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From neuronal spikes to avalanches: Effects and circumvention of time binning
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Branching with immigration is one of the most common models for the stochastic processes observed in
neuronal circuits. However, it is not observed directly and, in order to create branching-like processes, the
observed spike time series is processed by attaching time bins to spikes. It has been shown that results such
as criticality and size distributions depend on the chosen time bin. A different methodology whose results do
not depend on the choice of time bin might therefore be useful and is proposed in this article. This methodology
circumvents using time bins altogether by replacing the previously used discrete-time models by continuous-time
models. First, the article introduces and characterizes a continuous-time version of the branching process with
immigration, which will be called the pumped branching process, and second, it presents an analytical derivation
of the corresponding spike statistics, which can be directly compared to observed spike time series. The presented
approach allows determining the degree of criticality, the average number of overlapping avalanches, and other
observables without using a time bin. Furthermore, the effects caused by using time bins are analyzed and the
influence of temporal and spatial subsampling discussed, all of which is compared to experimental data and
supported by Monte Carlo simulations.
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I. INTRODUCTION

Spike trains recorded with electrode arrays are commonly
used to study the functioning of the brain on a mesoscopic
level [1–17]. They offer insight into its activity while subjects
are performing tasks or are in different stages of sleep [4,12].
Whether the spiking is relatively regular or random, i.e., irreg-
ular, continues to be a topic of scientific discussion [4,5,18–
22]. A standard measure of irregularity is the coefficient of
variation cV of the interspike interval (ISI). With cV equal to
1, the Poisson process divides the landscape of stochastic time
series into more regular processes with small fluctuations and
cV < 1 on the one hand, and on the other hand, highly irregu-
lar ones with large fluctuations and cV > 1. More importantly
given data, the coefficient of variation can be used to identify
or rule out candidates for the underlying stochastic process
that governs neuronal spiking.

While the spiking of a single neuron might appear like a
Poisson process, collectively, neurons do not spike indepen-
dently [9]. The occurrence of spikes is expected to follow a
branching structure just as the physical network of neuronal
circuits on which they propagate [8,9,23]. The common way
to generate a branching-like process from a spike time series
is to attach a time bin of length �t to each spike [8,9,11,12].
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The number of overlapping time bins at a time t is then
interpreted as the number of particles N (t ) in a branching
process present at that time, Fig. 1. Time series generated in
this way will be called “branching-like” because, a priori, it
is not clear whether such a time series can mathematically
be a branching process. A change in the chosen time bin
�t generates a different branching-like process with differ-
ent statistical properties [12]. The statistics of interest are
those which show whether the system is close to criticality,
which is an important feature associated with divergence of
correlation lengths [15,24,25] and optimization of informa-
tion processing [10]. However, it has been unknown so far
if and how critical behavior of an underlying branching pro-
cess could be identified directly from the observed spike time
series.

Criticality of branching processes can be identified by
studying avalanches which are defined as spells of uninter-
rupted activity, i.e., spells where N (t ) > 0 interrupted by
periods when N (t ) = 0. The statistics of avalanche sizes has
been the most widely used observable for identifying critical
behavior because its distribution follows a power law if the
system is at criticality [25–27]. In practice, this feature is
extremely difficult to test because tails of power laws or ex-
ponential distributions represent rare events. Sampling these
rare events in simulations or experiments is challenging and
comes with considerable uncertainties [28,29]. Furthermore,
subcritical branching processes can also show a power-law
distribution of avalanche sizes with the same exponent over
several magnitudes before being cut off by an exponential
tail [25].

Recently, a new method has been established that allows
estimating the closeness of the system to the critical point
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FIG. 1. Schematic transformation of a spike time series into a
branching-like process. (a) Spike time series. Spikes are typically
identified as peaks in voltage V (t ) at implanted electrode arrays [8].
(b), (c) Resulting branching-like process with particle number N (t ).
A time bin �t is attached to each spike, representing a particle. Over-
lapping time intervals imply that there are several particles present.
A larger �t was used in panel (b) compared to panel (c). Orange
dashed lines are visual guides to see that spikes induce an increase in
particle number. Purple arrows indicate three examples of bin sizes
for panels (b) and (c). Avalanches are defined as spells of activity, i.e.,
N (t ) > 0, between periods of inactivity where N (t ) = 0. Choosing
different �t can lead to different activity and different avalanches,
and also changes their statistical properties [11].

using autocorrelation functions [13–15]. This method is stable
under subsampling of a mean-field neuronal network and it
allowed identifying a regime close to criticality, called the
reverberating regime, in which neuronal activity takes place.

However, many of these analyses [8–15,30,31] build on
several (but not necessarily all) underlying assumptions ad-
dressed here, which include the following:

(1) The time bins �t are assumed to be fixed and equal
for every spike despite experimental evidence and detailed
modeling suggesting a spread of bin times [1,2,7,20]; see
Fig. 11. In this article, bin times are distributed according
to an exponential distribution, which allows implementing a
continuous-time branching process, Sec. II A.

(2) While branching-like processes are created readily out
of spike time series, it is unclear whether the resulting process
would occur “naturally,” e.g., in a Monte Carlo simulation of
branching. This article presents phase space boundaries for
the spike time series, outside which a “naturally occurring”
branching process cannot correspond to the observed spiking.
This means that the probability is zero for a spike time series
to lie outside these boundaries if it is derived from a branching
process, Sec. III C 2.

(3) Furthermore, it has been unclear so far whether time
series with equal fluctuations, as characterized by the co-
efficient of variation cV , can result in branching processes
with significantly different criticality measure. This article

provides a map showing how two differently critical branch-
ing processes can correspond to time series with the same
coefficient of variation cV , Sec. III C 1.

(4) Typically �t is taken to be the average interspike
interval 〈ISI〉, although some uncertainty about this choice
has been published [8,9,12,32]. In this article the analytical
relation between 〈ISI〉 and the average time for a particle
to go extinct is presented. The avalanche size distribution
is determined based on moments of the ISI rather than an
unknown �t , Sec. IV C 3.

(5) This article points out a problem with the use of auto-
correlations as a tool to determine how close the system is to
criticality [14]: in continuous-time systems, their exponential
decay depends not only on the criticality parameter but its
product with a timescale, which cannot be estimated sepa-
rately from autocorrelations alone. See Secs. II C 2 and IV D.

(6) Many analyses (but not all [13–15,33]) assume a sep-
aration of timescales, i.e., that separately initiated neuronal
avalanches are well separated in time within the local mea-
surement. This allows comparing data to well-established
results from self-organized criticality [8,11,34] and pure
branching processes [35]. However, based on experimental in
vivo data [36], this article argues that overlaps can be very
common, Sec. III C 2.

The aim of the article is to investigate the common
approach of creating time series that look like branching
processes from spike time series. The investigation is done
by reversing the procedure: starting from continuous-time
branching processes with immigration, spike time series are
derived analytically. Thus, shortfalls of the approach are iden-
tified and an alternative methodology suggested.

Data analysis is always an interpretation of data in the
space of chosen models. This article suggests to change
the space of models which consists of discrete-time branch-
ing processes with immigration by the model space of
continuous-time pumped branching processes. There are two
main conceptual arguments for this change:

(1) The former relied on a choice of a fixed time bin which
is difficult to justify from first principles, while the latter
replaces the fixed time bins by a distribution for the ISI. The
chosen ISI distribution might not be the best one, but given
that continuous ISI distributions are observed and that many
of them appear to have an exponential character, the analysis
and use of the latter model space is hopefully regarded as
useful by the research community. The continuous nature of
the ISI distribution is shown for two example data sets in
Fig. 11.

(2) The former model space does not have an intrinsic
way of determining the best/correct time bin, while the latter
intrinsically allows determining the full mapping from spikes
to the model space, including its timescale.

The resulting consequences will require careful neurosci-
entific interpretation which is beyond the scope of this article.

The structure of this article is as follows: First, the
pumped branching process is introduced and characterized
as a continuous-time version of the branching process with
immigration. This part lays the groundwork for the second
part and main focus of this article: the derivation of the in-
duced spike statistics and their application and comparison to
experimental data. The pumped branching process is set up
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in Sec. II A; its steady state properties, including moments,
probability distribution, and correlation functions are derived
in Sec. II B, followed by the system’s relaxation properties
in Sec. II C, which are important in connection with Monte
Carlo simulations. In Sec. III, the theoretical basis for the
data analysis method is laid, which culminates in Sec. III C
in the development of the method, called the moment-ratio
map. In Sec. IV, the method is applied to experimental data:
in Sec. IV B experimental data are mapped to the model and
in Sec. IV C implications of the mapping are discussed with a
particular emphasis on the repercussions of time binning in the
continuous-time model process. In Sec. IV D, the implications
of applying the autocorrelation method on a continuous-
time branching model are explored and in Sec. IV E spatial
subsampling effects are discussed. Finally, the article is con-
cluded in Sec. V. Throughout, analytical results are verified
with Monte Carlo simulations.

II. PUMPED BRANCHING

A. Model

The following model is a continuous-time version of the
branching process with immigration. It intends to imitate
signal creation and propagation in the brain by representing
the number of signals which are being propagated in a neu-
ronal circuit as a particle number N , which is also called
the state of the system. The input of a signal into a circuit
is modeled by a spontaneous particle creation process with
rate γ (pumping). When a signal spreads from one neuron
to another, particles branch and create K particles according
to an offspring distribution pk . At a branching event, the
probability that the particle becomes K particles equals pk .
However, neurons do not always spread signals they receive.
They also inhibit the signal propagation, which is modeled
implicitly as particle extinction and is incorporated in the
offspring distribution by p0. The reason why extinction is
effectively inhibiting the future activity is that when a particle
goes extinct, it is removed from the system. This removal
implies a decreased branching activity because branching is
proportional to the number of particles present in the system.
How close the branching process is to criticality is determined
by E[K], the expected number of offspring. The process is
subcritical if E[K] < 1, it is supercritical if E[K] > 1, and
it is critical for E[K] = 1. Many authors name E[K] = m
or E[K] = σ [14,15,37,38]. Although a different criticality
parameter will mostly be used in the following, references to
m will continue for convenience.

The rate with which branching or extinction events of a
single particle occur is denoted by s; i.e., the single-particle
extinction rate is sp0 and the rate of creating two particles out
of one is sp2 [25]. The difference between a branching process
and a branching process with immigration is that the latter
includes spontaneous creation. The pumped branching pro-
cess is simply the continuous-time version of the branching
process with immigration. Example trajectories from Monte
Carlo simulations of the pumped branching process are shown
in Fig. 2. Here, it can be seen that pumped branching does
not have a fixed time bin size. The bin size is following an
exponential distribution with rate sp0, which allows imple-

FIG. 2. Two example trajectories of a branching process with
spontaneous creation. In both cases, the trajectories start with zero
particles and have a binary offspring distribution with r/s = 0.1. The
spontaneous creation rate is γ /s = 1.0 (red) and γ /s = 0.2 (blue).

menting branching (with immigration) into continuous time.
The interpretation of this model in terms of neuronal spike
trains is that a spike occurs whenever an additional parti-
cle is created. Every interspike interval (ISI) has therefore
a different realized time. Furthermore, the continuous-time
implementation naturally leads to clustering of spikes, as the
waiting time between branching events is shorter when there
are already more particles in the system. In particular, this
approach is not equivalent to adaptive binning [39,40], as such
approaches still use fixed bin sizes within intervals.

How do different offspring distributions pk influence the
phenomenology of the model? At a branching event, k par-
ticles are created with probability pk , replacing the original
branching particle; that is, k − 1 additional particles are cre-
ated. In particular, if the branching event creates two particles
with probability p2, then effectively only one additional par-
ticle is created because the original branching particle is
replaced by two particles. The reason why only additional
particles are important is that they are bosonic, i.e., indistin-
guishable by definition. Therefore, the creation of k particles
at a branching event and the effective creation of k − 1 ad-
ditional particles must not lead to a different conclusion.
This indistinguishability of particles manifests itself in the
property that any choice of p1 leads to the same stochas-
tic process. If we include nonbinary branching pk �= 0 for
k � 3, then more than one additional particle can be created
at the same branching event, i.e., at exactly the same mo-
ment in time. However, signal propagation in the brain occurs
on a continuous-time spectrum across physical connections
with a continuous length distribution. This length and time
continuity implies that the interspike distribution should be
continuous even when measured with a regular electrode grid.
It is therefore fair to assume that signal creations in neurons
never occur exactly at the same time, and hence, it is reason-
able to focus on binary branching only, i.e., on the offspring
distribution pj = 0 for all j /∈ {0, 2}.

