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Charge ambiguity and splitting of monopoles
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This paper focuses on topological defects, appearing in mean-field-theory treatments of physical systems such
as ultracold atomic gases and gauge field theories. We begin by investigating the ambiguity and addition of
topological charges using the mathematical formalism of covering spaces, which clarifies many aspects these
phenomena. Subsequently, we classify topological-defect configurations consisting of several monopoles and
unknotted ring defects in terms of homotopy groups and fundamental-group actions on them, thus generalizing
the previous classifications of a single monopole and a single unknotted ring defect. Finally, we examine
the decay of multiply charged topological monopoles under small perturbations of the physical system, and
analyze the conditions under which multiply charged monopoles are inclined to split into several singly charged
monopoles.
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I. INTRODUCTION

For the past century, the theory of topology has been
fruitfully applied [1] in a variety of computational [2] and
physical problems [3]. For example, it has been used in the
study of graph colorings [4,5] and computational electro-
magnetics [6], and has provided ways to classify materials
and their properties in terms of the lattice structure [7] or
the structure of electronic wave functions in conductors [8].
Curiously, topological defects in an ordered medium, i.e.,
nontrivial structures that cannot be fully removed by local and
continuous deformations of the medium, have attracted persis-
tent scientific fascination [7,9–12], including investigations of
the compatibility of cosmic microwave background with the
existence of topological defects in the early universe [13,14]
and the recent spatially resolved observations of monopoles
[15], knots [16], and three-dimensional skyrmions [17] in
quantum fields. Usually, topological defects are treated as
classical objects, but their quantum nature has attracted some
attention recently [18].

It has been understood since the late 1970s that
topological defects can be classified using the methods
of homotopy theory [7,11,19,20], and that a fundamen-
tal role in the classification is played by the homotopy
groups πn(X ) of the order parameter space X , which
is the space of all physically distinct local configura-
tions of the system. For example, in a three-dimensional
system, a nontrivial fundamental group π1(X ) permits
topologically distinct line defects, vortices, and a nontrivial
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second homotopy group π2(X ) permits topologically distinct
point defects, monopoles. However, in order to fully classify
topological-defect configurations and to study interactions be-
tween multiple defects, the homotopy groups of X are not
enough. An immediate manifestation of this is the behavior of
monopoles around line defects: depending on the type of the
monopole and the vortex, it may be possible that the charge
of the monopole is altered as it travels around the singular
line, or through a ring [10,21–23]. There exist condensed-
matter realizations of these types of line defects, namely, Alice
strings and Alice rings that can appear in certain gauge field
theories [10,23,24] and are thought to be a potential solution
to the baryogenesis problem [25]. Remarkably, Alice rings
have recently been observed in condensed-matter systems
[26], which may allow in the future experimental studies of
the topology of these peculiar structures.

However, the existing literature is currently lacking clar-
ity in the formulation of topological-charge ambiguity and
topological-charge addition. If the order parameter space is
the real projective plane RP2, which is also referred to as the
space of nematic vectors, these phenomena are well under-
stood [9]. Namely, isolated charges are not classified by their
integer charge π2(RP2) ∼= Z but rather by its absolute value,
due to the action of the fundamental group on π2. However,
in the presence of multiple charges, also the relative signs are
well defined, leaving only the total sign of the system ambigu-
ous. Moreover, the combined charge of several monopoles can
be computed by locally orienting the directors around the coa-
lescence path, leading to more refined information than charge
combination using the orbit group of Trebin [20], which loses
all information of the charges except their values modulo 2.

In this article, we propose a conceptually clear description
of charge ambiguity and the charge addition process using a
generalization of the above picture. The mathematical frame-
work of covering spaces and lifting results [27] is well suited
for this purpose, the case of nematic fields and their orienta-
tions corresponding to the two-sheeted covering of RP2 by the
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sphere S2. As with nematics, this approach to charge addition
allows us to retain more information than when employing the
orbit group [20]. The idea is to replace the order parameter
space X with the source of a particularly symmetric covering
space X̃ → X having the property that the topological charges
of monopoles in fields taking values in X̃ are unambiguous,
and can be added using the group law of π2(X̃ ).

