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Steady state entanglement of distant nitrogen-vacancy centers in a coherent thermal magnon bath
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We investigate steady state entanglement (SSE) between two nitrogen-vacancy (NV) center defects in a
diamond host on an ultrathin yttrium iron garnet (YIG) strip. We determine the dephasing and dissipative
interactions of the qubits with the quanta of spin waves (magnon bath) in the YIG depending on the qubit
positions on the strip. We show that the magnon’s dephasing effect can be eliminated, and we can transform
the bath into a multimode displaced thermal state using external magnetic fields. Entanglement dynamics of the
qubits in such a displaced thermal bath have been analyzed by deriving and solving the master equation. An
additional electric field is considered to engineer the magnon dispersion relation at the band edge to control
the Markovian character of the open system dynamics. We determine the optimum geometrical parameters of
the system of distant qubits and the YIG strip to get SSE. Furthermore, parameter regimes for which the shared
displaced magnon bath can sustain significant SSE against the local dephasing and decoherence of NV centers to
their nuclear spin environments have been determined. Along with SSE, we investigate the steady state coherence
(SSC) and explain the physical mechanism of how delayed SSE appears following a rapid generation and sudden
death of entanglement using the interplay of decoherence-free subspace states, system geometry, displacement
of the thermal bath, and enhancement of the qubit dissipation near the magnon band edge. A nonmonotonic
relation between bath coherence and SSE is found, and critical coherence for maximum SSE is determined. Our
results illuminate the efficient use of system geometry, band edge in bath spectrum, and reservoir coherence to
engineer system-reservoir interactions for robust SSE and SSC.
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I. INTRODUCTION

Quantum coherence and entanglement are the resources
driving the quantum information science and technolo-
gies [1]. They are, however, rapidly lost in a system open
to environment [2,3]. Generating and protecting quantum
entanglement, especially steady state entanglement (SSE),
are highly desired. For that aim, interacting two-level sys-
tems (qubits) subject to potential or thermal gradients [4–12]
or time-dependent drives [13–16] have been examined.
Energy-efficient maintenance of nonequilibrium conditions
or focusing heat on closely separated qubits are technical
challenges that remain to be solved. We follow exactly the
opposite route to SSE of two distant qubits in a shared thermal
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bath [17–22]. Our approach of bath mediated coupling be-
tween qubits fundamentally differs from proposal that require
single-mode system [23]. While shared baths can mediate
entanglement between noninteracting qubits, they can suffer
from entanglement sudden death (ESD) [24]. Adjusting the
initial conditions and the bath parameters, a delayed SSE can
be revived after ESD [24,25]. In practice, the qubits could
be subject to different local environments in addition to the
common bath [26]. We specifically investigate the interplay
of an external field engineered shared bath and the geometry
of the bath-qubits system to beat ESD for retrieving delayed
SSE effect in the presence of other local environments.

We consider a system consisting of a diamond bar hosting
two distant (noninteracting) nitrogen vacancy (NV) center de-
fect qubits on a yttrium iron garnet (YIG) nanostrip [27–35],
which is illustrated in Fig. 1.

Such a system of NV centers and YIG strip waveg-
uide is shown to be promising for long distance scalable
entanglement generation in transient regime [36]. Qubits cou-
ple to spin waves in the garnet. Weak excitations of spins
about the z axis are described as bosonic quasiparticles,
magnons [37–39]. In broader context, hybrid systems of
qubits in magnon baths play a central role in the field of
magnonics [40–43]. Our geometrical parameters are the qubit
positions and the dimensions of the strip. We use an effective
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FIG. 1. Schematic view of a pair of NV center spins a diamond
host (blue arrows) on an linear spin chain (red arrows with spheres)
of length L along the x axis, effectively modeling a YIG nanostrip.
Static magnetic fields B0 and B1 are applied in the z and −y di-
rections, respectively. An electric field (not shown) can be further
considered transverse to the x axis to control the effective thickness
of the YIG strip. The distance between nearest-neighbor spins is
denoted by a. NV center, labeled by i = 1, 2 is at a height hi from
the chain, making an angle θi j with the vector rij connecting to the
jth spin of the linear chain.

linear spin chain in the x direction to represent the magnetic
strip to calculate bath-qubits couplings. Two static magnetic
fields, B0, B1 are assumed to be applied perpendicular to the
strip, in the z and −y directions, respectively.

We treat the magnons as a bath to the NV centers, but in
contrast to typical thermal environment, we consider them
in so-called “displaced thermal states” [44,45]. Such states
lie between purely chaotic (thermal) and ordered (coherent)
states. To engineer such states, one should inject some coher-
ence into an otherwise thermal bath of magnons. A standard
way to do this is to use external fields. Here, we utilize
the external magnetic field B1 field for that purpose. The
term displacement is used in the context of coherent states
as coherent states can be generated by simply displacing the
equilibrium point of a quantum harmonic oscillator. In our
case, the oscillators refer to the magnon modes. Accordingly,
our model describes two spin qubits immersed in a quasi-
one-dimensional displaced thermal bath of magnons. Very
recently, thermal control of broadband magnons in YIG crys-
tals has been proposed [46]. Further control on the magnon
dispersion relation is introduced by an electric field transverse
to the YIG axis [23,31,46–51].

Dipolar interaction route to multiqubit entanglement has
already been proposed in various settings including engi-
neered environments [52–54]. Here, we consider mediated
effective dipolar coupling between qubits instead of direct
short ranged interaction and aim for robust steady state en-
tanglement. If two noninteracting qubits are in a common
bath of magnons, and if one qubit is excited while the
other one is in its ground state initially, then the excitation
(energy) is exchanged between the qubits by the magnons.
Hence, magnon mediated interaction between the qubits is the

essential physics that can yield SSE. External fields, optimiza-
tion of system geometry, and bath engineering however are
required to realize SSE in real systems where additional local
baths to qubits can be present.

To examine the open system dynamics, we derive the mas-
ter equation of the open qubit system by carefully discussing
the Born, Markov, and secular approximations [2], taking into
account the geometry dependence of interaction coefficients
between the magnons and the qubits. We find the structure
of our master equation is similar to the squeezed thermal bath
master equation for a driven system used for ESD and delayed
SSE generation schemes [25], when the qubits are placed
away from the ends of the strip. In contrast to weak squeezing
that may arise from nonlinear higher order interactions, the
effective squeezing in the displaced bath can be large and
controlled by the external static field B1. Furthermore, the
dissipation rates to the public bath is enhanced at the band
edge of the magnonic crystal, which allows for SSE even in
the presence private baths of the qubits, similar to the enhance-
ment of radiative decay rates in photonic crystals [55–64]. The
coherence injected by B1 into the thermal bath, contributes
to both local and nonlocal dissipators; besides, it generates
an effective drive term on the qubits. Hence, a nonmonotonic
effect of coherence on SSE is predicted due to the competing
roles it plays in the dynamical processes. We determine the
critical coherence for maximum SSE. Moreover, we point out
a subtle interplay of the system geometry with the special
qubit states spanning a decoherence-free subspace (DFS) [65]
for the system-bath interactions to get SSE.

In addition to SSE generation and protection, we discuss
the steady state coherence (SSC) structure of the two-qubit
states explicitly. We find that significant coherence is gener-
ated robustly along with the entanglement, even in parameter
regimes where entanglement is weak or does not exist. The
generated coherences in the qubit pair are versatile, significant
beyond typical quantum information applications, such as
quantum information and heat engines [66–70]. Our scheme
could be relatively easier to implement in comparison to
schemes requiring precise timing of external pulses as it does
not require time-dependent drives; besides, in comparison to
typical bath induced entanglement generation using private
baths, the common bath is not subject to the problem of
focusing thermal noise onto qubits locally.

The rest of the paper is organized as follows. In Sec. II,
we describe our model system consisting of a YIG nanostrip
and a pair of NV-center qubits, the interactions between the
qubits and the displaced magnon bath in three subsections.
In Sec. III, the first two subsections present the justification
of system parameters and the resonance condition between
the NV centers and the magnetostatic magnon mode. The
third subsection presents the spatial profile of the coherence
function of the bath modes, and the derivation of the master
equation for the open system of qubits is given in the fourth
subsection. The fifth subsection presents the SSE results in
three parts. First is the case of SSE generation and protection
when decoherence channels of the qubits to their local nuclear
spin environments are neglected. Second, the local decoher-
ence channels of the qubits are included to present how the
ESD is compensated by the squeezing effect of a common
displaced environment to achieve SSE. Third, the role of DFS
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for SSE with and without coherence in the magnon bath is
discussed. We conclude in Sec. IV.

II. DYNAMICS OF OUR MODEL SYSTEM: A PAIR OF NV
CENTERS ON A YIG NANOSTRIP

A. YIG nanostrip and displaced thermal magnon bath

We consider a YIG, Y3Fe5O12, nanostrip that hosts our
magnon bath, in external magnetic and electric fields, as illus-
trated in Fig. 1. Microfabricated ultrathin YIG films [29], YIG
strips, and waveguides [30,31] are experimentally available.
YIG crystals can be grown with high purity, and they can
maintain spin waves with low damping and acoustic dissi-
pation rates. Magnons are the quanta of such spin waves,
described by an Hamiltonian

Ĥmag,0 = h̄
∞∑

k=−∞
ωkm̂†

k m̂k, (1)

where m̂k (m̂†
k ) is the annihilation (creation) operator of a

magnon quasiparticle with wavenumber k and frequency ωk

(a short introduction to magnons is presented in Appendix A).
Although YIG is a ferrimagnet with a complex lattice

structure, it has a well-separated ferromagnetic lowest band,
described by Heisenberg exchange interactions of effective
spins Ŝ j = (Ŝx

j , Ŝy
j , Ŝy

j ) at the sites j on an effective simple
cubic lattice with the lattice constant a = 12.376 Å. Satura-
tion magnetization of the bulk YIG crystal is μ0Ms = 175 mT,
which gives the magnitude of the effective spin s for a simple
cubic unit cell block as s = 14.2, from the definition of the
magnetization Ms = μ/a3 ∼ 140 kA/m. Here, μ = gμBs, μB

is the Bohr magneton, and the effective g factor is g = 2.
The value of s changes slightly with the width of the YIG
strip, for example, it becomes s = 10.21 for a 20-nm-width
YIG strip [30,31] for which μ0Ms ∼ 100 mT [32,33]. The
YIG is also assumed to have perpendicular magnetic easy
axis due to a strain-induced anisotropy term that overcomes
demagnetizing fields, Ku1 = 2.1 × 104J m−3.

The ferromagnetic exchange interaction, characterized
with positive strength is short-ranged and only couples the
nearest-neighbor sites. It is calculated by using the measured
exchange stiffness constant A = 3.7 ± 0.4 pJ/m [34] and
the relation of the ρs to the magnon dispersion relation via
J = Aa/s2. We find J/2π = 33.42 GHz. Spin stiffness varies
weakly (within 10%) with the temperature, unless close to the
Curie temperature TC, where it sharply drops to zero [35].
Remarkably, one could consider doping YIG crystal to get
significant enhancement to the coupling coefficient even close
to the TC [35].

The large magnitude of effective spin s ∼ 14.2 associated
with the effective cubic unit cell description of YIG crystal
allows us to employ classical dispersion relation together with
our microscopic chain model [48]. In the case of a finite
width quasi-one-dimensional YIG strip, subject to transverse
magnetic and electric fields, the dispersion relation is given
by [71–74]

ωn(k) =
√

ωan(k)ωbn(k) − vE k (2)

where we introduced short-hand notations,

ωan(k) = ω0 + 2Jsa2k2
n , (3)

ωbn(k) = ω0 + 2Jsa2k2
n + ωM

(
1 − 1 − e−knLz

knLz

)
. (4)

Here, γ0 = gμB/h̄ is the gyromagnetic ratio (in units of
rad/Ts), and ω0 := γ0B0, ωM := γ0μ0Ms, and vE := ωMLE ,
with

LE := 4γ0A|e|E
ωMMsESO

. (5)

We denote k2
n := k2 + (nyπ/Ly)2, with ny = 0, 1, 2, ... and

k ≡ kx. e stands for the electron charge. ESO ∼ 19 eV
∼3.044 aJ is an energy scale related to the inverse of the
Dzyaloshinskii-Moriya (DM) interaction coefficient, reflect-
ing the microscopic spin-orbit coupling effect [31,47–51]. Its
main purpose is to control the group velocity for the magne-
tostatic (long wavelength) modes, which in return affects the
magnon bath dissipation rates through the magnon DOS.

In what follows, we drop the mode index n = 0. From ω(k)
we can calculate the DOS, which becomes

D(ω0) ≡ D0 = 8Lx

ωM (Lz − LE )
, (6)

at k = 0. Denominator of Eq. (6) can be interpreted as an
effective geometrical role played by the electric field. LE

allows us to effectively make the YIG strip thinner for the
purpose of controlling the DOS at the magnetostatic modes.
Remarkably, when E = 0, D0 ∼ 10−8 s; using high electric
field E ∼ 0.1 V/nm and high precision tuning between Lz

and Le we can get D0 ∼ 0.25 s. This electric field is safe and
low enough to not cause dielectric breakdown [75]. Another
subtle point is that the dispersion relation is no longer an even
function of k, and the summations over k should be from −∞
to +∞ and hence the directional degeneracy factor in the DOS
is not employed.

The electric field is transverse to the YIG strip axis (x) and
its effect on the NV centers are given by the Hamiltonian in
Eq. (C2). Considering the magnitude of applied electric field,
we verified that it has negligible influence on the NV centers’
energy levels. (see Appendix C).

