straightforward simplifica-
tion, leading to the simplified transition probability:

PBU =| cos ϑ̃ ′
1 sin ϑ̃0 sin ϑ̃1 cos ϑ̃2

· [1 − tan ϑ̃ ′
1 tan ϑ̃2e−i�BU ]|2,

(55)

where the BU phase shift is identified to be

�BU = −ϕ′
1 + 2ϕ0 − 2ϕ1 + ϕ2 + φ′

1 + φ2 (56)

that is a result consistent with [43,91,94]. An additional
phase shift due to asymmetrical pulse area variation is found.
Changing the geometry of the matter-wave interferometer
from a Mach-Zehnder to a Butterfly device modifies the
internal phase-shift contribution φ′

1 − φ2 → φ′
1 + φ2. Note

that these two last contributions are remnant to Ramsey and
Hahn-Ramsey protocols established in Sec. III which can be
exploited to modify the sensitivity of interferometers to resid-
ual Doppler shifts and light shifts as we will now demonstrate
in the following section.
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FIG. 17. MZ pulse protocol vs the laser frequency chirp δg =
g − gchirp. (a) MZ matter-wave interferences with different free evo-
lution times 0.3 s � T �0.36 s. Solid, dashed and dot-dashed lines
are recorded with a residual Doppler shift δD/2π = 6 kHz (δD ≡
kvz). A Rabi field error of 10% is fixed between the first beam splitter
and the last one as in Ref. [86]. Note that the residual phase shift
induced by the pulse area error is too small to be seen on fringe
maximum. (b) MZ phase shift vs the residual Doppler shift δD/2π

for different pulse area variation �θ/θ � 15% between first and last
pulses with a fixed free evolution time. Pulse duration is τ = 10 μs
and the Rabi frequency is � = π/2τ .

C. HMZ and HBU Matter-Wave Interferences

1. MZ and BU interferences

The Mach-Zehnder (MZ) configuration is reported from
the first line of Table IV. This geometry can be sensitive
both to local acceleration and rotation (see Appendix A 5 c).
We show MZ matter-wave interferences versus the laser fre-
quency chirp δg ignoring rotation for simplicity in Fig. 17(a).
The laser frequency is linearly scanned during the three-
pulse interferometer for four different free evolutions times.
When the laser frequency chirp becomes equal the local

acceleration, the free fall inducing a Doppler shift is canceled
and interferences become independent to a modification of the
free evolution time [92,97,100,102].

Several numerical plots of the center of fringes versus
a residual Doppler shift δD/2π (δD ≡ kvz) is reported in
Fig. 17(b) under a �θ/θ � 15% pulse area error between
the first beam splitter pulse and the last one. The composite
phase shift generated by the MZ scheme has a dispersive
lineshape as it can be observed from Fig. 17(b). If the relative
asymmetry of the pulse area between the first pulse and the
last pulse is vanishing, thus the phase shift is canceled con-
sistent with the analytical expression derived from Eq. (49).
The plots with blue dots corresponds to the MZ type interfer-
ometer exhibiting a dispersive phase shift about 24 mrad for
a Doppler shift of 10 kHz for a �θ/θ = 10% in accordance
with [86]. The same dispersive feature has been also derived
about a symmetrical RB interferometer subjected to pulse
area variation between sets of pulses in Ref. [87]. We note
that such MZ asymmetry is also responsible for breaking the
robustness of generalized hyper-Ramsey protocols used for
clock interferometry. One possible way to get round of this
detrimental effect is to apply autobalanced hyperinterferome-
ters with composite pulses as we will show later.

Butterfly BU1, BU2, and BU3 protocols are reported in
Table IV. This geometry has been proposed to measure ro-
tation and gravity gradient while eliminating sensitivity to
local acceleration when first and last free evolution times T
are related to the intermediate free evolution time by taking
T’=2T [43,91,94] (see also Appendix A 5 c).

We have respectively reported, in Figs. 18(a)–18(c), BU1,
BU2, and BU3 matter-wave interferences versus the laser
frequency chirp δg for three different configurations of the last
beam splitter either 90◦↑

0 or 270◦↑
0 and finally a composite

pulse 180◦↑
π90◦↑

0. The BU1 protocol exhibits a linear sen-
sitivity to residual Doppler shifts as shown in Fig. 18(d) that
is consistent with the measurement from [103]. According to
Eq. (56), the laser detuning contribution to the interferometric
phase shift is expected to be linear for a Butterfly or double
loop configuration based on beam splitters with 90◦′↑

0 and
90◦↑

0 pulses.
By replacing the first 90◦′↑

0 pulse by a 270◦′↑
0 or the last

90◦↑
0 pulse by a 270◦↑

0 pulse, we observe in Fig. 18(e) a
nonlinear sensitivity to residual Doppler shifts depending on
the pulse area variation between pulses. Such a sensitivity
is in fact remnant to the Hyper-Ramsey protocol for clocks
previously studied. The modification from a linear response
to a flat one was in fact already observed in Ref. [103]
supposing no pulse area variation between pulses. Our work
has established a remarkable feature by analyzing in details
the effect of a 90◦↑

0 �→ 270◦↑
0 composite pulse leading to a

strong reduction of the phase shift related to laser detunings.
We have derived here the exact dependance to laser detunings
with a new composite phase shift through Eq. (54) replacing
Eq. (56). As expected from Fig. 18(f), by applying a new
composite pulse sequence for the last beam splitter pulse as
270◦↑

0 �→ 180◦↑
π90◦↑

0, a low sensitivity to residual Doppler
shifts is still recovered while the detrimental action of the
pulse area variation is eliminated making the interferometric
configuration more robust to residual Doppler shifts.
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FIG. 18. (Left) BU matter-wave interferences versus the laser frequency chirp δg = g − gchirp and (right) related phase shifts versus a
residual Doppler shift δD/2π for three different protocols reported in Table IV. (a) BU1 protocol with a 90◦↑