As mentioned above, the major difference of the introduced
model from other commonly used models is the continuous-
time distribution of events in place of fixed time steps.
But how does this model compare to other continuous-time
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models that are used in the analysis of neuronal spike record-
ings? The most important continuous-time model in this
context is the contact process and its variations [27,41,42].
Contact processes describe how objects spread in discrete
space, which usually is a regular lattice but which can be
networks as well. Thus, they lend themselves naturally as
models of signal propagation in the brain. Gaining analytical
results into the full model is extremely difficult and significant
simplifications have to be made to understand its behavior an-
alytically. In the context of neuronal spikes, a contact process
in a finite system with immigration has been used in [27],
while in [42] the contact process is without immigration and
on an infinite 2D lattice. In contrast, the pumped branching
process includes immigration but has no limit to its system
size and has no geometry. In fact, a key component of contact
processes in general and of the two mentioned studies is that
an object that wants to spread only ever has a finite number of
sites available to spread to. A particle in a pumped branching
process does not have these restrictions because there is no
system size or system geometry. Thus, the pumped branching
process could be regarded as the infinite-dimensional limit of
an infinite-size contact process with immigration.

In the remainder of this section, many important statisti-
cal properties of the pumped branching process are derived
analytically using methods from statistical field theory. Al-
though this derivation provides the necessary mathematical
justification for the derivation of spike distributions and for the
following data analysis, if readers wish to skip the details of
the field theory, they are invited to continue immediately with
Sec. III C where they find the derivation of the data analysis
method, or they can continue with Sec. IV where the method
is applied to neural data.

The resulting stochastic process of particle creation,
branching, and extinction can be described by a Doi-Peliti
field theory [43,44]. Details on how to derive such field theo-
ries can be found in [25,45,46]. The branching and extinction
part of the field theory have been described in [25], where the
resulting action Ab equals

Ab =
∫

φ̃(t )

(
− d

dt
− r

)
φ(t ) +

∑
j�2

q j φ̃
j (t )φ(t )dt . (1)

Here, φ(t ) is a particle annihilation field and φ̃(t ) is a Doi-
shifted particle creation field. The effective extinction rate
is r = s(1 − E[K]), which is zero at criticality. Since s is a
timescale which can be chosen arbitrarily, r does not indicate
how close the system is to criticality, but r

s = 1 − m does.
The system is subcritical for r

s > 0 (m < 1), supercritical
for r

s < 0 (m > 1), and close to criticality if r
s ≈ 0 (m ≈ 1).

Therefore, r
s will be called the degree of criticality. The pa-

rameter q j = sE[(K ) j]/ j! is the jth factorial moment of the
offspring distribution multiplied by the branching rate s and
divided by j!. This article focuses on binary branching which
implies that q j = 0 for all j � 3.

The effects of spontaneous creation were not considered
in [25] but can be added by including

Ac =
∫

γ φ̃(t )dt, (2)

where γ is the spontaneous creation rate. In particular, it is the
rate of an exponential distribution describing the times when
external input (also called immigration or pumping) occurs.
Its derivation is explained in Appendix A. The dimensionless
quantity γ

s will be called relative spontaneous creation. The
action governing the dynamics of the entire system is A =
Ab + Ac. The path integral is normalized such that

〈1〉 =
∫

eAtD[φ̃, φ] = 1, (3)

and the expectation of an observable O is calculated as

〈O〉 =
∫

OeAtD[φ̃, φ]. (4)

In this field theory, the inclusion of spontaneous creation
means that the system does not have to be initialized to show
dynamics. Therefore, the easiest observables are O = φm(t )
which are the mth factorial moments of the particle number
at time t . They are explained in Appendix B and will play an
important role in the following sections.

The spontaneous creation leads to an average particle den-
sity ζ = γ /r, and it is advantageous to shift the annihilation
field φ = φ̌ + ζ such that φ̌ accounts for deviations from the
average particle density. Then, the action does not contain a
term proportional to φ̃ anymore, meaning that the shift of
the annihilation field intrinsically accounts for spontaneous
creation [47]. The action A can be expressed in terms of this
shifted field as

A =
∫

φ̃(t )

(
− d

dt
− r

)
φ̌(t ) +

∑
j�2

q j φ̃
j (t )[φ̌(t ) + ζ ]dt .

(5)
Equation (5) shows the action on which all the following
derivations are based. It represents a stochastic process of
branching, extinction, and spontaneous creation. The calcula-
tion of the expectations of observables can be represented by
Feynman diagrams, which for Doi-Peliti field theories are read
by convention from right to left. Given an action, the structure
of occurring Feynman diagrams can be readily deduced by
looking at the involved terms. Bilinear terms φ̃(−∂t − r)φ̌
correspond to bare propagators and are represented by lines

in the diagrams. All other terms are called interaction
terms and are depicted as vertices, where the number of
ingoing/outgoing lines equals the power of φ̌/φ̃ in the in-
teraction term. For example q2φ̃

2φ̌ is drawn as the vertex
, and the vertex represents the term ζq2φ̃

2. Although
the diagrams look like branching trees, it is important not
to confuse a branching vertex with a branching event. The
vertex represents correlations while the branching events are
already incorporated in bare propagators. The vertices that are
deduced from action A do not allow for diagrams with loops.
Therefore, all observables that are polynomials in φ̌ and φ̃ are
represented by a finite number of diagrams. In particular, this
implies that the bare propagator equals the full propagator.

What are some of the drawbacks of this model setup? The
model assumes stationary parameters. However, there are well
known oscillations in the living brain [48]. Can it be expected
that they alter the results of this analysis? The predomi-
nant oscillations are in the range between Delta and Gamma
waves which cover a range of 0.1 Hz to 100 Hz. In Sec. IV
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experimental data from [36] is used to identify parameters. In
this collection of data sets, the shortest recording is 17 min
long, while the longest is 106 min. Therefore, it can be ex-
pected that effects from oscillations average out. In principle,
this type of field-theoretic model can be adapted to accommo-
date time-dependent parameters; however, it comes at a cost
of higher analytical difficulty [49]. Oscillations in the brain
have been linked to the quiet times between avalanches and
inter-avalanche correlations and repeated switches between up
and down states [30,31], which do not appear in the pumped
branching model because quiet times are exponentially dis-
tributed and therefore memoryless. This also implies that in
this model, there are no inter-avalanche correlations.

The presented model is in a zero-dimensional space. Could
spatial components play a role? The answer is probably yes.
In [50] it was found that embedded networks resemble the
brain on a variety of network properties much more than
nonembedded ones; in particular it was estimated that the
topological fractal dimension of the human brain is 3.7 with
high modularity and large global clustering. Another success-
ful model is neutral theory, which includes a competition of
causal avalanches for available sites [33]. Such dynamics are
not included in the present model. Furthermore, the pumped
branching model does not contain any bounds on the number
of active neurons. However, all experimental measurements
are limited by the number of neurons in the capture area of
the electrode array, resulting in finite-size effects. Recently,
branching processes with immigration (which are the discrete-
time versions of pumped branching processes) on networks
have been compared to their zero-dimensional, macroscopic,
and simplified counterparts [23]. This study showed that
macroscopic and microscopic parameters can differ signifi-
cantly. However, it also showed in which parameter regions
microscopic parameters of network dynamics are well approx-
imated by the parameters of the zero-dimensional models.
As the pumped branching model is closest to the “estimated
rate” approximation in [23], and since it will be shown in
Sec. III C 2 that the data is in the subcritical regime, the bias
introduced by ignoring network dynamics and coalescence
effects is very small even with large spontaneous creation (see
Fig. 4 in [23]).

The dynamics can be divided into steady state and relax-
ation behavior. When the model is compared to experimental
data in Sec. IV, it is assumed that data collection took place
while the relevant brain region was in a steady state. Therefore
the focus of the presented analytical derivations will be on
steady state behavior. Relaxation behavior is still relevant
though because it includes autocorrelations which have been
used in a new method for analyzing criticality in the brain; see
Sec. II C 2. Furthermore, the relaxation behavior is important
when analytical results of the steady state are verified with
Monte Carlo simulations, as is done throughout, because it
indicates how long these simulations have to run to reach the
steady state.

B. Steady state

A steady state of a dynamic system is reached when the
system is allowed to evolve for an infinite amount of time,
t → ∞. In general, such a state might not exist or it might

depend on initial conditions. The following subsections show
that the pumped branching process does have a steady state
if the branching process is subcritical, i.e., r > 0, which is
assumed throughout.

1. Moments

In the system, particles are spontaneously created all the
time with rate γ . Those particles undergo an effective extinc-
tion with rate r resulting in a steady state average number of
particles

E[N] = 〈φ〉 = 〈φ̌〉︸︷︷︸
=0

+ζ = γ

r
, (6)

which is expected in a system where effective extinction and
spontaneous creation balance each other.

This result shows a fundamental difference between a
branching and a pumped branching process. Starting with
a single particle in the system at t = 0, in the infinite-time
limit t → ∞, the branching process has a discrete set of limit
values for the mean particle number: limt→∞ E[N (t )|N (0) =
1] ∈ {0, 1,∞} depending on r > 0, r = 0, or r < 0. In con-
trast, the pumped branching process has a continuous set
of limit values with limt→∞ E[N (t )|N (0) = 1] = γ

r ∼ r−1 as
r → 0+. In particular, the branching process has an infinite-
time survival probability of 0 for r � 0, whereas the pumped
branching process has a survival probability of 1. This shows
that the only steady state of the branching process is the
absorbing state N = 0, while the steady state of the pumped
branching process is dynamic.

Calculating higher moments requires understanding the
connection between factorial moments and moments. The
term 〈φk〉 equals the kth factorial moment E[(N )k] of the dis-
tribution, where (x)k = x(x − 1) · · · x(x − k + 1) is the falling
factorial. They are linked to the moments via the Stirling
number of the second kind, {n

k}:

E[Nn] =
n∑

k=0

{
n
k

}
〈φk〉. (7)

Hence, the second moment equals

E[N2] = 〈φ2〉 + 〈φ〉 = 〈φ̌2〉 + ζ 2 + ζ (8)

= γ q2

r2
+ γ 2

r2
+ γ

r
, (9)

where the term 〈φ̌2〉 was calculated as follows:

〈
φ̌2(t)

〉
=̂

(10)

= 2ζq2

∫ -δ(ω1 + ω2)e−i(ω1+ω2 )t

(−iω1 + r)(−iω2 + r)
-dω1

-dω2 (11)

= γ q2

r2
. (12)

Hence, the variance of the particle number is

Var[N (t )] = γ q2

r2
+ γ

r
. (13)

The first and second moments of the steady state are de-
picted as dashed lines in Fig. 3 with labels n = 1 and n = 2,
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FIG. 3. 1st, 2nd, 3rd, and 4th moment of the process with bi-
nary offspring distribution with r = 0.1 and γ = 1.0. Dashed lines:
Steady state solutions. Solid lines: Relaxation starting with an empty
system at t = 0. Symbols: Simulation results.

respectively, alongside the 3rd and 4th moments which are
derived below.

Equation (7) shows that calculating the nth moment re-
quires calculating all the factorial moments up to the nth,
which in turn requires calculating all the 〈φ̌
〉 for 
 ∈
{1, . . . , n}. Their general expression can be found by exploit-
ing a connection to cumulants.

2. Factorial moments and factorial cumulants

Starting with the fourth moment, terms will appear which
are represented by disconnected Feynman diagrams. In the
fourth moment, the term 〈φ̌4〉 appears, which consists of the
following Feynman diagrams (if qj = 0 for j � 3),

〈φ̌4〉 =̂ + + , (14)

of which the first diagram consists of two disconnected dia-
grams. In order to find the general expression for 〈φ̌n〉, hn is
defined as the part of 〈φ̌n〉 which is represented by connected
Feynman diagrams only. Note that this can still include several
diagrams, but they all start from a single ζq2φ̃

2 =̂ vertex
and end in n outgoing lines. The diagrams representing hn

differ only by their internal diagrammatic structure; see for
example the 2nd and 3rd diagrams in Eq. (14). Using
to hide all the possible internal diagrammatic structure, hn is
written as

hn =̂
n−1∑
m=1

(
n

m

) ...m

...n − m
(15)

=
n−1∑
m=1

(
n

m

)
ζq2

∫
g̃m(ω)g̃n−m(−ω)dω (16)

=
n−1∑
m=1

(
n

m

)
ζq2

∫
gm(t )gn−m(t )dt, (17)

where g̃m(ω) is the propagator of the branch with one ingoing
leg and m outgoing legs in Fourier space:

g̃m(ω =̂) ...m . (18)

Its real-space version gm(t ) was found in [25] to be

gm(t ) = m!e−rt
[q2

r
(1 − e−rt )

]m−1
. (19)

Hence, hn equals

hn = ζ (n − 1)!

