
PHYSICAL REVIEW RESEARCH 4, 023213 (2022)

Micro-foundation of opinion dynamics: Rich consequences of the
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The key to obtaining a mechanistic and reliable understanding of complex public opinion formation processes
is to identify the main mechanism governing interpersonal influence. Researchers have long been exploring
simple yet predictive mathematical models of opinion dynamics. Although most models are based on the as-
sumption that individuals update their opinions by averaging others’ opinions, researchers might need to rethink
this universally adopted micro-foundation. The deceivingly simple weighted-averaging mechanism features a
non-negligible unrealistic implication, which brings unnecessary difficulties in seeking a proper balance between
model complexity and predictive power. In this paper, we fundamentally resolve this problem by proposing the
weighted-median mechanism as a new micro-foundation of opinion dynamics. Such an inconspicuous change
from averaging to median leads to rich consequences. The weighted-median mechanism, derived from the
cognitive dissonance theory in psychology, is well supported by online experiment data. It also broadens the
applicability of opinion dynamics models to multiple-choice issues with ordered discrete options, e.g., political
elections. Moreover, comparative studies show that the weighted-median mechanism predicts various real-world
patterns of opinion evolution while some widely studied averaging-based models fail to, including how group
structure affects the likelihood of reaching consensus and how extreme opinions are located in social networks.
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I. INTRODUCTION

The key discourse in democratic society starts from ex-
changes of opinions in deliberative groups, or via social
media, to eventually reaching consensus or disagreements.
Mathematical models play a key role in obtaining mechanis-
tic understandings of how empirically observed macroscopic
opinion-formation phenomena emerge from certain micro-
scopic social-influence mechanisms, as well as certain social
network structures. Due to the complexity of social in-
teractions, the key challenge in building predictive and
mathematically tractable models is to identify the “salient
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features,” i.e., the micro-foundations, that govern the interper-
sonal influence processes.

Most existing opinion dynamics models are based upon
a common micro-foundation: the weighted-averaging mech-
anism, also known as the classic DeGroot model [1,2]. In
the DeGroot model, individuals’ opinions on a certain is-
sue are denoted by real numbers, and are assumed to be
updated by taking some weighted averaging opinions of oth-
ers. The weights individuals assign to each other define a
weighted and directed graph, referred to as the influence net-
work. The DeGroot model is deceivingly elegant but leads
to an overly simplified prediction that the individuals’ opin-
ions reach consensus whenever the influence network has a
globally reachable and aperiodic strongly connected compo-
nent [2,3] (see Sec. I of the Supplemental Material [4] for a
brief review of graph theory). This bold conclusion under mild
connectivity conditions leaves tricky puzzles for researchers,
e.g., Axelrod’s puzzle, “If people tend to become more alike
in their beliefs, attitudes, and behavior when they interact,
why do not all such differences eventually disappear?” [5],
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and Abelson’s puzzle, “Since universal ultimate agreement is
an ubiquitous outcome ... what on earth must one assume in
order to generate the bimodal outcome of community cleavage
studies?” [6].

As efforts to resolve the above puzzles, numerous impor-
tant extensions of the DeGroot model have been proposed
by introducing additional assumptions and parameters; e.g.,
see some representative models [6–15] and survey pa-
pers [3,16,17]. Some of these extensions manage to generate
the phenomena of persistent disagreement, opinion polariza-
tion, or opinion clustering, however, at the cost of losing
model simplicity or mathematical tractability. These models
would also be at risk of being overparametrized if they were to
be further extended to capture a broader set of features of real-
world opinion evolution instead of one specific phenomenon.
Moreover, despite recent developments, the research of opin-
ion dynamics, as remarked by Flache et al. [18], faces two
main challenges: (1) an “urgent need for more theoretical
work comparing, relating, and integrating alternative models”;
(2) “a strong imbalance between a proliferation of theoretical
studies and a dearth of empirical work.”

In this paper, we propose an opinion dynamics model that
is the simplest in form but, surprisingly, addresses all the puz-
zles and concerns above. Via identifying and fundamentally
resolving an intrinsic unrealistic feature of the universally
adopted weighted-averaging mechanism, we propose a new
micro-foundation of opinion dynamics, i.e., the weighted-
median mechanism. This new mechanism is inspired by the
cognitive dissonance theory in psychology [19,20] and de-
rived in the framework of network games [21]. As indicated
by a complete set of studies, such an inconspicuous change
from averaging to median leads to rich consequences.

First, in the weighted-median mechanism, Axelrod’s puz-
zle [5] is no longer a puzzle. Although the weighted-median
mechanism still implies that individuals tend to be attracted
by others’ opinions, it does not necessarily lead to eventual
consensus.