0 pulse, (b) BU2 protocol with
a 270◦↑

0 pulse and (c) BU3 protocol using a 180◦↑
π 90◦↑

0 composite pulse. Solid, dashed and dots-dashed lines are recorded with a residual
Doppler shift δD/2π = 6 kHz (δD ≡ kvz). (d)–(f) are numerical plots tracking of the central interference position for different pulse area
variation −10% � �θ/θ � 10% with a fixed free evolution time from protocols (a)–(c). Pulse duration is τ = 10 μs and the standard Rabi
frequency is � = π/2τ . The phase shift can exhibit a nonlinear sensitivity to Doppler frequency shifts from (d) to (f).
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FIG. 19. (a) �EHMZ1(−) (�EHMZ2(−)) and (b) �EHBU1(−) (�EHBU2(−)) phase-shifted matter-wave interferences based on Eq. (57a)
[Eq. (57b)] and Eq. (58a) [Eq. (58b)] vs chirp of the laser frequency δg = g − gchirp. Solid, dashed, and dot-dashed lines are recorded with a
residual a residual Doppler shift δD/2π = 6kHz (δD ≡ kvz). Pulse duration is τ = 10 μs and the Rabi frequency is � = π/2τ . A Rabi pulse
area variation of 0% � �θ/θ � 10% is tolerated between the first set of composite pulses and the last set of composite pulses as in Ref. [86].
(c) and (d) Zoom of dispersive shapes of error signals around the correct laser frequency chirp δg = 0. Black arrows � are indicating the
crossing point independent of the free evolution time allowing another determination of the correct laser frequency chirp canceling the Doppler
shift induced by the free fall.

2. HMZ and HBU phase-shifted interferences

Phase-shifted matter-wave interferences can offer a robust
alternative technique to eliminate some distortions coupled to
residual Doppler shift and light shift with pulse area variation
between pulses. We present in Fig. 19 some interferences
that are produced by manipulating the relative laser phase
ϕ between pulses while chirping the laser frequency. New
HMZ1(ϕ) and HMZ2(ϕ), HBU1(ϕ) and HBU2(ϕ) protocols
are reported in Table IV).

Note we have found that additional combinations of
HMZ1(ϕ), HMZ2(ϕ), and HBU1(ϕ), HBU2(ϕ) protocols can
be also used where the first pulse 90◦′↑

0 or the last pulse 90◦↑
0

is replaced by a 270◦′↑
0 or 270◦↑

0 pulse.
First, we have considered a cooperative combination of

schemes as HMZ1(ϕ) and HMZ2(ϕ) protocols by introducing
an additional 180◦↑±ϕ pulse on the right or a 180◦′↑±ϕ on the
left side of the interferometer while including ϕ = π/4, 3π/4
phase step modulation. A set of error signals is produced

by an hybrid combination of these HMZ1(ϕ) and HMZ2(ϕ)
interferometric signals as following:

�EHMZ1(−) = 1
2 (�EHMZ1(π/4) − �EHMZ1(3π/4)),

(57a)

�EHMZ2(−) = 1
2 (�EHMZ2(π/4) − �EHMZ2(3π/4)).

(57b)

The curves associated to cooperative protocols
�EHMZ1(−) (equivalently �EHMZ2(−)) are shown in
Fig. 19(a). An expanded view of the two phase-shifted error
signals is presented in Fig. 19(c). The zero locking points of
dispersive curves from Fig. 19(c) are symmetrically shifted
around δg = g − gchirp = 0 and all curves are crossing at
δg = g − gchirp = 0 (indicated by black arrows) for different
free evolution times 0.3 s � T � 0.36 s. By plotting the
mean value of the phase shift accumulated by �EHMZ1(−)
and �EHMZ2(−) error signals versus the residual Doppler
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shift, we can effectively track the correct value of the laser
frequency chirp that is canceling the local acceleration while
rejecting efficiently detrimental phase shift from a pulse area
variation between pulses.

Similarly, we have considered a combination of error sig-
nals generating a robust HBU interferometer using HBU1(ϕ)
and HBU2(ϕ) protocols reported in Table IV. A set of hybrid
error signals is produced by a combination of HBU1(ϕ) and
HBU2(ϕ) interferometric signals as following:

�EHBU1(−) = 1
2 (�EHBU1(π/4) − �EHBU1(3π/4)), (58a)

�EHBU2(−) = 1
2 (�EHBU2(π/4) − �EHBU2(3π/4)). (58b)

These dispersive phase-shifted interferences, called
�EHBU1(−) [equivalently �EHBU2(−)] error signals, are
presented in Fig. 19(b). An expanded view of the two
phase-shifted error signals around the correct frequency chirp
δg = 0 is presented in Fig. 19(d). We have also verified that an
additional contribution from any uncompensated asymmetric
light shifts of a few % between sets of composite pulses
are still strongly reduced to the same level of correction.
We finally report the numerical tracking of the phase shift
accumulated by these HMZ1(2) and HBU1(2) dispersive
error signals in Figs. 20(a) and 20(b). Red and blue dots and
stars are corresponding respectively to error signal protocols
based on Eqs. (57a), (57b) and Eqs. (58a), (58b). A plot of
these anti-symmetrical shifts versus the residual Doppler
shift (black dots), is also confirming that phase-shifted
interferences HMZ1(2) and HBU1(2) are cooperatively
compensating a residual Doppler shift contribution leading
to a net zero mean value of the global shift. An important
result is that all dispersive error signals are always crossing
together at the correct chirping frequency used to determinate
the local acceleration for any value of the free evolution
time. There are many ways to combine phase-shifted error
signals to retrieve the correct frequency-chirp rate free
from pulses inducing unwanted distortions. Note that the
cooperative action of phase-shifted error signals removing
residual frequency shifts shares important similarities with
the concept of synthetic frequency protocols developed for
robust Ramsey interrogation of optical clock transitions by
Ref. [112].