(
q2

r

)n−1

, (20)

which is true for n > 1. For n = 1, 〈φ̌〉 = 0, but we set h1 =
ζ = γ

r . This choice means that the ζ in the shift 〈φn〉 = 〈(ζ +
φ̌)n〉 is interpreted as its own subdiagram, which turns out to
be useful in the following. If nonbinary offspring distributions
were chosen, then the internal diagrammatic structure would
be more complicated and involve q3, q4, . . . . The corrections
to gm in Eq. (19) would be of the order O(1/rm−2), which
implies that gm is still a good approximation close to criticality
r ≈ 0+. This means that hn is also a good approximation for
nonbinary offspring distributions for r ≈ 0+ and its error is
O(1/rn−1).

In the following, the terms hn, which are represented by
the connected diagrams, are shown to be factorial cumulants.
This argument is used in an analogous way for the relation
between moments and cumulants in [24].

First, let us define the factorial moment partition function:

Zφ ( j) =
∞∑

n=0

jn〈φn〉
n!

, (21)

which is different from the standard definition of the factorial
moment generating function in that the factorial moments are
its derivatives at the origin. Analogously, the factorial cumu-
lant generating function is defined as Wφ ( j) = ln Zφ ( j), and
thus factorial cumulants 〈φk〉c are also defined:

Wφ ( j) =
∞∑

n=0

jn〈φn〉c

n!
. (22)

Let us assume that we want to calculate 〈φn〉. Then, we
have to sum over many diagrams, all of which have n outgoing
legs, and some of which will not be connected diagrams. They
will consist of a few connected subdiagrams. Let us group
these connected subdiagrams such that the jth subdiagram
has n j outgoing legs, and the diagram is repeated q j times
in the big diagram. Hence n = q1n1 + . . . qpnp, where p is
the number of types of connected subdiagrams. The types of
subdiagrams are only determined by the number of outgoing
legs. Depending on the action, there might be several types
of connected diagrams with the same number of outgoing
legs but with differing internal structure. For the purpose of
the following calculation, they are grouped as one diagram
and their combined Green’s function G

(n j )
c is the sum of the

Green’s function of each diagram within the group.
The number of independent terms is n! (the number of per-

mutations of all legs) divided by the number of permutations
of the legs within each subdiagram, i.e., nj!, and the number
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of permutations within the same type of subdiagram, denoted
by q j!:

number of independent terms = n!

(n1!)q1 q1! . . . (np!)qpqp!
.

(23)

For now, we allow the times at which the outgoing legs are
evaluated to be arbitrary; i.e., the t1, t2, . . . in 〈φ(t1) . . . φ(tn)〉
do not have to be equal. Then the partition function for the
factorial moments is

Zφ ( j) =
∞∑

n=0

1

n!

∫
dnt j(t1) . . . j(tn)

×
∑

∑p

=1 q
n
=n

G(n1 )
c (t1, . . . , tn1 ) . . .

× G
(np)
c (tn−np+1, . . . , tn), (24)

where G
(n j )
c is the Green’s function of the connected subdi-

agrams of type j, which have n j outgoing legs, and where
t = (t1, . . . , tn). This expression can be rearranged such that

Zφ ( j) = exp

( ∞∑
n=1

1

n!

∫
j(t1) . . . j(tn)G(n)

c (t)dnt

)
. (25)

Hence, the factorial cumulant generating function is identified
as

Wφ ( j) =
∞∑

n=1

1

n!

∫
j(t1) . . . j(tn)G(n)

c (t)dnt, (26)

with G(n)
c (t1, . . . , tn) = 〈φ̌(t1) . . . φ̌(tn)〉c.

The terms corresponding to the connected Feynman di-
agrams were found in Eq. (20). Therefore, the generating
functions Wφ and Zφ can be written as

Wφ ( j) =
∞∑

n=1

jnhn

n!
=

∞∑
n=1

jnγ qn−1
2

nrn
, (27)

Zφ ( j) = exp

( ∞∑
n=1

jnγ qn−1
2

nrn

)
, (28)

which allows finding the kth factorial moment by taking the
kth derivative with respect to j and evaluating at j = 0:

〈φk〉 = dk

d jk
exp

( ∞∑
n=1

jnγ qn−1
2

nrn

)∣∣∣∣∣
j=0

(29)

=
(q2

r

)k k∑

=0

[
k



](
γ

q2

)


(30)

=
(q2

r

)k
(

γ

q2

)(k)

, (31)

where [k

] is the unsigned Stirling number of the first kind and

x(k) = x(x + 1) · · · (x + k − 1) is the rising factorial. The first

four factorial moments are

〈φ〉 = γ

r
, (32)

〈φ2〉 = γ 2

r2
+ γ q2

r2
, (33)

〈φ3〉 = γ 3

r3
+ 2γ q2

2

r3
+ 3γ 2q2

r3
, (34)

〈φ4〉 = 6γ q3
2

r4
+ 11γ 2q2

2

r4
+ 6γ 3q2

r4
+ γ 4

r4
, (35)

confirming the previous calculation of the first and second
moments, Eqs. (6) and (8). The implied 3rd and 4th moments
are also shown in Fig. 3.

Note that with a binary offspring distribution (qj = 0∀ j �
3), the kth factorial moment diverges like r−k as r → 0. For
nonbinary offspring distributions (∃ j � 3 with qj �= 0), the
error is O(1/rk−1). This implies that at criticality r = 0, there
are universal factorial moment ratios which are also universal
moment ratios due to their connection shown in Eq. (7), for
example:

lim
r→0+

E[Nn]

E[Nm]E[Nn−m]
= lim

r→0+

〈φn〉
〈φm〉〈φn−m〉 (36)

=
B
(

γ

q2
, m
)

B
(

γ

q2
+ n − m, m

) , (37)

with the Beta function B(x, y) = �(x)�(y)/�(x + y).

3. Probability to be in state N = n

In this section, the steady state probability distribution
P(N = n) for the system to be in state N = n is derived. The
calculation is based on the probability generating function
M(z),

M(z) =
∞∑


=0

P(N = 
)z
. (38)

It does not only encode the probability distribution P(N = n),
but also the factorial moments:

dk

dzk
M(z)

∣∣∣∣
z=1

=
∞∑


=k


!

k!
P(N = 
) = E[(N )k] = 〈φk〉. (39)

As M(z) is analytic, P(N = n) can be derived from the facto-
rial moments:

P(N = 
) = 1


!

d


dz


∞∑
k=0

(z − 1)k

k!
〈φk〉 (40)

= 1


!

(q2

r

)

(

γ

q2

)(
)(
1 + q2

r

)− γ

q2
−


(41)

=
�
(

γ

q2
+ 

)


!�
(

γ

q2

) ( r

r + q2

) γ

q2
(

q2

r + q2

)


. (42)

The step from Eq. (40) to Eq. (41), and the check that it is nor-
malized, is shown in Appendix C. This probability distribution
is exact for the process with binary offspring distribution and
satisfies its steady state master equation, Eqs. (A1) and (A2). It
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FIG. 4. Probability that there are n = 0, 1, 3, 7 particles in a sys-
tem using a binary offspring distribution with r

s = 0.1 and γ

s = 0.4.
Dashed lines: Steady state solutions. Straight lines: Relaxation start-
ing with an empty system at t = 0. Symbols: Simulation results.

is a negative binomial (or Pólya) distribution with clustering
coefficient γ

q2
. Small cluster coefficients imply common oc-

currence of bursts of activity, while large cluster coefficients
imply activity dispersion. For the negative binomial distribu-
tion, a closed form parameter estimation does not exist and
numerical methods have to be used.

For q2 → 0, the branching process is turned off and the
pure Poisson process is found. In particular, P(N = 
) be-
comes a Poisson distribution,

lim
q2→0

P(N = 
) = 1


!

(γ

s

)


e− γ

s . (43)

For r → 0+, P(N = 
) ∼ r
γ

q2 → 0, because the number of
particles in the system diverges.

Examples of the steady state probabilities are shown in
Figs. 4 and 7.

4. Expected avalanche duration and size

Avalanches in the brain are one of the most studied observ-
ables [8–12,31]. However, retrieving statistical information
about them that is stable under small variations of the pro-
cessing parameters has been challenging [11]. Because of
their prominence, some analytical insight is likely to be
useful.

Avalanches are characterized by their duration L and size
S. The expected duration of an avalanche is defined as the
time between leaving state N = 0 and entering it again. It
can be derived from the probability distribution P(N = n) by
considering that the ratio of the time spent in state N �= 0, i.e.,
in an avalanche, to the time spent in N = 0, i.e., in between
avalanches, is equal to the ratio of the probabilities of these
states:

E[time spent in avalanches]

E[time spent between avalanches]
= P(N �= 0)

P(N = 0)
. (44)

Since the number of avalanche gaps is equal to the number
of avalanches, the time spent in a gap per avalanche is the ex-
pected time of a spontaneous creation to occur 1/γ . Therefore

(a)

(b)

FIG. 5. Expected avalanche duration L (a) and size S (b). Us-
ing a binary offspring distribution, the chosen parameters are γ

s ∈
{0.1, 0.3, 0.6, 1.0, 1.5}. Straight lines: Analytical results. Symbols:
Simulation results.

the expected avalanche duration equals

E[L] = 1

γ

P(N �= 0)

P(N = 0)
= 1

γ

[(
1 + q2

r

) γ

q2 − 1

]
. (45)

In the limit γ → 0, where gaps between avalanches become
infinitely long, the statistics of a pure branching process is
recovered limγ→0 E[L] = ln(1 + q2/r)/q2 [25]. In the limit
where branching ceases to occur, i.e., p0 → 1 (r/s → 1,
q2/s → 0), the pure Poisson process is found limp0→1 E[L] =
(e

γ

s − 1)/γ . Within this Poisson limit, the case γ → 0
describes a system without branching where spontaneous
creations never happen. In this limit, the avalanche dura-
tion is the expected extinction time of a single particle
limγ→0 limp0→1 E[L] = 1

s . The expected avalanche duration
is shown in Fig. 5 alongside simulations.

Equation (45) also implies that avalanches can be consid-
ered as an overlap of several causal avalanches, where a causal
avalanche is defined as a subset of particles in the system that
originated from the same single particle through branching
only. This definition means that causal avalanches are initiated
by a spontaneous creation and then follow the branching-
extinction process. Every new spontaneous creation during an
avalanche will start a new causal avalanche within it. There-
fore, Eq. (45) implies that an avalanche consists on average of
γE[L] causal avalanches [33].

The other avalanche property of interest is its size, i.e.,
the integral of the particle number over its entire duration.
The expected size can be derived analogously to the duration
by considering that an avalanche spends on average P(N =
n)/[γ P(N = 0)] amount of time in state N = n. Therefore its
expected size is

E[S] =
∞∑

n=1

nP(N = n)

γ P(N = 0)
= 1

r

(
1 + q2

r

) γ

q2
. (46)

On the one hand, the limit γ → 0 describes the infinite separa-
tion of avalanches and recovers the expected avalanche size of
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the pure branching process [25]. On the other hand, eliminat-
ing branching by taking the limit p0 → 1 (r/s → 1, q2/s →
0) gives the pure Poisson process result limp0→1 E[S] = e

γ

s /s.

C. Relaxation toward steady state

In the subcritical regime r > 0, the system has an active
steady state which was characterized in Secs. II B 1 and II B 3.
In this section, it is calculated how the system converges to
the steady state. Aside from theoretical interest, the relaxation
behavior deserves attention for three practical reasons.

First, the brain might switch between steady states, e.g.,
between sleep and wakefulness, and its signal propagation
would take time to reach the new steady state. Second, an-
alytical results in this article are verified by Monte Carlo
simulations. Each simulation starts with a specific initial
condition and needs to run for some time to be a good ap-
proximation of the steady state. Third, one of the methods for
determining the degree of criticality is based on autocorre-
lation functions [14] and it is of scientific interest to check
whether different approaches reach similar conclusions.

Often dimensional analysis is sufficient to identify such
timescales. However, the pumped branching process contains
several timescales r, q j , and γ , which can be vastly different.
As the following subsections show, the relaxation time is
solely determined by r = s(1 − E[K]); the other timescales
q j and γ do not enter.

1. Single-particle insertion

Let us assume that the system is in steady state. If a particle
is placed into the system by hand, then the expected number
of particles decays exponentially to the steady state particle
number:

E[N (t )|N (0−)+ 1 = N (0+)] = 〈φ(t )φ†(0)〉 = ζ + �(t )e−rt ,

(47)

where �(t ) is the Heaviside function and the superscripts “−”
and “+” denote one-sided limits. Here N (0) is the unknown
number of particles which the steady state system contains
just before an additional particle is inserted into the system.
The insertion thus pushes it out of its steady state dynamics.