Second, due to the nature of the median operation, the
new mechanism is independent of numerical representation
of opinions and broadens the applicability of opinion dynam-
ics models to multiple-choice issues with ordered discrete
options, e.g., political elections among parties over an ideo-
logical spectrum.

Third, the weighted-median mechanism, derived from first
principles, is also empirically well supported. Analysis of an
online experiment data set [22] indicates that median-based
mechanisms enjoy significantly lower errors than averaging-
based mechanisms in predicting individuals’ opinion shifts
under social influence.

Finally, via numerical studies, we directly compare in
various aspects the predictions by the weighted-median mech-
anism and some widely studied extensions of the DeGroot
model. The simulation results lead to the following meaning-
ful observations:

(i) On the group level, only the weighted-median mech-
anism fully captures the empirically supported feature that
consensus is less likely to be achieved in larger groups or
groups with more clustered structures.

(ii) Regarding how extreme opinions are located in social
networks, only predictions by the weighted-median mecha-

nism are consistent with the patterns revealed by a real Twitter
data set. That is, extreme opinions tend to reside in “peripheral
areas” of the network and form densely connected small local
clusters.

(iii) Without deliberately tuning model parameters, only
the weighted-median mechanism generates various empiri-
cally observed steady public opinion distributions. Namely,
the weighted-median mechanism offers perhaps the simplest
answer to Abelson’s puzzle [6].

To sum up, while it is implausible for one single model
to explain every aspect of real-world opinion dynamics, the
evidence above supports the weighted-median mechanism as
a well-founded mechanism of social influence. Moreover, due
to the simplicity of the weighted-median mechanism, it could
serve well as a new foundation for further improvements via
extensions in various directions.

II. FROM WEIGHTED AVERAGING TO
WEIGHTED MEDIAN

A. An unrealistic feature of weighted averaging

Consider a group of n individuals indexed by i =
1, 2, . . . , n. Denote by xi(t ) the opinion of i on a certain
issue at time t . The DeGroot model [1,2] is a discrete-time
dynamics taking the following form:

xi(t + 1) = Meani(x(t );W ) =
n∑

j=1

wi jx j (t ), (1)

where wi j denotes the weight individual i assigns to individual
j’s opinion, i.e., individual j’s influence on i. The influence
matrix W = (wi j )n×n induces a directed and weighted graph,
referred to as the influence network and denoted by G(W );
see an example in Fig. 1(a). Namely, each individual is a node
in G(W ), and each entry wi j corresponds to a link from i to
j with weight wi j . By definition, wi j � 0 for any i, j, and
wi1 + · · · + win = 1 for any i. As predicted by the DeGroot
model, consensus is always achieved, i.e., xi(t ) − x j (t ) → 0
as t → ∞ for any i, j, whenever the influence network G(W )
has a globally reachable and aperiodic strongly connected
component. This is a bold prediction under a mild connec-
tivity condition, considering that persistent disagreement is at
least as prevalent as consensus in human groups.

The intuition behind the DeGroot model’s always-
consensus prediction is that the weighted-averaging mech-
anism leads to a non-negligibly unrealistic implication,
illustrated via the following simple example and visualized in
Fig. 1(b): Suppose an individual i is influenced by individuals
j and k via the weighted-averaging mechanism:

xi(t + 1) = xi(t ) + wik (xk (t ) − xi(t )) + wi j (x j (t ) − xi(t )).

The equation above implies that whether i’s opinion moves to-
ward xk (t ) or x j (t ) is determined by whether wik|xk (t ) − xi(t )|
is larger than wi j |x j (t ) − xi(t )|. That is, the “attractiveness” of
opinion x j (t ) to individual i is proportional to the opinion dis-
tance |x j (t ) − xi(t )|. Such proportionality implies overly large
“attractive forces” between distant opinions, which override
the effects of any delicate network structures on forming local
opinion clusters. As a result, the DeGroot model is driven
to consensus under mild network connectivity conditions.
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FIG. 1. Implications of the weighted-averaging and the weighted-median mechanisms. Panel (a) is an example of a 6 × 6 influence matrix
and the corresponding influence network with 6 nodes. Panel (b) illustrates the underlying implication of the weighted-averaging opinion
update. Panel (c) plots the cognitive dissonance function for node 1 in the influence network shown in panel (a), following the weighted-median
mechanism. Node 1 updates its opinion by first sorting its social neighbors’ opinions and picking the one such that the cumulative weights
assigned to the opinions on its both sides are less than 0.5.

Moreover, the notion of opinion distance depends on the nu-
merical representation of opinions, which could be arbitrary if
the opinions are not numerical by nature.

