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Topological synchronization of coupled nonlinear oscillators
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Synchronization of coupled oscillators is a ubiquitous phenomenon found throughout nature. Its robust realiza-
tion is crucial to our understanding of various nonlinear systems, ranging from biological functions to electrical
engineering. On another front, in condensed matter physics, topology is utilized to realize robust properties
like topological edge modes, as demonstrated by celebrated topological insulators. Here, we integrate these
two research avenues and propose a nonlinear topological phenomenon, namely, topological synchronization,
where only the edge oscillators synchronize while the bulk ones exhibit chaotic dynamics. We analyze concrete
prototypical models to demonstrate the presence of positive Lyapunov exponents and Lyapunov vectors localized
along the edge. As a unique characteristic of topology in nonlinear systems, we find that unconventional
extra topological boundary modes appear at emerging effective boundaries. Furthermore, our proposal shows
promise for spatially controlling synchronization, such as on-demand pattern designing and defect detection. The
topological synchronization can ubiquitously appear in topological nonlinear oscillators and thus can provide a
guiding principle to realize synchronization in a robust, geometrical, and flexible way.
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I. INTRODUCTION

Nonlinear oscillators ubiquitously appear in a variety of
fields from biology [1,2] to engineering [3–6]. They often
exhibit frequency synchronization [7], where (even inhomo-
geneous) interacting oscillators vibrate at the same frequency.
Synchronization plays a crucial role in classical nonlinear
systems, e.g., circadian rhythm [8], and even in quantum
systems [9,10]. Controlling synchronization and desynchro-
nization [11–13] of nonlinear oscillators is essential to fulfill
their functions. However, nonlinear oscillators are often ir-
regularly affected by their uncontrollable circumstances, and
therefore it is desirable to investigate universal principles to
robustly control and design nonlinear oscillators against such
disorder.

On another front, topology represents the property of mat-
ter unchanged under continuous deformations and thus can
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provide a guiding principle to realize robust systems. Nu-
merous studies in condensed matter physics have focused
on such utility of topology, where a remarkable example
is a topological insulator [14–16] exhibiting a metallic sur-
face and an insulating bulk. Topological insulators exhibit
topologically nontrivial bulk associated with edge-localized
modes robust against disorder, as a consequence of a principle
called bulk-edge correspondence [15,16]. Such edge modes
exhibit gapless dispersion relations and backscattering-free
edge current. Because bulk topology is intrinsically related
to Hamiltonians that govern linear dynamics, topology in
physics has been studied mostly in linear systems. In recent
studies, it has been revealed that topological edge modes can
affect the nonlinear dynamics [17–19] in, e.g., photonics [20]
and mechanical lattices [21], where topological edge solitons
[22] and bulk-localized topological modes [23] can emerge.
Despite these recent advancements, topology in nonlinear sys-
tems is still largely unexplored even at the conceptual level.

Given these fundamental problems, we here propose a
topological mechanism of robust edge-localized frequency
synchronization, where only nonlinear oscillators at the edge
of the system synchronize, whereas the dynamics of the
bulk oscillators is chaotic. We demonstrate the emergence
of such a synchronized state by numerical calculations of
nonlinear oscillators with linear couplings corresponding to a
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FIG. 1. Dynamical formation of topological synchronized states (TSSs). (a) Schematic of the considered nonlinear system. Nonlinear
oscillators are placed on a square lattice. Each oscillator is linearly coupled to other oscillators at the nearest-neighbor sites. The linear
coupling corresponds to the Hamiltonian of a topological insulator laser, which exhibits amplified edge oscillations. (b) TSS observed under
the open boundary condition. The nonlinear oscillators near the boundary synchronize, while those away from the boundary exhibit chaotic
dynamics instead of being synchronized. [(c), (d)] Frequency of the first component of oscillators at each site. We numerically calculate the
dynamics of the first model of the TSS [Eqs. (1) and (2)]. Panels (c) and (d) are the snapshots at times t = 100 and t = 200, respectively.
Empty sites represent the oscillators oscillating around their natural frequencies. We confirm that the frequencies of the edge oscillators are
almost homogeneous and constant, which indicates their frequency synchronization. Meanwhile, the oscillators inside exhibit inhomogeneous
frequencies. One can also confirm that their frequencies vary over time, thus indicating the desynchronization and instability of the bulk
oscillators. The parameters used are u = −1, b = 0.5, α = 0.5, β = 1, ω0 = 1, and �ω = 0.2. (e) Amplitudes of the oscillators. Here, we
numerically simulate the dynamics of the model as in panels (c) and (d). We check that the amplitudes of most of the edge oscillators are larger
than those of the bulk oscillators. The same parameters as panels (c) and (d) are used in the calculation.

topological Hamiltonian. We term the proposed state as a
topological synchronized state (TSS).

By calculating the Lyapunov exponents [24] and vectors
[25,26], we confirm the chaotic behavior of bulk oscillators
and find that topological edge modes are represented by the
edge-localized Lyapunov vectors. While such coexistence of
synchronization and desynchronization is apparently remi-
niscent of chimera states [27–34], we emphasize that the
mechanism of the proposed TSS is distinct from conventional
chimera states because of its topological origin. Moreover,
nonlinearity leads to another unique topological phenomenon:
unconventional extra boundary modes appear at the emergent
effective boundary. Such extra boundary modes can increase
the number of synchronized oscillators in the TSS.

As applications of the TSS, we propose to arrange the syn-
chronized oscillators in an on-demand pattern, and to detect
defective structures by observing the lasing patterns around
the defects. We also propose a concrete electrical-circuit re-
alization of the TSS. While we focus on several types of
non-Hermitian Hamiltonians [35–40] of lasing edge modes
[41–43] to realize the TSS, we expect that the TSS can ubiqui-
tously emerge in nonlinear oscillators with topological linear

couplings. In addition, the robustness of the topological edge
modes guarantees the stability of the TSS against detuning pa-
rameters and thus provides a robust and universal mechanism
to control synchronization.

II. CONCEPT OF TOPOLOGICAL SYNCHRONIZATION

Before moving to detailed results of numerical analyses,
we illustrate the general concept of the TSS proposed in this
article. Here, we consider coupled nonlinear oscillators that
self-vibrate even if they are decoupled. Such oscillators main-
tain their self-oscillations at the balance of the injection and
dissipation of energy and exhibit nonlinear features that can-
not arise in linear harmonic oscillators, such as the robustness
of the amplitude. The dynamics of nonlinear oscillators can
be described as a limit cycle; one of the simplest models for
this is the (complex) Stuart-Landau oscillators [44] described
as Ż = (iω + α − β|Z|2)Z , where Z is the complex-valued
state variable. In the following, we focus on the case that
β is real. This model exhibits self-excited oscillations with
frequency ω and amplitude

√
α/β and is the normal form of
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TABLE I. Summary of the properties of our models.

Protection Nonlinearity-induced
Model TSS mechanism Coupling boundary modes

Model using exceptional Yes Exceptional Non-Hermitian Yes
edge modes [Eqs. (2), (4)] edge modes

Model using Yes Conventional Non-Hermitian No
conventional bulk bulk topology
topology [Eq. (7)]

Model using Hermitian Yes (only first and Exceptional Hermitian No
linear couplings fourth components edge modes (Non-Hermiticity from
[Eqs. (9), (10)] synchronize) nonidentical oscillators)

a nonlinear oscillator around the parameters where it begins
self-oscillations.

The TSS is defined as a coexistence of synchronized
edge oscillators and desynchronized bulk oscillators due to
the nontrivial topology of the system. Such synchroniza-
tion of the edge oscillators can appear in coupled nonlinear
oscillators where the linear coupling is described by a Hamil-
tonian that is topological in the wavenumber space. We can
construct concrete models of the TSS by utilizing linearly
coupled Stuart-Landau oscillators arranged on a square lattice
[see Fig. 1(a)]. In the present work, we assume that four
oscillators exist at each site and they interact with ones at the
same site as well as the nearest-neighbor sites (four or more
oscillators are necessary to realize the desirable properties of
the linear coupling, such as its lasing edge modes discussed
in the following). The dynamics of our model is described by
the following set of equations:

d

dt
Z j (x) = (iω j (x) + α − β|Zj (x)|2)Zj (x)

− i
∑
k,x′

Hjk (x, x′)Zk (x′), (1)

where x = (x, y), x′ = (x′, y′) represent the location of the site
in the square lattice, and j, k = 1, . . . , 4 distinguish four os-
cillators at each site. Hjk (x, x′) represents the linear coupling
between the oscillators at the same site or the nearest-neighbor
sites. We assume Zk (x′) = 0 for x′ corresponding to the out-
side of the system, which realizes open boundaries. We note
that this choice of the boundary condition is just for the sim-
plicity of the models, and the TSS is independent of the detail
of boundary conditions on the condition that both edges are
disconnected. We adopt a Hamiltonian of topological lasing
modes [41–43] as the matrix Hjk (x, x′) describing the lin-
ear coupling, and obtain the TSS under the open boundary
condition. To investigate the robustness of the TSS against
disorders, we introduce the inhomogeneity into the system
such that natural frequencies of each oscillator, ω j (x), are
uniformly distributed around the mean value ω0 with the dis-
tribution width being �ω.

In the following sections, we analyze three models of TSS.
These models are constructed in the same spirit as described
above, while the linear couplings are different. In our first
model (Sec. III), we introduce the Hamiltonian featuring the
exceptional edge modes [43] to describe the linear coupling.
Exceptional edge modes are protected in an unconventional

mechanism unique to non-Hermitian systems and enable us
to realize the TSS in a simple system. To show that we can
also realize the TSS by using conventional topological edge
modes, we construct another model in Sec. IV. In Sec. V, we
propose another model utilizing Hermitian linear couplings
by modifying our first model. The properties of our three
models are summarized in Table I. In Sec. VI, we propose
applications of the TSS to on-demand pattern designing and
defect detection with their numerical demonstration. We also
present a schematic of the possible realization of the TSS
using an electrical circuit. Section VII summarizes the main
results and discusses several open problems.

III. MODEL OF TOPOLOGICAL SYNCHRONIZATION
UTILIZING EXCEPTIONAL EDGE MODES

A. Model and numerical calculation of its dynamics

To realize the TSS in a simple model, we first adopt the
Hamiltonian of exceptional edge modes [43] as Hjk (x, x′),
which utilizes the robustness of singularities called ex-
ceptional points, topological gapless structures unique to
non-Hermitian systems. The exceptional edge modes are pro-
tected by the topology of the dispersion relations around
their branch-point structures [35] and exhibit lasing behavior
[41,42] amplifying edge oscillations. In nonlinear oscillators,
such edge modes can lead to qualitatively different synchro-
nization behavior between edge and bulk oscillators without
judicious designing of the system.

In more detail, we construct the linear coupling starting
from the Hamiltonian of a Chern insulator with two
internal degrees of freedom, HQWZ = (u + cos kx +
cos ky)σz + sin kxσx + sin kyσy, called the Qi-Wu-Zhang
(QWZ) model [45]. This corresponds to the lattice version
of the Dirac Hamiltonian, which is a prototype of topological
insulators and exhibits edge-localized modes associated with
its topological invariants (Chern numbers). Then, we combine
the Chern insulator and its time-reversal counterpart H∗

QWZ by
the non-Hermitian coupling ibσx ⊗ σx and obtain the linear
coupling that exhibits amplification of edge modes protected
by exceptional points. Such a Hamiltonian used in our
prototypical model is expressed in the wavenumber space as

H (k) = (u + cos kx + cos ky)I2 ⊗ σz + sin kyI2 ⊗ σy

+ sin kxσz ⊗ σx + ibσx ⊗ σx, (2)
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where I2 is the 2×2 identity matrix and σx,y,z are the Pauli
matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3)

We can obtain the following real-space description by the
inverse Fourier transformation:

Hjk (x, x′)

=
(

uδx,x′ + δx+ex,x′ + δx−ex,x′ + δx+ey,x′ + δx−ey,x′

2

)

× (I2 ⊗ σz ) jk + δx+ey,x′ − δx−ey,x′

2i
(I2 ⊗ σy) jk

+ δx+ex,x′ − δx−ex,x′

2i
(σz ⊗ σx ) jk + ibδx,x′ (σx ⊗ σx ) jk,

(4)

where δx,x′ represents the Kronecker delta and ex,y are the
lattice vectors in the x or y direction. ibσx ⊗ σx represents
the non-Hermitian coupling between the QWZ model and
its time-reversal counterpart. We note that there are coupling
terms with imaginary coefficients, and these can be realized
by doubling the internal degrees of freedom or time-delayed
coupling as seen in electrical circuits [46].