2. Two-time autocorrelation

In the steady state, particles are created and go extinct
at random. However, the process cannot jump arbitrarily be-
tween states. In particular with binary branching, the particle
number N can only increase or decrease by one particle at a
time, which induces time correlations within the steady state.
The simplest of these is the two-time autocorrelation

corr(t1, t2) = E[N (t1)N (t2)]. (48)

It can be calculated as

corr(t1, t2) = �(t1 − t2)〈φ(t1)φ†(t2)φ(t2)〉
+�(t2 − t1)〈φ(t2)φ†(t1)φ(t1)〉 (49)

= γ 2

r2
+ γ q2

r2
e−r|t1−t2| + γ

r
e−r|t1−t2|, (50)

FIG. 6. The rescaled correlation function corr(t1, t2) is shown for
the binary offspring distributions with r/s = 10−1 and γ /s = 0.6 as
well as r/s = 10−2 and γ /s = 1.0. Straight lines: Analytical predic-
tion. Symbols: Simulation results for trajectories which started with
zero particles at time t = 0. The time st1 = 3000 was chosen in order
to be well into the steady state regime.

where the second part equals

〈φ(t2)φ†(t1)φ(t1)〉 = ζ 2 + 〈φ̌(t2)φ̌(t1)〉 + ζ 〈φ̌(t2)φ̃(t1)〉.
(51)

Two examples of rescaled correlation functions are shown
in Fig. 6.

The autocorrelation function, Eq. (50), implies a specific
relation between the intrinsic timescales 1/r of autocorre-
lations and their offset γ 2/r2: assuming that spontaneous
creation γ stays constant or undergoes comparatively small
changes, larger intrinsic timescales imply larger offsets. This
analytic relation matches with the experimental observa-
tion in [51] (specifically Fig. 2(b) in [51]), where intrinsic
timescales and offsets of autocorrelations were compared
across several brain regions and a hierarchy was found.

What does this result, Eq. (50), imply for the method
of estimating the system’s closeness to criticality in [14]?
In [14], the criticality of a pumped branching process (or
branching process with immigration) in discrete time was esti-
mated using the discrete-time autocorrelation function. Using
discrete time fixes the timescale of activity of the system.
Choosing a timescale does make sense for systems with a
natural/practical timescale, e.g., choosing days for the spread
of infectious diseases. Whether there is such a timescale for
signal propagation in neuronal networks is not clear, although
many authors use the average interspike interval 〈ISI〉.

A method that samples the continuous autocorrelation
function in Eq. (50) in discrete time steps �t assumes the rela-

tion e−rk�t = ̂E[K]
k

and erroneously infers ̂E[K] = e−r�t ≈
1 − r�t , where ̂ denotes an estimator. Thus, it estimates
̂E[K] = s�tE[K] + 1 − s�t . Therefore, ̂E[K] is only unbi-
ased if the chosen time step is �t = 1

s . However, s cannot be
inferred separately from r = s(1 − E[K]) when the autocorre-
lation function Eq. (50) is used. In fact, in the supplementary
notes of [14], it was noted that ̂E[K] (called m in the article)
scales with �t .

However, when branching-like processes are generated
from spike time series [8,9,11–14], the bin size �t represents
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the time between creation (spike) and extinction of a particle,
Fig. 1. In a continuous branching process, the average time
between creation and extinction is 1

sp0
, the inverse of the

extinction frequency.
Therefore, choosing �t = 1

sp0
to create a branching-like

process and using it to infer the expected offspring number
E[K] from the autocorrelation function (i.e., assuming �t =
1
s ) is contradicting itself except if it is a Poisson process with
p0 = 1. Most publications [8,9,11–14] find the system to be
close to or at criticality, which means that p0 ≈ 1

2 .
Furthermore, most publications assume �t =

〈ISI〉 [8,9,11–14,31] but it remains unclear whether this
would be the right choice for generating a branching-like
processes in the first place. This question will be addressed in
Sec. IV C 3.

In Sec. III C 2, the estimation based on autocorrelation is
applied to the pumped branching process and indeed a bias is
found in the presented examples; see Figs. 16 and 17.

3. Initiating an empty system

Due to the spontaneous creation with rate γ , the system is
only occasionally empty and, at an arbitrarily chosen time in
the steady state, it is empty with probability P(N = 0) < 1.
However, an empty system can be enforced at time t = 0 by
inserting the factor e−φ̃(0)φ(0) in front of observables, resulting
in P(N (0) = 0) = 1. The derivation of this adjustment is out-
lined in Appendix D. Given the system was empty at t = 0,
the nth factorial moment at time t is

E[(N (t ))n|N (0) = 0] = 〈φn(t )e−φ̃(0)φ(0)〉. (52)

If e−φ̃(0)φ(0) is written as a series, and if the allowed Feynman
diagram structures are considered, it can be deduced that the
nth factorial moment will only have nonzero contributions
from the first n + 1 terms of the series expansion, i.e., the
terms 1 − φ̃(0)φ(0) + · · · + [−φ̃(0)φ(0)]n/n!. For this calcu-
lation it is advantageous to reverse the shift of the annihilation
field φ̌ = φ − ζ and use the original action from Eqs. (1)
and (2). To highlight this difference the term γ φ̃, which does

not appear in the φ̌-shifted action, is represented by a ×
vertex. For the 1st and 2nd factorial moments, the Feynman
diagrams resulting from Eq. (52) are shown in the following:

〈
φ(t)φ̃(0)φ(0)

〉
=̂ ×
=ζe−rt

(53)

〈
φ2(t)φ̃(0)φ(0)

〉
=̂ × +

×
+

×

= 2ζ
q2

r
e−rt 1 − e−rt

)
+ 2ζ

q2

r
e−2rt + ζ2e−rt,

(54)

where the order of the diagrams corresponds to the order of
the terms in line (54).

Hence, the relaxation of the first and second factorial mo-
ments equals

E[N (t )|N (0) = 0] =E[N](1 − e−rt ), (55)

E[(N (t ))2|N (0) = 0] =E[(N )2](1 − e−rt )2
. (56)

Added together, they equal the second moment, which is
depicted in Fig. 3 (solid lines).

For higher moments, the Feynman diagrams become quite
complex, and it is advantageous to use the correspondence
between cumulants and connected diagrams, similarly to
Sec. II B 2. The result is that the factor (1 − e−rt )n is attached
to the nth steady state factorial moment to obtain the one of
the relaxation from the empty system,

E[(N (t ))n|N (0) = 0] =E[(N )n](1 − e−rt )n
, (57)

which is verified with simulations for the 3rd and 4th moments
in Fig. 3 using Eq. (7).

Using the relation between factorial moments and the prob-
ability distribution P(N = 
) in Eq. (40), the relaxation of the
probability distribution can be calculated as well,

P(N = 
, t )

=
�
(

γ

q2
+ 

)


!�
(

γ

q2

) ( r

r + (1 − e−rt )q2

) γ

q2
(

(1 − e−rt )q2

r + (1 − e−rt )q2

)


.

(58)

It is shown for example parameters in Fig. 4.
The setup described here can be generalized to initialize

the system in any state or distribution of states and calculate
its relaxation toward the steady state. If the system should
start at t = 0 in state N = 
, then the nth factorial moment
at time t equals 〈φ(t )nφ(0)†
e−φ̃(0)φ(0)〉, where φ† = φ̃ + 1.
Initial distributions of states are then achieved by using the
linearity of 〈•〉.

4. Conclusion of relaxation

The previous discussions on injecting particles into a
steady state system, autocorrelation functions, and initial-
ization of an empty system show that the relaxation of the
pumped branching process follows the function e−rt . Other
timescales of the system, such as q j or γ , do not enter. If
the brain is modeled well by a pumped branching process,
then a critical brain with r = 0 would not be able to switch
between different steady states because the relaxation would
take an infinite amount of time. If the system is close to crit-
icality with E[K] ≈ 1−, then the timescale of relaxation still
depends on the branching timescale of the system s because
r = s(1 − E[K]), which is discussed based on experimental
evidence in Sec. IV C 3.

III. DATA ANALYSIS METHOD

Although branching processes are commonly used mod-
els for neuronal activity [8,9,11,12,14], they are not directly
observed in the brain. The implanted electrode arrays detect
spikes from action potentials in neurons which are interpreted
as particle creations in branching models. Thus, branching-
like processes are generated by attaching time bins �t to
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spikes, where �t represents the expected extinction time of a
particle, Fig. 1. The typical choice for the time bin is the aver-
age interspike interval 〈ISI〉 of the spike time series. Whether
〈ISI〉 is the correct choice and whether the resulting process
is really a branching process can be answered by reversing
the procedure, i.e., by deriving the spike time series from a
branching process.

This reversal leads to a different data analysis method:
Rather than transforming recorded spike times into a
branching-like process, it allows analyzing interspike interval
(ISI) distributions directly. The basis of the method is to
calculate the moments of the ISI from the pumped branching
process and then use these moments to identify all parameters
of the underlying process.

In this context, events are the discrete time instances when
either a particle is created or goes extinct. Creation events
include both branching and spontaneous creations but not
extinctions. They will be called spike events. In the following
two subsections, the event and spike time distributions are
characterized. In particular, the moments of the spike time
distribution are calculated. In the third subsection III C, the
data analysis method is developed.

A. Event distribution

1. Probability to enter state N = n

Given a randomly chosen event in the steady state, how
likely is it that state N = n is entered at this event?

While P(N = n), Eq. (42), is defined as the distribution of
states N = n at an arbitrary time t , let f (N = n) be defined
as the distribution of states that the system is entering at an
arbitrary event.

The difference between the two distributions is due to the
fact that the system stays on average different amounts of
time in different states. On average, it leaves states of large
n quicker compared to states with small n. More explicitly,
if the system is in state N = n, it is expected to stay in there
for 1

sn+γ
amount of time, because the waiting time to the next

event is exponentially distributed with rate sn + γ . This can
be used to link P(N = n) to f (N = n) by realizing that the
expected waiting time in state N = n acts as a probabilistic
weight:

P(N = n)

P(N = m)
= f (N = n)(sm + γ )

f (N = m)(sn + γ )
. (59)

Thus, f (N = n) can be written for all n in terms of P(N = n),
P(N = 0), and f (N = 0). Then, f (N = 0) can be determined
by imposing normalization on f (N = n) and the result is

f (N = n) = 1

γ

r

r + s
(sn + γ )P(N = n)

= 1

γ

r

r + s
(sn + γ )

�
(

γ

q2
+ n
)

n!�
(

γ

q2

) ( r

r + q2

) γ

q2

×
(

q2

r + q2

)n

. (60)

It is shown in Figs. 7 and 8 for example parameters together
with simulations as verification.

FIG. 7. Comparison of steady state probabilities. Probability
P(N = n) to be in state N = n at any time, probability f (N = n)
to enter state N = n at a creation or extinction event, and probability
f↑(N = n) to enter state N = n at a creation event. The parameter
values are r/s = 0.1, γ /s = 0.6. Symbols: Simulation results.

2. Moments of the interevent interval

If the system is in state N = n, then the time to leave this
state is exponentially distributed with rate (sn + γ ). However,
the system does not enter all states equally often, which is cap-
tured by f (N = n), Eq. (60). Therefore, the time Te between
events is in expectation

E[Te] =
∞∑

n=0

f (N = n)
∫ ∞

0
t (sn + γ )e−(sn+γ )t (61)

= 1

γ

r

r + s
. (62)

Unfortunately, higher moments do not have such simple ex-
pressions, and the mth moment of the event time distribution

FIG. 8. Probability f (N = n) that at a given event, state N = n ∈
{0, 1, . . . , 8} is entered. Domain: r/s ∈ [0, 1]. The parameter values
are γ /s ∈ {0.6, 1.0}. Symbols: Simulation results. Lines: Analytical
prediction.
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is

E
[
T m

e

] = m!

γ m

r

r + s

(
r

r + q2

) γ

q2

F, (63)

with

F = mFm−1

⎛⎜⎜⎝ γ

q2
,
γ

s
, . . . ,

γ

s︸ ︷︷ ︸
m times

; 1 + γ

s
, . . . , 1 + γ

s︸ ︷︷ ︸
m times

;
q2

r + q2

⎞⎟⎟⎠,

where mFm−1 is a hypergeometric function. It is verified using
simulations in Appendix F in Fig. 19 for the 1st, 2nd, and 3rd
moments of Te.

3. Event interval distribution fe(t )

If a time is picked at random, how is the waiting time to the
next event distributed? At the observation time, the system is
in state N = n with probability P(N = n). Within this state,
the system is memoryless; i.e., it does not know how long it
has been in there. Hence, the remaining event time before the
next event is exponentially distributed with probability den-
sity (sn + γ )e−(sn+γ )t = fe(t |n). Thus, fe can be recovered by
summing fe(t |n)P(N = n) over n, which gives

fe(t ) = γ e−γ t (r + q2)(1 − e−st )

r + (1 − e−st )q2

(
r

r + (1 − e−st )q2

) γ

q2

.