We further consider a static uniform field B1 is applied to
the YIG nanostrip in the y axis, whose purpose is to make
SSE more robust against additional decoherence channels. An
additional Zeeman term for B1 in the −y direction, in terms
of magnon operators, the relevant term −h̄γ0

∑N/2
j=−N/2 B1 j Ŝ

y
j

to is added to magnon Hamiltonian (1), and using Holstein
Primakoff transformation [38], one can get the form

Ĥmag,1 = ih̄
∞∑

k=−∞
(Ekm̂†

k − E∗
k m̂k ), (7)

where

Ek = γ0

√
s

2N

N/2∑
j=−N/2

B1 je
−ikx j . (8)

Here, B1 j is the magnitude of the magnetic field on the spin
site x j . We consider only static fields, and do not aim to excite
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a particular spin wave mode. Our approach may have some
practical advantages for implementations as we do not require
precise timing of time-dependent drive fields in our theory and
we get SSE and SSC through natural relaxation of the open
system in contrast to external dynamical control schemes.

For simplicity, we only consider a single linear spin chain
to estimate the injected coherence (displacement) by the exter-
nal magnetic field into the otherwise thermal magnon modes.
To specify the positions x j of the spins in the chain in Eq. (8),
we assume a chain of length L = (N − 1)a with even number
of spins N . The middle point x0 = 0 is vacant, the spins are
periodically and symmetrically distributed around the middle
point according to ( j = −N/2..N/2)

x j = [ j − sign( j) 1
2 ]a, (9)

where the sign function is defined by sign(x) := +1, 0,−1 for
x > 0, x = 0, x < 0, respectively.

The magnon subsystem has a wide and continuous spec-
trum. Except for the gap at k = 0, which is in resonance with
NV centers frequencies, we threat the magnon subsystem as a
large bath to the NV centers. Its initial state can be determined
solely by its own total Hamiltonian

Ĥmag = h̄
∞∑

k=−∞
(ωkm̂†

k m̂k + i(Ekm̂†
k − E∗

k m̂k )), (10)

and the thermal environment, which we do not specify its
coupling to the magnons except assuming that it would bring
the magnons to a thermal equilibrium, if there would be no co-
herence at a temperature T . In the case of coherence, we first
diagonalize the magnon Hamiltonian by using the multimode
Glauber displacement operator with the coherence parameter
εk [44]:

D̂(εk ) = exp(εkm̂†
k − ε∗

k m̂k ). (11)

For εk = −iEk/ωk we find

Ĥmag = h̄
∞∑

k=−∞
ωkm̂′†

k m̂′
k, (12)

where m̂′
k = m̂k − εk and a constant of |εk|2 is dropped. This

is known as displaced oscillators and they are the source of
coherent states [45]. In what follows, we will suppress the
prime superscripts for brevity considering all magnon oper-
ators given later in the text corresponds to shifted magnon
operators.

The magnetic field amplitude B1 must be less than than
the maximum field that would saturate the magnetic mate-
rial along the y axis. Saturation field can be controlled and
can be high (∼0.5 T) in YIG materials with perpendicular
magnetic anisotropy (PMA), which can be physically imple-
mented by substrate strain or replacing yttrium with other
rare earth ions [27,76–80]. Maximum value of B1 limits how
much coherence can be injected to the magnons. For example,
in a YIG nanostrip with N ∼ 103 sites along the long axis,
the range of coherence of the magnetostatic mode (k = 0)
becomes |ε0| < ∼1.

If we assume that the spin chain is in contact with a ther-
mal environment then the magnon reservoir is described as a

coherent (displaced) thermal bath for the NV centers, with the
correlations

〈m̂k〉 = −εk, (13)

〈m̂km̂q〉 = εkεq, (14)

〈m̂†
k m̂q〉 = δkqn̄k + ε∗

k εq, (15)

〈m̂km̂†
q〉 = δkq(n̄k + 1) + εkε

∗
q , (16)

where the thermal contribution to the mean number of
magnons is given by the Bose-Einstein distribution function

n̄k (T ) = 1

exp(h̄ωk/kBT ) − 1
, (17)

with kB being the Boltzmann constant. One can realize that
the thermal contribution in Eq. (17) does not depend on the
B1 field. On the other hand, B1 is a displacement, or coherent
transition field as described by Hamiltonian in Eq. (12). That
is why overall number of magnons depend on B1 as shown in
Eqs. (15) and (16).

B. Diamond NV center qubits

Hamiltonian of the NV center qubits is derived in Ap-
pendix C by considering the necessary temperature and field
conditions to make qubit assumption from spin-1 NV center
system and it is given by

ĤNV = h̄
ωNV

2

∑
i=1,2

σ̂ z
i − h̄γNVBNV

1

√
2

2

∑
i=1,2

σ̂
y
i (18)

where h̄ωNV := h̄(D − γNVB0) and σ̂ z
i := | − 1〉i〈−1| −

|0〉i〈0|. In the subsequent discussions we use σ̂+
i = |−1〉i 〈0|i

and σ̂−
i = |0〉i 〈−1|i. We consider B0 as the field in the

quantization direction. The objective of B1 is to induce
coherence to the magnon bath, as discussed in the previous
subsection, however focusing B1 only on the YIG nanostrip
per se could be challenging in practice and hence we take
into account its effect on the NV qubits, too. In general B1
can be designed to be spatially varying along the x direction,
we assume it is the same at the NV qubit locations (±L/4)
for simplicity and denote by BNV

1 . One can diagonalize
the NV center Hamiltonian when B1 is present to find the
corresponding qubit transition frequency ωNV. The essential
contribution of ωNV in the rest of the theory is to determine
the magnitude of B0 to satisfy the magnon-qubit resonance,
which would depend on the given B1 magnitude. As B1
determines the injected coherence, one would have different
resonance fields for different coherence. Other than this minor
technical change, the open system dynamics and the essential
physics of SSE and SSC generation remain the same.

C. NV center-magnon interactions

Let us consider a YIG strip of thickness Lz, width Ly, and
length L ≡ Lx, with conditions Lz � Ly � Lx. For simplicity,
we consider an effective one-dimensional spin chain as a close
representation of the ultrathin YIG strip to calculate its cou-
pling to the NV centers. Our effective spin chain corresponds
to a linear lattice of cubic unit cells, and hence, it is associated
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with a width of a ∼ 1 nm. An ultrathin nanostrip could have a
few nm thickness and width of Ly ∼ 10 nm so that a more rig-
orous calculation would need to consider several spin chains
symmetrically placed next to the central one. We expect the
overall effect of neighboring chains could yield a collective
enhancement of the interaction coefficients we estimate here.
We limit ourselves to an underestimation of the interaction
coefficients for the sake of avoiding additional complexity in
our theoretical treatment.

NV center and YIG spins can couple via magnetic dipole
and exchange interactions. The exchange interaction is signif-
icantly weaker compared to the long-range dipolar coupling
for the NV-YIG system. YIG exchange interactions decay
within a few unit cells, while dipolar fields may easily extend
over several tens of nanometers or microns (10’s of wavenum-
bers) [81–83]. In our numerical simulations we consider NV
centers are located at heights about 5 − 20 nm (equivalent
to 5 − 20 unit cells) away from the YIG strip and neglect
the exchange interaction relative to the dipolar coupling. We
remark that exchange interaction may have further positive
effects on entanglement at shorter distance coupling but one
needs to consider other possible noises due to placement of
the NV centers nearby surfaces, hence this requires a further
dedicated study beyond the scope of our present analysis.

The magnetic dipolar coupling between an NV-center, rep-
resented by a spin-1 operator Îi with i = 1, 2 and a spin Ŝ j

at a cite j in the effective linear chain, representing the YIG
nanostrip, is given by

H (i j)
int = h̄

∑
i, j

di j[Îi · Ŝ j − 3(Îi · ei j )(Ŝ j · ei j )]. (19)

Here, ei j = ri j/ri j is the unit vector in the direction of the
distance vector ri j = ri j (cos θi j, sin θi j ) from the chain site j
to the NV center in the xz plane, as shown in Fig. 1. The
coefficient di j := h̄μ0γNVγ0/8πr3

i j is the frequency of dipolar
coupling. The angle θi j is between the ri j and the x axis so
that ri j = hi/ sin θi j with hi is the height of the ith NV center
from the spin chain. For simplicity we take h1 = h2 ≡ zNV and
write di j = d sin3 θi j with d = h̄μ0γNVγ0/8πz3

NV.
As further detailed in Appendix C, the upper energy level

of the three-level (spin-1) NV center is well separated from the
lower energy level doublet so that it is effectively uncoupled
from the low temperature magnon bath [84]. We can therefore
restrict the dipolar interaction dynamics of the NV centers to
the qubit subspace introduced in the previous subsection and
replace the spin-1 operators with the qubit operators, Î±,z

i →
σ̂±,z

i , where σ̂±
i = (σ̂ x

i ± iσ̂ y
i )/2. We can then express the

interaction Hamiltonian Eq. (19) in the magnon representation
of the Ŝ±

j = Ŝx
j ± iŜy

j , using Eqs. (A3) and (A4). The resulting
Hamiltonian describes two qubits immersed in a magnon bath.

In addition to the bilinear σ̂±,z
i m̂ j and σ̂±,z

i m̂†
j qubit-

magnon coupling terms, the interaction Hamiltonian in the
magnon picture has terms linear in σ̂

x,y,z
i . The coefficient of

σ̂ z
i can be interpreted as bath induced energy level shift such

that the new transition frequency ωi of an NV center qubit
become dependent on its position on the spin chain such that

ωi = ωNV −
√

2sβi, (20)

where

βi :=
N/2∑

j=−N/2

2Bi j, (21)

with

Bi j := −d

√
2s

2
sin3 θi j (3 cos2 θi j − 2). (22)

Coefficients of σ̂±
i describe NV center transitions driven by

classical spin waves. Combination of dipolar interaction terms
with Eq. (18) yields a Hamiltonian

Ĥ ′
NV = h̄

∑
i=1,2

(
ωi

2
σ̂ z

i − γNVBNV
1

√
2

2
σ̂

y
i −

√
8sαiσ̂

x
i

)
(23)

where

αi :=
N/2∑

j=−N/2

Ai j, (24)

with

Ai j := −d
3
√

2s

4
sin3 θi j sin 2θi j . (25)

We introduced αi, βi, Ai j ,and Bi j notations for brevity, as they
will appear in other terms in the total Hamiltonian, too.

The rest of terms in Eq. (19) considering NV center qubit
can be grouped into three different types of magnon-qubit
interactions expressed as

Ĥdeph = h̄
∑

i j

Ai j σ̂
z
i (m̂†

j + m̂ j ), (26)

Ĥcrt = h̄
∑

i j

Bi j (σ̂
−
i m̂ j + H.c.), (27)

Ĥrt = h̄
∑

i j

Ci j (σ̂
−
i m̂†

j + H.c.). (28)

The Hamiltonian Ĥdeph is responsible for the NV qubit de-
phasing. The counter rotating terms (crt) and rotating terms
(rt) are collected into the Ĥcrt and Ĥrt , respectively. The coef-
ficient Ci j is defined to be

Ci j = −d
3
√

2s

2
sin3 θi j cos2 θi j . (29)

We will rotate the NV qubit basis |−1〉i , |0〉i to a new one
|−〉i , |+〉i

|+〉i = cos φie−iϕi/2|−1〉i + sin φieiϕi/2|0〉i,

|−〉i = − sin φie−iϕi/2|−1〉i + cos φieiϕi/2|0〉i, (30)

to diagonalize the Hamiltonian in Eq. (23). The basis rotation
translates into the 2φi rotation about the y axis of the NV qubit
spins so that we have

σ̂ z
i → σ̂ z

i cos 2φi − σ̂ x
i sin 2φi,

σ̂+
i → 1

2

(
σ̂ z

i sin 2φi + σ̂+
i (cos 2φi + 1)

−σ̂−
i (cos 2φi − 1)

)
e−iϕi , (31)

Here the spin operators on the right hand side are in the |±〉
basis such that σ z

i ≡ |+〉i 〈+| − |−〉i 〈−| and σ̂±
i = |±〉i 〈∓|.
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We find that at an angle of rotation determined by the
condition

tan 2φi =
(
8sα2

i + γ 2
NV

(
BNV

1

)2
/2

)1/2

√
2sβi − ωNV

, (32)

and the phase

eiϕi =
(
8sα2

i + γ 2
NV

(
BNV

1

)2
/2

)1/2

−2
√

2sαi + i
√

2γNVBNV
1

. (33)

Equation (23) becomes diagonal in the |±〉 basis,

ĤNV = h̄
∑
i=1,2

�i

2
σ̂ z

i , (34)

where we dropped the prime such that Ĥ ′
NV ≡ ĤNV. The new

qubit transition frequency is

�i := (
ω2

i + 8sα2
i + γ 2

NV

(
BNV

1

)2
/2

)1/2
(35)

In terms of the new NV qubit spin operators, the interaction
terms can be found similarly. We get exactly the same form
of interaction Hamiltonian’s as in Eqs. (26)–(28), but the
interaction coefficients Ai j, Bi j,Ci j are replaced by ξi j, ζi j, ηi j ,
respectively, where

ξi j = Ai j cos 2φi + 1

2
(Bi je

−iϕi + Ci je
iϕi ) sin 2φi,

ζi j = −Ai j sin 2φi + Bi je−iϕi + Ci jeiϕi

2
cos 2φi,

+ Bi je−iϕi − Ci jeiϕi

2
,

ηi j = −Ai j sin 2φi + Bi jeiϕi + Ci je−iϕi

2
cos 2φi

− Bi jeiϕi − Ci je−iϕi

2
. (36)

To express the Hamiltonians in k space we use

f (i)
k = 1√

N

N/2∑
j=−N/2

fi je
−ikx j , (37)

where f ∈ {ξi j, ζi j, ηi j}. Accordingly, Eqs. (26)–(28) become

Ĥdeph = h̄
∑

ik

ξ
(i)
k σ̂ z

i m̂k + H.c., (38)

Ĥcrt = h̄
∑

ik

ζ
(i)
k σ̂−

i m̂k + H.c., (39)

Ĥrt = h̄
∑

ik

η
(i)
k σ̂+

i m̂k + H.c. (40)

Together with the Eq. (34), and Eq. (8), Eqs. (38)–(40)
complete the total Hamiltonian Ĥ of the overall system ex-
pressed in k space. Hamiltonian can be written in ω space as
well by using the magnon DOS. The interaction coefficients
are highly sensitive to the geometry of the setup. In particular,
the thickness of the YIG strip, which can be effectively con-
trolled by the external electric field, can be reduced to enhance
the magnon-NV coupling to a level where it can be strong
enough to sustain magnon mediated entanglement between
the NV centers [cf. Eq. (6)]. Our approach to NV-magnon

coupling by using magnetic dipole interaction between NV
spins and spins of an effective quasi-one-dimensional YIG
crystal with size dependent magnon dispersion relation and
density of states is only for simple capture of the essential
physics and size dependent effects. We refer to Refs. [23]
and [36] for more rigorous formulation of size-dependent NV-
magnon interactions. Remarkable differences emerge between
the central and closer to edges placements of the NV centers
on the chain. The decoherence and dephasing rates of the
NV qubits to the common magnon bath are determined by
the interaction coefficients. Hence, the geometric dependence
of the interaction coefficients is translated to the open system
dynamics of the NV center qubits. To see the explicit relation
of geometry and open system dynamics, our next aim is to
develop the master equation of the system.