Many extensions of the DeGroot models, as mentioned
in the Introduction, can be considered as different efforts to
remedy the above unrealistic feature by introducing additional
model assumptions and parameters. For instance, Abelson [6]
assumes that the interpersonal influences, i.e., the weights wi j ,
decay with opinion distances. In a more recent paper [23],
individuals with more extreme opinions are assumed to as-
sign more weights to themselves. These modified averaging
mechanisms, however, still lead to opinion consensus under
mild network connectivity conditions. The Friedkin-Johnsen
model [8] introduces individuals’ persistent attachments to
their initial conditions, which resist the attractions by others’
opinions. However, this model almost surely generates persis-
tent disagreement; i.e., consensus becomes almost impossible.
Moreover, undesirably, the additional individual-level dy-
namics introduced to the model do not reflect any role of
the influence network structure. In the biased-assimilation
model [11], individuals process weighted averages of others’
opinions in a highly nonlinear manner, by weighing con-
firming evidence more heavily than disconfirming evidence.
The bounded-confidence models [9,10] assume that opinion
attractiveness first increases proportionally with opinion dis-
tance and is then truncated to zero once the distance exceeds
a preassumed threshold. These two models capture opinion
polarization and opinion clustering, respectively, but are math-
ematically intractable due to their highly nonlinear dynamics.

B. Model derivation and setup

1. Model derivation

In this paper, we resolve the inherent unrealistic features
of the weighted-averaging mechanism in a more fundamen-
tal way. Instead of further extending the DeGroot model,
we propose the weighted-median mechanism as a new

micro-foundation of opinion dynamics, in which opinion at-
tractiveness and opinion distance are not intrinsically coupled.
The derivation of the weighted-median mechanism is inspired
by network games and the cognitive dissonance theory in
psychology: Individuals experience cognitive dissonance by
disagreeing with others and tend to reduce the dissonance
by adjusting their opinions [19,20]. Such dissonance can be
mathematically formalized in different ways [21] and the ar-
guably most parsimonious form is

ui(xi, x−i ) =
∑

j: wi j>0

wi j |xi − x j |α, for any individual i,

where x−i denotes the opinions of all the other individuals
except i, and α > 0 is an important model parameter. In this
context, individuals’ opinion updates can be modeled as the
following best-response dynamics: for any i,

xi(t + 1) ∈ argminz∈R

∑
j: wi j>0

wi j |z − x j (t )|α. (2)

Although it might be overly assertive to claim that such
“dissonance functions” really exist and are being minimized
in human minds, the above framework does help derive
opinion-update mechanisms with clear sociological interpre-
tations. For example, due to the convexity of xα for x �
0, ui(xi, x−i ) with α > 1 implies that moving toward a dis-
tant opinion reduced more dissonance than moving toward
a nearby opinion by the same distance. Namely, distant
opinions are more attractive. In particular, α = 2 results in
the DeGroot model [24]. On the other hand, α < 1 implies
that nearby opinions are more attractive. In this paper, we
adopt the neutral hypothesis α = 1, which does not imply
any preassumption on how opinion attractiveness is coupled
with opinion distance. If necessary, one could incorporate
any such coupling by assuming opinion-dependent weights
wi j (x), which is a formidable research direction but out of the
scope of this paper. It turns out that Eq. (2) with α = 1 derives
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the weighted-median mechanism, illustrated in Fig. 1(c) and
formalized below. The detailed derivation is given in Ap-
pendix B.

2. Model setup

The weighted-median model is formalized as a discrete-
time stochastic process. Given the influence matrix W =
(wi j )n×n and the initial condition x(0) ∈ Rn, at each time
t + 1, an individual i is randomly activated and updates their
opinion via the following weighted-median mechanism:

xi(t + 1) = Medi(x(t );W ), (3)

where Medi(x(t );W ) denotes the weighted median of the
n-tuple x(t ) = (x1(t ), x2(t ), . . . , xn(t )) associated with the
weights (wi1,wi2, . . . ,win), i.e., the ith row of the matrix
W . The value of Medi(x(t );W ) is in turn given as follows:
Medi(x(t );W ) = x∗ ∈ R if x∗ satisfies

∑
j: x j<x∗

wi j �
1

2
, and

∑
j: x j>x∗

wi j �
1

2
.

For generic weights W , Medi(x(t );W ) is unique. Otherwise,
let Medi(x(t );W ) be the weighted median closest to xi(t ),
which again guarantees its uniqueness; see Appendix A for
a detailed discussion.