V. AUTOBALANCED HYPER-INTERFEROMETERS
WITH COMPOSITE PULSES

Today, optimal quantum control techniques are investi-
gated for robust atomic interferometry [113,114] inspired by
mathematical works based on optimization of computational
algorithms [115–118].

We propose, here, a complementary approach for a very
robust compensation technique enhancing immunity against
various probing field-induced frequency shifts of matter-wave
interferences. Autobalanced Ramsey spectroscopy has been
initially proposed in Refs. [119] and [120], where the clock
frequency stabilization is realized through the use of a feed-
back loop connected to two Ramsey protocols with a long Tl

and a short Ts free evolution period. A specific adjustable
laser parameter is used to extract some information about
a technical pulse perturbation leading to a phase correction

FIG. 20. [(a) and (b)] Numerical tracking of frequency shifts of
�EHMZ1(−) (�EHMZ2(−)) and �EHBU1(−) (�EHBU2(−)) of error
signals versus residual Doppler shifts δD/2π for HMZ1 (HBU1)
interferences (blue crosses, dots, and stars) and HMZ2 (HBU2) in-
terferences (red crosses, dots and stars). The black dots • are the zero
mean value of the global sum of phase-shifted locking points. Pulse
duration is τ = 10 μs and the pulse area is � = π/2τ . A Rabi pulse
area variation of 0% � �θ/θ � 10% is tolerated between the first
set of composite pulses and the last set of composite pulses as in
Ref. [86].

after one loop implementation that is then iterated again.
This approach can be seen as an active compensation of var-
ious deleterious effects than can strongly compromised the
efficient robustness of clock-interferometers when technical
pulse defects are themselves coupled to probe-induced phase
shifts and a possible error in phase step modulation during the
interrogation process.

One of the main limitation in atomic interferometry, at least
for acceleration and rotation measurements based on a MZ
or a double-loop interferometer is the wavefront distortion
[106–109]. Phases and the amplitudes of the laser beams
present some inhomogeneities during the sequence of pulses
because of the finite temperature of the atomic cloud [104].

From the previous detailed analysis of this work, auto-
balanced hyperinterferometers with composite pulses may be
another way to actively reduce or compensate the wavefront
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TABLE V. Composite phase shifts for fault-tolerant autobalanced hyperinterferometers. Some reduced definitions are introduced into
columns as ϕL ≡ ϕ1 − ϕ′

1 with φL ≡ φ1 + φ′
1 for C-protocols (clocks) and ϕL ≡ ϕI,1 − ϕ′

I,1 + ϕII,1 − ϕ′
II,1 with φL ≡ φ′

I,1 + φI,1 + φ′
II,1 + φII,1

for AI-protocols (Ramsey-Bordé interferometers). The number of atomic state population measurements N required to build error signals
is indicated. Dispersive error signals can be produced by ±π/2 or ±π/4, ±3π/4 phase steps for hyperclocks through N = 4 or N = 8
measurements. Hyper-Ramsey-Bordé error signals HRB3π and HRB5π are produced with ±π/4 phase steps after N = 4 measurements.

C-protocol (frequency) N q
p�

l , q
p�

s

AB-R1 (ϕ = ±π/2) 4 ϕL + φL

AB-R2 (ϕ = ±π/2) 4 ϕL + φL

AB-HR3π (ϕ = ±π/2) 4 ϕL + φL − Arg[2
1β(gg)]

AB-HR5π (ϕ = ±π/2) 4 ϕL + φL − Arg[4
1β(gg)]

AB-R1/HR3π (ϕ = ±π/2) 4 2
1�

l
gg = ϕL + φL − Arg[2

1β(gg)]
1
1�

s
gg = ϕL + φL

AB-GHHR (ϕ = ±π/4, ±3π/4) 4/8 −ϕ′
I,1 + 2ϕ′

II,1 − ϕII,1 + φ′
I,1 − φII,1

AI-protocol (atomic recoil) N q
p�

l
−→p ∓h̄

−→
k

, q
p�

s
−→p ∓h̄

−→
k

AB-RB1 (ϕ = ±π/4) 4 ϕL + φL

AB-RB2 (ϕ = ±π/4) 4 ϕL + φL

AB-HRB3π (ϕ = ±π/4) 4 2
1�

l
−→p −h̄

−→
k

=2
1 �s

−→p −h̄
−→
k

= ϕL + φL − Arg[2
1β

I
gg ·21 β II

ge]
2
1�

l
−→p +h̄

−→
k

=2
1 �s

−→p +h̄
−→
k

= ϕL + φL − Arg[2
1β

I
ge · 2

1β
II
gg]

AB-HRB5π (ϕ = ±π/4) 4 4
1�

l
−→p −h̄

−→
k

=4
1 �s

−→p −h̄
−→
k

= ϕL + φL − Arg[4
1β

I
gg ·41 β II

ge]
4
1�

l
−→p +h̄

−→
k

=4
1 �s

−→p +h̄
−→
k

= ϕL + φL − Arg[4
1β

I
ge · 4

1β
II
gg]

AI-protocol (acceleration / rotation) N q
p�

l
−→p +h̄

−→
k

, q
p�

s
−→p +h̄

−→
k

AB-MZ (ϕ = ±π/2) 4 �MZ

AB-BU (ϕ = ±π/2) 4 �BU

AB-HMZ (ϕ = ±π/4,±3π/4) 4/8 �MZ − Arg[β ′3
1 (gg) · β4

2 (gg)]
AB-HBU (ϕ = ±π/4, ±3π/4) 4/8 �BU − Arg[β ′3

1 (gg) · β4
2 (gg)]

deleterious action on quantum interferences. The correction
is applied either to a clock scheme or to a laser frequency
chirp method for interferometry which is then stabilized by
autobalanced servo-looping. The use of a specific compos-
ite pulse procotol (used as a noise filter) is accelerating the
convergency rate to a robust level of fault-tolerant correction.
The set of autobalanced coupled equations is introduced as
following [41]:

ξ

�

ξ · Tκ
l +q

p �l + ε = 0

ξ · Tκ
s +q

p �s + ε = 0

�

q
p�

s, (59)

Composite phase shifts q
p�

l,s may also include Doppler shifts
and atomic recoil for atomic interferometry and κ is associ-
ated to the power Tκ of the free evolution time. All composite
phase shifts are reported in Table V. The parameter ε is
now introduced as a small error into the laser phase step
modulation due to a potential electronic servo-loop distortion.
The targeting atomic parameter ξ , which is depending on the
protocol selected either for a clock configuration (c-protocol)
or for an interferometer configuration (AI-protocol), is listed
below:

ξ ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ, κ = 1 (frequency)

2(δ ± δr ), κ = 1 (recoil)

− k · (g − gchirp), κ = 2 (acceleration)

− 2(k × (g − gchirp)) · �, κ = 3 (rotation)

. (60)

The set of equations given by Eq. (59) are converging after N
loops to the following stable parameters:

ξ �→ 0 and q
p�

l,s + ε �→ 0 (61)

Any adjustable laser parameter can be one of the relative laser
phase ϕ′

l and ϕl , or pulse area modification through a pulse
duration adjustment ϑ̃ ′

l , ϑ̃l or any additional frequency-step
compensation term �′

l and �l applied during pulses [120].
Our target is to optimize the convergency rate to the free

parameter ξ free from residual light shift and technical pulse
defects. We have reported in Figs. 21(a1) and 21(b1) the
absolute fractional clock error |�ν/ν| and in Figs. 21(a2) and
21(b2) the relative correction to the recoil doublet of Ca ver-
sus the number of autobalanced (AB) cycles. Two particular
configurations of pulse area variation are taking into account.
Case A is a pulse area variation of �θ/θ = ±10% between
sequences of pulses ignoring a possible error in the phase step
modulation process ε = 0 to generate dispersive error signals.
Case B is an asymmetrical pulse area variation between sets
of beam splitters including a possible error ε = 1 − 10% in
the phase step modulation process.

We observe in Figs. 21(a1), 21(a2) and 21(b1), 21(b2) that
AB-R2 (AB-RB2), AB-HR3π (AB-HRB3π ), and AB-HR5π

(AB-HRB5π ) protocols are converging faster in compensat-
ing a pulse area variation coupled to residual light shifts
compared to the initial autobalanced Ramsey configuration
AB-R1 (AB-RB1). We note that after a few cycles, some
fractional clock errors can be largely different between pro-
tocols by several order of magnitude. An hybrid protocol
AB-R1/HR3π (AB-RB1/HRB3π ) is found to converge faster
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FIG. 21. Relative fractional correction to the clock frequency (left) or to the recoil doublet measurement (right) based on fault-tolerant
autobalanced hyperinterferometers with composite pulses at T = 250 pK. (a1) and (b1) autobalanced hyperclock configuration. (a2) and
(b2) autobalanced hyper-Ramsey-Bordé configuration. Case A: the pulse area variation �θ/θ = ±10% is identical between q

pMI(↑)(↓) and
q
pMII(↓)(↑) interaction zones while ignoring any phase step distortion ε/2π = 0. Case B: the pulse area variation is different by �θ/θ =
±10% between q

pMI(↑)(↓) and q
pMII(↓)(↑) interaction zones including a phase step distortion of ε/2π = 1%–10%. Other laser parameters as

in Fig. 12.

than all other protocols when using an additional frequency
compensation step but is however fully unstable when a
small distortion occurs on phase steps generating dispersive
error signals [divergence of the correction in Figs. 21(b1)
and 21(b2)]. At least, the AB-GHHR clock protocol from
Fig. 21(a1) is fully insensitive to any frequency correc-
tion when the pulse area variation is identical between the
first and the last pulse (case A) while autobalanced method
efficiently corrects for any asymmetrical variation of the
pulse area between the first pulse (or a set of composite
pulses) opening the interferometer and the last pulse (or a
set of composite pulses) closing the trajectories as shown in
Fig. 21(b1).

Recently, the Hahn-Ramsey scheme was merged with au-
tobalanced Ramsey spectroscopy to probe quantum states of
a single trapped ion suppressing all inhomogeneous contribu-
tions and low frequency noise to phase accumulation other
than the phase difference accumulated owing to the different
free-precession times, unperturbed by laser beams [70].

VI. CONCLUSIONS AND OUTLOOK

We have explored new applications of composite pulses
from optical clocks to Ramsey-Bordé, Mach-Zehnder and
Butterfly atom interferometers, and demonstrate that they
might be designed to be more robust against pulse defects
related to laser field amplitude variation coupled to residual
Doppler shifts and light shifts between multiple interaction
zones. We have introduced a new set of composite atomic
beam-splitters with concatenated pulses tailored in frequency,
duration and phase steps to efficiently mitigate laser induced
phase-shift distortions on optical Ramsey interferences.

The limits of actual atomic interferometry experiments
raise the important question about inhomogeneities of phases
and amplitudes of laser pulses used to diffract matter waves
related to the size of the atomic ensemble which is thermally
expanding over time. Among these effects that have important
consequences, the recoil determination can be modified in
a distorted optical field [109] and intensity-dependent phase
shifts are present through distortions in the wavefronts of the
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Bragg beams [107]. These error sources driven by fluctuation
of coherent light excitation might be minimized by active con-
trol of laser wavefront [108] and using colder atomic sources
[104,105]. For example, some of these systematics have been
reduced through a spatial-filtering process by controlling the
detection volume and limiting the spatial extent of the atom
cloud before the interrogation protocol [107].