III. RESULTS AND DISCUSSION

Initially, the qubit system is assumed to be prepared in
a state where only one of the qubits is excited, ρ(0) =
|+−〉 〈+−|. This ensures bath mediated energy exchange
could be established between the qubits through the nonlocal
dissipator of the public (common) bath. We propagate the
qubit state by solving the master equation and then determine
their entanglement dynamics by calculating the bipartite con-
currence [85]

C = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}. (41)

Here, the eigenvalues λi with i = 1..4 of the time-reversed
matrix R = ρρ̃ are in the descending order, where ρ̃ = (σ y ⊗
σ y)ρ∗(σ y ⊗ σ y) is the spin flipped density matrix. We use
the standard basis {|1〉 ≡ |11〉 , |2〉 ≡ |10〉 , |3〉 ≡ |01〉 , |4〉 ≡
|00〉} with |+〉 ≡ |1〉 and |−〉 ≡ |0〉.

In addition, dynamical behavior of the entanglement is
compared to the coherence, which is quantified by the l1-norm
coherence [86]

Cl1 (ρ) ≡ C1 :=
∑
i, j
i �= j

|ρi j |. (42)

We first discuss the rest of the physical parameters required
for our simulations and derivation of the master equation, then
present our results in the following subsections.

A. Physical parameters

NV center qubits in diamond hosts can be found at heights
of 5 − 100 nm with dephasing times still high >0.1 ms [87].
For example, at zNV = 20 nm, the dipolar interaction fre-
quency becomes d/2π ∼ 3.25 kHz. Closeness to the surface
of the YIG strip is critical to be able to have robust SSE in
the presence of private (local) nuclear spin noises in the NV
center hosts. Hence, in our simulations we consider 5 − 20 nm
heights. We consider a chain of N = 1000 sites which corre-
sponds to a chain of length L = (N − 1)a ≈ Na ∼ 1.24 μm.
This allows us to consider SSE in the range of ∼1 μm. A
summary of the parameters is presented in a table in the
Appendix E.
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B. Resonance condition

Let us start by writing the resonance condition between the
magnon mode [Eq. (A7)] at k = 0 and an NV center qubit
[Eq. (35)] at location xi on the chain subject to a bias magnetic
field B0:

ω(k = 0) = ω0 = (
ω2

i + 8sα2
i + γ 2

NV

(
BNV

1

)2
/2

)1/2
. (43)

Here, αi and βi [in ωi of Eq. (20)] are fixed by xi. Both sides
of the resonance condition depend on B0 through ωNV = D −
γNVB0 and ω0 = γ0B0 (note that γNV ≈ γ0). We remark that
this resonance should not be confused with the usual ferro-
magnetic resonance condition, where time-dependent external
fields are involved. Here we only have static external fields
yielding Larmor frequencies. In our case, k = 0 spin-wave
mode frequency is matched to the qubit transition frequency.
When the there is no injected coherence (BNV

1 = 0), Eq. (43)
gives the resonance field to be B0 ∼ 51 mT for the qubits
placed at x1 = ±L/4. We numerically verified that the reso-
nance condition is weakly dependent on the spatial location
of the NV qubits on the YIG nanostrip unless they are almost
exactly at the ends. Although, we will limit our discussions
to the pairwise entanglement of about half a micrometer sep-
arated qubits in this paper, due to the approximately spatially
uniform behavior of interaction coefficients and the resonance
condition, our scheme could be scaled to different separation
distances straightforwardly.

C. Spatial profile of coherence function of the bath modes

From Eq. (8), we can write the coherence function of the
magnon bath modes explicitly

εk = −i
B1

B0

√
s

2N

N/2∑
j=−N/2

B1 je
−ikx j , (44)

where we express the inhomogeneous external field B1 as
B1(x j ) = B1B1 j with B1 j ≡ B1(x j ) is a unit amplitude spatial
profile function. Coherence function directly contributes to
the bath correlation functions through Eqs. (14)–(16). Thus, if
the spatial space profile of the coherence is too broad, or if the
B1(x j ) is close to uniform, only the lowest wavelength bath
modes would dominate the open system dynamics, making it
non-Markovian. While we can externally control the amount
of coherence via the ratio of magnetic field amplitudes B1/B0,
the inhomogeneity of B1 can be used to continuously tune
non-Markovian character of the magnon bath.

Our objective is to find simple and intuitive Markovian re-
laxation towards robust steady state entanglement, and hence
it is necessary for us to consider sufficiently focused, spatially
narrow, B1.

For that aim, we assume B1(x j ) has a Gaussian spatial
profile with a peak at the center YIG nanostrip, with a width
of ∼0.01 μm, which is narrower than the ηi j spatial profile.
The coherence function for k = 0 mode can be written as

ε0 = −i
B̄1

B0

√
sN

2
≡ −iε, (45)

where we defined the mean magnetic field as

B̄1 ≡ 1

N

N/2∑
j=−N/2

B1B1(x j ), (46)

and we introduced ε := (B̄1/B0)(sN/2)(1/2) as our coherence
parameter controlled by the applied magnetic field magni-
tudes. We assume distant NV centers are placed beyond the
spatial extent of the B1(x) so that BNV

1 is vanishingly small.
This is consistent with the Markovianity condition satisfied
by sufficiently narrow B1(x) spatial profile. This requires sub-
micron focusing of the magnetic field in the x direction. For
wider B1, the spectral response functions and the master equa-
tion can be time-dependent and could exhibit non-Markovian
dynamics. This is not necessarily harmful for the entangle-
ment of NV centers; however, it requires further analysis
beyond the Markovian scope of the present investigation.
Together with specification of the coherence function and
the resonance condition, we can now develop a Markovian
master equation for our system. We show that ηk is the signif-
icant interaction for the open system relaxation of NV qubits
and other interaction coefficients have similar time scales as
with the bath correlation function determined through |ηk|2.
Coherence function would bring additional bath correlation
functions that depend on ηkεk , which we want to be broad.
The spatial profile we take here is only an example and is not
a prerequisite in any experimental implementation. One can
use different spatial profiles than the one we consider here,
provided that ηkεk is broad enough to give decaying bath cor-
relations within Markovian time scales. Beyond Markovian
regime, our theory is not applicable, but one could explore
non-Markovian effects on SSE and SSC by using spatially
broader magnetic fields. Our choice allows for a simple test of
Markov approximation without additional parameters. Plots
of the η(x)/η0 are given in Fig. 2(a) for two NV center loca-
tions ±L/4.

D. Master equation for NV centers in a common bath of
displaced thermal magnons

Derivation of master equation requires a series of assump-
tions, which is not trivial in the case of coherently displaced
thermal reservoir and the literature or the textbooks focus on
the case of squeezed bath. Hence, we will start from the very
beginning to see where the assumptions are needed and how
they can be justified. Explicit justification of the so-called
Born-Markov approximations is presented in Appendix F.

Typically system-bath interactions are much slower than
the free Hamiltonian evolutions and hence it is preferable
to use the interaction picture to follow the interaction dy-
namics. Writing Ĥ0 = Ĥmag + ĤNV with Eqs. (34) and (12)
in the unitary Û (t, 0) = exp(iĤ0t/h̄), the interaction picture
transformations for the overall state ρSB and the Hamiltonian
ĤSB are given by

ρI
SB(t ) = Û (t, 0)ρSBÛ †(t, 0),

Ĥ I
SB(t ) = Û (t, 0)ĤSBÛ †(t, 0), (47)

where ĤSB(t ) = Ĥdeph(t ) + Ĥcrt(t ) + Ĥrt(t ) is the overall in-
teraction Hamiltonian and ρSB is the state of the total system.
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FIG. 2. (a) Spatial profiles of the interaction coefficients η(x) of
a pair of NV center qubits placed at x = L/4 (blue-solid curve) and
x = −L/4 (red-dashed curve) on a YIG strip of length L ∼ 1.2 μm.
The interaction coefficient is normalized with the η0 ∼ 5.55165 ×
104 Hz, the interaction strength of the k = 0 magnon mode with the
NV center qubits. Both spatial profiles yield the same interaction
strength η(k) in the reciprocal space. (b) Real (solid-black curve)
and imaginary (red-dashed curve) parts, and the norm (dotted-blue
curve) of the coefficient η(k) of the rotating terms in the magnon-NV
center qubit interaction as a function of the wavenumber of the
magnon mode k. NV center qubit is placed at x = L/4 from the
end of the YIG nanostrip of length L. The interaction coefficient is
normalized with the η0 ∼ 5.55165 × 104 Hz, the interaction strength
of the k = 0 magnon mode with the NV center qubits. k is multiplied
with the lattice constant a so that the horizontal axis is dimensionless.
η(k) is an even function of k and only k > 0 behavior is shown. For
both figures BNV

1 = 0.

For brevity we drop the superscript I and use only interaction
picture operators in what follows.

Infinitesimal time evolution of the overall system under
ĤSB, which is given by

Û (t + dt, t ) := 1 − iĤSB(t )dt

h̄
, (48)

can be applied over a finite time interval [t, t + �t] using
the Dyson series in time ordered (t � t1 � t2 � ... � tn) man-
ner [88],

Û (t + �t, t ) = 1 −
∞∑

n=1

(−i

h̄

)n ∫ t+�t

t
dt1

∫ t1

t
dt2...

...

∫ tn−1

t
dtnĤSB(t1)ĤSB(t2)...ĤSB(tn). (49)

If the system-bath coupling is weaker relative to the free
evolution, we can terminate the Dyson series after the second
order. Even when the leading first-order term is nonvanishing,
the second-order term is kept as it is responsible to describe
irreversible system dynamics in an environment. Substituting
the terminated Û (t + �t, t ) into the ρSB(t + �t ) = Û (t +
�t, t )ρSB(t )Û †(t + �t, t ), and using

∫ t+�t

t
dt1

∫ t+�t

t
dt2Â(t1)A(t2)

= 2
∫ t+�t

t
dt1

∫ t1

t
dt2A(t1)A(t2), (50)

for any operator Â(t ), and

∫ t+�t

t
dt1

∫ t1

t
dt2A(t1)A(t2)

=
∫ t+�t

t
dt1

∫ �t

0
dsA(t1)A(t1 − s), (51)

we find

ρSB(t + �t ) − ρSB(t )

= −i

h̄

∫ t+�t

t
dt1[ĤSB(t1), ρSB(t )]

− 1

h̄2

∫ t+�t

t
dt1

∫ �t

0
ds[ĤSB(t1), [ĤSB(t1 − s), ρSB(t )].

(52)

Let us suppose that the bath has many degrees of freedom
(modes), yielding a broad, continuous bath spectrum. Accord-
ingly, the bath dynamics can be treated independently, and
its equilibrium state can be taken as the initial bath state ρB,
which cannot change significantly under the weak system-
bath coupling. The system-bath state factorization ρSB(t ) ≈
ρ(t ) ⊗ ρB(t ) and frozen initial bath state ρB = ρB(t ) assump-
tions are known as the Born approximations [2].

After tracing out the bath degrees of freedom we get the
irreversible dynamics of the system, whose characteristic time
scale is denoted by τs. If we take �t � τs, �t becomes
a coarse-grained, effectively infinitesimal, time step for the
system dynamics. The integrals over dt1 are simplified to �t
and the t1 dependent integrands are evaluated at t1 = t . Di-
viding the equation by �t , the left-hand side can be replaced
by a coarse-grained differential ρSB(t + �t ) − ρSB(t ))/�t ≡
dρ(t )/dt . If we write the system-bath interaction in a generic
form ĤSB(t ) = Ŝk ⊗ B̂k , where summation over repeated in-
dex is implied, one can see that the integrands include the
so-called two-time bath correlation functions Gkl (t, t − s) =
〈B̂k (t )B̂l (t − s)〉 = Tr[ρBB̂k (t )B̂l (t − s)]. If these bath corre-
lators decay significantly in a time τB that lies within the
coarse-grained time step �t , then �t in the upper limit of
the remaining integral over s can be replaced by ∞. The
hierarchy of the time scales τB < �t < τs and the associ-
ated manipulations of the integral expressions are known as
Markov approximations [2]. It is necessary for us to determine
the time scales self-consistently by specifying our physical
system and the corresponding parameters, which is the subject
of subsequent sections. Here, we continue with stating the
final expression after the Born-Markov approximations, also
known as the Born-Markov master equation

ρ̇(t ) = iTrB[ρSB(t ), ĤSB(t )] + Lρ(t ), (53)

where the Liouvillian superoperator L is defined to be

Lρ = TrB

∫ ∞

0
ds[ĤSB(t ), [ρ ⊗ ρB, ĤSB(t − s)]]. (54)

Here and in what follows, we drop the factors of 1/h̄ and 1/h̄2,
assuming that ĤSB and all the other Hamiltonians are scaled
with h̄.