3. Model applicability

The weighted-median operator is well defined as long as
opinions are ordered. This prominent feature broadens the
applicability of opinion dynamics models to multiple-choice
issues with discrete and ordered options, which have not
been extensively studied before by quantitative models. De-
bates and decisions about ordered multiple-choice issues are
prevalent in reality. For example, in modern societies, many
political issues are evaluated along one-dimensional ideology
spectra and political solutions often do not lend themselves
to a continuum of viable choices. At a fundamental level,
the weighted-median mechanism is independent of numer-
ical representations of opinions. Such representations may
be nonunique and artificial for any issue where the opin-
ions are not intrinsically quantitative. Obviously, a nonlinear
opinion rescaling leads to major changes in the evolution of
the averaging-based opinion dynamics. It is notable that the
human mind often perceives and manipulates quantities in a
nonlinear fashion, e.g., the perception of probability according
to prospect theory [25].

The weighted-averaging mechanism dictates that each
individual opinion changes as a linear superposition of the at-
tractions by their neighbors’ opinions. In the weighted-median
mechanism, the attraction of an opinion to an individual is
not independent but depends on what other opinions they
are exposed to, how these opinions are ordered, and how the
weights are assigned. In this sense, the weighted-averaging
mechanism is more relevant in the persuasive events in dyadic
or “gossip-like” situations. In order to apply the weighted-
median mechanism to the scenario of dyadic conversations,
one might need to assume that individuals adjust their opin-
ions by simultaneously taking into account opinions they have
been exposed to in some previous conversations.

III. EMPIRICAL VALIDATION

The weighted-median mechanism, derived from psycho-
logical theory and first principles, is also supported by
empirical evidence. Analysis of an online experiment data
set [22] indicates that median-based mechanisms enjoy sig-
nificantly lower errors than averaging-based mechanisms in
predicting individuals’ opinion shifts under social influence.
In each such experiment, 6 anonymous individuals answer 30
questions sequentially within tightly limited time. The ques-
tions are guessing the number of dots in a certain color in a
given image; see Fig. 2(a) for one example. For each question,
the 6 participants answer for 3 rounds. After each round, they
see all the 6 participants’ answers anonymously as feedback
and possibly alter their own answers. The data set records
the participants’ answers in each round of the 30 questions.
Such experiment design has several desired features. First, the
questions being asked can be considered as judgmental issues,
since there is no systematic way to solve them in limited
time but subjective guessing. Second, since the participants
see each other’s answers anonymously, the underlying influ-
ence network is conceivably all-to-all with uniform weights.
Namely, the experiment design rules out any other factor, e.g.,
prejudice or communication pattern, but focuses on the core
comparison between median and average.

We randomly sampled 18 experiments from the data set,
in which 71 participants answer all the 30 questions at each
round. For each question, we predict the participants’ third-
round answers based on their second-round answers using
the following hypotheses H1–H6 in pairs: Each participant i’s
answer xi(t + 1) at the (t + 1)th round is given by

H1: xi(t + 1) = Median(x(t )),

H2: xi(t + 1) = Average(x(t )),

H3: xi(t + 1) = γi(t )xi(t ) + [1 − γi(t )]Median(x(t )),

H4: xi(t + 1) = βi(t )xi(t ) + [1 − βi(t )]Average(x(t )),

H5: xi(t + 1) = γ̃i(t )xi(1) + [1 − γ̃i(t )]Median(x(t )),

H6: xi(t + 1) = β̃i(t )xi(1) + [1 − β̃i(t )]Average(x(t )),

where “Median” and “Average” means arithmetic median and
average of all the six participants’ answers, respectively. If
there are two arithmetic medians, then Median(x(t )) denotes
the one closest to xi(t ). Hypothesis H3 (H4 resp.) can be
interpreted as the median (averaging resp.) mechanism with
“inertia,” while hypothesis H5 (H6 resp.) can be interpreted as
the median (averaging resp.) mechanism with “prejudice.” For
hypotheses H3–H6, the parameters γi(t ), βi(t ), γ̃i(t ), and β̃i(t )
are estimated by least-squares linear regression based on the
participants’ answers in the first 20 questions as the training
set. Then these estimated parameters are used to predict their
answers in the remaining 10 questions.

Using the above method for t = 2, we obtain 71 × 30 =
2130 predictions of the participants’ 3rd-round answers by
each of H1 and H2, and 71 × 10 = 710 predictions by each
of H3–H6. Figure 2(b) shows the scatter plots between the
observed answers and the predictions by H1 and H2. We com-
pute the error rate for each prediction by H1–H6 as follows:

error rate = | predicted value − observed value |
observed value

.
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FIG. 2. Empirical analysis of the experiment data set [22]. Panel (a) shows an example of the counting game. Panel (b) shows the scatter
plots between the participants’ observed 3rd-round answers and the predictions by median (hypothesis H1) and average (hypothesis H2),
respectively. Panel (c) is a visualized presentation of some indicative statistics of hypotheses H1–H6’s prediction errors. The black bars
indicate the medians of prediction error rates for each hypothesis, while the vertical ranges of the colored rectangles are the associated 95%
confidence intervals, computed by the binomial distribution method [26]. The colored dots correspond to the means of the prediction error
rates for each hypothesis.