Generalized hyper-Ramsey-Bordé matter-wave interfer-
ometry is primarily dedicated to a new class of atomic
interferometers using long-lived optical clock transitions in
fermionic and bosonic alkaline-earth species inducing large
momentum transfer [121–123] but suffering from systemat-
ics coupled to undesirable ac Stark shifts and magnetic-shift
instabilities [71–75,79]. Auto-balanced techniques with com-
posite pulses may be also of relevance to matter-wave
control with Bragg diffraction and pulse shaping less sus-
ceptible to distortions related to ac-Stark and Zeeman shifts
[81,124,125].

Advancing atomic and molecular coherent matter-wave
manipulation with fault-tolerant autobalanced hyperinter-
ferometers [119,120] will bring atomic sensors to robust
real-world application [126] from portable optical clocks to
mobile gravimeters [100,127–130] as well as boosting perfor-
mances of actual devices with a minimal experimental effort.
Combining such sensors with very recent quantum technolo-
gies through entanglement and spin squeezing [131–133]
will improve high-precision laser spectroscopy and metrology
below a relative level of 10−18 in accuracy, opening new
applications to track gravity induced phase shifts in Ram-
sey interferometry [134] or to detect gravitational waves in
a frequency band between the LISA and LIGO detectors
[123,135–138] while searching for new fundamental physics
behind the standard model with a better accuracy [139].
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APPENDIX

We turn to look for an exact expression of the interaction
matrix q

pM using p, q pulses applied around a single free
evolution time. We present our computational algorithm es-
tablishing matrix components q

pCgg,
q
pCge required to compute

the transition probability generalizing in the previous work
[45].

1. Symmetric functions S′
p,k and Sq,k

We derive formulas and phase association rules to evaluate
envelop terms α

′p
l (gg), αq

l (gg) and α
′p
l (ge) using some nota-

tions from [51] as following:

α
′p
l (gg) =

( p∏
l=1

cos ϑ̃ ′
l e

iφ′
l

)
·
( ∑

evenk�0

(−1)
k
2 S′

p,k (gg)

)
,

(A1a)

α
q
l (gg) =

( q∏
l=1

cos ϑ̃l e
iφl

)
·
( ∑

evenk�0

(−1)
k
2 Sq,k (gg)

)
,

(A1b)

α
′p
l (ge) = α̃′

( p∏
l=1

cos ϑ̃ ′
l e

iφ′
l

)
·
( ∑

oddk�1

(−1)
k−1

2 S′
p,k (ge)

)
,

(A1c)

with α̃′ = −ie−i(φ′
p+ϕ′

p+�′
p ) in Eq. (A1c). The convention is

S′
p,0 = Sq,0 = 1 in Eq. (A1a) and Eq. (A1b). Symmetric func-

tions S′
p,k and Sq,k having respectively p!

k!(p−k)! and q!
k!(q−k)!

elements are

S′
p,k (gg) =

∑
A ⊆ {1, 2, 3, . . . , p}

|A| = k

e−i�′
A

∏
l ∈ A

tan ϑ̃ ′
l , (A2a)

Sq,k (gg) =
∑

A ⊆ {1, 2, 3, . . . , q}
|A| = k

e−i�A
∏
l ∈ A

tan ϑ̃l , (A2b)

S′
p,k (ge) =

∑
A ⊆ {1, 2, 3, . . . , p}

|A| = k

ei�′
A

∏
l ∈ A

tan ϑ̃ ′
l . (A2c)

Note that phase factors �′
A as well as �A that are af-

fected to the product in Eq. (A2a) and Eq. (A2b) are
determined by all possible k-combination of l elements in
A ensemble with k even. The decomposition rules of �′

A
(�A) are presented: for |A| = 2, phase-factors are given
by �′

A ≡ �′
12, �

′
23, . . . �

′
13, �

′
24, . . . where the decomposi-

tion is �′
13 = �′

12 + �′
23, . . . . For |A| = 4, we get �′

A ≡
�′

1234, �2345, . . . �
′
1345 . . . where �′

1234 = �′
12 + �′

34, . . . and
so on.

Phase factors �′
A affected to the product in Eq. (A2c)

are determined by all possible k-combination of l elements
in A ensemble with k odd. For |A| = 1, phase-factors are
given by �′

A ≡ �′
1, �

′
2, �

′
3 . . . . Here, by convention �′

1 = 0
and �′

2 ≡ �′
12, �

′
3 ≡ �′

13, . . . where the decomposition is
�′

12 = �′
12, �

′
13 = �′

12 + �′
23, �

′
14 = �′

12 + �′
23 + �′

34, . . . .
For |A| = 3, we get �′

A ≡ �′
123, �124, �134 . . . , �234, . . .

where �′
123 = �′

1 + �′
23, �

′
124 = �′

1 + �′
24, . . . �

′
234 =

�′
2 + �′

34, . . . and so on. The basic structure of all
phase-factors is �′

l,l+1 = ϕ′
l − ϕ′

l+1 + φ′
l + φ′

l+1 for �′
A

and �l,l+1 = ϕl+1 − ϕl + φl + φl+1 for �A.
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2. Spinor components with p = q = 4

We present an interaction matrix 4
4M based on four pulses.