(64)

The details of this calculation can be found in Appendix E.
However, interevent times are not independent of each other
and therefore fe(t ) should not be used for subsequent events
unless the amount of data is large enough such that the corre-
lations between subsequent event times are averaged out.

B. Spike distribution

The recordings of neuronal avalanches consists of time
series of spikes. If spikes occur every time a neuron becomes
active, then—translated into this model—spikes occur every
time a new particle is created, either through branching or
spontaneous creation. Therefore, the first step is the derivation
of the distribution of spike events within all events. As before,
binary branching is assumed, i.e., the offspring distribution is
given by p0 and p2, and the extinction time of a single particle
is exponentially distributed with rate sp0.

1. Probability to enter state N = n via creation

The distribution f (N = n), Eq. (60), describes how likely
it is to enter state N = n at an arbitrary event, either through
creation or extinction. We want to filter out the extinction
events and therefore define the probability f↑(N = n) to enter
state N = n through a creation event. It is found by consider-
ing that state N = n − 1 is left via a creation with probability
sp2(n−1)+γ

s(n−1)+γ
, while it is left through an extinction with probabil-

ity sp0(n−1)
s(n−1)+γ

. Therefore, f↑(N = n) is proportional to f (N =
n − 1) multiplied by the chance that state n − 1 is followed
by a creation event. The result has to be normalized and is

found to be

f↑(N = n) = 2 f (N = n − 1)
sp2(n − 1) + γ

s(n − 1) + γ
; (65)

i.e., the normalization constant equals 2. f↑ is shown for
example parameters in Fig. 7 alongside simulations.

2. Moments of the interspike interval

The time between spikes Ts is a random variable, often
referred to as interspike interval (or ISI). Its expected value
E[Ts] is commonly denoted by 〈ISI〉, which will be used
interchangeably here. Ts is not exponentially distributed, be-
cause the system can traverse several states via a sequence
of extinctions between spikes. For example, if the system is
in state N = m, then it can go to state m − 1, then m − 2,
and so on, before a particle is created and a spike occurs.
The durations between the extinctions are each exponentially
distributed with slightly different rates. The overall time is
the sum of exponentially distributed random variables and
is therefore hypoexponentially distributed. However, within
this broad family of distributions, Ts has a specific structure
because the summed exponential random variables have rates
sm + γ , s(m − 1) + γ , . . . . This allows for a slightly more
elegant way of writing moments of Ts than in the case of
arbitrary hypoexponential distributions.

Given that the system is in state N = m > 0, the nth mo-
ment of the waiting time Ts to the next spike equals

E
[
T n

s

∣∣N = m
]

=
m∑


=0

(
sp2 + γ )

(
− d

dγ

)n
(

1


s + γ

m∏
k=
+1

ksp0

ks + γ

)
.

(66)

Its derivation is explained in Appendix G.
Hence, the moments of the interspike interval Ts can be

calculated by summing over initial states N = m weighted by
the likelihood f↑(N = m) to enter this state through a creation:

E
[
T n

s

] =
∞∑

m=1

f (m − 1 ↑ m)E
[
T n

s |N = m
]
, (67)

which does not appear to have a simpler expression. How-
ever, it can be evaluated numerically to high precision in a
large parameter region. A program for calculating moments
of interspike intervals in a large parameter region is available
at [52]. The theory is verified with simulations in Appendix F
in Fig. 20.

C. Development of data analysis method

Although we have now a formula for calculating the mo-
ments of the interspike intervals, Eq. (67), the first problem
is that they depend on an unknown timescale. This prob-
lem can be easily overcome by considering dimensionless
ratios of moments, the easiest of which is the coefficient of
variation cV .

1. Coefficient of variation

The coefficient of variation cV is commonly used in the
analysis of spike time series in neuroscience [3–6,40,53,54].
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FIG. 9. Coefficient of variation cV . Right: Analytical predictions
(solid lines) and simulation results (plus symbols) over r

s for several
values of γ

s . Left: Experimental data from [36] (red) and [55] (pur-
ple). For [36], solid symbols are data from combined time series of
all shanks of the probe, and hollow symbols are data from individual
shanks of the probe.

It is defined as

cV = σTs

E[Ts]
, (68)

where σTs is the standard deviation of the interspike
interval Ts.

The coefficient of variation cV is dimensionless and only
depends on r

s and γ

s . It shows a phase space boundary across
which the pumped branching process cannot explain the spike
statistics. This boundary is found when γ → 0, i.e., when
the clustering coefficient γ

q2
→ 0 indicates that the process

exhibits concentrated bursts followed by long periods without
spikes. The boundary can be calculated analytically to be
equal to cV ( r

s ,
γ

s = 0) = √ s
r . The derivation of this result is

explained in Appendix H. A second phase space boundary is
found in the limit of γ

s → ∞, for which the process becomes
a Poisson process with cV = 1.

However, the cV is a scalar function depending on the
two variables r

s and γ

s and is therefore not invertible, as
shown in Fig. 9 (right panel), together with experimental
data [36,55].

The phase space boundaries allow one to draw two impor-
tant conclusions. First, if a cV < 1 is consistently observed,
then the data cannot be explained by a continuous-time
branching process with immigration (the pumped branching
process). Second, if the cV of the data is large, then an upper
bound for the degree of criticality r

s can be deduced. (Re-
member that r

s = 0 corresponds to critical dynamics, while
r
s ∈ (0, 1] is subcritical dynamics.) The larger the cV of the
data, the closer the system must be to criticality. However,
this is a one-way implication: the proximity of the system
to criticality does not imply a bound on its cV values. This
is shows that the cV alone is an insufficient statistic to deter-
mine the degree of criticality. These limits will be overcome
by considering a two-component statistic in the following
subsection.

FIG. 10. Moment-ratio map. Blue lines: Analytically calculated
γ

s -level sets. Green lines: Analytically calculated r
s -level sets. Sym-

bols: Monte Carlo simulations results. The area below the thick
blue line for γ

s = 0 is not in the phase space of pumped branching
processes. The map shows that there is bijection between the statistic
(X,Y ) and the parameters ( r

s ,
γ

s ).

2. The moment-ratio map

In order to determine how close the observed dynamics
are to criticality a statistic other than the cV has to be found.
Following the rule of thumb that inferring higher moments
leads to larger statistical errors, we stick to the first four
moments of the ISI distribution. We define the dimensionless
quantities

X =E
[
T 3

s

]
E[Ts]3

− 6, (69)

Y = E
[
T 4

s

]
E
[
T 2

s

]2 − 6 (70)

as our new (two-component) statistic. The shift by −6 is
introduced to position the Poisson process without branching
at the origin.

The moment ratios X and Y can be used to create the map
in Fig. 10, which shows level sets of r

s and γ

s in an X -Y
graph. The map itself is verified with Monte Carlo simulations
(orange circles). The plot also shows a phase space boundary
for γ

s → 0, which is derived in Appendix H. A phase space
boundary in the direction of small X and large Y has not
been found. Furthermore, evaluating the functions X and Y in
that region of parameter space is computationally difficult and
128-bit double precision becomes insufficient. The program
for calculating moments of interspike intervals induced by
pumped branching processes is available at [52].

The level sets in the moment-ratio map indicate that there
is a 1-to-1 correspondence (or bijection) between (X,Y ) and
( r

s ,
γ

s ) in the parameter region of interest. As the analytic
inversion of the map is very difficult, it is done using numer-
ical methods of which the result is shown in Fig. 12(b). The
inversion procedure is as follows:

(1) Use the open-source code in [52] to calculate moments
of ISIs for trial values of r

s and γ

s .
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(a)

(b)

FIG. 11. Estimated probability density function pdfISI

of the interspike interval distributions. (a) Data set
ec013.527/ec013.527.res.1 from [36]. (b) Data set 2-2-31 from [55].
Both show a continuous distribution of the ISI. The approximate
straight line on the logarithmic scale in panel (b) suggests that
an exponential distribution might be a good approximation to the
distribution.

(2) Determine the interspike interval moments from the
data.

(3) Combine steps 1 and 2 in a gradient descent method to
find the unique r

s and γ

s corresponding to the data.
The algorithmic error margin in the gradient descent

method in Fig. 12(b) was allowed to be at most 0.0001 for the
r
s values, while for γ

s it was at most 0.001. Figure 12(b) shows
level sets of X and Y as well as experimental data [36,55].

Thus, we have created a data analysis method that uses
the statistic (X,Y ) to estimate the degree of criticality r

s and
the relative spontaneous creation (i.e., the immigration or
pumping) γ

s of the observed dynamics. It has the following
advantages:

(1) there is no need to introduce a time bin size,
(2) there is no need to create a new process out of the

observed spike time series,
(3) there is no need to estimate power laws which are

inherently difficult to estimate because large amounts of rare
events have to be observed,

(4) there is no need to consider the autocorrelation func-
tion, and

(5) there are indicators (the phase space boundaries) that
allow deciding whether the observed data could in principle
be explained by the model.

(b)

(a)

FIG. 12. Moment-ratio map. (a) Blue lines: γ

s -level sets, green
lines: r

s -level sets. The area below the thick blue line γ

s = 0 is not in
the phase space of the spike process induced by pumped branching
processes. (b) Experimental data mapped onto r

s - γ

s space (and m- γ

s
space); blue lines: Y -level sets, green lines: X -level sets. Both (a) and
(b): Red symbols: In vivo experimental data from [36] that used
four rats with identifiers ec013 to ec016, using a total of 124 data
sets. Solid red symbols are data from combined time series of all
shanks of the probe, and hollow symbols are data from individual
shanks. Purple symbols: Experimental data from [55], using all 527
data sets labeled as “dense.” Different symbol shapes show different
days in vitro. Solid purple symbols in (b): Average over time periods
according to shape of symbol.

In the next section, this method will be applied to two data
sets.

IV. APPLICATION TO EXPERIMENTAL DATA

Now that the moments of the interspike interval are de-
rived, they can be compared to experimental data. In the
following, two sources for experimental data are used.

(1) The first data sets are available from the Collabo-
rative Research in Computational Neuroscience (CRCNS)
data-sharing website [56] (data hc-2; 124 data sets) and were
published by Mizuseki et al. (2009) [36]. The data were
collected in vivo from the CA1 layer of the right dorsal hip-
pocampus of three rats, with identifiers ec013 to ec016 (ec014
and ec015 denote the same rat), using probes consisting of
4 or 8 shanks, with 8 recording sites per shank. A more
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FIG. 13. Relation between average interspike interval 〈ISI〉 and
expected extinction time 1

sp0
for experimental in vivo data [36] (red

symbols) and in vitro data [55] (purple symbols). Lines: Analytical
results for fixed values of degree of criticality r

s and relative sponta-
neous creation γ

s , but varying timescale s. Solid red symbols show in
vivo data from combined time series of all shanks of the probe, and
hollow red symbols show in vivo data from individual shanks of the
probe. Solid purple symbols show averages of in vitro data over time
periods listed in legend.

detailed description can be found in Appendix J, which is a
reproduction of the description on the CRCNS website [56].
Full details of the experimental setup can be found in [36].
In Figs. 11, 9, 12, 13, 14 and 21, the data are shown as red
symbols. In Fig. 15, the data are shown as both red and purple
symbols.

(2) The second data sets are available from the Neuro-
DataSharing website [57] and were published by Wagenaar
et al. (2006) [55]. The data were collected in vitro from
cells plated on multielectrode arrays with 59 electrodes. Data
were recorded for up to 39 days after plating [3 � days in
vitro (div) � 39]. The dissociated cells were obtained from rat
embryos. A short description of the data collection procedure
can be found in the Appendix J. All 527 data sets labeled as
“dense” are used in the following. Details of the experimental
setup can be found in [55]. In Figs. 11, 9, 12, 16, 13, and 21
the data are shown as purple symbols.

One major premise of the proposed model was that inter-
spike times are continuously distributed. This can be verified
by considering examples from the above data sets. Two
examples are shown in Fig. 11. Both examples clearly sug-
gest a continuous distribution of the ISI and panel (b) in
Fig. 11 even strongly suggests an underlying exponential
distribution.

A. The cV of experimental data

Although the cV was found to be an insufficient statistic to
determine the degree of criticality in Sec. III C 1, we consider
it in this section for the two data sets because it is widely
used [3–6,40,53,54].