Some indicative statistics of the prediction error rates for H1–
H6 are visualized in Fig. 2(c) and are presented in detail in
Fig. 1 of the Supplemental Material [4], according to which
the median error rate of the predictions by median (H1) is
46.36% lower than that of the predictions by average (H2). In
addition, for each pair of hypotheses, the median-based mech-
anism bears a lower median (and also mean) prediction error
rate than the average-based counterpart. Notably, hypotheses
H3 and H4 achieve remarkably low prediction errors by in-
troducing individual inertia as additional parameters. Despite
being useful for fitting the models, these parameters do not
reflect intrinsic attributes of the individuals, nor are they stable
over time. Hence, we refrain from such extensions and focus
on the core issue, namely mean vs median. In addition, we
also predict the participants’ opinion shifts from the first round
to the second round of each question. The results yield quan-
titatively similar conclusions; see Fig. 1 of the Supplemental
Material [4].

IV. COMPARATIVE NUMERICAL STUDIES

Figure 3 shows a typical evolution of the weighted-median
model on a lattice graph, from which some immediate ob-
servations can be obtained. First, unlike the DeGroot model,
individuals in the weighted-median model do not always reach
consensus but usually form into different opinion clusters.

t = 0 t = 1000 t = 2000 t = 5000

FIG. 3. One simulation of the weighted-median model on a
30 × 30 lattice graph. Each block is an individual and is bilaterally
connected with all their adjacent blocks (not including the diagonally
adjacent blocks). Each individual has a self-loop and uniformly as-
signs weights to all their neighbors including themself. Individuals’
initial opinions are independently randomly generated according to
the uniform distribution on [−1, 1]. The gray scale of each block is
proportional to the absolute value of the individual’s final opinion,
i.e., their “degree of extremeness.” After 5000 time steps, the evolu-
tion reaches an equilibrium.

Second, most of the extreme opinion holders (i.e., the dark
gray blocks), initially scattered in the lattice, gradually con-
vert to more moderate opinions. Namely, the typical effect of
social influence on moderating the opinions of individuals in
groups is still present but not overly strong as in the DeGroot
model.

Further insights revealed by the weighted-median model
are presented in the rest of this section. Particularly, we
compare the behavior of the weighted-median model with
some widely studied extensions of the DeGroot model,
including the Friedkin-Johnsen model [8], the biased-
assimilation model [11], and the networked bounded-
confidence model [27], all with randomized parameters. Their
mathematical forms and simulation setups are provided in
Sec. III of the Supplemental Material [4].

A. Consensus probability and group structure

Since the weighted-median mechanism resolves the overly
large attractions between distant opinions, effects of network
structures on determining group consensus or disagreement
naturally emerge. We investigate how group size and the clus-
tering coefficient of the underlying influence network affect a
group’s probability of reaching consensus. We simulate dif-
ferent models on Watts-Strogatz small-world networks [28],
whose structure is determined by three model parameters:
the network size n, the average degree d , and the rewiring
probability β. Specifically, the smaller β, the more clustered
the network is. For the results shown in Figs. 4(a)–4(c), we
fix the rewiring probability as β = 1 and estimate how the
probability of reaching consensus changes with the network
size n, under various fixed values of the average degree d .
For the simulation results shown in Figs. 4(d)–4(f), we fix
the network size as n = 30 and estimate how the probability
of reaching consensus changes with the rewiring probability
β, under various fixed values of the average degree d . For
each model and network setup, the consensus probability is
estimated over 5000 independent simulations.

As indicated by panels (a) and (d) of Fig. 4, in the
weighted-median model, consensus is less likely to be
achieved in larger or more clustered networks. This feature
is consistent with previous empirical studies [29,30] and
even everyday experience. On the other hand, predictions
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FIG. 4. Different models’ predictions on how consensus probability depends on network size and clustering coefficient. These models are
simulated on Watts-Strogatz small-world networks [28]. In panels (a)–(c), we fix the average individual degree d and the rewiring probability
β, and plot how the consensus probability changes with the network size n. Panel (a) presents the predictions by the weighted-median model
when β = 1. For other values of β, the results are qualitatively similar; e.g., see Fig. 2 of the Supplemental Material [4] for the results when
β = 0.3. In panels (d)–(f), we fix n and d , and plot how the consensus probability changes with β. Panel (d) presents the predictions by the
weighted-median model when n = 30. For other values of n, the results are qualitatively similar; e.g., see Fig. 2 of the Supplemental Material
[4] for n = 20. Since the DeGroot and the Friedkin-Johnsen models lead to trivial predictions of either almost-sure consensus or almost-sure
disagreement, their curves are not plotted in panels (d)–(f).

by other models are shown in panels (b), (c), (e), and (f)
of Fig. 4: The Friedkin-Johnsen model almost surely leads
to disagreement; the biased assimilation model and the net-
worked bounded-confidence model capture the decreasing of
consensus probability with network size, but do not show clear
patterns regarding the relation between consensus probability
and clustering coefficient.