We numerically calculate the dynamics of our model under
the open boundary condition and confirm the emergence of
the TSS, i.e., the synchronization (desynchronization) of the
oscillators at the edge (in the bulk) (see Supplemental Movie
1 [47]). Figures 1(c) and 1(d) show the frequency distribu-
tion obtained from the numerical simulations. One can see
that the edge oscillators exhibit constant and homogeneous
frequencies, indicating their frequency synchronization, while
the bulk ones oscillate at time- and space-varying frequencies.
It is noteworthy that the fluctuations of natural frequencies
are irrelevant to the TSS (see Appendix C for the related
numerical calculation). The existence of the TSS under the
inhomogeneous natural frequencies indicates the robustness
of the TSS guaranteed by its topological nature.

We carefully examine the robustness of the TSS by calcu-
lating the dynamics of our model at different strengths of the
linear coupling and inhomogeneity of the natural frequencies.
Figure 2 shows the phase diagram determined on the basis
of frequency fluctuations of the edge and bulk oscillators,
which signifies the presence or absence of the TSS. If the
inhomogeneity of the natural frequencies is large and/or the
linear coupling is weak, we obtain a fully desynchronized
state. We note that the parameter where the TSS disappears
corresponds to the point at which the dispersion relation of
the Hamiltonian becomes gapless due to strong disorders and
thus can change its topology. Therefore, the result in Fig. 2
supports the argument that the TSS is topologically protected.
We can also analyze the robustness of the TSS by constructing
a one-dimensional model imitating the dynamics of the syn-
chronized edge oscillators in our model [see Appendix D and
Eqs. (D1) and (D2)].

Here, we emphasize that the TSS is defined as the coex-
istence of synchronized edge oscillators and desynchronized
bulk oscillators with a topological origin. If we set α negative
in our model Eq. (1), we can damp the bulk oscillations
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FIG. 2. Phase diagram of the model of the TSS. The ratio of
frequency fluctuations of the edge oscillators to those of the bulk
ones is depicted at each parameter. We calculate the dynamics of the
model of the TSS [Eqs. (1) and (2)] under different strengths of the
linear coupling and the inhomogeneity of the natural frequencies.
The red region (right bottom) shows parameter regimes where the
TSS emerges. The circles and squares represent the classification
of data of frequency fluctuations of the edge and bulk oscillators
obtained by a numerical clustering method. The circles correspond
to the parameters for which the presence of the TSS is identified. The
phase boundary obtained here corresponds to the parameter points at
which the band gap of the effective Hamiltonian closes and thus the
bulk band can change its topology.

(see Appendix B), while the edge ones still exhibit syn-
chronized oscillations (note that a similar synchronized state
is observed in previous research [48]). However, such syn-
chronization is not a TSS defined here because the bulk
oscillators do not exhibit (chaotic) self-oscillations. Using
another Hamiltonian as linear couplings, we can also real-
ize cluster synchronization where the edge oscillators and
bulk ones oscillate at different frequencies (see Appendix B),
which is also out of the range of the TSS.

B. Chaos in bulk oscillators and the edge-localized
Lyapunov vectors

We next show that the bulk oscillators exhibit chaotic
dynamics. Chaos is characterized by the extreme sensitivity
to initial conditions, i.e., exponential growth of the initial
difference between trajectories. The infinitesimal rate of such
exponential divergence is called the Lyapunov exponent [24],
and its positivity gives a defining feature of chaos. We numer-
ically calculate the Lyapunov exponents of the first model.
Figure 3(a) shows the obtained ones and the existence of
positive Lyapunov exponents indicating the chaos. We note
that Stuart-Landau oscillators can exhibit two types of chaos,
namely, amplitude chaos and phase chaos [49]. In this model,
we can see amplitude-chaotic behaviors, e.g., phase slips via
zero amplitude (see Appendix F).

Lyapunov exponents also tell us the effective degree
of freedom of chaotic attractor, the Lyapunov dimension
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FIG. 3. Lyapunov spectrum and the indices of the localization of the Lyapunov vectors. (a) Lyapunov exponents calculated from the first
model of the TSS [cf. Eqs. (1) and (2) and Fig. 1]. They are arranged in descending order. The index of the Lyapunov exponent is rescaled
for the maximum to be unity. The dashed horizontal line corresponds to zero Lyapunov exponents. Some of the Lyapunov exponents are
positive, i.e., placed above the dashed line, which indicates the chaotic behavior of the oscillators. The parameters used are u = −1, b = 0.5,
α = 0.5, β = 1, ω0 = 0.2, and �ω = 0.2. (b) Proportions of the edge amplitudes Pedge of the Lyapunov vectors in the TSS. We set the relative
index of the Lyapunov vector to be the same as panel (a). The edge proportions rise steeply around the relative index 0.8. Therefore, the
Lyapunov vectors of the small indices spread in the bulk, while those of the large indices are localized at the edge of the system. This increase
accompanies the decrease of the Lyapunov exponents in panel (a), which indicates that the edge-localized Lyapunov vectors are dissipative
modes. (c) Inverse participation ratios (IPRs) of the Lyapunov vectors. We set the relative index of the Lyapunov vector to be the same as in
panel (a). The IPRs show a small rise around the relative index 0.8, corresponding to the edge localization of the Lyapunov vectors. The IPRs
also increase steeply at a larger relative index, which indicates that a few Lyapunov vectors are strongly localized at a few edge sites.

defined as DL = ∑
i�M λi/|λM+1| + M, where λi represents

Lyapunov exponents arranged in descending order, and M
is the smallest integer that satisfies

∑
i�M+1 λi < 0. Previous

studies [30,31] have revealed that the Lyapunov dimension
corresponds to the number of the desynchronized oscillators
in the chimera state. In our first model, we obtain the Lya-
punov dimension DL = 254.568, which is almost 90% of the
total degree of freedom of oscillators except for the first and
second oscillators from the edge, Dbulk = 288. Our Lyapunov
analysis thus clearly indicates that the bulk oscillators are
desynchronized and exhibit chaotic dynamics.

Lyapunov vectors can be used to know the local geometric
information of chaotic attractors [26]. Specifically, perturba-
tion parallel to a Lyapunov vector is amplified or attenuated
in a forward and backward process expressed as |δ �Z (±t )| ∼
|δ �Z (0)|e±λit , where λi is the associated Lyapunov exponent.
In our first model, we reveal that the Lyapunov vectors cor-
responding to the small Lyapunov exponents are localized at
the edge of the system, thus realizing topological edge modes
in nonlinear systems. To clearly show such localization to
the edge, we define the following index of the proportion of
amplitude of the edge oscillators:

Pedge =
∑

i∈edge

|vi|2, (5)

where vi is the ith component of the Lyapunov vector and
we sum the squares of the components corresponding to
the edge oscillators. This index takes a large value when a
Lyapunov vector is localized furthermost to the edge.
Figure 3(b) shows the proportions of the edge oscillators of
the Lyapunov vectors in our first model. One can see the
steep increase in the index, which indicates that the first about
80% of the Lyapunov vectors are extended to the bulk, while
the others are localized to the edge. We demonstrate such

localization and delocalization of the Lyapunov vectors by
plotting them in the real space (see Appendix G). It is note-
worthy that the Lyapunov exponents decrease around the
index where the edge proportions increase. Thus, we expect
that perturbation to the edge oscillators is attenuated, which
implies stability of their synchronization.

We also evaluate the degree of localization in the entire
Lyapunov vectors by calculating inverse participation ratios
(IPRs) defined as

IPR =
∑

i

|vi|4. (6)

The IPR becomes large when a small number of components
of a Lyapunov vector exhibit large amplitudes; that is, it is
localized at only a few sites. Figure 3(c) shows the IPR of the
Lyapunov vectors obtained in our first model. There is a slight
increase in the IPR around the relative index of the Lyapunov
vectors, 0.8, as a result of the localization to the edge. The
smallness of the increase in the IPR indicates that most of the
edge-localized Lyapunov vectors spread at many edge sites,
which is reminiscent of conventional topological edge modes
in linear systems. We can find another region where the IPR
steeply increases. Those large IPRs imply the strong local-
ization of the Lyapunov vectors to a few edge sites. We note
that the Lyapunov exponents also decrease in this region, indi-
cating the strong damping of the perturbation corresponding
to these localized Lyapunov vectors. While the proportions
of the edge oscillators in Eq. (5) reveal the existence of the
edge-localized Lyapunov vectors, IPRs allow us to classify
such edge-localized Lyapunov vectors into two groups, the
extended ones corresponding to conventional edge modes and
the strongly localized ones induced by nonlinearity.

The edge-localized Lyapunov vectors and their negative
Lyapunov exponents are related to the edge modes of the
effective Hamiltonian obtained via the linearization of the
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equation. We note that if there are no nonlinear terms
(i.e., β = 0 in our model), Lyapunov exponents and vec-
tors are identical to the imaginary parts of the eigenvalues
and eigenvectors of the effective Hamiltonian, respectively.
It is noteworthy that non-Hermiticity is essential to realize
nonzero imaginary parts of eigenvalues, and nonlinear os-
cillators ubiquitously exhibit such dissipative and injective
effects. In nonlinear systems, we can obtain the effective
Hamiltonian by linearizing the equation around the state at
each moment. The linear equation governed by the sequence
of such effective Hamiltonians describes the time evolution
of the difference between the perturbed trajectory and the
original one. We numerically check that the effective Hamil-
tonian of our first model exhibits edge modes with negative
imaginary parts of the eigenvalues (see Appendix E), which
indicates the (short-term) stability of the synchronization of
the edge oscillators. We note that nonlinear terms lead to a
random on-site loss in the effective Hamiltonian. However,
topological modes are robust against such disorders and thus
still appear from the present effective Hamiltonian.

We also note that some previous studies [50,51] discuss
the role of the localization of eigenvectors of the linearized
equation in the localized patterns. However, the origins of
the localization are different between such localized patterns

and the TSS. The localized patterns in the previous research
rely on the real-space configuration of the oscillator networks
and are explained from the perturbation analysis, while the
TSS utilizes its nontrivial topology in the wavenumber space.
It is also noteworthy that the TSS cannot be observed in
topologically trivial systems (cf. Appendix I), which indicates
the crucial role of the wavenumber topology in the TSS.

C. Emergence of extra topological modes
by nonlinearity-induced boundary

We find that nonlinearity can induce unconventional extra
edge modes, which should be the origin of the synchronization
of the second oscillators from the edge as discussed in the
previous section. Namely, nonlinear systems exhibiting self-
excited vibration, including our model, can generate effective
boundaries and extra topological modes regardless of the ini-
tial conditions. Previous studies [23,52] have discussed that
one can create effective boundaries by externally preparing
a localized initial state, whereas effective boundaries in our
first model spontaneously appear by utilizing the lasing edge
modes.