To continue with the calculation of the master equation, a
compact expression of ĤSB(t ) is convenient. For that aim, we
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FIG. 3. (a) Real (solid-black curve) and imaginary (red-dashed
curve) parts, and the norm (dotted-blue curve) of the coefficient
ζ (k) of the counter-rotating terms in the magnon-NV center qubit
interaction as a function of the wavenumber of the magnon mode
k. NV center qubit is placed at x = L/4 from the end of the YIG
nanostrip of length L. The interaction coefficient is normalized with
the ζ0 ∼ −5.557725 × 104 Hz, the interaction strength of the k = 0
magnon mode with the NV center qubits. k is multiplied with the
lattice constant a so that the horizontal axis is dimensionless. ζ (k)
is an even function of k and only k > 0 behavior is shown. (b) Real
(solid-black curve) and imaginary (red-dashed curve) parts, and the
norm (dotted-blue curve) of the coefficient ξ (k) of the dephasing
terms in the magnon-NV center qubit interaction as a function of
the wavenumber of the magnon mode k. NV center qubit is placed
at x = L/4 from the end of the YIG nanostrip of length L. The
interaction coefficient is normalized with the ξ0 ∼ −7.316 Hz, the
interaction strength of the k = 0 magnon mode with the NV center
qubits. k is multiplied with the lattice constant a so that the horizontal
axis is dimensionless. ξ (k) is an even function of k and only k > 0
behavior is shown. For both figures BNV

1 = 0.

introduce the magnon bath operators,

B̂α
i (t ) :=

∑
k

(
f iα
k m̂k (t ) + giα

k m̂†
k (t )

)
, (55)

where m̂k (t ) = m̂k exp(−iωkt ) and

f iz
k = ξ

(i)
k , giz

k = ξ
(i)∗
k ,

f i−
k = ζ

(i)
k , gi−

k = η
(i)∗
k ,

f i+
k = η

(i)
k , gi+

k = ζ
(i)∗
k . (56)

The behaviors of the interaction coefficients in the k-space are
shown in Figs. 2 and 3. In addition, the interaction picture
operators of the qubits will be denoted by σ̂ α

i (t ) such that

σ̂ α
i (t ) = σ̂ α

i exp(i�α
i t ), (57)

where α ∈ {z,±}, �z
i = 0, �±

i = ±�i, and σ̂−
i ≡ σ̂i. In terms

of these short-hand notations, the interaction Hamiltonian is
expressed as

ĤSB(t ) =
∑

iα

σ̂ α
i (t )B̂α

i (t ). (58)

After the substitution of the Hamiltonian (58), the first term
of the master equation (53) can be expressed in a Liouville-
von Neumann form i[ρ(t ), Hdrive] in terms of the effective
driving Hamiltonian:

Ĥdrive(t ) =
∑

iα

σ̂ α
i (t )〈B̂α

i (t )〉. (59)

This term can only contribute when coherence is injected to
the magnons with B1.

If the qubits are placed symmetrically about the center of
the linear chain, the interaction coefficients are the same and
we can drop the index i from the bath operators. Substituting
the coherence parameter from Eq. (45) into the 〈B̂α

i (t )〉, the
effective drive term (59) in the Schrödinger picture becomes

Ĥdrive(t ) = −
∑

ik

σ̂−
i [ζkεke−i(ω0+ωk )t + η∗

kε
∗
k e−i(ω0−ωk )t ]

−
∑

ik

σ̂+
i [ηkεkei(ω0−ωk )t + ζ ∗

k ε∗
k ei(ω0+ωk )t ]

−
∑

ik

σ̂ z
i [ξkεke−iωkt + ξ ∗

k ε∗
k eiωkt ], (60)

where we have used the resonance condition �i = ω0 in
time dependence of the interaction picture qubit operators.
We can separate the resonant terms with k = 0 from those
off-resonant terms with k �= 0 in this Hamiltonian. Dropping
these off-resonant terms is equivalent to the employing the ro-
tating wave approximation (RWA) [89] to every off-resonant
term and to keep only the static terms. For a finite length YIG
strip this approximation can be justified. We consider a chain
of N = 103 sites, corresponding to L ∼ 1.2 μm. This gives
a separation between mode frequencies ωk in the order of
∼0.1ω0, which is much larger than the interaction coefficients
ηk ∼ 10−5ω0. The effective drive Hamiltonian under the RWA
in the Schrödinger picture then simplifies to

Ĥdrive = −η0ε
∑

i

σ̂
y
i , (61)

where σ̂
y
i = −i(σ̂+

i − σ̂−
i ).

We expand the commutator in the second term of Eq. (53)
and substitute the Hamiltonian (58), which gives the Bloch-
Redfield master equation [2] in the form,

Lρ =
∑
i jαβ

ei(�α
i +�

β
j )t Gαβ

i j

(
�

β
j , t

)[
σ̂

β
j ρ, σ̂ α

i

] + H.c. (62)

We introduced the one-sided Fourier transform of two-time
bath correlation functions,

Gαβ
i j (t − s, t ) = TrB

(
B̂α

i (t )B̂β
j (t − s)

)
, (63)

as follows:

Gαβ
i j (ω, t ) =

∫ ∞

0
dse−iωsGαβ

i j (t − s, t ). (64)

In contrast to usual derivations of the master equation, the
condition of stationary bath state, [ρB, Hmag] = 0 is not suf-
ficient to have temporally homogeneous correlations with
Gαβ

i j (t − s, t ) = Gαβ
i j (0, s) for our displaced thermal bath. The

integral over s in Eq. (64) can be taken using
∫ ∞

0
dse±iωs = πδ(ω) ± iP

(
1

ω

)
, (65)

where P denotes the Cauchy principal value. The second term
gives rise to a small Lamb shift Hamiltonian, which can be
neglected relative to the drive and the free Hamiltonian of the
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qubits. After the integration, Gαβ
i j (�β

j , t ) becomes

Gαβ
i j

(
�

β
j , t

) = π
∑

kq

(
f iα
k f jβ

q εkεqδ(�β
j − ωq)e−i(ωk+ωq )t

+ f iα
k gjβ

q εkε
∗
qδ(�β

j + ωq)e−i(ωk−ωq )t

+giα
k f jβ

q ε∗
k εqδ(�β

j − ωq)e−i(ωk−ωq )t

+giα
k gjβ

q ε∗
k ε∗

qδ(�β
j + ωq)e−i(ωk+ωq )t

)
+π

∑
k

(
f iα
k gjβ

k (n̄k + 1)δ(�β
j + ωk )

+giα
k f jβ

k n̄kδ(�β
j − ωk )

)
. (66)

The resonance condition �
β
i = ω0 fixes the β = ± and

q = 0 in the first four terms of Eq. (66), after converting the
summation over q to an integral over ωq. Similarly, we replace
the summation over k with an integral over ωk in the last two
terms. Effectively, we can use the replacements in each term

δ
(
�

β
j ∓ ωp

) → D0

2π
δβ±δp0 (67)

with p ∈ {k, q}. This gives us two forms of summations over
k in the first four terms,

S1 :=
∑

k

f iα
k εke−iωkt , (68)

S2 :=
∑

k

giα
k ε∗

k eiωkt . (69)

They can be controlled by the spatial profile of the magnetic
field B1.

The off-resonant terms in the master equation oscillating
at such a high frequency can still be regarded as fast relative
to the static (resonance) terms, as we argued in the RWA
for the drive term, and they can be dropped in the dissipator
terms, too, according to the full secular approximation [90].
In a more rigorous partial secular approximation, some time
dependent terms are kept in such a way that the dynami-
cal hierarchy of dissipation terms are respected [90]. Partial
secular approximation keeps the operator structure of the
master equation same as the full secular approximation. Addi-
tional time dependent oscillatory shifts to the dissipation rates
emerge, which can bring qualitative (oscillatory) changes in
the dynamics. As our focus is on steady state behavior, we
employ the full secular approximation here.

Substitution of Eqs. (67)–(69) into Eq. (66) gives a long
expression for Gαβ

i j (�β
j , t ), which is simplified after multi-

plication with exp [i(�α
i + �

β
j )t] and application of the full

secular approximation to

ei(�α
i +�

β
j )t Gαβ

i j (�β
j , t )

≈ −κ

2
ε2δα+δβ+ + κ

2
(n̄0 + 1 + ε2)δα+δβ−

+ κ

2
(n̄0 + ε2)δα−δβ+ − κ

2
ε2δα−δβ−. (70)

Here, we introduced κ = D0η
2
0.

The Bloch-Redfield master equation (62) in the
Schrödinger picture becomes

dρ(t )

dt
= i

h̄
[ρ, ĤNV(t ) + Ĥdrive]

− κε2

2

∑
i j

[D(σ̂+
i , σ̂+

j ) + D(σ̂i, σ̂ j )]

+ κ

2
(n̄0(T ) + 1 + ε2)

∑
i j

D(σ̂i, σ̂
†
j )

+ κ

2
(n̄0(T ) + ε2)

∑
i j

D(σ̂ †
i , σ̂ j ). (71)

The dissipator superoperators are written in the form

D(A, B) := (2AρB − {BA, ρ}). (72)

Liouvillian superoperator is traceless and hence the master
equation is governed by a trace preserving map. The first term
in the Liouvillian is not in the GKLS (Gorini, Kossakowski,
Lindblad, Sudarshan) form, hence it is not immediately obvi-
ous that the evolution described by such a map is completely
positive. The master equation we obtained however is identi-
cal with that of open system dynamics in a squeezed thermal
reservoir. Complete positivity and trace preserving (CPTP)
conditions are satisfied by squeezed thermal bath master equa-
tion as it can be brought into manifestly GKLS form using
atomic Bogoluibov transformations [91].

The absorption and emission dissipators in the master
equation include nonlocal terms that couple different qubits.
While a common thermal bath can be sufficient for generating
SSE of initially uncorrelated qubits, such an entanglement
can be fragile in the presence other decoherence channels. In
addition to magnon bath, the NV center qubits are subject to
their private nuclear spin environments (13C nuclear spins)
in the diamond hosts, which cause additional dephasing and
decoherence. They contribute to the master equation with the
Liouvillian

LNVρ = κNV

2
((n̄0(T ) + 1)D(σ̂i, σ̂

†
i ) + n̄0(T )D(σ̂ †

i , σ̂i ))

+κ
deph
NV

2

(
σ̂ z

i ρσ̂ z
i − ρ

)
, (73)

where κNV and κ
deph
NV denote the dissipation and dephasing

rates of the NV centers to their local nuclear spin baths,
respectively. We assume the same rates for each qubit for
simplicity. In terms of the longitudinal relaxation (dissipation
or equilibrium) time T1 and transverse relaxation (dephasing)
time we can write κNV = 1/T1 and κ

deph
NV = 1/T2. Using cryo-

genic cooling to ∼77 K and dynamical decoupling techniques,
T2 ≈ 0.6 s can be achieved [92]). At higher temperatures
available with thermoelectric cooling (>160 K), dephasing
get faster with T2 ≈ 40 ms [92,93]). With the theoretical re-
lation for two-level systems T2 = 2T1 (In practice, depending
on the settings and the methods one could get different re-
lations such as T2 = 0.5T1 [92]), same order of longitudinal
relaxation time can be expected. Accordingly, for the ultralow
temperature regimes we consider T1 can be several hours [94],
while at low, cryogenic temperatures, relaxation times of tens
of seconds are possible. Therefore we could neglect the local
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dephasing and dissipation of the NV centers to their nuclear
spin baths described by LNV. On the other hand, dynamical
decoupling methods are energetically costly. We aim to see
how robust our scheme is without using such additional meth-
ods, and therefore we will systematically examine the effects
of T1 and T2 on the entanglement dynamics in the range of
milliseconds to seconds. Moreover, we point out in the next
section that there are surprising beneficial effects of local
dissipation to enhance SSE and SSC, too. We remark that
if one considers using nanodiamonds instead of a diamond
bar to host the NV center qubits, dephasing and relaxation
times could differ due to more significant effects of the surface
spins [95].

For spherical nanodiamonds, it is found that T2 ∼ 3 μs for
radius of 20 nm. On the other hand, very recent studies reveal
that at ultralow temperatures nanodiamonds of size ∼20 nm
can have T1 ∼ 0.5 ms [96].

The dissipators with pairwise emission and absorption
terms (or so-called squeezing-like terms) contribute further
to the coupling of qubits. Besides, their coherent character
can enhance the entanglement, making it more robust. We
therefore consider a displaced thermal bath and treat its co-
herence characterized by ε as our main control parameter
to get steady state entanglement in the presence of other
decoherence channels. Surprisingly the relation between the
coherence of the magnon bath and the entanglement is not
monotonic, contrary to what one might expect. We cannot
simply increase bath coherence to get entanglement. From
the structure of the master equation, we see that coherence
contribute to local thermal channels and hence can act as if it
is thermal noise as well. Therefore, we expect a competitive
character in coherence where it can make entanglement worse
or it can enhance it, which suggest that there must be a critical
coherence for which the entanglement is optimum. Starting
with an example physical system, our final objective is to
determine such an optimal pairwise steady state entanglement
of qubits for a critical coherence of their public thermal bath,
even under additional private decoherence channels of each
qubit.

E. Steady state coherence and entanglement

1. NV center qubits in a public magnon bath

In bulk diamonds one can typically neglect local decoher-
ence channels of the NV centers due to their nuclear spin
environments; in addition, dynamical dephasing methods can
be used to eliminate the local dephasing channels. While this
is not an energetically efficient case, our objective here is to
clarify the physical mechanism of SSE and SSC. Besides, it is
interesting to explore the control parameters’ role in obtaining
SSE and SSC. To understand this, we consider the case when
there is only a public bath, as well as the cases when there are
additional private baths.