The matrix components 4
4Cgg,

4
4Cge we need to evaluate are

evaluated by the following elements:

α′4
1 (gg) =

(
p=4∏

1

cos ϑ̃ ′
l e

iφ′
l

)
· (

1 − S′
4,2 + S′

4,4

)
, (A3a)

α4
1 (gg) =

(
q=4∏

1

cos ϑ̃l e
iφl

)
· (1 − S4,2 + S4,4), (A3b)

α′4
1 (ge) = −ie−i(φ′

4+ϕ′
4+�′

4 ) (A3c)

×
(

p=4∏
1

cos ϑ̃ ′
l e

iφ′
l

)
· (

S′
4,1 − S′

4,3

)
. (A3d)

We have for S′
4,k (gg):

S′
4,0 = 1,

S′
4,2 = e−i�′

12 tan ϑ̃ ′
1 tan ϑ̃ ′

2 + e−i�′
23 tan ϑ̃ ′

2 tan ϑ̃ ′
3

+ e−i�′
34 tan ϑ̃ ′

3 tan ϑ̃ ′
4 + e−i�′

13 tan ϑ̃ ′
1 tan ϑ̃ ′

3

+ e−i�′
14 tan ϑ̃ ′

1 tan ϑ̃ ′
4 + e−i�′

24 tan ϑ̃ ′
2 tan ϑ̃ ′

4,

S′
4,4 = e−i�′

1234 tan ϑ̃ ′
1 tan ϑ̃ ′

2 tan ϑ̃ ′
3 tan ϑ̃ ′

4, (A4)

and for S′
4,k (ge):

S′
4,1 = tan ϑ̃ ′

1 + ei�′
2 tan ϑ̃ ′

2

+ ei�′
3 tan ϑ̃ ′

3 + ei�′
4 tan ϑ̃ ′

4,

S′
4,3 = ei�′

123 tan ϑ̃ ′
1 tan ϑ̃ ′

2 tan ϑ̃ ′
3

+ ei�′
124 tan ϑ̃ ′

1 tan ϑ̃ ′
2 tan ϑ̃ ′

4

+ ei�′
134 tan ϑ̃ ′

1 tan ϑ̃ ′
3 tan ϑ̃ ′

4

+ ei�′
234 tan ϑ̃ ′

2 tan ϑ̃ ′
3 tan ϑ̃ ′

4. (A5)

We also have for S4,k (gg) elements:

S4,0 = 1,

S4,2 = e−i�12 tan ϑ̃1 tan ϑ̃2 + e−i�23 tan ϑ̃2 tan ϑ̃3

+ e−i�34 tan ϑ̃3 tan ϑ̃4 + e−i�13 tan ϑ̃1 tan ϑ̃3

+ e−i�14 tan ϑ̃1 tan ϑ̃4 + e−i�24 tan ϑ̃2 tan ϑ̃4,

S4,4 = e−i�1234 tan ϑ̃1 tan ϑ̃2 tan ϑ̃3 tan ϑ̃4. (A6)

The corresponding complex phase factor β ′4
1 (gg), β4

1 (gg) lead-
ing to a phase-shift correction are now

β ′4
1 (gg) =

tan ϑ̃ ′
1 + e−i�′

12

tan ϑ̃ ′
2+e−i�′

23
tan ϑ̃ ′

3+e
−i�′

34 tan ϑ̃ ′
4

1−e
−i�′

34 tan ϑ̃ ′
3 tan ϑ̃ ′

4

1−e−i�′
23 tan ϑ̃ ′

2
tan ϑ̃ ′

3+e
−i�′

34 tan ϑ̃4

1−e
−i�′

34 tan ϑ̃ ′
3 tan ϑ̃ ′

4

1 − e−i�′
12 tan ϑ̃ ′

1

tan ϑ̃ ′
2+e−i�′

23
tan ϑ̃ ′

3+e
−i�′

34 tan ϑ̃ ′
4

1−e
−i�′

34 tan ϑ̃ ′
3 tan ϑ̃ ′

4

1−e−i�′
23 tan ϑ̃ ′

2
tan ϑ̃ ′

3+e
−i�′

34 tan ϑ̃ ′
4

1−e
−i�′

34 tan ϑ̃ ′
3 tan ϑ̃ ′

4

,

(A7a)

β4
1 (gg) =

tan ϑ̃1 + e−i�12
tan ϑ̃2+e−i�23

tan ϑ̃3+e−i�34 tan ϑ̃4
1−e−i�34 tan ϑ̃3 tan ϑ̃4

1−e−i�23 tan ϑ̃2
tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

1 − e−i�12 tan ϑ̃1

tan ϑ̃2+e−i�23
tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

1−e−i�23 tan ϑ̃2
tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

,

(A7b)

β ′4
1 (ge) = 1

{β ′4
1 (gg)}∗ . (A7c)

We give the decomposition of phase factor expressions as
following:

�′
1 = 0,

�′
2 = �′

12,

�′
3 = �′

13,

�′
4 = �′

14,

�′
123 = �′

1 + �′
23,

�′
124 = �′

1 + �′
24,

�′
134 = �′

1 + �′
34,

�′
234 = �′

2 + �′
34, (A8)

�′
12 = ϕ′

1 − ϕ′
2 + φ′

1 + φ′
2,

�′
23 = ϕ′

2 − ϕ′
3 + φ′

2 + φ′
3,

�′
34 = ϕ′

3 − ϕ′
4 + φ′

3 + φ′
4,

�′
13 = �′

12 + �′
23,

�′
24 = �′

23 + �′
34,

�′
14 = �′

12 + �′
23 + �′

34,

�′
1234 = �′

12 + �′
34, (A9)

and

�12 = ϕ2 − ϕ1 + φ1 + φ2,

�23 = ϕ3 − ϕ2 + φ2 + φ3,

�34 = ϕ4 − ϕ3 + φ3 + φ4,

�13 = �12 + �23,

�24 = �23 + �34,

�14 = �12 + �23 + �34,

�1234 = �12 + �34. (A10)

See also Ref. [57] as another way to obtain 4
4Cge from 4

4Cgg.