To show the existence of such extra boundary
modes, we rewrite the equation of our model (1) as
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FIG. 4. Dispersion relations and the dynamics demonstrating a spontaneous nonlinearity-induced boundary. (a) Edge dispersions
of the Hamiltonian H̃ of the topological insulator laser utilized in our first model under the existence of edge-localized on-site loss. We
impose the open (periodic) boundary condition in the x (y) direction. The edge-localized on-site loss corresponds to the effect of nonlinear
terms in the case that the edge modes of the original Hamiltonian H are amplified. We find the extra number of gapless modes. Those extra
topological modes appear due to the effective boundary created by the nonlinearity-induced edge-localized loss. The parameters used are
u = −1, b = 0.8, α = 0, β = 1, ω0 = 0, and �ω = 0. (b) Density distribution of one of the extra topological modes corresponding to the red
point in panel (a). One can see that this eigenstate exhibits the largest amplitude at the second site, which implies that it is localized at the
effective boundary emerging between the first and second sites. (c) Dynamical formation of the extra topological boundary modes. We set
the coefficient of the nonlinear term much smaller than that of the linear coupling. The snapshots at time t = 10 (t = 40) are shown in the
left (right) figure. When the edge oscillators are not fully amplified (corresponding to t = 10), the edge-localized loss is not large enough to
create an effective boundary. After the edge oscillators are fully amplified, the inside oscillators begin to largely oscillate, which implies the
appearance of the extra topological boundary modes.
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Ż j (x) = −i
∑

k H̃jk (Z; x, x′)Zk (x′), where H̃jk (Z; x, x′) =
Hjk (x, x′) + (−ω j (x) + iα − iβ|Zj (x)|2)δ jkδx,x′ represents
the state-dependent Hamiltonian which governs the time
evolution at each moment. This state-dependent Hamiltonian
includes an on-site loss at edge sites, because lasing edge
modes of the original Hamiltonian H of our first model
amplify the edge oscillators as shown in Fig. 1(e). We note
that recent research [39] has shown that on-site loss creates
an effective boundary, and topological boundary modes can
appear at the boundary between the regions with gain and
loss. While the previous study has focused on linear dynamics
with an externally introduced boundary, in our model the
on-site loss is an emergent feature in the sense that it is
spontaneously induced by the nonlinearity.

To explicitly demonstrate the presence of such extra
boundary modes, we numerically diagonalize the state-
dependent Hamiltonian H̃ with edge-localized loss. Here,
we consider the on-site loss that should be induced by
lasing edge modes of the original Hamiltonian H used in
Fig. 1. Figure 4(a) shows the dispersion relation of this
state-dependent Hamiltonian. We obtain eight gapless modes,
which are twice the number of gapless modes compared to the
original Hamiltonian without on-site loss (see Appendix H for
the dispersion relation of the original Hamiltonian). We find
positive imaginary parts of eigenvalues and the localization to
the second site of the corresponding eigenvectors, which leads
to the amplification of the second oscillators from the edge.

We also directly confirm the emergence of the extra bound-
ary modes from the numerical simulation (see Supplemental
Movie 2 [47]). We set the coefficient of nonlinear terms to
be small compared to those of linear coupling H . Figure 4(c)
presents the snapshots of the relative amplitude of each site
obtained from the simulation. In the beginning, only the
outermost oscillators have large amplitudes, while after a suf-
ficiently long time the inner ones also begin to oscillate with
large amplitudes. This behavior represents the emergence of
the extra boundary modes after the nonlinearity-induced loss
grows enough to balance with the linear coupling and create
an effective boundary.

The presence of the extra boundary modes above can alter
the number of the synchronized oscillators in the TSS. Edge-
localized on-site loss also exists in the effective Hamiltonian
obtained from the linearization of the equation around the
state at each moment. Therefore, the number of topologi-
cal modes can increase in such an effective Hamiltonian via
the same mechanism as in the state-dependent Hamiltonian.
We confirm the existence of the extra boundary modes and
negativity of the imaginary parts of their eigenvalues (see
Appendix E), which leads to the increase in the number of
dissipative Lyapunov vectors.

IV. TSS UTILIZING CONVENTIONAL BULK TOPOLOGY

A. Model and its dynamics

While we utilize the Hamiltonian featuring exceptional
edge modes in our first model [Eq. (2) and Fig. 1], we can also
realize TSS by using a Hamiltonian of topological edge modes
protected by conventional bulk topology. To demonstrate this,
we consider another non-Hermitian Hamiltonian exhibiting

lasing edge modes, which is described in the real space as

Hjk (x, x′)

=
(

uδx,x′ + δx+ex,x′ + δx−ex,x′ + δx+ey,x′ + δx−ey,x′

2

)

×
[

a + 1

2
(I2 ⊗ σz ) jk + a − 1

2
(σz ⊗ σz ) jk

]

+ δx+ey,x′ − δx−ey,x′

2i

×
[

a + 1

2
(I2 ⊗ σy) jk + a − 1

2
(σz ⊗ σy) jk

]

+ δx+ex,x′ − δx−ex,x′

2i

×
[

a + 1

2
(I2 ⊗ σx ) jk + a − 1

2
(σz ⊗ σx ) jk

]
+ ibδx,x′ (σx ⊗ I2) jk + iu′δx,x′ (σz ⊗ I2) jk, (7)

where a, b, u, and u′ are real parameters, and σi and
δx,x′ represent the ith component of the Pauli matrices and
the Kronecker delta. As in our first model, this Hamilto-
nian is constructed from two layers of the QWZ model (a
Chern insulator model), HQWZ and aHQWZ combined by the
non-Hermitian coupling ibσx ⊗ I2. Thus, we can rewrite the
Hamiltonian as

H =
(

aHQWZ + iu′I2 ibI2

ibI2 HQWZ − iu′I2

)
, (8)

where ±iu′I2 represent the additional gain and loss. The mod-
ification of the hopping amplitude (parametrized by a) and
non-Hermitian couplings enable the amplification of only the
edge modes derived from the nontrivial topology of HQWZ.

Figures 5(a) and 5(b) show the frequency distributions of
nonlinear oscillators with such topological linear couplings.
We can confirm the emergence of the TSS; i.e., the edge
oscillators are frequency synchronized while the bulk ones are
chaotic (see also Supplemental Movie 3 [47]). We can also
confirm the amplification of the edge oscillators in Fig. 5(c)
as in Fig. 1(e).

B. Lyapunov analysis

We also calculate the Lyapunov exponents and vectors to
confirm the chaos of the bulk oscillators and the existence of
the edge-localized Lyapunov vectors (see Appendix A for the
detailed numerical method). Figure 6(a) shows the Lyapunov
exponents of the model considered here. There are positive
Lyapunov exponents which indicate the chaos of the bulk
oscillators.

Figure 6(b) shows the proportions of the edge amplitudes
(5) of the Lyapunov exponents. We can confirm the existence
of the edge-localized Lyapunov vectors as in the model us-
ing exceptional edge modes [43] [cf. Eq. (2) and Fig. 3(b)].
However, the behavior of the IPRs (6) shown in Fig. 6(c) is
different from that in Fig. 3(c), because there are no steep
increases in the IPRs. Thus, the strongly localized Lyapunov
vectors disappear from the model considered here. This is
because the nonlinear effects are not large enough to generate
such strongly localized modes. We also note that nonlinearity-
induced boundary modes are absent in this model as can be
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(a)

frequency

am
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frequency

(b) (c)

FIG. 5. TSS induced by conventional topological edge modes. [(a), (b)] Frequency of the first component of oscillators at each site.
We numerically calculate the dynamics of the model of the TSS [Eq. (1)] with different topological linear couplings [Eq. (7)] from those
in Fig. 1, where the edge modes are protected by conventional bulk topology. Panels (a) and (b) are the snapshots at times t = 1000 and
t = 2000, respectively. Empty sites represent the oscillators oscillating around their natural frequencies. We confirm the coexistence of the
frequency-synchronized edge oscillators and the desynchronized bulk oscillators. The parameters used are u = −1, u′ = 0.02, a = 2, b = 0.5,
α = 0.5, β = 1, ω0 = 1, and �ω = 0.2. (c) Amplitudes of the oscillators obtained from the numerical simulation of the dynamics of the model
considered in panels (a) and (b). We check that the amplitudes of most of the edge oscillators are larger than those of the bulk oscillators. The
same parameters as in panels (a) and (b) are used in the calculation.

seen in Fig. 5. This may also be due to the smallness of
nonlinearity.

V. TSS UTILIZING HERMITIAN LINEAR COUPLINGS

A. Model and its dynamics

We also find that the TSS can emerge in nonidentical
nonlinear oscillators with linear couplings described by a
Hermitian Hamiltonian. To construct a model of such a TSS,
we consider the unitary transformation of the Hamiltonian
considered in our first model [Eq. (2)] and obtain

H (k) = (u + cos kx + cos ky)σx ⊗ σz + sin kyI2 ⊗ σy

+ sin kxI2 ⊗ σx + ibσz ⊗ σz, (9)

where I2 is the 2×2 identity matrix and σx,y,z are the Pauli
matrices. This Hamiltonian is described in the real space as

Hjk (x, x′)

=
(

uδx,x′ + δx+ex,x′ + δx−ex,x′ + δx+ey,x′ + δx−ey,x′

2

)

× (σx ⊗ σz ) jk + δx+ey,x′ − δx−ey,x′

2i
(I2 ⊗ σy) jk

+ δx+ex,x′ − δx−ex,x′

2i
(I2 ⊗ σx ) jk + ibδx,x′ (σz ⊗ σz ) jk,

(10)

where δx,x′ is the Kronecker delta and ex,y are the lat-
tice vectors in the x or y direction. Here, we perform the
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FIG. 6. Lyapunov analysis of the model of the TSS utilizing lasing edge modes protected by conventional bulk topology. (a) Lyapunov
exponents of the model with the linear couplings exhibiting edge modes protected by conventional bulk topology [Eq. (7)]. The index of each
Lyapunov exponent is rescaled for the maximum to be unity. We obtain positive Lyapunov exponents (above the dashed line) as in Fig. 3,
which indicates the chaos of the bulk oscillators. The parameters used are u = −1, u′ = 0.02, a = 2, b = 0.5, α = 0.5, β = 1, ω0 = 0.2, and
�ω = 0.2. (b) Proportions of the edge amplitudes Pedge [Eq. (5)] of the Lyapunov vectors. We set the relative index of the Lyapunov vector to
be the same as in panel (a). The edge proportions rise steeply around the relative index 0.8, which indicates that the Lyapunov vectors of the
small indices spread in the bulk, while those of the large indices are localized at the edge of the system. (c) IPRs of the Lyapunov vectors. We
set the relative index of the Lyapunov vector to be the same as in panel (a). The IPRs increase around the relative index 0.8, corresponding to
the edge localization of the Lyapunov vectors. Since all the IPRs are less than 0.08, the strongly localized modes are absent, unlike in Fig. 3.
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(a) frequency
frequency

(b)

(c) (d)

FIG. 7. Frequency and amplitude distributions of the model uti-
lizing Hermitian linear couplings. We numerically simulate the
model utilizing Hermitian linear couplings [Eq. (9)]. [(a), (c)] The
frequency and [(b), (d)] the indicator of the local order parameter
M(x, y) [Eq. (11)] at each site are shown. Panels (a) and (b) [(c) and
(d)] present the frequencies and the indicators of the local order
parameters of the first [second] component of oscillators at time
t = 100. The edge oscillators at the first components of the lattice
points exhibit the homogeneous and constant frequency and the
large indicators of the local order parameters, which implies their
frequency synchronization. In contrast, the second components of
oscillators are desynchronized. The parameters used are u = −1,
b = 0.5, α = 1, β = 1, ω0 = 1, and �ω = 0.2.

unitary transformation of the Hamiltonian in our first model
(2) to convert the non-Hermitian term ibδx,x′ (σz ⊗ σz ) jk into
a diagonal one. Such diagonal non-Hermitian terms can be
introduced as the modulation of the parameter α in the

Stuart-Landau equation [cf. Eq. (1)]. Thus, we can consider
Stuart-Landau oscillators with this linear coupling as noniden-
tical oscillators whose linear coupling is Hermitian.