Our main geometrical parameters are the thickness of the
YIG strip Lz and the height of the NV center qubits from the
strip zNV. The relative locations of NV centers are also of little
influence unless they are too close to the ends. Figure 4 shows
that the smaller the Lz or zNV, the faster SSE is reached, but
the amount of SSE and SSC remains the same. In particular,
due to the short range nature of the dipole interaction, speed of
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FIG. 4. Dynamics of the l1-norm coherence C1 [red curves in (a)]
and concurrence C [blue curves in (b)] of two NV center qubits in a
quasi-one-dimensional thermal magnon bath, for geometric param-
eters Lz = 10 nm, zNV = 20 nm (solid-red and blue curves), Lz =
20 nm, zNV = 20 nm (dashed-red and blue curves), and Lz = 20 nm,
zNV = 10 nm (dotted-red and blue curves). The other parameters are
ε = 0, E = 0, Lx = 1.236 μm, T = 1 mK, T1, T ∗

2 → ∞ s, x1,2 =
±Lx/4 m.

reaching the steady state is most sensitive to zNV. We conclude
that thinner YIG waveguides and especially NV centers closer
to the surface offer faster SSE, which can be beneficial against
private nuclear spin noises. Remarkably, the electric field be-
longs to the geometrical set of parameters in our model as its
role is reduced to decreasing the Lz effectively by an electrical
length LE introduced in Eq. (6).

The influence of the coherence parameter ε on the entan-
glement and coherence dynamics is plotted in Fig. 5. Figure 5
shows that both SSE and SSC decrease with the ε. Steady
state is reached earlier at higher ε. The rate to get the steady
state is faster (slower) for SSC (SSE). While SSE gets arbi-
trarily small and vanishes at large ε, SSC saturates to ∼0.33,
same as the saturation value at high temperatures. The SSE
and SSC saturate to ∼0.5 the same as the saturation value
at high temperatures. The decrease in SSE and SSC is in-
evitable. Effective temperature character of ε populates the
excited state, and hence the occupations of the |eg〉 , |ge〉 levels
decrease, limiting the possible quantum coherence between
these degenerate levels. The surviving coherent steady state is,
however, not an entangled state. In Fig. 5, we present the range
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FIG. 5. Dynamics of the l1-norm coherence C1 [red curves in (a)]
and concurrence C [blue curves in (b)] of two NV center qubits in
a quasi-one-dimensional thermal magnon bath with injected coher-
ence ε = 0 (B̄1 = 0 T) (solid-red and blue curves), ε ∼ 0.5 (B̄1 ∼
0.30 mT) (dashed-red and blue curves), ε ∼ 1.0 (B̄1 ∼ 0.60 mT)
(dotted-red and blue curves), and ε ∼ 1.76 (B̄1 ∼ 1.0 mT) (dot-
dashed-red and blue curves). The other parameters are T = 1 mK,
E = 0, zNV = 20 nm, Lx = 1.236 μm, Lz = 20 nm, T1, T ∗

2 → ∞ s,
x1,2 = ±Lx/4 m.
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of ε beyond the physically feasible values of 0 < ε < 0.7 to
show the general behavior more clearly. The physical range
of ε is restricted by the B1 dependence of ε and B0. The B0

depends on BNV
1 from the resonance condition of NV center

and magnon (k = 0) mode. The larger ε values demand, the
larger B1, which is restricted by the saturation field value
of ∼0.5 T. With the calculated s and B0 values, and taking
N = 103, we find maximum ε ∼ 1.26.

The effect of temperature on the entanglement and coher-
ence dynamics is the same as that of ε. Hence it is not shown
here. We only remark that significant SSC can be obtained
within the whole temperature range, of 0 K to 0.5 K, limited
by the two-level NV qubit assumption, while SSE requires
much lower (∼1 − 10 mK) temperatures. In Sec. II C, we
assumed that NV center, whose ground state is a spin-triplet
|S = 1, mS = 0,±1〉 ≡ |mS〉, can be described as a qubit of
|0〉 and |−1〉 states. To restrict the dynamics of the NV
center to the manifold of qubit states, we require that the
state |+1〉 will always have a negligible population, which
can be ensured by using sufficiently low temperatures and a
bias magnetic field to separate the energy levels. The energy
of the state |+1〉 is h̄(D + γNVB0). Transitions to the |+1〉
state from the |0〉 state can be neglected if there are a neg-
ligible number of magnons with sufficient energy, which is
h̄(D + γNVB0). Using Bose-Einstein distribution for the mean
number of magnons n̄ and taking B0 ∼ 51 mT, we find the
operating temperature as T < 0.5 K to satisfy n̄ < 0.1. At
higher temperatures, the mean number of magnons resonant
with the (dressed) qubit and the |0〉 - |+1〉 transitions becomes
comparable. While the operating temperature for the two-level
NV center assumption can be as high as T < 0.5 K, that does
not mean we can get entanglement at such high temperatures.

For the given initial condition, when there are no private
baths, the time dependent state is always of the form

ρ(t ) =

⎛
⎜⎜⎜⎝

ρ11(t ) 0 0 0

0 ρ22(t ) ρ23(t ) 0

0 ρ32(t ) ρ33(t ) 0

0 0 0 ρ44(t )

⎞
⎟⎟⎟⎠, (74)

where the elements of ρ(t ) are indicated by ρi j (t ) with i, j =
1..4. We use the standard basis {|1〉 ≡ |11〉 , |2〉 ≡ |10〉 , |3〉 ≡
|01〉 , |4〉 ≡ |00〉} with |+〉 ≡ |1〉 and |−〉 ≡ |0〉. ρ22 > ρ33 for
ρ(0) = |10〉 〈10| and ρ22 < ρ33 for ρ(0) = |01〉 〈01|. The el-
ements are always real so that ρ23(t ) = ρ32(t ) and we found
that ρ23(t ) < 0. At low temperatures (T � 10 mK), the ele-
ments tend to ρ11 = 0, ρ44 = 0.5 and ρi j = 0.25 with i, j ∈
{2, 3} at the steady state, for which C1 = C = 0.5.

For the state in Eq. (74) we have C1 = 2|ρ23(t )|, approach-
ing to 0.5 in the steady state. Accessibility and generation
of only ρ23 and not the other coherences by thermal means
is not surprising from the point of view of the classification
of coherences with respect to their thermodynamic heat and
work equivalents [66–70]. Coherence ρ23 belongs to the class
of so-called heat-exchange coherences [66,67]. Considering
their resource value for quantum information engines, steady
state generation of these coherences makes our scheme signif-
icant for quantum information thermodynamics applications,
too.

2. Decoherence free subspaces of NV center qubits

To appreciate the significance of the structure and the long
time robustness of ρ(t ), let us determine the states spanning
the DFS of the qubits-magnon bath overall system. For that
aim we determine the eigenvectors of the system operator in
Eq. (58). For symmetric placement of the qubits about the
center of the chain we can drop the qubit index i from the
bath operators and write Eq. (58) as

ĤSB(t ) =
∑

α

Ŝα (t )B̂α (t ), (75)

in terms of the collective spin operators

Ŝα (t ) =
∑

i

σ̂ α
i (t ). (76)

Besides, when we plot the interaction coefficients ξk, ηk, ζk

with respect to k, for the placement of qubits away from
the ends of the chain, we see in Figs. 2(b) and 3(b) that
they are approximately real valued for the long wavelength
modes (k ∼ 0). Moreover, we have the relations ξ (k) ≈ 0, and
η(k) = −ζ (k) for k ∼ 0. Hence, using the Eq. (55), we find
Bz = 0 and B+ = −B−, which gives

ĤSB(t ) ≈ (Ŝ+(t ) − Ŝ−(t ))B̂+(t ), (77)

for k ∼ 0.
We can find the eigenvectors of the system operator

Ŝ+(t ) − Ŝ−(t ) to determine the DFS. In terms of the collective
spin states, one member of the DFS is the spin singlet state (we
denote it by |DFS1〉),

|DFS1〉 = |S = 0, ms = 0〉 = 1√
2

(|+−〉 − |−+〉). (78)

This is the unique state that will be in the DFS for all k, while
the spin triplet states cannot be in DFS in general, as they
are not eigenvectors of the all the system operators Sα . In our
scheme, dynamics is restricted over the k ∼ 0, and hence an
additional state, denoted by |DFS2〉 is added to the DFS,

|DFS2〉 = |S = 1, ms = 1〉 − |S = 1, ms = −1〉√
2

(79)

= 1√
2

(|++〉 − |−−〉). (80)

We conclude that the evolution of the initial state |+−〉
yields states ρ(t ) in the form in Eq. (74), which is a mixture
of |DFS1〉 and |−−〉 at all times, with relatively much smaller
contribution from |++〉. The spin singlet is also the eigenstate
of the free Hamiltonian of the system with zero eigenvalues.
Hence both the dissipators and the free Liouvillian of the open
system cannot change the dynamics out of the manifold of
the |DFS1〉 and |−−〉. The fraction of the DFS state grows in
time, and SSE is established. We remark that if the initial state
is |DFS1〉 then it is always protected with C(t ) = 1. Other
entangled states, such as the symmetric Bell state, would
decay.

Although |DFS2〉 has no effect on the SSE generated for the
initial state |+−〉 when there is only the public magnon bath,
it plays the decisive role to protect SSE against additional
decoherence channels from other private (nuclear spin) baths
of the qubits.
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FIG. 6. Steady state behavior of the (a) l1-norm coherence C1

and (b) concurrence C of two NV center qubits in a public quasi-
one-dimensional thermal magnon bath, with mean magnetic field B̄1,
when there are either (solid-red and blue curves, T1 = 1 ms) dissi-
pative or dephasing (dashed-red and blue curves, T ∗

2 = 1 ms) private
baths of the qubits. The dashed-blue curve in (b) is a flat line at 0.
The other parameters are Lz = 20 nm, Lx = 1.236 μm, zNV = 5 nm,
T = 1 mK, x1,2 = ±Lx/4 m, E = 0.15724125 V/nm. With these
parameters critical value for l1-norm coherence is B̄1 ∼ 0.36 mT and
for concurrence B̄1 ∼ 0.18 mT.

From a quantum thermodynamical point of view, the co-
herences in |DFS2〉 are classified as work-like coherences or
squeezing-type coherences. They are not accessible by only
thermal means. When we introduce B1 and inject coherence
into the bath, the squeezing-like dissipators can induce dy-
namics to access these elements [cf. the first two dissipators
in Eq. (71)] to bring additional protection via |DFS2〉, as we
point out in the next section.

3. NV center qubits in a public magnon and private
nuclear spin baths

Behavior of SSC and SSE with the injected coherence is
plotted in Fig. 6. Coherence of the magnon bath has two
competing effects on the dynamics of qubit-qubit correla-
tions. First, bath coherence can effectively increase the qubit
system’s bath temperature and decrease the quantum correla-
tions. Second, bath coherence can produce effective drive and
squeezing effects on the qubits. The simultaneous existence
of the positive and negative influences of the bath coherence
suggests that we can expect that there can be critical coherence
values for which SSE and SSC can be possible and optimal
when there are private baths. Figure 6 confirms that intuitive
expectation. In contrast to the case of a single public bath,
the presence of private baths yields a nonmonotonic behavior
of SSE and SSC with injected coherence to the public bath.
We see that critical values of ε ∼ 0.6 (B̄1 ∼ 0.36 mT) and
ε ∼ 0.3 (B̄1 ∼ 0.18 mT), are different, respectively, for SSC
and SSE. Besides, the critical ε values are insensitive to the
type of the decoherence channel. In addition, the distribution
of SSC values with ε is broader for SSC relative to SSE. SSE
drops sharply to zero after the critical ε in contrast to the slow
change of SSC towards a finite saturation value beyond its
maximum.

In Fig. 6, we analyze the role of dissipative and dephasing
private baths separately. When the dissipative private channels
are acting alone, both SSE and SSC can be obtained. The
value of E = 0.15724125 V/nm is determined by considering
the minimum precision required to make Lz − Le sufficiently
low to increase the DOS, translated to the enhanced dissipa-
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FIG. 7. Dynamics of the (a) l1-norm coherence C1 and (b) con-
currence C of two NV center qubits in a quasi-one-dimensional
thermal magnon bath, with injected coherence ε = 0 (B1 = 0 T)
[solid-blue and red curve in (a) and (b)], ε ∼ 0.64 (B̄1 ∼ 0.38 mT)
[dashed-red curve in panel (a)], ε ∼ 0.26 (B̄1 ∼ 0.15 mT) [dashed-
blue curve in panel (b)], ε ∼ 1.28 (B̄1 ∼ 0.76 mT) [dotted-red
curve in panel (a)], ε ∼ 0.38 (B̄1 ∼ 0.23 mT) [dotted-blue curve
in panel (b)]. The other parameters are zNV = 5 nm Lz = 20 nm,
Lx = 1.236 μm, T = 1 mK, T1, T ∗

2 = 1 ms, x1,2 = ±Lx/4 m, E =
1.5724125 V/nm.

tion rate κ that gives SSE. The idea of fine-tuning external
homogeneous magnetic field for sizable effective qubit-
qubit coupling by eliminating the bath degrees of freedom
with Schrieffer-Wolff transformation [97] has already been
proposed [98]. Our approach is similar but for the case of
bath-mediated qubit-qubit coupling. In addition to resonance
tuning with the magnetic field, we propose to control effective
YIG film thickness via an external electric field to get com-
petitive dissipation rates of the public bath against the private
decoherence channels. On the contrary, when the dephasing
private baths act alone, SSE entanglement cannot be estab-
lished for any κ , and the injected coherence has no positive
effect. This cannot be improved by decreasing the YIG strip
thickness effectively using the electric field.

We plot the case of the simultaneous presence of both
private decoherence channels in Fig. 7 for the same level
of precision in E = 0.15724125 V/nm. The conclusion of
Fig. 6 remains the same. SSC saturates to its optimal value
at the critical ε ∼ 0.6 of SSC; while no SSE is obtained even
for the critical ε ∼ 0.3 of the case of SSE with only private
dissipations.