3. GHHR components with p = 1, q = 1 and two free evolution
time zones TI, TII

To obtain a full analytical solution of the complex am-
plitude related to the GHHR transition probability with only
three pulses (one of the two intermediate pulses from Fig. 7
has a vanishing pulse area), we can simplify a few matrix
elements from Eqs. (22) and (23). To get round of any di-
vergence when taking one pulse area to zero, we decide to
null the second laser pulse area denoted as ϑ̃I,1 ≡ 0 where we
get α1

1 (gg)I = α1
1 (gg)I∗ = 1 and β1

1 (gg)I = β1
1 (gg)I∗ = 0 [we
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avoid the divergency of the other β ′1
1 (ge)II pulse element from

Eq. (21)]. We therefore decompose previous matrix elements
and obtain

1
1α

I∗
ge ·11 αII

eg · 1
1β

I∗
ge = 0,

1
1α

I
gg ·11 αII

gg · 1
1β

I
gg = 0,

1
1α

I∗
ge ·11 αII

eg · 1
1β

II
ge = α′1

1 (ge)I∗α′1
1 (ge)IIα1

1 (gg)II · 1
1β

II
ge,

1
1α

I
gg ·11 αII

gg · 1
1β

II
gg = α′1

1 (gg)Iα′1
1 (gg)IIα1

1 (gg)II · 1
1β

II
gg,

1
1α

I∗
ge ·11 αII

eg = α′1
1 (ge)I∗α′1

1 (ge)IIα1
1 (gg)II,

1
1α

I
gg ·11 αII

gg = α′1
1 (gg)Iα′1

1 (gg)IIα1
1 (gg)II,

1
1β

II
ge = β ′1

1 (ge)IIβ1
1 (gg)II,

1
1β

II
gg = β ′1

1 (gg)IIβ1
1 (gg)II.

(A11)

The Cg(t ) amplitude related to the transition probability is thus

Cg(t ) = Aei(d+T+/2) − Be−i(d+T+/2+1
1�

II
gg )

− Cei(d−T−/2−1
1�

II
gg ) − De−i(d−T−/2), (A12)

where d+T+ = δITI + δIITII, d−T− = δITI − δIITII and

A =1
1 αI

gg ·11 αII
gg

= cos ϑ̃ ′
I,1 cos ϑ̃ ′

II,1 cos ϑ̃II,1ei(φ′
I,1+φ′

II,1+φII,1 ),

B =1
1 αI∗

ge ·11 αII
eg · 1

1β
II
ge

= sin ϑ̃ ′
I,1 cos ϑ̃ ′

II,1 sin ϑ̃II,1ei(ϕ′
I,1−ϕ′

II,1+φII,1 ),

C =1
1 αI

gg ·11 αII
gg · 1

1β
II
gg

= cos ϑ̃ ′
I,1 sin ϑ̃ ′

II,1 sin ϑ̃II,1ei(φ′
I,1+φ′

II,1+φII,1 ),

D =1
1 αI∗

ge ·11 αII
eg

= sin ϑ̃ ′
I,1 sin ϑ̃ ′

II,1 cos ϑ̃II,1ei(ϕ′
I,1−ϕ′

II,1+φII,1 ).

(A13)

After simplification, we get the transition amplitude expres-
sion

Cg(t ) = Ã
(
1 − tan ϑ̃ ′

I,1 tan ϑ̃II,1e−i(d+T++�+
gg )

)
×

{
1 − B̃

(
1 + tan ϑ̃ ′

I,1

tan ϑ̃II,1
e−i(d−T−+�−

gg )
)}

(A14)

with

Ã = Aei(d+T+/2),

B̃ = Cei(d−T−/2−d+T+/2+�II
gg )

1 − tan ϑ̃ ′
I,1 tan ϑ̃II,1e−i(d+T++�+

gg )
,

�II
gg = ϕII,1 − ϕ′

II,1 + φ′
II,1 + φII,1,

�+
gg = −ϕ′

I,1 + ϕ′
II,1 + φ′

I,1 + 2φ′
II,1 + φII,1,

�−
gg = −ϕ′

I,1 + 2ϕ′
II,1 − ϕII,1 + φ′

I,1 − φII,1.

(A15)

4. GHRB components with p = 1, q = 2

For a general purpose, we explicitly give interaction ma-
trix components 2

1MI(↑)(↓) and 2
1MII(↓)(↑) inside successive

building blocks that are including pairs of traveling waves
with opposite orientation to close the interferometer. We have

for the first 2
1MI(↑)(↓) interaction zone, the following compo-

nents:
2
1α

I
gg = α′1I

1 (gg) · α2I
1 (gg),

2
1α

I
ge = α′1I

1 (ge) · α2I
1 (gg),

2
1β

I
gg = β ′1I

1 (gg) · β2I
1 (gg),

2
1β

I
ge = β ′1I

1 (ge) · β2I
1 (gg),

(A16)

where we have
α′1I

1 (gg) = cos ϑ̃ ′
1eiφ′

1 ,

α2I
1 (gg) = cos ϑ̃1 cos ϑ̃2ei(φ1+φ2 ) · (1 − S2,2),

β ′1I
1 (gg) = tan ϑ̃ ′

1,

β2I
1 (gg) = tan ϑ̃1 + e−i�12 tan ϑ̃2

1 − e−i�12 tan ϑ̃1 tan ϑ̃2
,

(A17)

and

α′1I
1 (ge) = −i sin ϑ̃ ′

1e−i(ϕ′
1+φ′

1 )eiφ′
1 ,

β ′1I
1 (ge) = 1

tan ϑ̃ ′
1

(A18)

with a laser detuning definition given by δ
↑↓
I = δ ∓ kvz −

δr + �I for wave-vector orientation.
We have for the second 2

1MII(↓)(↑) interaction zone with
opposite wave vectors the following components:

2
1α

II
gg = α′1II

1 (gg) · α2II
1 (gg),

2
1α

II
ge = α′1II

1 (ge) · α2II
1 (gg),

2
1β

II
gg = β ′1II

1 (gg) · β2II
1 (gg),

2
1β

II
ge = β ′1II

1 (ge) · β2II
1 (gg),

(A19)

where laser detunings are given by δ
↓↑
II = δ ± kvz + 3δr + �II

for the down-shifted frequency component and δ
↓↑
II = δ ±

kvz − δr + �II for the up-shifted component by the atomic
recoil.