We numerically calculate the dynamics of such coupled
nonidentical oscillators (cf. Supplemental Movies 4 and 5
[47]). Figure 7(a) shows the frequency distribution of oscil-
lators at the first components of lattice points. We confirm
the TSS; i.e., the edge oscillators synchronize while the bulk
ones exhibit chaos. Unlike the other models of the TSS,
however, the second components of the oscillators exhibit
chaotic motion even at the edge of the system [Fig. 7(c)].
Such synchronization and desynchronization of the edge os-
cillators can be confirmed from the indicator of the local order
parameter restricted to the first and fourth (second and third)
components,

M(x, y; t )

= 1

2T

∫ t

t−T
dt ′ ∑

k=1,4 (or k=2,3)

|Zk (x, y) + Zk (x + 1, y)

+ Zk (x − 1, y) + Zk (x, y + 1) + Zk (x, y − 1)|, (11)

as shown in Figs. 7(b) and 7(d). The first components of edge
oscillators exhibit large indicators of the local order parameter
indicating their synchronization, while those of the second
components have small values.

B. Lyapunov analysis

We also calculate the Lyapunov exponents and vectors to
confirm the chaos of the bulk oscillators as in Figs. 3 and 6.
Figure 8(a) shows the existence of positive Lyapunov expo-
nents, which implies the chaos in this system. We compare
the proportion of amplitude of the edge oscillators of the
Lyapunov vectors (5) between the first and fourth components
and the second and third ones, as shown in Figs. 8(b) and 8(c).
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FIG. 8. Lyapunov analysis of the model utilizing Hermitian linear couplings. (a) Lyapunov exponents of the model with the Hermitian
linear couplings [Eq. (9)] plotted in descending order. The index of each Lyapunov exponent is rescaled for the maximum to be unity. Positive
Lyapunov exponents (above the dashed line) exist as in Fig. 3, indicating the chaos of the bulk oscillators. The parameters used are u = −1,
b = 0.5, α = 1, β = 1, ω0 = 0.2, and �ω = 0.2. [(b), (c)] Proportions of the edge amplitudes, Pedge [Eq. (5)], of the Lyapunov vectors. We
plot those of the first and fourth components in panel (b) and those of the second and third components in panel (c). We set the relative index
of the Lyapunov vector to be the same as in panel (a). The edge proportions of the first and fourth components rise steeply around the relative
index 0.95, which indicates that the Lyapunov vectors of the large indices are localized at the first and fourth components of the edge sites. On
the other hand, the edge proportion of the second and third components decreases in that region around the relative index 0.95. Therefore, the
second and third components of the edge oscillators exhibit chaotic behavior.
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FIG. 9. Amplitude distribution of the lasing edge modes. The
squared amplitude of the lasing edge mode of the linear couplings
(9) is shown. The wavenumber is k = 0 and the eigenvalue is E = ib.
Amplitude distributions of the (a) first, (b) second, (c) third, and
(d) fourth components are shown. The amplitudes of lasing edge
modes are localized at the first and fourth components are shown.
The parameters used are u = −1 and b = 0.5.

The Lyapunov vectors corresponding to small Lyapunov ex-
ponents are localized at the first and fourth components of the
edge sites. On the other hand, the amplitudes of Lyapunov
exponents at the second and third components are small at
the large indices. Thus, the first and fourth components of
edge oscillators are synchronized, while the other oscillators
exhibit chaos.

Desynchronization of the second and third components of
the edge oscillators is explained from the amplitude distribu-
tion of the lasing edge modes shown in Fig. 9. The lasing edge
modes with the maximum imaginary part of the eigenvalue ex-
hibit zero amplitude at the second and third components of the
lattices and edge-localized amplitudes at the first and fourth
components. Therefore, the lasing edge modes obtained from
the linear coupling (9) only amplify the first and fourth com-
ponents of the edge oscillators. Since such amplification leads
to the different behavior between the edge and bulk oscillators
(see also Appendix H), only the first and fourth components
of the edge oscillators can synchronize, while the second and
third components exhibit chaotic oscillations.

VI. APPLICATIONS OF TSS

Damped bulk oscillators in the TSS will create an effective
edge, along which the oscillators can be newly synchro-
nized. We here propose several applications of such emerging
synchronized oscillators, e.g., on-demand synchronization
pattern designing and defect detection.

First, by placing damped oscillators into the bulk, one can
arrange synchronized oscillators in an arbitrary pattern. We
demonstrate such flexible pattern designing in Fig. 10 and
Supplemental Movie 6 [47] (see Appendix A for the numeri-
cal method to introduce damped oscillators). In Fig. 10(b), we

(a)

(b)

frequency
indicator of local
order param

eter

FIG. 10. On-demand pattern designing of the synchronized os-
cillators. We numerically demonstrate that the on-demand pattern
designing of the synchronized oscillators is possible by utilizing the
TSS. To arrange the synchronized oscillators in the shape of charac-
ters, UT, we damp the oscillators encircled by the green boxes and
numerically calculate the dynamics of the first model of topological
synchronization [cf. Eqs. (1) and (2) and Fig. 1] under the periodic
boundary condition. The parameters used are u = −1, b = 0.3, α =
0.5, αd = −100, β = 1, ω0 = 0.1, and �ω = 0.2. (a) The frequen-
cies of the oscillators are shown. The oscillators around the damped
ones exhibit a homogeneous frequency, indicating the frequency
synchronization of those oscillators. We obtain the desired shape of
the collection of the synchronized oscillators. (b) The indicator of the
local order parameter M(x, y) in Eq. (12) at each site is shown. We
also confirm the appearance of the desired synchronization pattern
from this result.

define the indicator of the local order parameter as

M(x, y; t )

= 1

4T

∫ t

t−T
dt ′

4∑
k=1

|Zk (x, y) + Zk (x + 1, y)

+ Zk (x − 1, y) + Zk (x, y + 1) + Zk (x, y − 1)|, (12)

which becomes large when the phase of the oscillator matches
those of the nearest neighbors [we note that this includes infor-
mation of all the components unlike that defined in Eq. (11)].
The oscillators around damped ones exhibit the homogeneous
frequencies and the large values of the indicator M, thus
being synchronized. We note that the synchronization pattern
disappears in a topologically trivial system (see Appendix I),
demonstrating the crucial role played by the topology of the
linear coupling.

If some of the oscillators suddenly stop their self-
oscillations, the oscillators around them begin to synchronize.
Thus, by observing the appearance of a synchronized cluster,
we can continuously monitor the formation of the broken
oscillators, i.e., defects. To demonstrate such possibility of
defect detection using the TSS, we numerically calculate the
dynamics of our first model and damp some oscillators in the
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FIG. 11. Applications of the TSS to the defect detection. [(a), (b)] Schematics of the detection mechanism. We assume that the dynamics
of nonlinear oscillators are detected by sensors. Information of the oscillators’ state from the sensors is processed to judge the synchronization
of oscillators and the existence of defects. If oscillators are broken and stop their self-oscillation, the oscillators around them are synchronized
as shown in panel (a). By observing such synchronization, we can detect the breakdown of oscillators. When sensors are disordered and
send no signals, the oscillators remain desynchronized as shown in panel (b). Therefore, this kind of breakdown of sensors is distinguishable
from the breakdown of oscillators. (c) The indicator of the local order parameter M(x, y) in Eq. (12) at each site under the existence of the
broken oscillators. Large values of the indicator show the synchronization of the oscillators at the corresponding site. One can judge that the
oscillators surrounded by synchronized ones are broken. The parameters used are u = −1, b = 0.5, α = 0.5, αd = −100, β = 1, ω0 = 0.1,
and �ω = 0.2. (d) The indicator M(x, y) at each site under the existence of the broken sensors. The indices are small everywhere, which shows
that there are no synchronized oscillators, and thus no oscillators are broken. The parameters used are the same as in panel (c).

middle of the simulation (see Supplemental Movie 7 [47]).
Figure 11(c) shows the spatial distribution of the indicator
M(x, y) [Eq. (12)] in the steady-state regime. We find the
synchronized oscillators that precisely lie along the edges of
the defects. In contrast, when the sensors that detect the state
of oscillators get broken and are unable to send signals to the
central computing system [see Fig. 11(b)], our method obtains
no enhanced signals indicating synchronization. Therefore,
we can affirm the existence of broken oscillators from the
large value of the indicator M(x, y) [Eq. (12)] even un-
der the non-negligible possibility of this kind of breakdown
of sensors. We numerically check the absence of the sig-
nal of synchronization in the case of sensors’ disorder
[see Fig. 11(d)].

Meanwhile, a system similar to our model can be realized
by using an electrical circuit, which is shown in Fig. 12 as a
schematic. Using nonlinear resistors, we propose to use van
der Pol circuits [53,54] that simulate nonlinear oscillators.
We also utilize negative impedance converters with current
inversion [55] to omit the frequency dependence. The dy-
namics of voltages in this electrical circuit imitates our first
model, while the dynamics of van der Pol circuits is different

from the Stuart-Landau oscillators (see Appendix J for the
derivation of circuit equations). We note that one can real-
ize the TSS without fine tuning of the circuit constant of
each element due to the topological protection of the TSS
(see Appendix D). The electrical-circuit implementation of
topological synchronization can have a potential application
in information processing, as is discussed in the previous
studies of topological electrical circuits [19,56]. Our model
should also be relevant to broad ranges of other physical
systems. In particular, we expect that it is possible to real-
ize the TSS in photonic systems, where topology [22,23,41],
non-Hermiticity [39,57,58], and nonlinearity [3,4] can be in-
tertwined.

VII. SUMMARY AND DISCUSSIONS

We proposed a robust mechanism to control synchro-
nization, namely, topological synchronization where edge
oscillators synchronize while bulk ones exhibit chaotic dy-
namics. We termed such a coexistence state of chaotic bulk
motions and synchronized edge oscillators as the topological
synchronized state (TSS) and analyzed the localized behaviors
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capacitor
inductor
resistor
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(a)

(b)

FIG. 12. Proposed electrical circuit to realize topological syn-
chronization. (a) Linear system described by the effective Hamil-
tonian of topological insulator laser constructed by an electrical
circuit using capacitors, inductors, resistors, and negative impedance
converters with current inversion (INICs). We consider two layers of
square lattices, and each lattice point (a red dashed circle) has two
sites (black dots). The dynamics of the voltages at the sites follows
the Hamiltonian of the topological insulator laser in Eq. (2). The left
inset represents the detail of the circuit in each layer (corresponding
to the enlarged view of the sites encircled by the blue dotted curve
in the middle panel). The middle panel shows how to connect the
sites of the different layers. The legend shows the correspondence
of the figures and the circuit elements. (b) Substitution rules to
construct the electrical circuit of the TSS. We can construct the
model of the TSS by replacing the circuit elements in panel (a). We
substitute each site (a black dot) into two van der Pol circuits (blue
dashed squares) coupled by an INIC. Green filled boxes represent the
nonlinear resistors. The other panels represent the substitution rules
of capacitors, inductors, resistors, and INICs. We only use resistors
and INICs to avoid frequency dependence of impedance. Red dashed
squares represent the coupled van der Pol circuits in the left panel.

of its models. The edge modes of the topological linear cou-
plings between oscillators are represented by the Lyapunov
vectors localized at the edge of the system. The mechanism
relies on topology in the wavenumber space and thus is dif-
ferent from the conventional mechanism of chimera states;
the latter can be explained from the self-consistency anal-
ysis and spatial variation of local order parameters [27,28].
We also demonstrated that nonlinearity induces emerging ef-
fective boundaries, which leads to extra topological modes
unique to nonlinear systems. As examples of applications, we
showed that one can realize arbitrary patterns of synchronized
oscillators by using topological synchronization. We also re-
vealed that chaotic nonlinear systems can be used to detect
disordered oscillators. Our model can be realized by utilizing
an electrical circuit. Our proposal provides a general method
to robustly and geometrically control the nonlinear oscillators
by combining nonlinearity and topology.