Figure 9 shows that the vast majority of data sets cover
a range of 1 < cV < 10, with few outliers outside this range.
However, this can be reproduced by a wide range of spike time
series induced by pumped branching processes. For the in
vivo data (Mizuseki et al. (2009) [36]), the small gap between
the cV from experiments and cV = 1 allows only to exclude

(a)

(b)

FIG. 14. Accuracy of avalanche duration (a) and size (b) for
varying time bins �t . The x axis is scaled such that the �t = 〈ISI〉 is
at x = −1 and the expected single-particle extinction time �t = 1

sp0

is at x = 0 for all choices of r
s , γ

s , and s. The y axis is scaled by the
theoretically predicted duration or size, such that y = 1 corresponds
to equality between true value and the value retrieved when using
time bins. Purple lines: Simulations of pumped branching processes
resampled using time bins �t . Symbols: In vivo data from hc-2
from CRCNS [36,56]. Solid symbols are data from combined time
series of all shanks of the probe, and hollow symbols are data from
individual shanks. Each framed group of data points belongs to either
y ∈ {−1,−0.75, −0.5, −0.25, 0}; they are slightly shifted left and
right of these values to distinguish between data sets from different
rats. Dashed orange lines are visual guides.

r
s � 0.9 for the entire data set. However, the largest cV values
in the data set can only be explained by degrees of critical-
ity r

s < 0.2. The in vitro data (Wagenaar et al. (2006) [55])
show an increase in cV over the 5 weeks after plating of the
cells in line with the reported increase in burstiness reported
in [55].

The figure also shows a few outliers with cV < 1. These
data points cannot be explained with the model, but since
there are only a few outliers we fail to reject the model
overall.

B. The moment-ratio map applied to experimental data

Figure 12(a) shows experimental data [36,55] in the
moment-ratio map. Figure 12(b) shows the same data in the
estimated ( r

s ,
γ

s ) space. In order to avoid a too crowded plot,
error bars are only shown for data outside of the computational
range (left side) or outside the phase space boundary (bottom)
as well as a few additional examples.

Most in vivo data lie in a range of r
s ∈ (0.04, 0.4) [cor-

responding to m ∈ (0.6, 0.96)] and γ

s ∈ (0.5, 2.5) with few
outliers. The different data sets from the four different rats
do not appear to cluster around different parameter values.

Most in vitro data lie in a range of r
s ∈ (0.02, 0.9) [m ∈

(0.1, 0.98)] and γ

s ∈ (0, 0.5) with few outliers. Although the
degree of criticality of the in vitro data is widely spread, there
is a trend that the degree of criticality r

s increases the longer

023212-15



JOHANNES PAUSCH PHYSICAL REVIEW RESEARCH 4, 023212 (2022)

(a) (b)

(c) (d)

FIG. 15. Avalanche size distributions for four example data sets.
Symbols: In vivo experimental data [36] with �t = 〈ISI〉 (purple)
and �t = 1

sp0
(red). Solid line: Simulation of avalanche size distribu-

tion of pumped branching process with matched parameters as data
set and resampled with same bin sizes, 〈ISI〉 (purple) and 1

sp0
(red).

Black dashed lines: True avalanche size distributions of the pumped
branching process with exponentially distributed single-particle ex-
tinction time according to parameters r

s , γ

s , and s of data set. The
local maximum in experimental data could be a finite-size effect of
the probe. Green line: Visual guide for a power law of S−3/2.

the cells have been plated. In order to quantify this trend, the
averages of each time period [see legend in Fig. 12(a)] are
shown as solid symbols with error bars. The averages almost
perfectly line up to show an increase of the degree of criticality
of r

s ≈ 0.6 (m ≈ 0.4) for div � 5 to r
s ≈ 0.18 (m ≈ 0.82) for

div > 30, which confirms the findings in [58]. This change
can be interpreted as the increasing influence of branching in
the developing neural network. However, the data for each
group is widely spread and a one-way ANOVA test fails to
reject the null hypothesis that the data are better explained by
a single average degree of criticality.

Comparing in vivo with in vitro data supports the
findings in [37] that different external input (i.e.,
pumping/immigration) explains the different observed
spiking dynamics.

Once the parameter values r
s and γ

s have been identified,
it can be checked how accurately the theoretical spike in-
terval distribution models the observed one by comparing
other observables O. This is done in Appendix I, showing
approximation errors of only a few percent for a variety of
observables.

C. Implications of inferred parameters

Once the defining parameters of the dynamics have been
estimated, other properties of the process can be calculated.
These include

(i) the average number of active neurons in the capture
area,

(a)

(b)

FIG. 16. Parameter comparison between continuous and discrete
branching process with immigration/pumping. All the data sets
from [55] for div > 30 are shown as symbols. For the discrete pro-
cess a choice of time step �t had to be made: hollow circles represent
�t = 〈ISI〉 (ISI is the interspike interval), and solid circles represent
�t = 1

sp0
, where s and p0 were inferred from the continuous process.

See Sec. IV C 3 for a discussion of this choice. The parameters m
and h were inferred by linear regression equal to the one-step linear
regression in [14]. The blue and green lines are the results when the
simulated continuous-time process is discretized using time bins and
then the regression analysis is applied to the resulting time series.
(a) Comparison of the degree of criticality r

s of continuous process
with the branching parameter of the discrete process m. The straight
red line indicates the case of a hypothetical exact correspondence.
(b) Comparison of the relative spontaneous creation γ

s with the
immigration probability h of the discrete process. If both methods
agreed, all lines and data points should follow the red straight line.

(ii) the average avalanche size and the average number of
causal avalanches within one avalanche which allows testing
the common separation-of-timescale assumption, and

(iii) the timescale s, which allows calculating further prop-
erties, including

(a) whether there is an optimal choice for a discrete
time bin,

(b) implications of time binning for the average
avalanche size and durations,

(c) implications of time binning for the avalanche size
distributions, and

(d) typical relaxation/autocorrelation times.
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1. Average number of active neurons

The identified parameters can be used to estimate the range
of the number of active neurons during steady state activity.
For example for the in vivo data, the average particle number
in the system is γ

r , Eq. (6); hence the average number of active
neurons in the capture area of electrode arrays ranges from 60
active neurons to 1 active neuron at any given time, depending
on where the data set lies in the r

s - γ

s space.
This magnitude of the number of active neurons is expected

given the density of neurons and the given size of the used
electrode arrays. This result is reassuring because unrealisti-
cally large numbers would have indicated that the estimation
is wrong or that the model should be rejected.

2. Avalanche size and the STS assumption

In addition, the found parameters allow estimating
the avalanche size and the average number of causal
avalanches [27] within one avalanche; see Eqs. (45) and (46).
As an example, let us look at the combined data set of
ec016.448 (in vivo), which contains the superimposed data
of eight shanks. Its determined parameters are a degree of
criticality of r

s = 0.13125 (m = 0.86875) and a relative spon-
taneous creation of γ

s = 0.86, which imply an average size
of ≈78 spikes per avalanche and an average of ≈ 17 causal
avalanches within one avalanche, each containing an aver-
age of 4 to 5 spikes. Hence for this example, the common
separation-of-timescales (STS) assumption is not valid.

As a different example, we consider the in vitro data set 7-2
for div 33 which has r

s = 0.01953 (m = 0.98047) and γ

s =
0.11. This implies that avalanches contain on average ≈ 54
spikes and are made up of ≈ 1 causal avalanche. Hence, for
this example, the STS assumption makes sense.

3. Timescales and time bins

Since the dimensionless quantities r
s and γ

s are determined
using the moment-ratio map, Fig. 12, the timescale s can be
determined by comparing the experimental interspike inter-
vals with the theoretically expected one. Once r

s and γ

s are
fixed, dimensional analysis implies that E[Ts] scales as 1

s .
Hence, they are 1-to-1 and s can be determined uniquely for
each data set, which completes the mapping between spike
time series and pumped branching processes.

It is now possible to answer the question whether the 〈ISI〉
is equal to the expected extinction time 1

sp0
of an activated

neuron. This question is important because 〈ISI〉 is commonly
used as if it were the expected extinction time to create
branching-like processes [8,9,11,12,31]. The answer is that in
general 〈ISI〉 and the expected extinction time are not equal.
This discrepancy is shown for the experimental data in Fig. 13.
It illustrates that the bin size �t for recreating the underlying
branching-like process should be approximately ten times as
high as the 〈ISI〉 for most of the in vivo data. For the in vitro
data, 〈ISI〉 ≈ 1

sp0
, although for the majority of data sets 〈ISI〉

is slightly larger than the expected extinction time 1
sp0

, which
can be explained by long inter-avalanche waiting times which
increase the average ISI.

4. Time binning implications for the average avalanche
duration and size

Now that all the parameters are determined, avalanche du-
rations and sizes can be considered. Attaching time bins �t to
spikes generates times series of avalanches. The choice of �t
changes the avalanche properties [11]. On the one hand, these
changes can be determined for the model using simulations,
and on the other hand, they can be found for the available
data in the usual way. The former are created by simulating
continuous-time pumped branching processes and attaching
time bins �t to every creation/spike event, resulting in a new
branching-like process of which avalanche duration and size
distributions can be determined numerically. The results of
these simulations are shown for example parameter choices
in Fig. 14 (purple lines). In Fig. 14, the x axis is scaled and
shifted such that �t = 〈ISI〉 is at x = −1 and �t = 1

sp0
is at

x = 0 for all parameter choices of r
s and γ

s . On the y axis, the
observed duration 〈L〉 or size 〈S〉 is scaled by the true expected
duration E[L] or size E[S] of the pumped branching process,
such that y = 1 if they are equal for all parameter choices. It
shows that duration and size are significantly underestimated
at �t = 〈ISI〉 (x = −1) and are only slightly overestimated
at �t = 1

sp0
(x = 0). The latter implies that a mean-field ap-

proach in time, i.e., fixing �t to the expected extinction time,
also causes errors, although smaller ones. This analysis can
also be applied to the experimental data. Here we only show
in vivo data as red symbols in the figure because the STS
assumption is clearly violated for this data. Although slightly
spread for better visibility, the data points lie only on values
x ∈ {−1,−0.75,−0.5,−0.25, 0}. Figure 14 shows that the in
vivo experimental data follow the same behavior for avalanche
duration and size as theoretically predicted with slightly larger
errors at �t = 1

sp0
(x = 0).

5. Time binning implications for the avalanche size distribution

Of particular interest has been the avalanche size distri-
bution [8,9,11]. Figure 15 shows avalanche size distributions
for four in vivo example data sets. The shown combined data
sets were chosen because they had the most avalanches within
the recorded data, thus enabling better statistics. Each panel
shows the size distribution using �t = 〈ISI〉 (purple) and
�t = 1

sp0
(red) of the data (symbols) and simulations (same

colored lines) of the process with matched parameters and bin
size. In addition, each plot also shows as a black dashed line
the true theoretical avalanche size distribution, i.e., without
time binning. First, for �t = 〈ISI〉 (purple), experimental data
and simulations agree very well. For �t = 1

sp0
(red), experi-

ment and simulation agree on the general trend; however the
experimental data have a local maximum around the size of
100 particles, which might be explained as a finite-size effect
of the probe. The true theoretical size distribution agrees bet-
ter with the time bin choice �t = 1

sp0
, but shows considerable

differences for small avalanche sizes. This might be explained
by considering that short avalanches with one or two particles
might be attached to longer ones due to the binning procedure.
Overall, the model provides a fairly accurate prediction of
the influence of binning on the data’s avalanche distributions.
In particular, this result might imply that in vivo neuronal
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activity is not scale free and is not at criticality for the used
experimental data set [36].

6. Relaxation and autocorrelation timescales

In Sec. II C 3, it is found that relaxation behavior in a
pumped branching process system follows the function e−rt .
Although exact relaxation timescales depend on the initial and
final states, an approximate scale for relaxation behavior can
be determined from the data. For most of the in vivo data
sets, the determined parameters indicate that e−rt would fall
from 1 at t = 0 to 0.01 within a few seconds, not hundreds
of milliseconds and not tens of seconds. This insight opens
up several questions for experimental investigation: (1) Does
a switch in activity, for example between deep sleep, REM
sleep, or wakefulness [12], rely on changing the spontaneous
creation rate γ

s (i.e., the external input), or does it rely on
changing the degree of criticality r

s within the neural circuit?
(2) Does the observation of the transition between steady
states allow extracting these parameters of the system?

D. Comparison with the autocorrelation method

The degree of criticality r
s and the relative spontaneous

creation γ

s were calculated based on the assumption that the
observed spike process is based on a continuous-time pumped
branching process. So far in the literature, its discrete-time
version, the branching process with immigration, has been
used more often [14]. The parameters of the continuous pro-
cess have a natural correspondence to the parameters of the
discrete one: r

s corresponds to 1 − m and γ

s corresponds to
h. Both m and h can be inferred by linear regression [14]
and a comparison of the resulting parameters is shown in
Fig. 16. This figure also shows what happens when the linear
regression analysis from [14] is applied to a pumped branch-
ing process (blue and green lines): the discretization of time
by time bins introduces a bias visible as the vertical distance
between the blue/green lines and the red line.