B. Locations of extreme opinions in social networks

From Fig. 3, one could already see that extreme opinions
in the lattice graph behave differently than moderate opinions.
To further investigate how extreme opinions are located in
social networks, we simulate different models 100 times in-
dependently on randomly generated scale-free networks [31]
with 5000 nodes. The initial opinions are uniformly randomly
generated from [−1, 1] and opinions are classified into 4
categories; see Fig. 5(a). We estimate the in-degree centrality

distributions for individuals holding different categories of
opinions at the steady states of each simulation.

As Fig. 5(b) indicates, only in the weighted-median model,
the in-degree distribution curves for different categories of
opinions are clearly separated, and, moreover, the curve for
extreme opinions decays the fastest as in-degree increases.
That is, only the weighted-median model shows that extreme
opinions tend to reside in peripheral areas of social networks.
This feature is consonant with previous empirical, conceptual,
and case studies [32–37], which explain opinion radicalization
via social-influence processes and identify social marginal-
ization as a key cause. Such a connection has barely been
captured by quantitative opinion dynamics models and the
weight-median mechanism provides perhaps the simplest ex-
planation for it. To avoid the risk of bias due to the higher
probability of being absolutely stubborn (self-weight >1/2)
in the weighted-median model when the in-degree is small, we
perform a second experiment on graphs without self-weights,

Acronyms:   WM = the weighted-median model;  F-J = the Friedkin-Johnsen model;  BA = the biased-assimilation model; NBC
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FIG. 5. Distributions of extreme opinions predicted by different models. Panel (a) is the categorization of opinions. Panel (b) shows
different models’ predictions on the in-degree centrality distributions for individuals holding different categories of opinions at the steady
states. Panel (c) shows different models’ predictions on the two-dimensional distributions, i.e., the in-degree and the extremist focus, for the
extreme opinion holders at steady states. In each heat map, the last column “22+” records the number of extreme individuals with in-degrees
larger than or equal to 22. Panel (d) is Fig. 5 in [38], licensed under Creative Commons CC0 public domain dedication (CC0 1.0). This
figure plots the empirical distribution of randomly sampled Twitter users over the in-degree and the ISIS focus (the ratio of one’s pro-ISIS
social neighbors).
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FIG. 6. Distributions of the initial opinions and the final opinions predicted by different models. All simulations are run on the same
scale-free network with 5000 nodes and starting with the same randomly generated initial conditions.

and obtained similar results; see Fig. 4 of the Supplemental
Material [4]. Simulations for closeness and between centrality
or for different categorizations of opinions also lead to similar
results and are presented in Figs. 3 and 5 of the Supplemental
Material [4].

To obtain a deeper understanding of how extreme opin-
ions are located in social networks, we further investigate
the distribution of extreme opinions over two dimensions: the
in-degree centrality and the extreme focus, i.e., the ratio of
an individual’s out-neighbors holding extreme opinions. For
each model in comparison, we further simulate them on a
scale-free network with 2000 nodes for 1000 times indepen-
dently. To avoid the trivial cases that some individuals might
stick to extreme opinions just because they have self-loops
with weights larger than 1/2, the simulations are conducted
on networks without self-loops. For extreme opinion holders
at the steady states, we compute their in-degree centrality and
extreme foci, and then plot the corresponding two-dimensional
distributions; see the heat maps in Fig. 5(c).

The heat map generated by the weighted-median model
exhibits a clearly distinct pattern to those generated by the
other models: In the weighted-median model, extreme opinion
holders tend to have low in-degrees and their extreme foci
concentrate around the value 0.5, which implies that they form
into local clusters in peripheral areas of the networks. This
observation indicates a mechanistic explanation for opinion
radicalization among socially marginalized individuals: In so-
cial networks, some local clusters are formed by individuals
with low centrality, which usually implies few social contacts.
Inside those local clusters, if extreme opinions constitute the
“mainstream,” i.e., the weighted-median opinions, individuals

will adhere to extreme opinions by yielding to social influ-
ence, due to the overwhelming social pressure and lack of
diverse information sources. Remarkably, the heat map gener-
ated by the weighted-median model impressively resembles a
real data set of the network among randomly sampled Twitter
users, in which some users have their accounts suspended
for posting pro-ISIS terrorism contents and are considered as
extreme-opinion holders; see Fig. 5(d).