While in our numerical calculations we focused on 10×10
and 20×20 lattices, the TSS is independent of the system size,
as long as the system is large enough to apply the band theory
of bulk systems. This is because we here consider topology in
the wavenumber space, and such analyses in the wavenum-
ber space describe the bulk properties of infinite systems.
Therefore, nontrivial topology and associated phenomena do
not alter if we consider a larger lattice than analyzed in our
calculations. We also used the Dirichlet-type open bound-
aries, while the TSS appears under the other open boundary
conditions (e.g., the Neumann boundary conditions), which
may play an important role in some typical nonlinear systems
such as fluids. We can understand this from the conventional
argument in topological physics [15]. Such open boundaries
connect topological systems and the vacuum, which have
different topological invariants. However, we can change
topological invariants only by closing the band gaps. Since the
system and the vacuum have gapped bulk, such gap closing is
possible only at the boundary. Therefore, boundary-localized
gapless modes must appear in this situation. The TSS shares
the same origin with conventional topological edge modes and
thus can appear under any type of open boundary conditions.

It is noteworthy that the TSS should ubiquitously appear in
nonlinear systems with a topological effective Hamiltonian.
In this paper, we confirmed the emergence of a TSS in ho-
mogeneous Stuart-Landau oscillators whose linear couplings
are described by Hamiltonians of two types of lasing edge
modes protected by different topological mechanisms. We
also discussed the TSS utilizing a Hermitian topological linear
coupling and inhomogeneity of oscillators (cf. Table I). Fur-
thermore, there is no need to judiciously adjust the parameters
as discussed in Appendix D, which should be of practical
advantage to realize the TSS in a variety of systems. Despite
the broadness of models considered in this work, the TSS
in identical oscillators induced by a Hermitian topological
Hamiltonian still remains an intriguing problem. This may
be possible by utilizing nonlinearity-induced non-Hermitian
effects and realizing positive imaginary parts only in bulk
modes of the effective Hamiltonian obtained by linearization
of the equation (cf. Appendix E). Furthermore, we antici-
pate that other nonlinear oscillators than the Stuart-Landau
model (e.g., the Fitzhugh-Nagumo model [59,60]) can exhibit
the TSS, because topological edge modes should be stable
against the change of the on-site loss induced by the nonlinear
terms.
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APPENDIX A: DETAILS OF NUMERICAL
CALCULATIONS

1. Numerical simulation of the model
of topological synchronization

We simulate the dynamics of our first model [Eqs. (1)
and (2)] by using the fourth-order Runge-Kutta method.
To calculate the time evolution of the complex-valued state
variables, we deal with real and imaginary parts of those vari-
ables separately as Zi(x, y) = Xi(x, y) + iYi(x, y). Real and
imaginary coefficients are substituted as aZ → a(X,Y )T and
ibZ → −ibσy(X,Y )T , where a and b are real, and σy is the
Pauli matrix. We arrange the 20×20 sites which have four
complex Stuart-Landau oscillators for each. We impose the
open boundary condition in both the x and y directions. We
set the natural frequency of each oscillator ω0 + 	 with 	

being a random value from uniform distributions ranging
[−�ω,�ω]. The numerical calculation starts from the ran-
dom initial condition, where real and imaginary parts of the
initial state variables are the random value from uniform dis-
tributions ranging [−0.1, 0.1]. In Fig. 1, we set the time step
dt = 0.005 and use the parameters u = −1, b = 0.5, α = 0.5,
β = 1, ω0 = 1, and �ω = 0.2. In Figs. 1(c) and 1(d), we
demonstrate the frequency distribution. We define the phase
of each oscillator as Im log Zi(x, y). We calculate and plot the
time-averaged variation of the phase, setting the time window
as To = 10. In Figs. 1(c) and 1(d), we only plot the frequency
of the first component of oscillators at each site. We also plot
the amplitude of the first component of oscillators |Z1(x, y)|
in Fig. 1(e).

In Fig. 5, we show the dynamics of nonlinear oscilla-
tors in the same way as in Fig. 1. The parameters used are
u = −1, u′ = 0.02, a = 2, b = 0.5, α = 0.5, β = 1, ω0 = 1,
and �ω = 0.2. We set the time step dt = 0.005. We plot the
time-averaged variation of the phase, i.e., the frequency of
each oscillator at the first component of the lattice point, in
Figs. 5(a) and 5(b). We also plot the amplitude of the first
component of oscillators |Z1(x, y)| in Fig. 5(c).

In Fig. 7, we also calculate the dynamics of nonlinear
oscillators in the same way as in Fig. 1. The parameters used
are u = −1, b = 0.5, α = 1, β = 1, ω0 = 1, and �ω = 0.2.
We set the time step dt = 0.005. We plot the time-averaged
variation of the phase, i.e., the frequency of each oscillator
at the first [second] component of the lattice point in Fig. 7(a)
[Fig. 7(c)]. We also plot the indicator of the local order param-
eter (12) of the first and fourth [second and third] components
in Fig. 7(b) [Fig. 7(d)].

2. Calculations on the phase diagram

To obtain Fig. 2, we numerically calculate the dynamics
of our first model [Eqs. (1) and (4)] at different strengths of
the linear coupling and inhomogeneity of the natural frequen-
cies. We introduce the parameter of the strength of the linear
coupling c by rewriting the equation of our model (1) as

d

dt
Z j (x) = (iω j (x) + α − β|Zj (x)|2)Zj (x)

− ic
∑
k,x′

Hjk (x, x′)Zk (x′). (A1)

We change the parameter c from 0.2 to 2 at intervals of 0.2.
We also change the inhomogeneity of the natural frequencies
�ω from 0 to 2 at intervals of 0.1. We fix the other param-
eters as u = −1, b = 0.5, α = 0.5, β = 1, and ω0 = 1. At
each parameter, we calculate the dynamics and frequencies of
oscillators in a 20×20 square lattice by using the fourth-order
Runge-Kutta method as in Fig. 1. Then, at time t = 100, we
calculate the standard deviations of the frequencies of the out-
ermost oscillators and the bulk ones whose x and y coordinates
satisfy 6 � x � 15 and 6 � y � 15. We plot the standard de-
viation of the frequencies of the outermost oscillators divided
by that of the bulk ones in Fig. 2.

We also perform the numerical clustering of two-
dimensional data composed of the pair of the standard
deviations of the frequencies of the edge and bulk os-
cillators. We utilize the k-means method to conduct such
clustering. We set the number of clusters as k = 2. We de-
termine the symbol used at each point in Fig. 2 based on
which cluster the corresponding two-dimensional data point
belongs to.

3. Numerical methods of Lyapunov exponents
and Lyapunov vectors

We calculate the Lyapunov exponents and vectors of our
first model [Eqs. (1), (4)] by utilizing the Shimada-Nagashima
algorithm [61] and Ginelli’s algorithm [62]. In those calcula-
tions, we arrange 10×10 sites and impose the open boundary
condition. We deal with real and imaginary parts of the state
variables separately as in the numerical calculation of our
model (see Appendix A 1). We first calculate the dynamics of
our first model from the random initial condition as in Fig. 1.
Here, we set the time step as �t = 0.1. The obtained trajec-
tory is used to determine the infinitesimal rate of change of
the difference between the perturbed and original trajectories.
We allow an initialization period of Tini = 1000 to stabilize
the dynamics into a chaotic attractor. We repeatedly perform
the QR decomposition based on the matrices derived from the
linearization of the equation and the obtained trajectory from
t = Tini to t = Tini + 20 000. The averages of the logarithmic
diagonal entries of the R matrices converge to Lyapunov ex-
ponents. To omit the effect of the initial condition, we use
the R matrices obtained from time t = Tini + 10 000 to t =
Tini + 20 000 to calculate the Lyapunov exponents. We also
utilize those R matrices to calculate the Lyapunov vectors. We
iteratively multiply the inverse of obtained R matrices to a ran-
domly obtained upper-triangle matrix. Finally, the product of
the obtained upper-triangle matrix and the Q matrix obtained
in the calculation of the Lyapunov exponents represents the
set of the Lyapunov vectors.

We also utilize the Shimada-Nagashima algorithm [61] and
Ginelli’s algorithm [62] to calculate the Lyapunov exponents
and vectors of the other models [Eqs. (7) and (10)]. The
parameters of models are set to be equal to those utilized in
the calculation of dynamics (Figs. 6 and 8). Furthermore, in
the model utilizing the Hermitian linear coupling, we set the
initialization period as Tini = 100 000. The other parameters
used in the calculations of Lyapunov exponents and vectors
are the same as those in the calculations on our first model.
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4. Numerical calculations on the emergent
nonlinearity-induced boundary

To show the emergence of the extra topological boundary
modes by the emergent nonlinearity-induced boundary, we
diagonalize the state-dependent Hamiltonian H̃ (Z) under the
open (periodic) boundary condition in the x (y) direction. We
perform the inverse Fourier transformation of the Hamiltonian
in Eq. (2) used in our first model only in the x direction. We di-
vide the real and imaginary parts of the state variables as in the
simulation of the dynamics of our model and consider twice
the size of the matrix compared to the Hamiltonian in Eq. (2).
We consider the 1×20 supercell structure. To determine the
strength of the nonlinear loss terms (i.e., −β|z|2z), we first
diagonalize the Hamiltonian without nonlinear loss terms. We
obtain four edge modes vi

j (x) (i = 1, . . . , 4 is the index of
the edge modes and j = 1, . . . , 4 represents the component
of oscillators at each site) with maximum imaginary parts of
eigenvalues Im E0 at the wavenumber k = 0. Then, we in-
troduce the on-site loss −ia(|v1

j (x)|2 + |v2
j (x)|2 + |v3

j (x)|2 +
|v4

j (x)|2)Zj (x), where the coefficient is set to be a = Im E0 to
balance gain and loss applied to the edge modes vi

j (x). Thus,
this on-site loss corresponds to the case that the edge modes in
the Hamiltonian without the nonlinearity-induced on-site loss
are fully amplified. Finally, we diagonalize the Hamiltonian
with this nonlinear on-site loss term at each wavenumber and
obtain the dispersion relation in Fig. 4(a) and the eigenvector
of the edge mode in Fig. 4(b).

We also calculate the dynamics of the extra boundary
modes. As in the calculation of the dynamics in Fig. 1, we
use the fourth-order Runge-Kutta method and consider the
20×20 square lattice with the open boundary to simulate the
dynamics of nonlinear oscillators with linear couplings de-
scribed by the Hamiltonian in Eq. (4). By using the parameters
α = 5×10−5 and β = 1×10−4, we realize the situation that
the nonlinearity has a negligible effect on the dynamics at the
initial stage of the simulation. We consider the random initial
condition, where real and imaginary parts of the initial state
variables are the random value from uniform distributions
ranging [−0.001, 0.001]. We set the time step dt = 0.005.
The other parameters used are u = −1, b = 0.8, ω0 = 0.1,
and �ω = 0.2.

5. Numerical demonstrations of the on-demand
pattern designing

To demonstrate the possibility of arranging synchronized
oscillators in a desired pattern, we calculate the dynamics
of our first model [Eqs. (1) and (4)] under the existence
of damped oscillators (see Fig. 10). We implement damped
oscillators by setting α = −100 at the corresponding sites.
We arrange 15×30 sites and impose the periodic boundary
condition in both the x and y directions. As in the numeri-
cal simulation of the dynamics of our model, we utilize the
fourth-order Runge-Kutta method. We start the calculation
from the random initial condition, where real and imaginary
parts of the initial state variables are the random value from
uniform distributions ranging [−0.1, 0.1]. We set the time
step dt = 0.005 and use the parameters u = −1, b = 0.3,
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FIG. 13. Dispersion relation of the lasing modes localized at the
right edge. We calculate the dispersion relation of the Hamiltonian of
topological lasing modes [Eq. (B1)]. We consider the open (periodic)
boundary condition in the x (y) direction and arrange 20 sites in the
x direction. We obtain a gapless edge band with positive imaginary
parts of eigenvalues. This gapless band corresponds to lasing edge
modes localized at the right side. The parameters used are u = −1
and γ = 0.5.