The parameter m of the discrete process can be determined
more accurately by a multistep regression [14]. Here, instead
of considering only one time step to determine m, k time steps
are considered together. This method is thus analyzing the
autocorrelation of the process. In Sec. II C 2 it was pointed out
that if this analysis is applied to a pumped branching process,
its estimator for m is biased. Figure 17 shows a comparison
of the degree of criticality for several numbers of time steps
for the regression. The figure shows that the multistep re-
gression (k > 1) estimates higher degrees of criticality than
were determined using the moment-ratio map. The figure also
shows what happens when a pumped branching process is
discretized by time bins and analyzed using the multistep
linear regression [14]: a bias is introduced which is visible
as the vertical distance between blue/green lines and the red
line.

E. Spatial subsampling

Subsampling is a common problem in experiments
and a difficult problem when neuronal spikes are mea-
sured [8,10,11,14,23,58]. In Secs. IV C 3, IV C 4, IV C 5,
and IV D, it was shown what effect temporal binning, i.e.,

FIG. 17. Parameter comparison between continuous and discrete
branching process with immigration/pumping. All the data sets
from [55] for div > 30 are shown as symbols. The blue and green
lines are the results when the simulated continuous-time process is
discretized using time bins and then the (multistep) regression analy-
sis is applied to the resulting time series. For the discrete process the
choice of time step is �t = 〈ISI〉. The parameter m was inferred by a
multistep linear regression proposed in [14]. k is the number of time
steps considered for the regression. If both methods agreed, all lines
and data points should follow the red straight line.

a forced coarse temporal sampling, can have on avalanche
statistics and the autocorrelation method.

However, spatial subsampling is also an issue when mea-
suring neuronal spiking. Estimating its influence involves
assumptions about the nature of the subsampling. One pos-
sible assumption is mean-field subsampling, i.e., assuming
that the observed sample is an unknown and randomly chosen
proportion of the entire spiking activity. This can be assumed
for observations of the entire spatial extension of the system
(such as in disease control). But it is also possible in com-
partmentalized systems, if it is assumed that one compartment
is an accurate representation of all compartments (such as
in quality control). Mean-field subsampling assumes that one
sample does not affect another sample. This mean-field-type
subsampling was studied in [23,58] using mostly simulations
and analytics. In [23], the “expected rate estimator” approach
is closest to the zero-dimensional approach presented here. In
the relevant subcritical regime, [23] showed good agreement
with the microscopic network parameters, see in particular
Fig. 4 in [23], which could be regarded as a justification in
this article to ignore spatial components. However, the as-
sumptions in [23,58] of (1) mean-field subsampling, (2) minor
influence of time binning, and (3) separation of timescales
should be investigated, in particular since assumptions (2)
and (3) have been found to be invalid for the used in vivo
data in Sec. IV C above. In the following, the assumption of
mean-field subsampling is checked by simulating its effects
and comparing it to results of subsampling of the used exper-
imental in vivo data [36].

For the spike time series induced by pumped branching
processes, the simulated effect of mean-field sampling is
shown in Fig. 18 with circle symbols. It shows the moment
ratios X and Y , Eq. (69), of the original process (filled cir-
cle), subsampled at 50% of the activity (half circle) and 10%
(hollow circle). The r

s and γ

s level sets in the figure show that
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FIG. 18. Moment-ratio map with mean-field subsampling. Blue
lines are γ

s -level sets, and green lines are r
s -level sets. Circle symbols:

Random subsampling of a process to 50% and 10% of spikes results
in decrease of apparent relative spontaneous creation γ

s and degree
of criticality r

s . Diamond symbols: Overlapping two independent
processes leads to an apparent mix of the individual degrees of
criticality r

s and an increase in relative spontaneous creation γ

s . The
experimental data did not clearly fit into these patterns, implying that
the subsampling is beyond-mean-field behavior.

mean-field subsampling results in reduced degree of criticality
r
s and reduced relative spontaneous creation γ

s .
While it is clear that electrode arrays only measure a

small fraction of the brain, it is unclear whether they actually
subsample a single spiking process. It could be that the dif-
ferent shanks of the probe or different areas of the electrode
array sample different independent spiking processes simul-
taneously. Figure 18 also shows the expected effect of this
phenomenon with diamond symbols. Half-filled diamonds
represent independent spike processes, while filled diamonds
indicate the moment ratios of the combined process (i.e., over-
lapped, not concatenated). In this case, the result is a mixed
degree of criticality and an increased relative spontaneous
creation.

In both scenarios (re)combining data (solid symbols) leads
to increased relative spontaneous creations γ

s compared to
the individual subprocesses. This is expected, as spontaneous
creation is an independent subprocess that does not depend on
the present particle number in the system.

The experimental in vivo data [36] in Fig. 12 include the
data of individual shanks (hollow symbols) and the combined
data of all shanks of a probe (solid symbols). It indicates that
the combined experimental data have on average reduced rela-
tive spontaneous creation rates γ

s and slightly higher degree of
criticality r

s (lower r
s ), which can be seen better in Fig. 12(b).

This reduction cannot be explained by mean-field subsam-
pling. Does this mean the underlying model is insufficient or
wrong? Not necessarily. The shifts seen in the combined data
can be explained by beyond-mean-field subsampling, where
samples are neither independent nor a random fraction of the
complete activity. Beyond-mean-field subsampling depends
on the connectome, i.e., the precise map of neuronal con-
nections. It can occur as follows: In sampled area A it might
appear that a neuron does not propagate the signal to other

neurons, i.e., it inhibits the signal, because the receiving neu-
rons lie outside the locally sampled area. Thus, area A appears
to be farther away from criticality. Conversely, in area B a
neuron might appear to be spontaneously activated because
its signal source lies outside of area B. Thus, area B appears to
have a high relative spontaneous creation γ

s . However, if A and
B are connected such that the receiving neuron from A lies in
B, then the apparent high inhibition in A is actually explained
by the apparent strong spontaneous creation in B. In terms of
parameters, this means that a larger r

s in A and a larger γ

s in B
are resolved in a lower r

s (i.e., higher degree of criticality) and
a lower γ

s in the combined data of A and B. This phenomenon
is visible to some extent in Fig. 12(b). Combined data (solid
symbols) appear to be identified on average with lower γ

s and
r
s than single-shank data (hollow symbols).

While these observables are timescale independent, the
estimated timescale s is significantly changed in the combined
in vivo data: Fig. 13 shows a clear trend of smaller 〈ISI〉
and expected extinction time 1

sp0
for combined in vivo data

compared to single-shank data (red symbols).

V. CONCLUSION

This article presents an approach for determining how
close neuronal avalanches are to criticality. Instead of gener-
ating a branching-like process, the approach is an analytical
derivation of spike time series from pumped branching pro-
cesses. In detail, this method does not require processing
spike-time recordings by attaching time bins and analyzing
the resulting step process. This method directly works with
spike time recordings and calculates ratios of the moments
of the interspike interval. Once the ratios are calculated, the
parameters of the process can be read off a map, the moment-
ratio map, Figs. 10 and 12. The user can generate this map to
the desired precision by using the provided Python code [52].
Some conceptual drawbacks were pointed out in the setup
of the model, Sec. II A. This approach has some significant
successes, of which several are highlighted in the following.

On the bare level of interspike intervals, this method pre-
dicts moments, the coefficient of variation, and its skewness
to high accuracy. Their approximation errors are analyzed in
Fig. 21, which shows small percentage errors. This shows
that the method and process represent the observed spike time
series very well.

In comparison to other methods, the approach avoids creat-
ing a branching-like processes and allows analyzing interspike
intervals directly. In particular, the proposed methodology
does not require time binning and the defining parameters
(degree of criticality r

s and relative spontaneous creation γ

s )
are dimensionless. Therefore, it is less sensitive compared to
a number of commonly used data processing methods [11,14].
More precisely, it allows identifying how close the sys-
tem is to criticality with a timescale-independent measure
and can therefore be regarded as advantageous over critical-
ity estimates based on either time-bin-dependent power-law
distributions of avalanche sizes or on time-bin-dependent au-
tocorrelation functions [11,14]. In particular, the proposed
method applied to experimental data indicates that neuronal
circuits are farther away from criticality than most articles
suggest [8–14].

023212-19



JOHANNES PAUSCH PHYSICAL REVIEW RESEARCH 4, 023212 (2022)

The most common way of confirming criticality in the
brain has been the identification of a power-law distribution
of avalanche sizes. However, that approach is a notoriously
difficult one in statistical physics and is prone to introducing
biases [28,29]. These difficulties are avoided in this article by
looking at a moment-ratio map of the interspike intervals. It
avoids generating a branching-like time series and thus also
avoids fitting power laws. In addition, the effects of binning on
a pumped branching process strongly resemble its observed
effects when applied to experimental data, Figs. 14 and 15.
Consequently and more importantly, it indicates that neuronal
avalanche dynamics in the used in vivo data sets [36] is not
scale free and not at criticality. The used in vitro data sets [55]
show that criticality increases for a plated developing neural
network over time and that external input is significantly lower
compared to the in vivo data.

The external signal immigration (pumping) into the locally
measured neuronal circuit is also determined in this article.
It suggests that for the in vivo data, avalanche overlap is
relatively common and cannot be ignored. In particular, the
common separation-of-timescales (STS) assumption is not
justified for the used in vivo data [36]. It is therefore also
expected that the avalanche size distribution does not follow
a power-law distribution with exponent −3/2 even if it were
at criticality [27]. In contrast for the in vitro data [55], external
input was rare and the STS assumption is valid.

Another advantage of the presented model is that relax-
ation behavior can be predicted analytically. The presented
methodology would allow one to investigate whether different
steady states, such as wakefulness or deep sleep [12], relate
to changes in external input γ

s or to internal adjustment of
branching efficiency r

s .
The presented model and data analysis also open several

routes for future research. Including topological constraints
in a pumped branching process is a major challenge which
will most likely have significant impact on more detailed
comparisons with experiments. In addition, when considering
subsampling, Sec. IV E, the data indicated beyond-mean-field
subsampling which would require detailed knowledge of the
connectome for more accurate models. Furthermore, better
understanding finite-size effects, which are unintentionally
introduced due to the size of used probes, might clarify some
of the anomalous statistics observed. In a different direction,
future work could also try to understand mechanisms that
cause inter-avalanche correlations.
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APPENDIX A: DERIVATION OF SPONTANEOUS
CREATION ACTION

Let P(N (t ) = n) denote the probability that there are n
particles in the system at time t . Then, a spontaneous creation
of particles can be described by a master equation [59] as

follows:

d

dt
P(N (t ) = n) = γ (P(N (t ) = n − 1) − P(N (t ) = n)).

(A1)

Such a master equation can be transformed into an action of a
Doi-Peliti field theory [25,45,46], which results in the action
Ac shown in Eq. (2).

For comparison, the branching/extinction process with off-
spring distribution pk and occurrence rate s is described by the
following master equation,

d

dt
P(N (t ) = n) = s

∞∑
k=0

pk (n − k + 1)P(N (t ) = n − k + 1)

− snP(N (t ) = n), (A2)

derived in [25].
Although written as a single equation, master equa-

tions (A1) and (A2) represent one ordinary differential
equation for each n ∈ N0. Thus, they actually describe an
infinite system of coupled ordinary differential equations.

APPENDIX B: 〈φm〉 = E[(N(t ))m]

In Doi-Peliti field theories, the mth factorial moment nat-
urally appears as observable and takes the form φm. This is
explained at length in [46] and a brief outline is given here.

The actions of Doi-Peliti field theories are derived from
master equations which take the form

d

dt
P(N (t )) = LP(N (t )), (B1)

where P(N (t )) = (P(N (t ) = 0), P(N (t ) = 1), . . . )T is a vec-
tor and L is a linear transformation. Equation (B1) is a system
of infinitely many coupled ordinary differential equations. It
can be transformed into a single partial differential equa-
tion for the probability generating function, defined as

M(z, t ) =
∞∑

n=0

P(N (t ) = n)zn, (B2)

by using derivatives with respect to z or multiplying by z. For
example, Eq. (A1) is transformed into

d

dt
M(z, t ) = γ (z − 1)M(z, t ), (B3)

and Eq. (A2) is transformed into

d

dt
M(z, t ) = s

( ∞∑
n=0

pkzk − z

)
d

dz
M(z, t ). (B4)

From this PDE perspective, path integrals are just solving
PDEs perturbatively around z = 0. However in most refer-
ences, z and d/dz are represented as ladder operators a†

and a, respectively, and interpreted as particle creators and
annihilators.

A useful step is introducing a new variable z̃ by setting z =
z̃ + 1, and working with M̃(̃z, t ) = M(z, t ). This is called the
Doi shift. The path integral solves now the corresponding PDE
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for M̃ perturbatively around z̃ = 0, i.e.,

〈φm(t )〉 = dm

dzm
M̃(̃z, t )

∣∣∣∣̃
z=0

= E[(N (t ))m], (B5)

where (N )m = N (N − m) . . . (N − m + 1) is the falling
factorial.