When both dephasing and dissipative private channels are
open, if we increase the precision of tuning Lz and LE with
another digit using E = 0.15724128 V/nm, we can obtain
SSE, as shown in Fig. 8(a), at the critical B̄1 ∼ 0.18 mT
(ε ∼ 0.3) of the case of SSE with only private dissipations.
This suggests that the critical ε values obtained when the
private dissipation acts alone can be used when the private
dephasing is also on. Lack of SSE when the private dephasing
channels are acting alone and the emergence of SSE when
both dissipative and dephasing channels are present can raise
the curious question if increasing the private dissipation can
give higher SSE. Fig. 8(b) gives a positive answer to this
question. Remarkably, this is a hypothetical case of academic
interest as normally the longitudinal relaxation is slower than
the transverse relaxation. However, some engineering of T1

may be possible using applied fields on NV centers, similar to
those methods used for quantum dots [99]. Promising devel-
opments in probing and engineering nuclear spin baths of NV
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FIG. 8. (a) Concurrence C of two NV center qubits in a quasi-
one-dimensional thermal magnon bath with injected coherence ε = 0
(B̄1 = 0) (solid-blue curve), ε ∼ 0.20 (B̄1 ∼ 0.12 mT) (dashed-blue
curve), and ε ∼ 0.3 (B̄1 ∼ 0.18 mT) (dot-dashed-blue curve). The
other parameters are zNV = 5 nm, Lz = 20 nm, Lx = 1.236 μm, T =
1 mK, T1, T ∗

2 = 1 ms, x1,2 = ±Lx/4 m, E = 0.15724125 V/nm.
(b) Dynamics of the concurrence C of two NV center qubits in a
quasi-one-dimensional thermal magnon bath with injected coherence
ε = 0.26 (B̄1 = 0.15 mT) for the qubits’ longitudinal relaxation
rates T1 = 1 s (solid-blue curve), T1 = 1 ms (dashed-blue curve),
T1 = 1 μs (dot-dashed-blue curve). The other parameters are zNV =
5 nm, Lz = 20 nm, Lx = 1.236 μm, T = 1 mK, T ∗

2 = 1 ms, x1,2 =
±Lx/4 m, E = 0.15724125 V/nm.

centers should be noted, too [100]. Nevertheless, Fig. 8(b) re-
veals that there is a saturated maximum SSE with C ∼ 0.025,
when T1 gets faster towards to μs regime while T2 remains in
the ms regime. This intriguing conclusion and our previous
statements, can be physically explained in terms of the DFS
structure of the qubit system.

The steady state our on-chip device generates due to public
bath mediated coupling is approximately a mixture of su-
perposition of the pairwise ground state with a Bell state,
ρSS = |ψBell〉 〈ψBell| + |gg〉 〈gg|, when there are only dissipa-
tive private channels. It is explicitly written as

ρSS =

⎛
⎜⎝

a 0 0 0
0 b x 0
0 x c 0
0 0 0 d

⎞
⎟⎠, (81)

where a ∼ 0, b ∼ c, d ∼ 1 and x ∈ R. Such a state has only
single coherence, between the degenerate single qubit excita-
tion states (also known as heat-exchange coherences [66–70]).
Protection of this coherence is provided by |DFS1〉 of Eq. (78).
When the thermal magnon bath has injected coherence via the
inhomogeneous magnetic field B1, we get ρSS ≡ ρX,

ρX =

⎛
⎜⎝

a 0 0 y
0 b x 0
0 x b 0
y∗ 0 0 d

⎞
⎟⎠, (82)

where we see that additional protection comes from |DFS2〉
of Eq. (79). The new coherence y can only emerge when
the squeezing-like dissipators of the master equation (71).
Without y, there is no SSE in the presence of private baths. It is
therefore crucial to go beyond the standard form of the master
equations for the weakly-coherent baths [101], and to keep
the second order terms in ε even if it is weak relative to the
first-order effective drive term in the open system dynamics to
properly assess the SSE and SSC.

Intuitively, one can see that emergence of the new DFS
strictly depends on the new interaction mechanism between
the NV center qubits induced by the external magnetic field
B1. When it is absent (B1 = 0), there are only thermal dissi-
pators in the master equation [cf. Eqs. (71) and (73)], which
couple the NV center qubits only via a single magnon ex-
change. Hence, the bright and dark states lie in the single
excitation manifold consisting of combinations of two-qubits
states, where one qubit is excited, and the other is in the
ground state. On the other hand, the enveloping two-qubit
Hilbert space is larger than the single excitation manifold.
Two qubits could be excited simultaneously, or both could
be in their ground states. Superpositions (quantum coher-
ences) of such two-qubit excitations are not accessible by
thermal excitations based upon a single magnon exchange.
A two-magnon exchange induced dissipation channel for the
NV centers emerge [cf. Eq. (71)] when B1 is present. Ac-
cordingly, the bath-induced dynamics of the two qubits is
extended beyond the single excitation manifold to the pairwise
excitation manifold. Like the single excitation manifold, the
enlarged Hilbert space can host both bright (coupled) and dark
(uncoupled) states. Technically, the effect of B1 is to induce
coherence (ε) to the thermal bath by Glauber displacement of
the thermal states of the magnons, which is further manifested
in the new DFS manifold of the NV center qubits, serving as
an additional layer of protection for the entanglement against
local decoherence channels.

While the essential physical mechanism behind the new
DFS is given by B1 induced bath mediated two-magnon cou-
pling of the NV centers, the amount of coherence produced in
the magnon bath ε depends on B0, too [cf. Eq. (45)]. In real-
istic situations, there can be magnetic noises, which can limit
the additional protection of entanglement provided by the new
DFS. In our case, however, the magnetic noise has a negligible
effect as the larger field B1 (0.5 T) applied on the magnetic
iron garnet layer is far above YIG’s saturation field (0.01 T
or 100 Oe) so that it already saturates the magnetic layer.
The additive magnetic field noise such as 1/f, thermal, power
source harmonics, the earth’s magnetic field noise, etc., cannot
change the saturated state of the magnetized moment distri-
bution in the garnet layer. The smaller field B0’s magnitude
(51 mT) is determined to satisfy the magnon-qubit resonance.
B0 determines the Zeeman splitting in the NV Hamiltonian,
and the noise on B0 might slightly detune the NV center
resonance conditions and NV electron spin resonances by a
few MHz to a few tens of MHz (28 MHz for 1 mT additive
noise) without altering the overall conclusions.

IV. CONCLUSIONS

We investigated steady state entanglement and coherence
generation between two NV center qubits using a common
magnon bath in a YIG nanostrip static external fields and its
protection against local dephasing and dissipation channels.
Our idea is to use the beneficial effects of the public baths to
mediate entanglement between qubits against the decoherence
effect of private baths. To help the shared bath for this task,
we discussed the bath dispersion and coherence engineering
together with the role of system geometry, which can be
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compared to the exploitation of capacitor geometry to increase
its capacitance.

Specifically, we consider two NV center qubits on a YIG
nanostrip as our example system. One external magnetic field
is used to tune the magnetostatic mode of the YIG magnons
to the qubit resonance, while another magnetic field, trans-
verse to the first one, is used to inject coherence into the
thermal magnon bath. The magnitude and spatial profile of the
coherence injecting field contribute to controlling the Marko-
vian character of the open system dynamics. The additional
electric field is used to effectively decrease the thickness of
the YIG strip, allowing the tuning group velocity and the
DOS at the magnetostatic mode, in return, contribute to the
sizable magnon-mediated qubit-qubit interaction. We develop
a generalized quantum master equation for our open system
for weak coherences but keep the coherence effects up to the
second order, which brings squeezing-like dissipators next to
the first-order effective drive term. Such squeezing-like terms
extend the decoherence-free subspace of the qubits from Bell
state singlet to a triplet, providing additional protection to the
private dephasing and dissipation. We find a nonmonotonic
behavior of SSE and SSC with the injected coherence when
private baths present so that critical coherences can be used
to optimize the SSE and SSC. Curiously, the SSE increase
when private longitudinal relaxation (dissipative decoherence
channel) is present next to the private transverse (dephasing
channel) relaxation. Dynamics of SSE and SSC are shown to
be the sudden death of correlations in the transient regime,
followed by a delayed setting of quantum correlations in the
steady state.

In conclusion, we propose a hybrid magnonic device that
can be tuned to operate as robust quantum coherence and en-
tanglement generator between distant qubits in a steady state.
Our scheme can be promising for scalable coherence and en-
tanglement generation and long-time protection for versatile
quantum technology applications depending on technological
progress to engineer magnon dispersion in ultrathin magnetic
strips using external static electric and magnetic fields.
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APPENDIX A: MAGNONS IN A LINEAR SPIN CHAIN

Here we present a short review of some fundamentals of
magnons in a linear spin chain to define our notation and give
a spin to magnon transformation [103], which can illuminate
the differences and size effects in the dispersion relation of the
magnons in a YIG nanostrip.

Magnons are quanta of collective spin excitations de-
scribed as spin waves [37–39,103]. Let us consider a linear
chain of N spins (we assume N is even) modeled by the
Heisenberg Hamiltonian

Ĥchain = −h̄γ0B0

N/2∑
j=−N/2

Ŝz
j − 2h̄J

N/2−1∑
j=−N/2

Ŝ j · Ŝ j+1 (A1)

where h̄J > 0 is the exchange integral determining the fer-
romagnetic coupling of a spin at site j = −N/2..N/2 to its
neighboring spins at a lattice constant distance a (see Fig. 1).
Spin locations are given by

x j = [
j − sign( j) 1

2

]
a, (A2)

with the sign function, sign(x) = +1, 0,−1 for x > 0, x =
0, x < 0, respectively. Spin angular momentum operator Ŝ j

is taken dimensionless. The spins are subject to a uniform,
static, external magnetic field of magnitude B0 aligned in
z direction. The first term in the model Hamiltonian is the
Zeeman energy, where γ0 = gμB/h̄ is the gyromagnetic ratio
(in units of rad/Ts) defined in terms of the g-factor and the
Bohr magneton μB.

Using the Holstein–Primakoff transformation [38], and
taking its weak excitation approximation, we have

Ŝ+
j ≈

√
2sm̂ j, Ŝ−

j ≈
√

2sm̂†
j , (A3)

Ŝz
j = s − n̂ j, (A4)

where s is the total spin, same for all sites, and m̂ j (m̂†
j ) is the

annihilation (creation) operator of a magnon quasiparticle at
site j. The number operator of the magnons at site j is denoted
by n̂ j := m̂†

j m̂ j . Low excitation condition, n j := 〈n̂ j〉 � 2s is
well satisfied at low temperatures and for large s values.

Fourier transformed magnon operators are given by

m̂k = 1√
N

N/2∑
j=−N/2

e−ikx j m̂ j, (A5)

and their commutators obey the bosonic algebra. The Hamil-
tonian Ĥchain in the magnon representation takes the form

Ĥmag,0 = h̄
∞∑

k=−∞
ωkm̂†

k m̂k, (A6)

where the magnon dispersion relation is twofold degenerate
for ±k and it is given by

ωk = ω0 + 4Js(1 − cos ka), (A7)

where we dropped a constant E0 = −4NJs2, and ω0 := γ0B0

is the angular frequency of the k = 0 mode. Physically,
magnon quasiparticles are associated with small transverse
spin fluctuations behaving as a wave with such a dispersion
relation. In the main text we use a more sophisticated magnon
dispersion for our ultrathin YIG stripes due to finite size
effects [cf. Eq. (2)].

From the dispersion relation, we evaluate the magnon den-
sity of states (DOS) D(ω) using D(ω)dω := 4(Ldk), where
the factor of 4 comes from twofold polarization and two-fold
spatial (±k) degeneracies. We change the units of DOS to
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FIG. 9. (a) YIG thin film magnon dispersion relations along kx and ky. (b) YIG nanowire (quasi-1D spin chain) and magnon dispersion
relations along kx and ky.

seconds for convenience, by including L = (N − 1)a in its
expression, and write

D(ω) = 4

a

1√
ω − ω0

√
8Js − ω + ω0

. (A8)

Consistent with the low-temperature assumption, significant
modes can be taken those within the long wavelength limit
ka � 1, for which the dispersion relation (A7) reduces to
ωk = ω0 + 2Jsa2k2. The DOS (A8) for ka � 1 approximates
to

D(ω) = 2N√
2Js

1√
ω − ω0

. (A9)

Square-root singularity of the DOS is typical for a free par-
ticle in one-dimensions. As DOS directly contributes to the
dissipation rates of a system through the Fermi’s golden rule,
it is exploited to enhance radiative decay in isotropic photonic
crystals with a one-dimensional phase space, too. Infinitely
large scattering or dissipation rates can be related to the
the zero group velocity at the band edge so that the time
delayed response of the bath is classified to be highly non-
Markovian [56–64,104–108], although transition between
Markovian and non-Markovian regimes can have nonmono-
tonic dependence on finite system parameters in a general
structured bath [104,109]. However, a one-dimensional spin
chain is an idealization and one can only have a quasi-one-
dimensional system in practical implementations. We discuss
a modified dispersion relation to take into account the lateral
size effects when we specify a magnetic material to set the
physical parameters for our spin chain in Sec. III A, and find
a regime where the dynamics of our physical system can be
restricted to the Markovian regime yet still gets the benefits of
the band edge.

In the continuum limit (N � 1), Hamiltonian in Eq. (A6)
can be written as

Ĥmag = h̄
∫ ∞

−∞

dω

2π
D(ω)ωm̂†(ω)m̂(ω), (A10)

where the integral limits can be taken at ±∞ by assuming
D(ω) = 0 outside the magnon frequency band of [ω0, ω0 +
8Js]. In the main text, we discuss how external electric and
magnetic fields can be used to engineer the DOS to control
dissipation of the qubits into the common magnon bath [cf.
Eq. (6)].