C. Steady public opinion distributions

Empirical evidence suggests public opinions do not only
achieve persistent disagreement, but also form into certain
steady distributions [15,39]. In fact, it has long been an
open problem what mathematical models naturally lead to
the emergence of various empirically observed steady public
opinion distributions [40]. By simulating different models on
a randomly generated scale-free network with 5000 nodes,
we compare their predictions on the final steady opinion dis-
tributions, starting from various initial opinion distributions.
Figure 6 shows a set of typical simulation results.

Among all the models in comparison, only the weighted-
median model, without deliberately tuning any model pa-
rameters, naturally generates various types of empirically
observed steady distributions of public opinions. Comparisons
conducted on a small-world network [28] indicate similar
conclusions and are provided in Fig. 6 of the Supplemental
Material [4]. Namely, the weighted-median model provides
perhaps the simplest explanation of the famous Abelson di-
versity puzzle [6] quoted in the Introduction, i.e., what models
generate bimodal steady opinion distributions.
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V. CONCLUSIONS AND FURTHER DISCUSSION

To sum up, with minimal assumptions, the weighted-
median mechanism resolves the unrealistic proportionality
between opinion attractiveness and opinion distance implied
by the widely adopted weighted-averaging mechanism. De-
spite its simplicity in form, the weighted-median mechanism
leads to higher accuracy in quantitatively predicting individ-
uals’ opinion shifts in an online experiment and captures
various interesting real-world phenomena. While it is im-
plausible for one single model to explain every aspect of
real-world opinion evolution, all the aforementioned features
support the weighted-median mechanism as a well-founded
and expressive micro-foundation of opinion dynamics, espe-
cially for multiple-choice issues with discrete and ordered
options.

A major limitation of the weighted-median mechanism
is that no new opinion is created during the opinion up-
dates. Therefore, it does not capture the behavior that
individuals compromise at intermediate opinions. This limi-
tation could be resolved by assuming that individuals move
toward instead of directly taking their weighted-median opin-
ions. In addition, one could make the model more realistic
by considering state-dependent weights, e.g., by assuming
that individuals with more extreme opinions become more
stubborn, as in [23]. Moreover, many nontrivial extensions
introduced to the classic DeGroot model can also be incorpo-
rated into the weighted-median mechanism, e.g., the presence
of antagonistic relations [41], individual prejudice [8], the
logical constraints among issues [14], and the issue align-
ments [42,43]. In addition, rigorous analysis of the dynamic
behavior, e.g., convergence and graph-theoretic conditions for
consensus/disagreement, of the weighted-median model and
its variations would also be of important theoretical value.
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APPENDIX A: UNIQUENESS OF WEIGHTED MEDIAN

The notion of weighted median is formalized as follows:
Definition 1 (weighted median). Given any n-tuple of real

numbers x = (x1, . . . , xn) and the associated n-tuple of non-
negative weights w = (w1, . . . ,wn), where

∑n
i=1 wi = 1, the

weighted median of x, associated with the weights w, is
denoted by Med(x; w) and defined as the real number x∗ ∈

{x1, . . . , xn} such that
∑

i: xi<x∗
wi � 1/2, and

∑
i: xi>x∗

wi � 1/2.

By carefully examining this definition, one could observe
that, associated with certain specific weights w, there might
exist multiple weighted medians of x satisfying the definitions
above. Here we point out the following facts:

(i) The weighted median of x associated with w is unique
if and only if there exists x∗ ∈ {x1, . . . , xn} such that

∑
i: xi<x∗

wi <
1

2
,

∑
i: xi=x∗

wi > 0, and
∑

i: xi>x∗
wi < 1/2.

In this case, x∗ is the unique weighted median.
(ii) The weighted medians of x associated with w are NOT

unique if and only if there exists z ∈ {x1, . . . , xn} such that∑
i: xi<z wi = ∑

i: xi�z wi = 1/2. Among all these weighted
medians of x, the smallest one, denoted by x∗, satisfies

∑
i: xi<x∗

wi <
1

2
,

∑
i: xi=x∗

wi > 0, and
∑

i: xi>x∗
wi = 1

2
,

while the largest weighted median, denoted by x∗, satisfies

∑
i: xi<x∗

wi = 1

2
,

∑
i: xi=x∗

wi > 0, and
∑

i: xi>x∗
<

1

2
.