α = 0.5, β = 1, ω0 = 0.1, and �ω = 0.2. We calculate the
frequency of each oscillator from the time-averaged variation
of the phase, setting the time window as To = 20. We also
set the time window to calculate the indicators of local order
parameters as T = 100.

6. Numerical demonstrations of the defect detection

In the demonstration of the defect detection by using the
TSS (cf. Fig. 11), we calculate the dynamics of our first model
[Eqs. (1) and (4)] under the periodic boundary condition by
the fourth-order Runge-Kutta method. To implement the bro-
ken oscillators in Fig. 11(c), we change the parameters α at
the corresponding sites from 0.5 to −100 at time t = 200.
On the other hand, to simulate the disorders of sensors, we
assume Zi(x, y) = 0 only in the calculation of the indicator of
the local order parameter (12). We consider the random initial
condition, where real and imaginary parts of the initial state
variables are the random value from uniform distributions
ranging [−0.1, 0.1]. We set the time step dt = 0.005 and
use the parameters u = −1, b = 0.5, α = 0.5, β = 1, ω0 = 1,
and �ω = 0.2. We calculate the frequency of each oscillator
from the time-averaged variation of the phase, setting the time
window as To = 5. We also set the time window to calculate
the indicators of local order parameters as T = 100.
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(a) (b)

frequency

frequency

FIG. 14. Cluster synchronization from a topological Hamilto-
nian. We calculate the dynamics of the Stuart-Landau oscillators
with linear coupling described by a Hamiltonian of topological
lasing modes that is different from the Hamiltonians considered
in the main text [Eq. (B1)]. Panels (a) and (b) show the snapshots
of the frequency distributions of the first component of oscillators at
times t = 1000 and t = 2000, respectively. The bulk and left-side
oscillators exhibit homogeneous and constant frequency, which is
different from that of the right-side oscillators. Therefore, the bulk
oscillators form a synchronized cluster, indicating the absence of the
TSS. The parameters used are u = −1, γ = 0.5, α = 0.5, β = 1,
ω0 = 1, and �ω = 0.2.

APPENDIX B: SYNCHRONIZATION NOT
CATEGORIZED IN THE TSS

1. Cluster synchronization in the case of another effective
Hamiltonian with topological lasing modes

The TSS needs the instability of bulk oscillators to desyn-
chronize them. On the other hand, we numerically check that
even if the linear coupling shows topological lasing edge
modes, there is a possibility that bulk oscillators stably syn-
chronize in some models, which indicates the absence of the
TSS in such models. Here we consider the following Hamil-
tonian of topological lasing modes:

H (k) = (u + cos kx + cos ky)σz

+ (sin ky + iγ cos ky)σy + sin kxσx, (B1)

where σx,y,z are the Pauli matrices, and I2 is the 2×2 identity
matrix. This Hamiltonian exhibits lasing modes localized only
at the right side of the system. Figure 13 shows the band struc-
ture calculated under the open (periodic) boundary condition
in the x (y) direction, which shows the existence of lasing edge
modes. We arrange two Stuart-Landau oscillators [cf. Eq. (1)]
at each site of a 20×20 square lattice and combine them by
the linear coupling described by the Hamiltonian (B1). We
assume the open (periodic) boundary condition in the x (y)
direction. By calculating the dynamics of this model as in
Fig. 1, we find that the bulk and left-side oscillators also syn-
chronize (see Supplemental Movie 8 [47]). Figure 14 shows
the frequency of the oscillator at each site. One can confirm
that the bulk and left-side oscillators exhibit a homogeneous
frequency that is different from that of the right-side oscil-
lators. Thus, the bulk and left-side oscillators form another
synchronized cluster, which indicates the absence of the TSS.
We note that similar cluster synchronization is studied in one-
and two-dimensional nonlinear topological systems [19].

(a)

frequency

am
plitude

(b)

FIG. 15. Coexistence of synchronized edge oscillators and
damped bulk oscillators. (a) Frequency of the first component of
oscillators at each site in a damping parameter region. We numer-
ically simulate the first model of the TSS [Eqs. (1) and (2)] at
the parameters u = −1, b = 0.5, α = −0.2, β = 1, ω0 = 1, and
�ω = 0. The figure shows the snapshot at time t = 100. The edge
oscillators exhibit homogeneous frequencies and thus synchronize.
(b) Amplitudes of the first components of oscillators at each site at
time t = 100. We can confirm that the bulk oscillators exhibit almost
zero amplitudes. The parameters used are the same as in panel (a).

2. Coexistence of synchronized edge oscillators
and damped bulk ones

By tuning the parameters, we show that our model [Eqs. (1)
and (2)] can exhibit a different coexistence state of synchro-
nization where the bulk oscillators are damped while the
edge ones are synchronized. Here, we set the parameter α in
the Stuart-Landau equation [cf. Eq. (1)] to be negative and
larger than −|b|. The negativity of α implies the damping
of self-oscillations of the bulk oscillators, while the lasing
edge modes of linear couplings still lead to synchronized
oscillations at the edge of the sample in this parameter region.
Figure 15 shows the frequency and amplitude distributions
obtained from the numerical calculations of our model at
α = −0.2. We can confirm that the bulk oscillators exhibit
almost zero amplitudes, while the edge ones synchronize (cf.
Supplemental Movie 9 [47]). It is noteworthy that the bulk
oscillators slightly oscillate at frequencies close to that of
the edge ones due to their interaction. We define the TSS
as the coexistence of the synchronized edge oscillators and
the desynchronized bulk oscillators, while the synchronized
state observed in this calculation exhibits bulk oscilla-
tors without self-oscillations and thus is not categorized in
the TSS.

APPENDIX C: TSS WITHOUT FLUCTUATIONS
OF THE NATURAL FREQUENCIES

Here we show that the fluctuations of the natural frequen-
cies are unnecessary to realize the TSS as in conventional
chimera states [28,29]. We calculate the dynamics of the
first model of the TSS [Eqs. (1) and (2)] without fluctua-
tions of natural frequencies, i.e., �ω = 0 (see Supplemental
Movie 10 [47]). Figure 16 presents the frequency distribution
obtained under the homogeneous natural frequency. We can
confirm that the edge oscillators vibrate at a homogeneous and
constant frequency, while the bulk oscillators exhibit inhomo-
geneous and unstable frequencies. Therefore, the TSS appears
even under the homogeneous natural frequency. We set the
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(a)

frequency

frequency

(b)

FIG. 16. TSS without fluctuations of the natural frequencies. We
simulate the first model of the TSS [Eqs. (1) and (2)] under the condi-
tion of the homogeneous natural frequencies. Panels (a) and (b) show
the snapshots of the frequency distributions of the first component of
oscillators at times t = 100 and t = 200, respectively. As in the case
of the fluctuating natural frequencies [Figs. 1(c) and 1(d)], the edge
oscillators exhibit homogeneous and constant frequencies, while the
bulk ones vibrate at space- and time-varying frequencies. Therefore,
the edge oscillators synchronize, while the bulk ones desynchronize,
which indicates the emergence of the TSS. The parameters used are
u = −1, b = 0.5, α = 0.5, β = 1, ω0 = 1, and �ω = 0.

parameters as u = −1, b = 0.5, α = 0.5, β = 1, and ω0 = 1
and consider the random initial condition as in Fig. 1.

APPENDIX D: DETAILED ANALYSES
ON THE STABILITY OF THE TSS

1. Stability of the TSS via a one-dimensional model

Here we discuss the stability of the TSS via the one-
dimensional chain of Stuart-Landau oscillators which effec-
tively describes the edge oscillators in our first model [Eqs. (1)
and (2)]. Since the edge oscillators in our model exhibit larger
amplitudes than those of the bulk ones [cf. Fig. 1(e)], the in-
teraction between the edge and bulk oscillators is smaller than
that between the edge ones. Therefore, we can assume that the
linear couplings between the edge and bulk oscillators only
have a perturbative effect on the dynamics of the synchronized
edge oscillators, and thus the model without the hopping terms
in the x direction,

d

dt
Z j (y) = (iω j (y) + α − β|Zj (y)|2)Zj (y)

− i
∑
k,y′

H1d
jk (y, y′)Zk (y′) + ξ j (y), (D1)

H1d
jk (y, y′) =

(
uδy,y′ + δy+1,y′ + δy−1,y′

2

)
(I2 ⊗ σz ) jk

+ δy+1,y′ − δy−1,y′

2i
(I2 ⊗ σy) jk

+ ibδy,y′ (σx ⊗ σx ) jk, (D2)

can describe the edge oscillators in our first model, where δy,y′

is the Kronecker delta and σi and I2 are the ith component of
the Pauli matrices and the 2×2 identity matrix, respectively.
We introduce ξ j (y) to describe the perturbative effect from
the bulk oscillators, while we show that the TSS is robust
against such perturbation and inhomogeneity of parameters.
We note that the chaotic dynamics in the bulk vanishes the

long-term correlation of interaction between the edge and bulk
oscillators, and thus ξ j (y) can be considered as noise.

First, we obtain the stationary synchronized solution of
Eq. (D1) under the absence of the interaction from bulk oscil-
lators and the homogeneous natural frequencies. We conduct
the Fourier transformation of the Hamiltonian used in the
one-dimensional model (D2) and obtain

H1d(k) = (u + cos ky)I2 ⊗ σz + sin kyI2 ⊗ σy + ibσx ⊗ σx.

(D3)

This Hamiltonian exhibits the maximum imaginary part
of the eigenenergies Im E = √

b2 − u′2 at ky = 0 and the
corresponding eigenvector (ib,∓u′ ± i

√
b2 − u′2,±ib,−u′ +

i
√

b2 − u′2)T , where u′ = u + 1. By utilizing this eigenvector,
we construct the following homogeneous stationary (periodic)
solution:⎛
⎜⎜⎜⎝

Z1(y)

Z2(y)

Z3(y)

Z4(y)

⎞
⎟⎟⎟⎠ = eiω0t+iθ

√
α + √

b2 − u′2

b2β

⎛
⎜⎜⎜⎝

ib

∓u′ ± i
√

b2 − u′2

±ib

−u′ + i
√

b2 − u′2

⎞
⎟⎟⎟⎠,

(D4)
where ω0 is the homogeneous natural frequency. Since the
gapped bulk bands require |u′| < |b|, the absolute values of
the components of this stationary solution are the same, which
leads to the same intensity of the nonlinear terms. The station-
ary solution (D4) represents the frequency synchronization
of the edge oscillators, where they oscillate at the same fre-
quency ω0.