In addition, we classify the topological-defect configu-
rations consisting of ring defects and monopoles, up to
continuous deformations that leave the cores fixed. This is
mathematically equivalent to classification up to continuous
deformations that, roughly speaking, do not alter the topology
of the core configuration [28]. The result is a generalization of
the well-known classification of monopole configurations [9]
and isolated ring defects [29]. Classification in the presence
of knotted cores is more involved [30], and we leave general
investigations of knotted defects for future work. Instead, we
advance the study of multiply charged monopoles by showing
that such a monopole can be split into several monopoles of
charge ±1 using an arbitrarily small local modification. More-
over, under certain physically realistic hypotheses, almost any
small perturbation will have such an effect.

Throughout the work, we denote by (X, x) the order pa-
rameter space considered as a pointed space, i.e., X is a
topological space and x ∈ X is a distinguished point, the
basepoint. In Sec. II we study the phenomenon of charge
ambiguity and the process of charge addition using a par-
ticular covering space of X as the main tool. In Sec. III
we classify topological-defect configurations consisting of
monopoles and ring defects by the means of elementary ho-
motopy theory, and in Sec. IV we study how multiply charged
monopoles split using topology and differential geometry of
manifolds. In Appendix B, we summarize the theory of cov-
ering spaces and deck transformations, and in Appendix C we
define mapping spaces and recall their basic properties. When
referring to the Appendixes, we refer to the exact position
where the result being used is presented. For example, the
computation of the set of homotopy classes of maps in terms
of the set of basepoint-preserving homotopy classes of pointed
maps will be referred to as Corollary C.1. The reader who
is not interested in the mathematical details is suggested to
ignore these references.

II. CHARGE AMBIGUITY AND CHARGE ADDITION

In this section, we study charge ambiguity and charge
addition using a particularly well-behaved covering space of
the order parameter space X . This covering space allows us
to enhance order parameter fields into closely related fields
without charge ambiguity and where the combined charge of
several monopoles can be computed using the group operation
of the second homotopy group. Section II A treats systems
containing monopoles and Sec. II B expands these studies to
systems containing monopoles and ring defects.

Recall that a covering space q : Ỹ → Y is a particularly
simple finite-to-one map. For the rest of this section, we
denote by p : (X̃ , x̃) → (X, x) the covering space of smallest
degree which has the property that the π1(X̃ , x̃) action on
π2(X̃ , x̃) (Definition B.6) is trivial. We refer to such a covering
space as the charge ambiguity resolving cover (CARC). The

existence of such a covering space is guaranteed by Proposi-
tion B.3. For example, in the case of a real projective plane
RP2, the CARC is provided by the map S2 → RP2 that iden-
tifies antipodal points.

A more interesting example arises as the CARC of the or-
der parameter space of an SO(10) grand unified theory (GUT)
equipped with a Higgs field that breaks the SO(10) symmetry
down to SO(2)5

� S5 [31]. Hence, the order parameter space
is homeomorphic SO(10)/[SO(2)5

� S5], and the CARC is
given by the 120-fold covering space SO(10)/SO(2)5 →
SO(10)/[SO(2)5

� S5]. This is a toy model: its purpose is
to illustrate interesting topological behavior by means of a
simple example, rather than provide a physically realistic
example of a symmetry-breaking pattern potentially useful
in describing our universe. See Table I to find other relevant
examples of CARCs.

We model the spatial region of our physical system, the
cloud, with the solid ball B3 := {y ∈ R3 : ||y|| � 1}, and de-
note by C ⊂ B3 the the points where the order parameter is
well defined. Concretely, B3 can be the extent of a spinor
Bose-Einstein condensate, and C the complement of the cores
of the various singular defects contained in the cloud. The or-
der parameter field is modeled by a continuous map � : C →
X . Given topological spaces Y and Z , the set of homotopy
classes of continuous maps Y → Z is denoted by [Y, Z].