Moreover, if there exists any x̂ ∈ {x1, . . . , xn} such that x∗ <

x̂ < x∗, then x̂ is also a weighted median and it must hold that∑
i: xi=x̂ wi = 0.
For generic weights, e.g., if w1, . . . ,wn are independently

randomly generated from some continuous probability distri-
butions, the case in fact 2 almost never occurs since, with
probability 1, no subset θ ∈ {1, . . . , n} would satisfy ex-
actly

∑
i∈θ wi = 1/2. Therefore, given generic weights w, the

weighted median of x is unique.
Regarding the weighted-median opinion dynamics defined

in Sec. II B, in order to avoid unnecessary mathematical
complexity, we would like to make each individual’s opin-
ion update well defined and deterministic. Therefore, we
slightly change the definition of weighted-median opinion
when it is not unique according to Definition 1. Specifi-
cally, for any individual i ∈ {1, . . . , n}, if at some point of
time their weighted-median opinion is not unique, then let
Medi(x(t );W ) be the weighted median that is the closest to
xi(t ). This setup guarantees the uniqueness of Medi(x;W )
since only one of the following three cases can occur when
the weighted-median opinions are not unique:

(i) xi � x∗, where x∗ is the smallest weighted median of
x associated with the weights (w1, . . . ,wn). In this case,
Medi(x;W ) = x∗ is unique.

(ii) xi � x∗, where x∗ is the largest weighted median of
x associated with the weights (w1, . . . ,wn). In this case,
Medi(x;W ) = x∗ is unique.

(iii) x∗ < xi < x∗. According to fact 2 for the weighted
median in last paragraph, this must imply that

∑
j: x j=xi

wi j =
0 and xi is also a weighted median of x associated with the
weights (w1, . . . ,wn). Therefore, in this case, Medi(x;W ) =
xi is also unique.

023213-8



MICRO-FOUNDATION OF OPINION DYNAMICS: RICH … PHYSICAL REVIEW RESEARCH 4, 023213 (2022)

By the nature of weighted median, for any given ini-
tial condition x(0) = (x0,1, . . . , x0,n)�, the solution x(t ) to
the weighted-median opinion dynamics satisfies xi(t ) ∈
{x0,1, . . . , x0,n} for any i ∈ {1, . . . , n} and any t � 0. More-
over, along the weighted-median opinion dynamics, for each
node i and at each time t ,

xi(t + 1) > xi(t ) if and only if
∑

j: x j (t )>xi (t )

wi j > 1/2,

and

xi(t + 1) < xi(t ) if and only if
∑

j: x j (t )<xi (t )

wi j > 1/2.

APPENDIX B: DERIVATION OF THE
WEIGHTED-MEDIAN MECHANISM FROM THE
ABSOLUTE-VALUE COGNITIVE DISSONANCE

FUNCTION

Consider an influence network G(W ) with n individuals.
Given the opinion vector x, each individual i’s cognitive dis-
sonance generated by disagreeing with others can be modeled
as

Ci(xi, x−i ) =
n∑

j=1

wi j |xi − x j |α,

and individual i’s opinion update can be modeled as the best
response to minimize the cognitive dissonance Ci(xi, x−i ).
That is, the updated opinion of individual i, denoted by x+

i ,
satisfies

x+
i = argminz∈R

n∑
j=1

wi j |z − x j |α. (B1)

We use equality here in the sense that the right-hand side of
the equation above is unique for generic weights wi j . The

following proposition states the relation between the system
given by Eq. (B1) and the weighted-median mechanism, when
we set the parameter α = 1.

Proposition 1 (weighted-median update as best-response
dynamics). Given the row-stochastic influence matrix W =
(wi j )n×n and the vector x = (x1, . . . , xn)

�
, the following state-

ments holds: For any i ∈ {1, . . . , n},
(i) If there exists x∗ ∈ {x1, . . . , xn} such that

∑
j: x j<x∗

wi j <
1

2
, and

∑
j: x j>x∗

wi j <
1

2
,

then

Medi(x;W ) = x∗ = argminz

n∑
j=1

wi j |z − x j |.

(ii) If there does not exist such x∗, then the set

Mi(x;W ) =
⎧⎨
⎩y ∈ {x1, . . . , xn} |

∑
j: x j�y

wi j �
1

2
,

×
∑

j: x j>y

wi j �
1

2

⎫⎬
⎭

is nonempty and

Medi(x;W ) = argminy∈Mi (x;W )|y − xi|
∈ [inf Mi(x;W ), sup Mi(x;W )]

= argminz

n∑
j=1

wi j |z − x j |.

This proposition is a straightforward consequence of Defi-
nition 1 in this document and Lemma 3.1 in the paper by Sabo
et al. [44].
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