To confirm the stability of the frequency synchronization
of the edge oscillators, we conduct linear stability analysis
around the stationary solution (D4). We linearize the Stuart-
Landau equation Ż = (iω + α − βZ2)Z and obtain

d

dt

(
δX
δY

)

=
(

iω+α−3βX 2
0 −βY 2

0 −2βX0Y0

−2βX0Y0 iω+α−βX 2
0 −3βY 2

0

)(
δX
δY

)
,

(D5)

where Z = X + iY (X , Y are real) and Z0 = X0 + iY0 is the
state around which the equation is linearized. The eigenval-
ues of the coefficient matrix in this equation are iω + α −
X 2

0 − Y 2
0 , iω + α − 3X 2

0 − 3Y 2
0 and have negative real parts

when we linearize the equation around the stationary solution
(D4). Therefore, these terms attenuate the fluctuations from
the stationary solution, which leads to the linear stability of
the one-dimensional chain of nonlinear oscillators. We nu-
merically diagonalize the linearized equation of Eq. (D1) and
obtain the dispersion relation in Fig. 17. We confirm that all
the eigenvalues have nonpositive imaginary parts, which indi-
cates the linear stability of the stationary solution. Therefore,
the synchronized state in the one-dimensional model (D1) is
robust against the perturbations, such as the inhomogeneity
of the natural frequencies and the perturbative interactions
from bulk ones. Since the one-dimensional chain of oscillators
and its stationary solution describe the synchronized edge
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FIG. 17. Dispersion relation of the linearized equation of the
one-dimensional chain model. We numerically calculate the disper-
sion relation of the coefficient matrix obtained from the linearization
of the one-dimensional chain model around the stationary solution
[Eqs. (D3) and (D4)]. The upper (lower) panel shows the real (imag-
inary) part of the eigenvalues. All the eigenvalues have nonpositive
imaginary parts, which implies the linear stability of the stationary
solution. The parameters used are u = −1, b = 0.5, α = 0.5, β = 1,
ω0 = 0, and �ω = 0.

oscillators in our first model [Eqs. (1) and (2)], the TSS is
also stable against the existence of disorders.

2. Robustness of the electrical circuit realization of the TSS

TSS is robust against disorder due to its topological nature
and thus is realizable without a fine tuning of parameters.
In particular, while there should be inhomogeneity in cir-
cuit constants of elements constructing the TSS circuit (cf.
Fig. 12), the TSS remains stable against such disorders. To
confirm the stability of the TSS against the inhomogeneity
of circuit constants, we numerically calculate the dynamics
of our first model [Eqs. (1) and (2)] under the fluctuating
coupling strengths. We introduce the fluctuations of param-
eters corresponding to the inhomogeneous circuit elements by
setting the proportion of deviation in the coupling strength
from a site (x; a) to a site (x′; b) to be the same as that from
a site (x′; b) to a site (x; a). We also consider the fluctuation
of the parameters α and β in Eq. (1), which is determined
from the characteristics of the nonlinear current resources in
the circuit of the TSS (cf. Fig. 12). We set the maximum
width of these fluctuations as 10% of the mean values, and
determine them as the distributions follow the uniform distri-
bution. Figure 18 shows the frequency distribution obtained
from the simulation. One can confirm the emergence of the
TSS; that is, the edge oscillators synchronize while the bulk
ones exhibit chaotic behavior (cf. Supplemental Movie 11
[47]). Therefore, the TSS is robust against the fluctuations of

(a)

frequency

frequency

(b)

FIG. 18. Robustness of the TSS against disorders in linear cou-
plings. We numerically simulate the model of the TSS [Eqs. (1)
and (2)] with the inhomogeneous linear couplings. Panels (a) and
(b) show the frequency distributions at times t = 100 and t = 200,
respectively. The edge oscillators exhibit homogeneous and constant
frequencies, while the bulk ones oscillate at time- and space-varying
frequencies. Therefore, we obtain the TSS robustly against the
noise in linear couplings. The parameters used are u = −1, b = 0.5,
α = 0.5, β = 1, ω0 = 1, and �ω = 0.2.

parameters in Eq. (1), which should be of practical advantage
to experimentally realize the TSS.

APPENDIX E: DISPERSION RELATION
OF THE EFFECTIVE HAMILTONIAN

Here we calculate the dispersion relation of the effective
Hamiltonian derived from the linearization of the equation of
our first model [Eqs. (1) and (2)]. Such an effective Hamilto-
nian includes the on-site loss induced by the nonlinear terms,
which depends on the state around which the linearization is
performed. Specifically, such on-site loss terms are obtained
from the linearization of the Stuart-Landau oscillators Ż =
(iω + α − βZ2)Z as

d

dt

(
δX
δY

)

=
(

iω+α−3βX 2
0 −βY 2

0 −2βX0Y0

−2βX0Y0 iω+α − βX 2
0 −3βY 2

0

)(
δX
δY

)
,

(E1)

where Z = X + iY (X , Y are real) and Z0 = X0 + iY0 is the
state around which the equation is linearized. We note that
the coefficient matrix in this equation has eigenvalues iω +
α − X 2

0 − Y 2
0 , iω + α − 3X 2

0 − 3Y 2
0 . Thus, if the square of the

amplitude is X 2
0 + Y 2

0 = α/β (equal to the amplitude of the
isolated Stuart-Landau oscillator), the obtained on-site term
leads to attenuation of the fluctuation.

To determine the intensities of those on-site loss terms, we
first simulate the dynamics of our first model [Eqs. (1) and (2)]
in a 20×20 square lattice under the periodic (open) boundary
condition in the x (y) direction. Here we consider the random
initial condition as in Fig. 1. We obtain the state variables of
the oscillators in the tenth row at t = 200 and linearize the
equation around them. In the calculation of the dispersion re-
lation, we consider a 1×20 supercell structure. Finally, we nu-
merically diagonalize the obtained effective Hamiltonian and
plot the dispersion relation as shown in Fig. 19. We find bulk
modes exhibiting positive imaginary parts of eigenvalues,
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FIG. 19. Dispersion relation of the effective Hamiltonian. We
calculate the dispersion relation of the effective Hamiltonian ob-
tained from the linearization of the first model [cf. Eqs. (1) and
(2)]. We consider the open (periodic) boundary condition in the x
(y) direction and arrange 20 sites in the x direction. While the bulk
bands are gapless as opposed to conventional topological systems,
the edge-localized modes still exist in this dispersion relation. The
edge modes exhibit negative imaginary parts of the eigenvalues.
In contrast, some bulk modes possess positive imaginary parts of
the eigenvalues depicted by the red dashed circle, which indicates
instability of the bulk oscillators. The parameters used are u = −1,
b = 0.5, α = 0.5, β = 1, ω0 = 1, and �ω = 0.

which lead to the chaotic dynamics of the bulk oscillators.
There are also gapless modes with negative imaginary parts
of eigenvalues that are localized at the edge of the sample.
These edge modes should correspond to the edge-localized
Lyapunov vectors in our first model (cf. Figs. 3 and 23). We
note that the non-Hermiticity of the effective Hamiltonian
plays an important role, because nonzero imaginary parts of
eigenvalues correspond to nonzero Lyapunov exponents and
are unique to non-Hermitian Hamiltonians. It is also notewor-
thy that the bulk bands with the positive imaginary parts of the
eigenvalues are derived from the repulsion of the bulk bands
of the original linear couplings with zero imaginary parts (cf.
Figs. 24 and 25). To realize such degenerated imaginary bulk
bands and lasing edge modes, (at least) four oscillators seem
to be necessary at each site.

While nonlinearity generates random on-site loss terms
in the effective Hamiltonian, topological modes are robust
against such disorder. In particular, previous research [43]
shows that the edge modes of the Hamiltonian describing
the linear coupling of our first model (2) are robust against
perturbative on-site gain and loss. In contrast to conventional
topological insulators, the bulk bands are also gapless in
Fig. 21. However, the edge and bulk modes are not degenerate,
and thus edge modes remain in the effective Hamiltonian.

am
plitude

FIG. 20. Amplitude distribution indicating amplitude chaos. The
amplitudes of oscillators at the first components of lattice points are
shown. To obtain the amplitude distribution, we numerically calcu-
late the dynamics of the first model of the TSS [cf. Eqs. (1) and (2)].
The red-filled circles represent the site with small amplitudes. The
existence of such small-amplitude oscillators indicates amplitude
chaos. The parameters used are u = −1, b = 0.5, α = 0.5, β = 1,
ω0 = 1, and �ω = 0.2.

We note that the state-dependent Hamiltonian analyzed in
Figs. 4(a) and 4(b) also includes random on-site loss terms,
while they have no effects on the robust existence of the
topological modes in the state-dependent Hamiltonian.

We note that the imaginary parts of the eigenvalues of
the effective Hamiltonian represent the short-term stability
or instability of the system, while the Lyapunov exponents
represent the long-term stability or instability. The Lyapunov
exponents and vectors correspond to the time-averaged behav-
ior of the effective Hamiltonian and thus are different from
the eigenvalues and eigenvectors of the effective Hamiltonian
obtained at each period. However, since the edge modes are
robust against the unsteady disordered effect of nonlinear
terms, the edge-localized modes and their dissipative behav-
iors remain even after the time averaging.

APPENDIX F: DETAILED ANALYSES ON THE CHAOTIC
BEHAVIOR IN THE TSS

1. Amplitude chaos in the TSS

Amplitude oscillators such as Stuart-Landau oscillators
can exhibit two types of chaos, amplitude chaos and phase
chaos. Amplitude chaos [49] accompanies phase slips where
the amplitudes of oscillators go to zero, and thus the phases
jump. Such amplitude-dependent behavior is unique to ampli-
tude oscillators and thus cannot be described by their phase
equations.

We confirm the amplitude chaos in our first model [cf.
Eqs. (1) and (2)]. We numerically calculate the dynamics of
our model as in Fig. 1 (cf. Supplemental Movie 12 [47]).
Figure 20 plots the amplitudes of the first component at each
site and emphasizes the sites with small amplitudes. A part
of bulk oscillators exhibit almost zero amplitudes, and thus
phase slips can occur. Therefore, amplitude chaos appears in
the bulk of our model. We note that our model can also exhibit
the phase chaotic behavior (i.e., chaos irrelevant to the phase
slips observed in the numerical calculation).
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FIG. 21. IPRs of the Lyapunov vectors in the wavenumber space.
We numerically calculate and plot the IPRs of the Fourier compo-
nents of the Lyapunov vectors obtained from the model of the TSS
[Eqs. (1), (2)]. The relative indices correspond to those in Fig. 3.
We confirm the large IPRs at small relative indices (smaller than
about 0.05) and large relative indices (larger than about 0.95). The
parameters used are u = −1, b = 0.5, α = 0.5, β = 1, ω0 = 0.2, and
�ω = 0.2.

2. Inverse participation ratios of the Lyapunov
vectors in the wavenumber space

While in the main text we analyze the inverse participation
ratios (IPRs) of the Lyapunov vectors in the real space, here
we calculate and discuss the IPRs of our first model [cf.
Eqs. (1) and (2)] in the wavenumber space. In particular,
we find that the IPRs in the wavenumber space classify the
bulk-extended Lyapunov vectors into two groups. To obtain
the IPRs in the wavenumber space, we conduct the Fourier
transformation of the Lyapunov vectors of our model, and
calculate the following value:

IPRw =
∑
i,k

|ṽi(k)|4, (F1)

where ṽi(k) is the Fourier component of the ith component
of the Lyapunov vectors corresponding to the wavenumber
k. Figure 21 presents the IPRs of the Lyapunov vectors in
the wavenumber space. We find that the first and last 10% of
the Lyapunov vectors exhibit large IPRs in the wavenumber
space, while the others exhibit small IPRs. We note that the
Lyapunov vectors corresponding to the small Lyapunov expo-
nents also exhibit large IPRs in the real space. The Lyapunov
vectors exhibiting large Lyapunov exponents and large IPRs
in the wavenumber space should belong to a different class
from the other bulk-extended ones.

The large IPRs in the wavenumber space are related to the
band structure of the effective Hamiltonian obtained from the
linearization of the equations of motion (see Appendix E and
Fig. 19). The bulk modes with large positive imaginary parts
of eigenenergies are concentrated around the wavenumber
ky = 0. Therefore, we can describe the Lyapunov vectors cor-
responding to the large Lyapunov exponents as superpositions
of the bulk modes only around ky = 0, which leads to the large
IPRs in the wavenumber space. We can discuss the large IPRs
of some edge-localized Lyapunov vectors and the small IPRs
of the other ones in a similar way.