We have used definitions from [46,47] for arbitrary trans-
verse Doppler shift orientation and momentum quantization
along each path of the interferometer.

5. HMZ and HBU components with p = 3, q = 4

Some analytic results from section S1 are required again
to evaluate a single interaction matrix 4

3M(↑) including a
composite set of p = 3 pulses for the left side of the HMZ
(MI(↑)) and a composite set of q = 4 pulses for the right side
of the HMZ (MII(↑)). For the HMZ (MZ) case, the two free
evolution times are equal TI = TII = T while for the HBU
(BU) case, the intermediate free evolution time T′ is twice
the other ones as T′ = 2T to eliminate the clock detuning
variable δT. The matter-wave interferometric signal can be
thus directly computed leading to the complex expression:

PHMZ/HBU = ∣∣4
3αgg

[
1 − ∣∣4

3βgg

∣∣e−i43�gg
]∣∣2

, (A20)

where
4
3αgg = α′3

1 (gg) · α4
1 (gg), (A21a)

4
3βgg = β ′3

1 (gg) · β4
1 (gg), (A21b)
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with

α′3
1 (gg) =

(
p=3∏

1

cos ϑ̃ ′
l e

iφ′
l

)
· (

1 − S′
3,2

)
, (A22a)

α4
1 (gg) =

(
q=4∏

1

cos ϑ̃l e
iφl

)
· (1 − S4,2 + S4,4), (A22b)

and

β ′3
1 (gg) =

tan ϑ̃ ′
1 + e−i�′

12
tan ϑ̃ ′

2+e−i�′
23 tan ϑ̃ ′

3

1−e−i�′
23 tan ϑ̃ ′

2 tan ϑ̃ ′
3

1 − e−i�′
12 tan ϑ̃ ′

1
tan ϑ̃ ′

2+e−i�′
23 tan ϑ̃ ′

3

1−e−i�′
23 tan ϑ̃ ′

2 tan ϑ̃ ′
3

, (A23a)

β4
1 (gg) =

tan ϑ̃1 + e−i�12
tan ϑ̃2+e−i�23

tan ϑ̃3+e−i�34 tan ϑ̃4
1−e−i�34 tan ϑ̃3 tan ϑ̃4

1−e−i�23 tan ϑ̃2
tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

1 − e−i�12 tan ϑ̃1

tan ϑ̃2+e−i�23
tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

1−e−i�23 tan ϑ̃2
tan ϑ̃3+e−i�34 tan ϑ̃4

1−e−i�34 tan ϑ̃3 tan ϑ̃4

.

(A23b)

a. HMZ components

MZ and HMZ geometries use a 180ϕ1 pulse to recombine
atomic wave packets. The 2 × 2 matrix associated to the mir-
ror pulse action in matter-wave interferometry is(

0 −ie−i(ϕ1 ) sin ϑ̃1

−iei(ϕ1 ) sin ϑ̃1 0

)
, (A24)

where diagonals elements are zero because nonoverlap-
ping matter waves give no interferometric signal. From
Eqs. (A22b) and (A23b), we apply cos ϑ̃1eiφ1 �→ 0 with
φ1 = 0 while keeping sin ϑ̃1. We finally get modified ex-
pressions for α4

1 (gg) �→ α4
2 (gg) and β4

1 (gg) �→ β4
2 (gg) within

section IV.B of the main text.

b. HBU components

Again, BU and HBU geometries use a 180↑
ϕ0 � δ↑T′ 

180↑
ϕ1 time delayed double pulse to exchange and recombine

atomic wave packets. The overall 2 × 2 matrix associated

to this particular sequence of pulses mirror in matter-wave
interferometry is(−e−i(ϕ0−ϕ1 ) sin ϑ̃0 sin ϑ̃1 0

0 −ei(ϕ0−ϕ1 ) sin ϑ̃0 sin ϑ̃1

)
.

(A25)

This time, within Eqs. (A22b) and (A23b), we apply the
transformation cos ϑ̃1ei�1 �→ −e−i(ϕ0−ϕ1 ) sin ϑ̃0 sin ϑ̃1 where
�1 �→ −(ϕ0 − ϕ1) while taking sin ϑ̃1 �→ 0. We finally get
modified expressions for α4

1 (gg) �→ α4
2 (gg) and β4

1 (gg) �→
β4

2 (gg) within Sec. IV B of the main text.

c. Sensitivity to acceleration and rotation

The local laser phase that atoms are experiencing is

� = �prop + �laser, (A26)

where we have for a HMZ interferometer:

�prop = − k(z1′ − 2z1 + z2),

�laser = − ϕ′
1 + 2ϕ1 − ϕ2 + φ′

1 − φ2

− Arg
[
β ′3

1 (gg)β4
2 (gg)

] (A27)

and for a HBU interferometer:

�prop = − k(z1′ − 2z0 + 2z1 − z2),

�laser = − ϕ′
1 − 2ϕ1 + 2ϕ0 + ϕ2 + φ′

1 + φ2

− Arg
[
β ′3

1 (gg)β4
2 (gg)

]
.

(A28)

The wave-packet trajectory of the mass center under accelera-
tion and rotation is zi = z0 + v0ti + 1

2 gt2
i − (k × g) · � t3

i /6.
After calculation, we get the full HMZ phase shift 4

3�HMZ and
the full HBU phase shift 4

3�HBU expressions:

4
3�HMZ(T) = − kl · gT2 − (kl × g) · �T3

+ �MZ − Arg
[
β ′3

1 (gg)β4
2 (gg)

]
,

(A29)

where �MZ = −ϕ′
1 + 2ϕ1 − ϕ2 + φ′

1 − φ2 and

4
3�HBU(T) = − 2(kl × g) · �T3

+ �BU − Arg
[
β ′3

1 (gg)β4
2 (gg)

]
,

(A30)

where �BU = −ϕ′
1 − 2ϕ1 + 2ϕ0 + ϕ2 + φ′

1 + φ2.
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