APPENDIX C: STEADY STATE PROBABILITY
DISTRIBUTION

Using the fact that the probability generating function is
equal to the factorial moment generating function, the prob-
ability distribution of the particle number N can be deduced
from the factorial moments 〈φk〉:

P(N = 
) = 1


!

d


dz

MN (z)

∣∣∣∣
z=0

=
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, (C1)

where in the second to last line, the umbral Taylor expansion
of (1 + q2/r)−γ /q2−
 around q2/r = 0 is identified. (x)(
) =
x(x + 1) . . . (x + 
 − 1) is the rising factorial.

Let us check that this probability distribution is normal-
ized:

∞∑

=0

P(N = 
) = 1(
1 + q2

r

) γ

q2

∞∑

=0

1


!

(
q2

r + q2
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(
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)
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q2

(
1 − q2

r + q2

)− γ
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APPENDIX D: INITIALIZING AN EMPTY SYSTEM

In the operator picture, where z = a† and d
dz = a, states of

the system are described as Fock states |n〉 = zn. Their dual
states over the L2 inner product are compactly written as 〈n|.
Before time t0 = 0, the system is allowed to evolve freely
resulting in state |M(t−

0 )〉 =∑∞
n=0 P(N (t−

0 ) = n)|n〉. But at
t0 = 0, it is projected out using 〈 | =∑∞

n=0〈n|. Because
〈m|n〉 = δmn, the result is 〈 |M(t−

0 )〉 = 1. Then, the system
is reinitialized with zero particles by attaching the empty state
|0〉. Thus, given that the system was empty at time t0 = 0, the

nth factorial moment at time t equals

E[(N )n(t )|N (0) = 0] = 〈 |a†naneAt |0〉〈 |M(t0)〉. (D1)

In the field theory, the projection with 〈 | and reinitialization

with |0〉 is expressed as the observable e−φ̃(0)φ(0). See [46] for
more details on how to derive the field-theoretic expressions
from operator expressions.

APPENDIX E: INTEREVENT TIME DISTRIBUTION

In steady state, the branching process’s particle number
probability distribution is a negative binomial (or Pólya) dis-
tribution with the general form

P(N = 
) = 1


!

�(u + 
)

�(u)
pu(1 − p)
, (E1)

with u = γ /q2, p = r/(r + q2). Its moment generating func-
tion equals

MN (x) =
(

p

1 − (1 − p)ex

)u

for x < − ln(1 − p). (E2)

This distribution can be regarded as a prior distribution to
a conditional exponential distribution fe(t |
) with rate λ =

s + γ :

fe(t |
) = (s
 + γ )e−(s
+γ )t . (E3)

FIG. 19. Rescaled first, second, and third moment of the time
between events over r/s ∈ [0, 1]. Events include both extinctions
and creations. The parameter values are γ /s ∈ {0.1, 0.6, 1.0}. Sym-
bols: Simulation results. Lines: Analytical prediction. For the first
moment, all lines collapse after rescaling.
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FIG. 20. Rescaled first, second, and third moment of the time
between spikes, i.e., between creations of particles, over r/s ∈ [0, 1].
The parameter values are γ /s ∈ {0.1, 0.6, 1.0}. Symbols: Simulation
results. Lines: Analytical prediction. For the first moment, all lines
collapse after rescaling.

The marginal event time distribution fe(t ) can be recovered as

fe(t ) =
∞∑


=0

fe(t |
)P(N = 
)

= e−γ t

(
γ − ∂

∂t

)
MN (−st )

= γ e−γ t

(
(r + q2)(1 + e−st )

r + q2(1 − e−st )

)(
r

r + q2(1 − e−st )

) γ

q2

.

(E4)

APPENDIX F: VERIFICATION OF MOMENTS OF THE
INTEREVENT AND INTERSPIKE INTERVAL

It is important to verify analytical derivations as much
as possible and reasonable and to make such verifications
available. Here, the moments of the interevent time and the
interspike time are verified using simulations in the parameter
space that is relevant for comparison with experimental data.
Figure 19 shows the first three moments of the interevent in-
terval over a range of r

s , the degree of criticality. As expected,
intervals become shorter as criticality r

s = 0 is approached.
Figure 20 shows the first three moments of the interspike

interval over a range of r
s values. Analogously to the interevent

intervals, the interspike intervals tend to zero as criticality is
approached.

Although the moments of intervals between events and
spikes appear to be very similar, they show an important
difference in the limit of a pure Poisson process r

s → 1. In
this limit, spike times will be equal to spontaneous creation
times which occur with rate γ . Event intervals however still
depend on the extinction timescale sp0 → s.

APPENDIX G: DERIVATION OF THE MOMENTS OF
INTERSPIKE INTERVALS GIVEN INITIAL STATE

The result in Eq. (66) can be found by starting to calculate
it explicitly for m = 0, 1, 2, . . . from which the general rule
can be derived.

Given the system is in state n = 0, the next creation event
time is ∼ exp(γ ) distributed. If the system is in state n = 1,
the next creation event time has the following moments,

E
[
T n

c

∣∣N = 1
]

=
∫ ∞

0

(
t n(s + γ )e−(s+γ )t sp2 + γ

s + γ

+
∫ ∞

0
(t + t ′)n(s + γ )e−(s+γ )t sp0

s + γ
γ e−γ t ′

dt ′
)

dt

= (sp2 + γ )

(
− d

dγ

)n 1

s + γ
+ sp0γ

(
− d

dγ

)n 1

γ (s + γ )
.

(G1)

If the system is in state n = 2, the moments are

E[T n|N = 2] =
∫ ∞

0
t n(2sp2 + γ )e−(2s+γ )t dt +

∫ ∞

0

∫ ∞

0
(t + t ′)n2p0e−(2s+γ )t (sp2 + γ )e−(s+γ )t ′

dt ′dt

+
∫∫∫ ∞3

03
(t + t ′ + t ′′)n2(sp0)2γ e−(2s+γ )t−(s+γ )t ′−γ t ′′

dt ′′dt ′dt

= (2sp2 + γ )

(
− d

dγ

)n 1

2s + γ
+ 2sp0(sp2 + γ )

(
− d

dγ

)n 1

(s + γ )(2s + γ )

+ 2sp0sp0γ

(
− d

dγ

)n 1

γ (s + γ )(2s + γ )
. (G2)

This can be generalized by induction for any condition N = m. If the system is in state N = m, then after an exponentially
distributed amount of time with rate sm + γ , either a particle is created, i.e., a spike occurs, or a particle goes extinct. After the
extinction event, the previous result E[T n

s |N = m − 1] can be used and the result is shown in Eq. (66).
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APPENDIX H: PHASE SPACE BOUNDARY FOR γ → 0

Considering Eq. (66), in the limit γ → 0, the interspike
interval moments conditioned on initial state N = m diverge
as follows:

lim
γ→0

E
[
T n

s

∣∣N = m
] ∼n!pm

0

γ n
. (H1)

On the other hand, the limit of f (N = m) for γ → 0 is

lim
γ→0

f (N = m) = lim
γ→0

ru+1�(u + m)qm
2 (sm + γ )

m!�(u)γ (r + s)(r + q2)u+m

= srqm−1
2

(r + s)(r + q2)m
, (H2)

which implies for f (m − 1 ↑ m)

lim
γ→0

f (m − 1 ↑ m) = srqm−2
2

(r + s)(r + q2)m−1
2p2. (H3)

Combining Eq. (H1) and Eq. (H3) gives

lim
γ→0

E
[
T n

s

] ∼ n!

γ n

2r

(r + s)
. (H4)

This implies for the coefficient of variation cV

lim
γ→0

cV =
√

s

r
. (H5)

Furthermore, the following ratios can be calculated:

x = lim
γ→0

E
[
T 3

s

]
E[Ts]3

− 6 = 6

(
(r + s)2

4r2
− 1

)
(H6)

⇔ (r + s)

2r
=
√

(x + 6)/6, (H7)

y = lim
γ→0

E
[
T 4

s

]
E
[
T 2

s

]2 − 6 (H8)

= 6

(
(r + s)

2r
− 1

)
= 6(

√
(x + 6)/6 − 1), (H9)

which describes the phase space boundary in the moment-
ratio map.

APPENDIX I: APPROXIMATION ERRORS

The moment-ratio map in Fig. 12(a) is used to identify
values for the degree of criticality r

s and relative sponta-
neous creation γ

s of experimental data, which then are used
to identify the timescale s using the first moment of interspike
interval Ts alone. There are many reasons why these parameter
values have errors. First, the pumped branching model and its
induced spike process is an idealization of the true process in
the brain. Second, experimental measurements always contain
errors due to used instruments and choice of data processing.
Furthermore, the identification of the parameters is done algo-
rithmically using a gradient descent method and has inherent
inaccuracies that are chosen to limit run time. In addition, it is
based on calculation using 128-bit double precision. Although
128-bit double precision seems to be an unusual restriction,

(a)

(b)

FIG. 21. Approximation errors for in vivo data sets from [36]
and in vitro data sets from [55]. (a) Signed approximation errors of
the coefficient of variation cV and skewness μ̃3. (b) Signed approx-
imation error of the 2nd and 3rd moments of the interspike interval
Ts. All approximation errors appear to indicate that the estimation is
unbiased over all data sets.

it is a serious one in this case because close to criticality, the
probabilities for the system to be in a specific state N = n tend
to zero. This implies that the calculation of the moments of Ts

involves summing over many near-zero probabilities and thus
the 128-bit double precision becomes a limiting factor and a
source of errors.

The effect of all of these sources of errors results in ap-
proximation errors of the true interspike interval distribution.
The magnitude of these errors determines the accuracy and
predictive power of the model. For an observable O, the
signed approximation error is defined as

δO = Odata − Opredicted

Opredicted
. (I1)

Figure 21 shows the signed approximation errors of the co-
efficient of variation cV and the skewness μ̃3 [panel (a)], as
well as the 2nd and 3rd moments of the interspike interval
[panel (b)]. Except for the skewness, the approximation errors
lie in a range of a few percent and seem to be unbiased over all
data sets. As the skewness and coefficient of variation are both
depending on the mean and standard deviation, a systematic
relationship between their errors is not surprising.
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APPENDIX J: DESCRIPTION OF DATA COLLECTION
PROCEDURE

The first batch of data sets [36] was downloaded from the
CRCNS website [56], where it is called data set hc-2. The
following is a quote from the description document of the data
set:

“Three male Long-Evans rats (rat ID; ec13, ec14, ec16,
250–400 g) were implanted with a 4-shank or 8-shank sil-
icon probe in layer CA1 of the right dorsal hippocampus.
The individual silicon probes were attached to respective mi-
cromanipulators and moved independently. Each shank had
8 recording sites (160 μm2 each site; 1–3 M� impedance).
These recording sites were staggered to provide a two-
dimensional arrangement (20 μm vertical separation; Fuji-
sawa et al., 2008). The shanks were aligned parallel to
the septo-temporal axis of the hippocampus (45 degrees
parasagittal), positioned centrally at anteroposterior=3.5 mm
from bregma and mediolateral=2.5 mm from midline. Two
stainless steel screws inserted above the cerebellum were used
as indifferent and ground electrodes during recordings. All
protocols were approved by the Institutional Animal Care and
Use Committee of Rutgers University.”

The second batch of data sets [55] was downloaded from
the NeuroDataSharing website [57]. All data sets labeled as

“dense” are used in this article. The following is paraphras-
ing and a short summary of the full description in [55]: For
the data collection, multielectrode arrays were used with 59
electrodes of 30 μm diameter. The electrodes were arranged
in a square grid with 200 μm spacing between them, mea-
sured center-to-center. Neurons and glia were obtained from
rat embryos. Quote: “[...] timed-pregnant Wistar rats were
sacrificed using CO−32 inhalation, according to NIH approved
protocols, at day 18 of gestation. Embryos were removed and
decapitated, and the anterior part of the cortices (including
somatosensory, motor, and association areas) were dissected
out. At the rostral edge, the boundary with the olfactory bulb
was used as a landmark; at the caudal edge, the third ventricle
and the boundary with the lateral horn of the hippocampus
were used as landmarks. Striatum and hippocampus were not
included. Cortices from several embryos from the same litter
were combined, [...]”. For the maintenance of the cultures,
quote: “Half of the medium was replaced approximately every
five days in most experiments [...]. To test whether feeding
schedule affected activity, all medium was replaced every
seven days in some experiments (N = 3). This did not result
in significantly different activity patterns compared with sister
cultures. Feeding always took place after the day’s recording
session, to allow at least 12 hours for transient effects to
disappear before the next recording.”
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