APPENDIX B: MICROMAGNETIC MODELS OF A LINEAR
QUASI-1D AND A 2D SPIN CHAIN

In this Appendix, the magnon dispersion relations of quasi-
1D (nanowire) and 2D (thin film) spin chains were modeled
and numerically calculated using the micromagnetic solver
MuMax3 [110]. This software package calculates the magne-
tization profile and dynamics by minimizing the total energy
for each time step and for the magnetization profile that sat-
isfies the classical Landau-Lifshitz-Gilbert (LLG) equation,
shown in Eq. (B1). This equation can be applied for solving
individual electronic spin profiles as well as nanoscale spin
dynamics.

The Fig. 9 shows the solutions for the LLG equation shown
in Eq. (B1) for the magnetization dynamics and their corre-
sponding magnon band structures in parts (a) and (b) for 2D
(thin film) and the quasi-1D (nanowire) spin chains, respec-
tively. Fourier transforms of the spatial magnon variations
have been calculated to obtain the magnon dispersion rela-
tions for both YIG spin chains. Both configurations have first
been verified using MuMax relaxations to have perpendicular
magnetic easy axis (along +z axis) when saturated and when
a uniaxial crystalline magnetic anisotropy is included in the
garnet layer (Ku1 = 2.1 × 104 Jm−3). Such a strain-induced
perpendicular magnetic anisotropy in YIG films has already
been achieved experimentally for YIG films with similar
10 nm thickness on GSGG substrate [78].

∂m
∂t

= − γ

1 + α2
[m × Heff + αm × (m × Heff )]. (B1)
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The LLG equation takes into account the contribution
from different fields into the effective field term (Heff ). This
term can include the exchange, magnetocrystalline anisotropy
(Ku1), Zeeman and the demagnetizing fields. γ is the gy-
romagnetic ratio and α is the Gilbert damping coefficient.
To compare the magnon dispersion relations of the quasi-
1D and 2D spin chains, we applied an RF field, which is
a sine pulse with a magnitude of 0.01 T and a maximum
frequency of 40 GHz. In addition, the static fields B1 and
B0 of 51 mT amplitude are applied during simulations in
the +y and +z directions, respectively. For both cases, the
material parameters used in the simulations are exchange con-
stant Aex = 3.1 × 1012 Jm−1, saturation magnetization Ms =
139.5 × 103 Am−1 and the uniaxial anisotropy constant Ku1 =
21 × 103 Jm−3 along the out-of-plane direction. YIG has
been shown experimentally to have perpendicular magnetic
anisotropy (PMA) when an improved strain-induced uniaxial
anisotropy can overcome the shape anisotropy [27,77,78,111].
The mesh size used in the simulations is 5 × 5 × 10 nm3, and
the magnetization data were collected from a one dimensional
line of cells across the x direction at Ly/2 for kx and at Lx/4
for ky. The nanowire dimensions are 1.28 μm by 120 nm
by 10 nm whereas the thin film dimensions are 1.28 μm ×
640 nm × 10 nm for Lx, Ly, and Lz, respectively.

The calculated dispersion relations for f (Hz) vs kx and ky

(m−1) along with the spin (moment) profiles are presented in
Fig. 9. We initially introduced a uniform in-plane magnetiza-
tion along +y then let the system relax and demonstrate that
it does have easy axis along the +z axis, and then applied the
sinc pulse along the longitudinal x axis. The discretization in
the dispersion relation plots is due to the spatial and temporal
sampling of the simulation output data. Both systems produce
a single magnon mode and the magnetic moment aligns along
the z direction owing to the large enough anisotropy field
overcoming the demagnetizing field and shape effects.

In the transverse and longitudinal dispersion relations for
both cases, the spins are oriented along +z and perpendicular
to the surface. Longitudinal magnon dispersion relations (ii)
for both chains show nearly identical parabolic free-particle
behavior, while the transverse dispersion relations exhibit sim-
ilar confined discrete modes.

APPENDIX C: DIAMOND NV CENTERS

NV center is an optically active color defect center, con-
sisting of a substitutional nitrogen impurity and a nearest
neighbor carbon vacancy in diamond lattice [112]. From the
nitrogen, bulk donor, and the three dangling bonds of carbon
atoms around the carbon vacancy, negatively charged NV
center’s electronic bound states consists of six electrons and
can be described as a spin-1 system [112,113]. NV center
ground state is a spin triplet (3A2) |SmS〉 with S = 1 and
mS = 0,±1. The excited-state triplet (3E) is at 1.95 eV higher
above 3A2 [114] and will not be considered here. Accordingly,
we write the single NV center Hamiltonian as

HNV = h̄DI2
z + h̄γNVB0Iz − h̄γNVBNV

1 Iy (C1)

where D/2π = 2.87 GHz is the zero-field splitting by the
spin-spin interactions and γNV/2π = 28.02 GHz/T is the
gyromagnetic ratio of the NV center with g ≈ 2 [115],

which is approximately the same as γ0/2π = gμB/2π h̄ =
27.99 GHz/T. While NV centers are subject to the B0, ap-
plied along the z axis, B1 applied along the −y axis and its
magnitude at the NV center location is BNV

1 .
Spin-1 operators (dimensionless) are denoted by Îα with

α = x, y, z. To get the second (Zeeman) term of the Hamilto-
nian without Îx and Îy, one of the molecular frame NV axes
must coincide with the laboratory frame z axis [116]. We
assume the diamond crystal is oriented in such a way that the
NV center’s principal symmetry axis ([111] crystal axis) is the
same with the laboratory frame z axis [117].

The interaction Hamiltonian of the spin-1 NV centers and
applied electric field is given by [118]

ĤE
NV = h̄k‖EzÎ

2
z − h̄k⊥Ex

(
Î2
x − Î2

y

) + h̄k⊥Ey(Îx Îy + ÎyÎx ),
(C2)

where coupling coefficients are k⊥ = 0.17 ± 0.03 Hz m/V
and k‖ = 0.0035 ± 0.0002 Hz m/V. The electric field is ap-
plied transverse to the YIG nanostrip axis it has a magnitude
around E ∼ 0.15 V/nm. Comparing with the ωNV, the shift in
this frequency caused by the electric field 1.5 × 10−4 smaller.
Thus, we safely ignore the effect of electric field for NV
centers.

APPENDIX D: DIAMOND NV CENTERS AS SPIN QUBITS

Since, NV center Hamiltonian describes a three-level sys-
tem. The lower level is |0〉 with zero energy and the upper
levels are |±1〉 with energies h̄ω± := h̄(D ± γNVB0). Accord-
ingly, the NV center can be represented as a spin-1 particle
subject to su(3) spin algebra. It is however quite common
to consider NV centers as spin qubits, two-level systems,
by utilizing strong magnetic bias fields [119,120]. Here we
will give explicit justification of this approach for our model
system, which closely follows the treatment in Ref. [84].

We can introduce three spin-1/2 manifolds U = {|1〉 , |0〉},
V = {|−1〉 , |0〉} and T = {|−1〉 , |1〉} as the su(2) subgroups
of su(3). The NV center Hamiltonian can be split into two
terms associated with U and V subgroups such that

ĤNV = Ĥ+
0 + Ĥ−

0 + Ĥ0
I , (D1)

Ĥ+
0 = h̄ω+

2
Û z + h̄γNV B1

√
2

2i
(Û + − Û −),

Ĥ−
0 = h̄ω−

2
V̂ z + h̄γNV B1

√
2

2i
(V̂ − − V̂ +),

Ĥ0
I = h̄ω+

2
1u + h̄ω−

2
1v. (D2)

Here, we introduced

Û z = |1〉〈1| − |0〉〈0|,
Û + = |1〉〈0|, Û − = |0〉〈1|
V̂ z = | − 1〉〈−1| − |0〉〈0|,

V̂ + = | − 1〉〈0|, V̂ − = |0〉〈−1|,
1u = |1〉〈1| + |0〉〈0|,
1v = | − 1〉〈−1| + |0〉〈0|. (D3)
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Similarly, we can split the dipolar interaction Hamiltonian,
Eq. (19), between an NV-center and a YIG spin such that
H int = H+

int + H−
int , where we drop the spin indices i, j and

write

Ĥ−
int = − h̄d sin3 θ [V̂z(Ŝz(1 − 3 sin2 θ ) − 3Ŝx sin θ cos θ )

+
√

2

2
(V̂ + + V̂ −)(Ŝx(1 − 3 cos2 θ ) − 3Ŝz sin θ cos θ )

+
√

2

2i
(V̂ + − V̂ −)Ŝy ], (D4)

and

Ĥ+
int = h̄d sin3 θ [Û z(Ŝz(1 − 3 sin2 θ ) − 3Ŝx sin θ cos θ )

+
√

2

2
(Û + + Û −)(Ŝx(1 − 3 cos2 θ ) − 3Ŝz sin θ cos θ )

+
√

2

2i
(Û + − Û −)Ŝy ]. (D5)

Therefore the total Hamiltonian of our NV centers-YIG
system is split into terms belong to U and V spin-1/2 sub-
groups. To restrict the dynamics into the V manifold it is
necessary for us to impose conditions to make transitions to
|1〉 level negligible, which can happen through three chan-
nels. One channel is the thermal excitations, as we have a
quantum open system. The other two channels are due to the
external magnetic field B1 and the magnetic field of the YIG
spins. In addition to the transitions between the NV levels,
the latter two fields contribute to the level splitting of the NV
centers [cf. Eq. (43)]. Magnon field contribution in Eq. (43)
weakly depends on the location of the NV spin, assuming it
is not placed too close to the edges of the YIG crystal and
characterized by d/2π ∼ 3.25 kHz according to Eq. (24).
In our calculations, we consider a range of B1 < 1 mT. Ac-
cordingly, both magnon and B1 fields have negligible effect
on the NV level splitting relative to the strong bias field of
B0 ∼ 51 mT. Therefore, to restrict the dynamics to the V
manifold, one should satisfy the far-off resonance ω0 � ω+,
resonance ω0 ∼ ω−, and low temperature kBT � h̄ω+ con-
ditions. Our range of parameters satisfy these conditions and

we can simplify the NV center model to that of an effective
two-level atom or spin-1/2 system (qubit).

We consider a pair of NV center qubits, such as in a dia-
mond host illustrated in Fig. 1. The Hamiltonian in Eq. (C1)
reduces to

HNV = h̄
ωNV

2

∑
i=1,2

σ̂ z
i − h̄γNVBNV

1

√
2

2

∑
i=1,2

σ̂
y
i (D6)

where we replaced the spin operators in the V spin subgroup
with the more usual Pauli spin operator notation such that
σ̂ z

i := |−1〉i〈−1| − |0〉i〈0| and σ̂ y := i(σ̂− − σ̂+) with σ̂+ =
|−1〉〈0|, σ̂− = |0〉〈−1|, and ωNV ≡ ω−. We dropped the con-
stant term of 1vω

−/2.
So far, we have justified that the coupling of the NV center

to the YIG spins is well approximated by the model Eq. (D6),
which neglects the transitions to the higher level |1〉, under
the low-temperature and high bias field B0 conditions. Our ap-
proach is identical to that of Ref. [84]. On the other hand, NV
centers can still induce a magnetic backaction on the magnon
subsystem according to Eq. (D5). To estimate an upper bound
of this intriguing effect, we use the approximation such that
Û z ≈ − |0〉 〈0| ≈ −1u ∼ −1. In this case, Eq. (D5) simplifies
to

Ĥ+
int = −h̄d

∑
i, j

sin3 θi j (1 − 3 sin2 θi j )Ŝ
z
j

+ 3h̄d
∑
i, j

sin4 θi j cos θi j Ŝ
x
j , (D7)

where we explicitly show the NV and YIG spin in-
dices, i = 1, 2 and j = −N/2...N/2, respectively. Using the
Holstein-Primakoff transformations given in Eq. (A4), and the
shorthand notations introduced in Eqs. (22) and (25), Eq. (D7)
can be written as

Ĥ+
int = −2h̄

∑
i, j

[
Bi j√

2s
n̂ j + Ai j (m̂ j + m̂†

j )

]
. (D8)

According to Eqs. (22) and (25), both terms in Eq. (D8) are
in the order of d . In comparison to ω0, the first term can be
neglected. The second term has an interesting potential that it
can induce coherence to the otherwise thermal magnon bath.

TABLE I. List of the parameters we use for our physical system, consisting of an ultrathin YIG nanostrip and a pair of NV centers placed
on top of the strip.

Parameter list

B0, considering BNV
1 = 0 T 51.16 mT γ0/2π ≈ γNV/2π 28.02 GHz/T

ω0/2π 1.4335 GHz ωNV/2π 1.4365 GHz
ωi/2π 1.4335 GHz �i/2π 1.4335 GHz
J/2π 33.42 GHz s 14.2
T 0 − 0.5 K D/2π 2.87 GHz
L ≡ Lx 1.24 μm Ly 120 nm
Lz 20 nm a 12.376 Å
N 103 zNV 5 − 20 nm
x1 = L/4, x2 = −L/4 0.31, 0.93 μm d/2π 3.25141 kHz
g 2 μ0Ms 175 mT
A 3.7 pJ/m ESO 19 eV
T1 1 μs – 1 s T ∗

2 1 ms - 1 s
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Representing the second term in the k-space using Eq. (A5),
the coherence effect of the magnetic backaction by the NV
centers on the magnon baths is found to be described by the
Hamiltonian

Ĥ+
int = −2h̄

∑
k

(A∗
k m̂k + Akm̂†

k ), (D9)

where

Ak = 1√
N

2∑
i=1

N/2∑
j=−N/2

Ai je
−ikx j . (D10)

Accordingly, when we take into account the magnetic backac-
tion from the NV centers, the magnon Hamiltonian previously
written for the YIG spins subject to the external magnetic
fields, Eq. (10), changes to

Ĥmag = h̄
∞∑

k=−∞
(ωkm̂†

k m̂k + i(Fkm̂†
k − F∗

k m̂k )), (D11)

with Fk = Ek + i2Ak . Hence, the coherence in the magnon
bath is determined by the coherence parameter εk =
−iFk/ωk . In principle, the magnon bath could be induced
coherence by the magnetic backaction of the NV centers, and
we could relieve the coherence injection task from the external
magnetic field. Unfortunately, for a single NV center and the
dominant magnetostatic mode, k = 0, the coherence induced
by the magnetic backaction is in the order of ∼d/ω0 ∼ 10−6,
which is not a sufficient displacement to disturb the thermal
equilibrium state of the magnons. In our simulations, we have
found that the required coherence in the magnon bath for
robust steady state entanglement of NV centers is ∼0.1; hence
an external magnetic field B1 is required to induce sufficiently
strong coherence to the magnon bath. We leave it as an open
problem if one can enhance the magnetic backaction, for
example, by using collective spin interactions to entangle NV
center ensembles [121,122]

APPENDIX E: PARAMETERS OF PHYSICAL SYSTEM

We present a summary of the values we used for the param-
eters of our physical system in Table I. The system consists
of a YIG nanostrip subject to two external static magnetic
fields and an electric field and a diamond bar hosting a pair of
NV centers on top of the YIG crystal. One field is transverse
to the chain and uniform. The other field acts on the YIG
nanostrip along the chain axis. All the parameters are typical
and accessible with the state of the art materials.