Previous research of Hamiltonian chaos [63] has studied
the participation ratio of coefficients of the eigenstates in a

(a) (b)

frequency

frequency

FIG. 22. Frequency distribution of the model of the TSS in a
10×10 lattice. We numerically simulate the first model of the TSS
[Eqs. (1) and (2)] in a smaller lattice than that considered in Fig. 1.
Here, we arrange 10×10 sites and consider the open boundary
condition. Panels (a) and (b) show the snapshots of the frequency dis-
tributions of the first component of oscillators at times t = 100 and
t = 200, respectively. As in the 20×20 lattices (cf. Fig. 1), the edge
oscillators exhibit homogeneous and constant frequencies, while the
bulk ones vibrate at space- and time-varying frequencies. Therefore,
the edge oscillators synchronize, while the bulk ones desynchronize,
which indicates the emergence of the TSS. The parameters used are
u = −1, b = 0.5, α = 0.5, β = 1, ω0 = 1, and �ω = 0.2.

quantum chaotic system when they are described as the super-
position of the eigenstates of decoupled harmonic oscillators.
Such participation ratios classify the eigenstates in chaotic
systems into regular and ergodic ones. In our model, the Lya-
punov vectors exhibiting large (small) IPRs in the wavenum-
ber space correspond to regular (ergodic) ones. However, we
leave the full understanding of the topological synchronized
state in terms of Hamiltonian chaos to a future work.

APPENDIX G: REAL-SPACE DISTRIBUTION
OF FREQUENCIES AND LYAPUNOV

VECTORS IN A 10×10 SQUARE LATTICE

Related to the calculation in Fig. 3, we calculate the dy-
namics of the first model [cf. Eqs. (1) and (2)] of the TSS
in a 10×10 square lattice (see Supplemental Movie 13 [47]).
Figure 22 shows snapshots of the frequencies of oscillators.
We can confirm the frequency synchronization of the edge
oscillators and the desynchronization of the bulk oscillators.
We thus expect that the TSS can appear independently of the
system size.

We also calculate the Lyapunov vectors [26,62] in the
10×10 lattice model and find that some of them are localized
to the edge of the system [cf. Figs. 3(b) and 3(c)]. Here we plot
the Lyapunov vectors in the real space and directly demon-
strate such localization of the Lyapunov vectors. Figure 23
shows some examples of Lyapunov vectors. One can see
that the Lyapunov vector associated with a positive Lyapunov
exponent [Fig. 23(a)] has large amplitudes at a large number
of bulk sites. Meanwhile, most of the bulk sites have small
amplitudes in the Lyapunov vector of the relative index around
0.875 [Fig. 23(b)], which indicates its localization to the
edge. Furthermore, the Lyapunov vector of the largest index
is strongly localized to corner sites as shown in Fig. 23(c),
which leads to the large value of its inverse participation ratio
[see Eq. (6) and Fig. 3(c)]. Thus, these observations of the
Lyapunov vectors in the real space are consistent with the
results in Fig. 3.
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(a)

am
plitude
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FIG. 23. Amplitude distributions of the Lyapunov vectors. The absolute values of the first components of the Lyapunov vectors at each site
are plotted in 10×10 square lattices. (a) The Lyapunov vector associated with a positive Lyapunov exponent (the index n = 50) is shown. One
can confirm that the bulk sites exhibit large amplitudes. (b) The Lyapunov vector of the index n = 700 is shown. We can see its localization to
the edge of the system. (c) The Lyapunov vector associated with the smallest Lyapunov exponent (the index n = 800) is shown. It is strongly
localized to the upper-left corner. Thus, most of the sites have small amplitudes.

APPENDIX H: DISPERSION RELATIONS
OF THE HAMILTONIANS OF

TOPOLOGICAL INSULATOR LASERS

We compare the number of gapless topological modes in
the state-dependent Hamiltonian [cf. Fig. 4(a)] and the origi-
nal Hamiltonian of topological lasing modes (2) utilized as the
linear coupling in our first model. Here, we explicitly show the
dispersion relation of the Hamiltonian of topological lasing
modes without nonlinear loss terms. We consider the periodic
boundary condition in the y direction. We arrange 20 sites and
assume the open boundary condition in the x direction. We
numerically diagonalize the Hamiltonian and obtain the dis-
persion relation shown in Fig. 24. Since all the gapless modes
are doubly degenerate, there are four topological modes in
this Hamiltonian. Meanwhile, the state-dependent Hamilto-
nian exhibits eight topological modes [note that the gapless
modes in Fig. 4(a) are also doubly degenerate]. Therefore,
the nonlinearity-induced on-site loss increases the number of
topological boundary modes in the state-dependent Hamilto-
nian.

To confirm the existence of lasing edge modes in the
Hamiltonian used in our second model Eq. (7), we also calcu-
late its dispersion relation. The Hamiltonian used to describe
the linear couplings is

H (k) =
(

aHQWZ+iu′I2 ibI2

ibI2 HQWZ−iu′I2

)
= (u + cos kx + cos ky) (H1)

×
[

a + 1

2
(I2 ⊗ σz ) + a − 1

2
(σz ⊗ σz )

]

+ sin ky

[
a + 1

2
(I2 ⊗ σy) + a − 1

2
(σz ⊗ σy)

]

+ sin kx

[
a + 1

2
(I2 ⊗ σx ) + a − 1

2
(σz ⊗ σx )

]
+ ib(σx ⊗ I2) + iu′(σz ⊗ I2) (H2)

in the wavenumber space, where HQWZ is the Hamiltonian
of the Qi-Wu-Zhang model [45] and I2 and σx,y,z are the
2×2 identity matrix and the Pauli matrices, respectively. This
Hamiltonian exhibits nonzero Chern numbers and lasing edge

modes, i.e., gapless localized modes with the positive imagi-
nary parts of the eigenvalues. We check the existence of such
edge modes by calculating the dispersion relation under the
open (periodic) boundary condition in the x (y) direction. Fig-
ure 25 shows the dispersion relation of the lasing edge modes.
One can find the gapless modes with positive imaginary parts
of eigenvalues larger than those of the bulk modes. As dis-
cussed in the main text, these edge modes lead to the TSS in
the linearly coupled Stuart-Landau oscillators (cf. Fig. 5).
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FIG. 24. Dispersion relation of the Hamiltonian of topological
lasing modes. We calculate the dispersion relation of the Hamiltonian
of topological lasing modes utilized in our model (2). We consider
the open (periodic) boundary condition in the x (y) direction and
arrange 20 sites in the x direction. We obtain doubly-degenerate
gapless edge modes. Thus, the number of topological modes is four
in this Hamiltonian, which is half of that in the state-dependent
Hamiltonian. The parameters used are u = −1 and b = 0.5.
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FIG. 25. Band structure of lasing edge modes protected by con-
ventional bulk topology. The band structure of the Hamiltonian of
lasing edge modes [Eqs. (7) and (H2)] is shown. There exist gapless
edge modes with larger imaginary parts of eigenvalues than those of
the bulk modes. The parameters used are u = −1, u′ = 0.02, a = 2,
and b = 0.5.

APPENDIX I: ABSENCE OF SYNCHRONIZED PATTERN
IN A TOPOLOGICALLY TRIVIAL SYSTEM

The synchronization pattern discussed in Fig. 10 requires
the topology of linear coupling. To clearly demonstrate this,
we simulate the dynamics of our first model [Eqs. (1) and
(2)] in a topologically trivial parameter regime where the
linear couplings exhibit no edge modes. We set the parameter
u = −3 [cf. Eq. (2)] and the other parameters to be equal
to those used in Fig. 10. Figure 26 shows the frequencies
and the indicators of order parameters in the nontopological
parameter region. We can confirm that the frequencies of the
oscillators around damped ones are close to those away from
damped regions and the indicators of order parameters are
small, which implies the absence of the TSS (cf. Supplemental
Movie 14 [47]). Therefore, the topology and edge modes of
the linear couplings play a vital role in the synchronization
pattern designing.

APPENDIX J: CIRCUIT EQUATION
FOR REALIZING THE TSS

Previous studies [46,55,64–67] have proposed and realized
topological edge modes in electrical circuits. The relation
between the input current Ia and the electrical potential Va at
each node is described by Kirchhoff’s law,

Ia =
∑

b

Cab(Va − Vb) + CaVa =
∑

b

JabVb, (J1)

where Cab (Ca) is the inverse of the impedance between site
a and b (site a and ground). iJab plays the role of the ef-

(a)

(b)

frequency
indicator of local
order param

eter

FIG. 26. Absence of synchronization pattern in a topologically
trivial parameter regime. We numerically simulate the first model of
the TSS [Eqs. (1) and (2)] in a topologically trivial parameter regime
and confirm the absence of the TSS and its synchronization pattern.
We damp the oscillators outlined by the green boxes. The parameters
used are u = −3, b = 0.3, α = 0.5, β = 1, ω0 = 0.1, and �ω = 0.2.
(a) The frequency of the first component of the oscillator at each
site at time t = 200 is depicted. The undamped oscillators exhibit
inhomogeneous frequencies around −2.0. (b) The indicator of the
local order parameter of the first component of the oscillator at each
site is shown. The indicator is small at every site, which indicates the
absence of the synchronized oscillators.

fective Hamiltonian in electrical circuits. Resistors play the
role of imaginary couplings, while capacitors and inductors
lead to real terms in the effective Hamiltonian. By tuning the
impedances of circuit elements, one can realize the effective
Hamiltonian imitating topological materials. If we introduce
capacitors with capacitance C as current resources, we can
rewrite Eq. (J1) as

dVa

dt
= 1

C

∑
b

JabVb, (J2)

which governs the time evolution of the voltage at each node.
To realize the electrical circuit of topological lasing modes,

we utilize negative impedance converters with current inver-
sion (ICINs), which is discussed in a previous study [55]. The
ICINs realize nonreciprocal couplings (Cab �= Cba) that cannot
be realized by using resistors, inductors, and capacitors. Input
current Iin and output current Iout are described as

Iout = 1

R
(Vin − Vout ), (J3)

Iin = − 1

R′ (Vin − Vout ), (J4)

where Vin (Vout) is the electric potential at the input (output)
side. We assume R = R′ in the electrical circuit of the TSS (cf.
Fig. 12). Then by tuning the parameters of circuit elements,
one can construct the effective Hamiltonian iJ that is equal
to the Hamiltonian of the topological insulator laser [42,43]
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used in our first model (2). It is noteworthy that impedances
of capacitors and inductors and thus the effective Hamiltonian
iJ depends on the driving voltage frequency.

To directly realize an electrical circuit whose voltage dy-
namics is described by nonlinear equations similar to our
model, we next omit capacitors and inductors and construct
a frequency-independent circuit of topological lasing modes.
To effectively realize imaginary terms without capacitors and
inductors, we prepare twice the number of nodes compared
to the circuit in Fig. 12 and express one complex-valued state
variable by using the voltages at two nodes as Z = V1 + iV2.
Then, real and imaginary couplings are substituted as

CZj →
(

C 0
0 C

)(
Vj1

Vj2

)
, (J5)

iCZj →
(

0 −C
C 0

)(
Vj1

Vj2

)
, (J6)

where C is real. These real couplings are realized by the
substitution of circuit elements shown in Fig. 12(b).

Each node in the topological circuit of the TSS consists of
van der Pol circuits [53,54], which realize nonlinear oscilla-
tors. To construct the van der Pol circuits, we utilize nonlinear
resistors whose conductance is described as C̃(Vi ). The dy-
namics of the van der Pol circuits is derived by Kirchhoff’s
law as

C
dVi

dt
= C̃(Vi )Vi + Iin, (J7)

where C is the capacitance of the capacitor and Iin is the
input current. When we can expand C̃(Vi) as C̃(Vi) = α −
βV 2

i + O(V 3
i ), the dynamics of the van der Pol circuits can be

approximated by the Stuart-Landau oscillators in the leading
order. Therefore, the entire dynamics of the circuit imitates
the first model of the TSS [Eqs. (1) and (2)].
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