FIG. 10. Real (solid-black curve) and imaginary (red-dashed
curve) parts of the magnon bath correlation function Gηη(t ), normal-
ized by its initial value Gηη(0). Time t is scaled with the resonance
frequency ω(0) ≡ ω0 ∼ (2π )1.4 × 109 rad/s.

APPENDIX F: JUSTIFICATION OF THE BORN-MARKOV
APPROXIMATIONS

For a typical exchange coupling coefficient J ∼ 10 GHz
and large spin s ∼ 10, magnon subsystem has a wide
bandwidth of �ω = 8Js ∼ 103 GHz. Using the dispersion
relation (A7) and spacing between the magnon modes in the
reciprocal space δk = π/L, we find the spacing between the
modes in the frequency space such that δωk = (dωk/dk)δk

or δωk/�ω = sin(ka)(π/2N ), which allows for treating the
magnon spectrum as continuous over the the bandwidth for
N � 1. This justifies the Born approximations.

The bath correlation time can be determined by exami-
nation of the bath correlation functions. Although we have
three interaction coefficients and a coherence function, their
k-space widths are similar as can be seen in Figs. 3(a) and 3(b)
[cf. Fig. 2(b)]. We can therefore consider only one correlation
function to estimate the bath correlation time, which we take

Gηη(t ) :=
∞∑

k=−∞
|ηk|2eiωkt . (F1)

Gηη(t ) is plotted in Fig. 10, from which we can deduce that
τB is about few nanoseconds. The correlations between the
bath and the system can build up in τB, but they are forgot-
ten in longer time intervals of interest for the overall open
system dynamics. To see the relaxation time for the system
τs to the steady state, we solve the master equation in the
next section numerically. We find τs ∼ milliseconds so that
τB � τs. Between these two time scales, τB < �t � τs, a
coarse-grained time step �t can be taken and the Markov
approximations can be justified.
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ics and quantum coherence engines, Turk. J. Phys. 44, 404
(2020).

[68] C. L. Latune, I. Sinayskiy, and F. Petruccione, Energetic and
entropic effects of bath-induced coherences, Phys. Rev. A 99,
052105 (2019).

[69] C. L. Latune, I. Sinayskiy, and F. Petruccione, Quantum
coherence, many-body correlations, and non-thermal ef-
fects for autonomous thermal machines, Sci. Rep. 9, 3191
(2019).

[70] C. L. Latune, I. Sinayskiy, and F. Petruccione, Roles of quan-
tum coherences in thermal machines, Eur. Phys. J. Spec. Top.
230, 841 (2021).

[71] B. A. Kalinikos and A. N. Slavin, Theory of dipole-exchange
spin wave spectrum for ferromagnetic films with mixed ex-
change boundary conditions, J. Phys. C 19, 7013 (1986).

[72] J. Jorzick, C. Krämer, S. O. Demokritov, B. Hillebrands,
B. Bartenlian, C. Chappert, D. Decanini, F. Rousseaux, E.
Cambril, E. Sondergard, M. Bailleul, C. Fermon, and A. N.
Slavin, Spin wave quantization in laterally confined magnetic
structures, J. Appl. Phys. 89, 7091 (2001).

[73] X. Zhang, C. Zou, L. Jiang, and H. X. Tang, Superstrong
coupling of thin film magnetostatic waves with microwave
cavity, J. Appl. Phys. 119, 023905 (2016).

[74] G. Dieterle, J. Förster, H. Stoll, A. S. Semisalova, S. Finizio,
A. Gangwar, M. Weigand, M. Noske, M. Fähnle, I. Bykova,
J. Gräfe, D. A. Bozhko, H. Y. Musiienko-Shmarova, V.
Tiberkevich, A. N. Slavin, C. H. Back, J. Raabe, G. Schütz,
and S. Wintz, Coherent Excitation of Heterosymmetric Spin
Waves with Ultrashort Wavelengths, Phys. Rev. Lett. 122,
117202 (2019).

[75] A. O. Leon, A. B. Cahaya, and G. E. W. Bauer, Voltage Control
of Rare-Earth Magnetic Moments at the Magnetic-Insulator–
Metal Interface, Phys. Rev. Lett. 120, 027201 (2018).

[76] H. Wang, C. Du, P. C. Hammel, and F. Yang, Strain-tunable
magnetocrystalline anisotropy in epitaxial Y3Fe5O12 thin films,
Phys. Rev. B 89, 134404 (2014).

[77] J. Fu, M. Hua, X. Wen, M. Xue, S. Ding, M. Wang, P. Yu,
S. Liu, J. Han, C. Wang et al., Epitaxial growth of Y3Fe5O12

thin films with perpendicular magnetic anisotropy, Appl. Phys.
Lett. 110, 202403 (2017).

[78] G. Li, H. Bai, J. Su, Z. Z. Zhu, Y. Zhang, and J. W. Cai, Tun-
able perpendicular magnetic anisotropy in epitaxial Y3Fe5O12

films, APL Mater. 7, 041104 (2019).
[79] C. Y. Guo, C. H. Wan, M. K. Zhao, H. Wu, C. Fang, Z. R.

Yan, J. F. Feng, H. F. Liu, and X. F. Han, Spin-orbit torque
switching in perpendicular Y3Fe5O12/Pt bilayer, Appl. Phys.
Lett. 114, 192409 (2019).

023221-21

https://doi.org/10.1021/acs.nanolett.0c00085
https://doi.org/10.1103/PhysRevB.105.075410
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1119/1.19344
https://doi.org/10.1088/2633-4356/abd016
https://doi.org/10.1103/PhysRevB.78.184422
https://doi.org/10.1103/PhysRevLett.106.247203
https://doi.org/10.1063/1.4703925
https://doi.org/10.12693/APhysPolA.133.463
https://doi.org/10.1103/PhysRevB.98.024427
https://doi.org/10.1103/PhysRevA.2.889
https://doi.org/10.1103/PhysRevA.42.2915
https://doi.org/10.1103/PhysRevLett.97.110503
https://doi.org/10.1103/PhysRevA.58.4168
https://doi.org/10.1103/PhysRevA.81.023817
https://doi.org/10.1016/j.optcom.2011.07.053
https://doi.org/10.1016/j.optcom.2012.02.022
https://doi.org/10.1103/PhysRevA.87.022312
https://doi.org/10.1016/j.optcom.2013.10.076
https://doi.org/10.1088/2040-8978/17/8/085105
https://doi.org/10.1364/JOSAB.32.001050
https://doi.org/10.1088/0953-4075/49/11/115502
https://doi.org/10.1103/PhysRevA.99.032101
https://doi.org//10.1002/9781118742631.ch11
https://doi.org/10.3390/e18070244
https://doi.org/10.3906/fiz-2009-12
https://doi.org/10.1103/PhysRevA.99.052105
https://doi.org/10.1038/s41598-019-39300-4
https://doi.org/10.1140/epjs/s11734-021-00085-1
https://doi.org/10.1088/0022-3719/19/35/014
https://doi.org/10.1063/1.1357153
https://doi.org/10.1063/1.4939134
https://doi.org/10.1103/PhysRevLett.122.117202
https://doi.org/10.1103/PhysRevLett.120.027201
https://doi.org/10.1103/PhysRevB.89.134404
https://doi.org/10.1063/1.4983783
https://doi.org/10.1063/1.5090292
https://doi.org/10.1063/1.5098033


KAMRAN ULLAH et al. PHYSICAL REVIEW RESEARCH 4, 023221 (2022)

[80] S. Mokarian Zanjani and M. C. Onbaşli, Predicting new
iron garnet thin films with perpendicular magnetic anisotropy,
J. Magn. Magn. Mater. 499, 166108 (2020).

[81] A. J. Princep, R. A. Ewings, S. Ward, S. Tóth, C. Dubs,
D. Prabhakaran, and A. T. Boothroyd, The full magnon
spectrum of yttrium iron garnet, npj Quantum Mater. 2, 63
(2017).

[82] V. Cherepanov, I. Kolokolov, and V. L’vov, The saga of
YIG: Spectra, thermodynamics, interaction and relaxation
of magnons in a complex magnet, Phys. Rep. 229, 81
(1993).

[83] C. Liu, J. Chen, T. Liu, F. Heimbach, H. Yu, Y. Xiao, J. Hu, M.
Liu, H. Chang, T. Stueckler et al., Long-distance propagation
of short-wavelength spin waves, Nat. Commun. 9, 738 (2018).

[84] C. C. Rusconi, M. J. A. Schuetz, J. Gieseler, M. D. Lukin,
and O. Romero-Isart, Hybrid architecture for engineering
magnonic quantum networks, Phys. Rev. A 100, 022343
(2019).

[85] W. K. Wootters, Entanglement of Formation of an Arbitrary
State of Two Qubits, Phys. Rev. Lett. 80, 2245 (1998).

[86] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying
Coherence, Phys. Rev. Lett. 113, 140401 (2014).

[87] K. Ohno, F. Joseph Heremans, L. C. Bassett, B. A. Myers,
D. M. Toyli, A. C. Bleszynski Jayich, C. J. Palmstrøm, and
D. D. Awschalom, Engineering shallow spins in diamond with
nitrogen delta-doping, Appl. Phys. Lett. 101, 082413 (2012).

[88] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics
(Cambridge University Press, Cambridge, 2017).

[89] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1997).

[90] M. Cattaneo, G. L. Giorgi, S. Maniscalco, and R. Zambrini,
Local versus global master equation with common and sepa-
rate baths: Superiority of the global approach in partial secular
approximation, New J. Phys. 21, 113045 (2019).

[91] S. Banerjee and R. Srikanth, Geometric phase of a qubit inter-
acting with a squeezed-thermal bath, Eur. Phys. J. D 46, 335
(2008).

[92] N. Bar-Gill, L. Pham, A. Jarmola, D. Budker, and R.
Walsworth, Solid-state electronic spin coherence time ap-
proaching one second, Nat. Commun. 4, 1743 (2013).

[93] J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart,
L. M. Pham, and R. L. Walsworth, Sensitivity optimization
for NV-diamond magnetometry, Rev. Mod. Phys. 92, 015004
(2020).

[94] T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J.
Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J.
Schmiedmayer, P. Mohn, and J. Majer, Solid-state electron
spin lifetime limited by phononic vacuum modes, Nat. Mater.
17, 313 (2018).

[95] X. Song, J. Zhang, F. Feng, J. Wang, W. Zhang, L. Lou, W.
Zhu, and G. Wang, A statistical correlation investigation for
the role of surface spins to the spin relaxation of nitrogen
vacancy centers, AIP Adv. 4, 047103 (2014).

[96] T. de Guillebon, B. Vindolet, J.-F. Roch, V. Jacques, and
L. Rondin, Temperature dependence of the longitudinal spin
relaxation time T1 of single nitrogen-vacancy centers in nan-
odiamonds, Phys. Rev. B 102, 165427 (2020).

[97] S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer–Wolff
transformation for quantum many-body systems, Ann. Phys.
326, 2793 (2011).

[98] L. Trifunovic, F. L. Pedrocchi, and D. Loss, Long-Distance
Entanglement of Spin Qubits via Ferromagnet, Phys. Rev. X
3, 041023 (2013).

[99] S. Amasha, K. MacLean, I. P. Radu, D. M. Zumbühl, M. A.
Kastner, M. P. Hanson, and A. C. Gossard, Electrical Control
of Spin Relaxation in a Quantum Dot, Phys. Rev. Lett. 100,
046803 (2008).

[100] D. M. Jackson, D. A. Gangloff, J. H. Bodey, L. Zaporski, C.
Bachorz, E. Clarke, M. Hugues, C. Le Gall, and M. Atatüre,
Quantum sensing of a coherent single spin excitation in a
nuclear ensemble, Nat. Phys. 17, 585 (2021).

[101] F. L. S. Rodrigues, G. De Chiara, M. Paternostro, and
G. T. Landi, Thermodynamics of Weakly Coherent Collisional
Models, Phys. Rev. Lett. 123, 140601 (2019).

[102] C. Kargi, F. Henriques, A. Manatuly, A. Di Lonardo, G.
Gemisis, J. P. Dehollain, and N. K. Langford, QuanGuru
(2021), hosted at github.com/CirQuS-UTS/QuanGuru.

[103] A. Prabhakar and D. D. Stancil, Spin Waves: Theory and
Applications (Springer, New York, 2009).

[104] I. de Vega and D. Alonso, Dynamics of non-Markovian open
quantum systems, Rev. Mod. Phys. 89, 015001 (2017).

[105] F. Dinc and A. M. Brańczyk, Non-Markovian super-
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[121] A. Imamoǧlu, Cavity Qed Based on Collective Magnetic
Dipole Coupling: Spin Ensembles as Hybrid Two-Level Sys-
tems, Phys. Rev. Lett. 102, 083602 (2009).
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