A. The simply connected case

In this section, we restrict to the case where the order
parameter field has finitely many monopoles and no other
defects. In other words, C is a solid ball B3 with finitely
many points removed from its interior. Thus C is simply
connected. Given an embedded sphere � ⊂ C, the finest ho-
motopy theoretic invariant of the order parameter field � one
can associate to � is the free homotopy class [�|�] ∈ [S2, X ],
which by definition classifies the the winding of � along � up
to homotopy. We call this element the type of the topological
charge contained inside �. As the free homotopy classes of
maps from S2 to X correspond to π1(X, x) orbits in π2(X, x)
[7], it makes sense to define the topological charge inside �

as an element of π2(X, x) belonging to the π1(X, x) orbit cor-
responding to [�|�]. The topological charge is by definition
ambiguous up to the π1 action on π2(X, x). If � encloses
a single monopole at y ∈ B3\C, then the topological charge
inside �, and its type, are referred to as the topological charge
of the monopole at y, and the type of the monopole at y,
respectively. More generally, if � encloses the monopoles at
y1, . . . , yn ∈ B3\C and no others, then the topological charge
inside � is the combined topological charge of the monopoles
at y1, . . . , yn. The type of the combined charge is a well-
defined element of π2(X, x)/π1(X, x) rather than just of the
orbit group [20], and therefore our approach retains more
information than the one employing the orbit group.

In order to study these phenomena in more detail, we
choose a continuous lift �̃ : C → X̃ of �, taking values
in the CARC, the existence of which is guaranteed by
Lemma B.2. Because the π1 action on π2(X̃ , x̃) ∼= π2(X, x)
is trivial, it follows that [S2, X̃ ] and π2(X, x) are isomorphic
sets. Importantly, every monopole of the lifted field �̃ has
an unambiguous topological charge, and the charge addition
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TABLE I. Examples of physically relevant order parameter spaces, their first and second homotopy groups, and the π1 action on π2. The
target of the CARC is the order parameter space of the system. The π1 action on π2 is denoted by α.β, where α ∈ π1 and β ∈ π2.

System Phase CARC π1 π2 π1 action

Liquid crystal UN [21] S2 → RP2 Z2 Z [n].m = (−1)nm
Gaseous BEC Spin-1 polar [21] S1 × S2 → (S1 × S2)/Z2 Z Z n.m = (−1)nm

Spin-2 UN [21] S1 × S2 → S1 × RP2 Z × Z2 Z (n1, [n2]).m = (−1)n2 m
3He-A Dipole free [21] S2 × SO(3) → (S2 × SO(3))/Z2 Z4 Z [n].m = (−1)nm
SO(10) GUT Various SO(10)/SO(2)5 → SO(10)/[SO(2)5

� S5] S5 Z5
even (σ, [n]).(m1, . . . , m5) = (mσ1 , . . . , mσ5 )

process described in the previous paragraph reduces to the
group law of π2(X̃ , x̃) ∼= π2(X, x). The lift �̃ is not unique;
however, the different lifts are related to each other via sym-
metries of the CARC X̃ relative to X (Definition B.4). The
charge of a single monopole, computed in various lifts �̃,
ranges through all the elements in the corresponding π1 orbit
of π2(X, x) (Remark B.2). Another subtle point is that, even if
two monopoles of the system are of the same type, they might
lift to monopoles of different charges. If two monopoles lift to
monopoles of different charge in one lift, then this is true for
all lifts. This behavior is illuminated by a concrete example in
Fig. 1.

B. Beyond the simply connected case

Here, we consider an order parameter field that has, in
addition to monopoles, singularities in the form of unknotted
circles in the interior of the cloud. Such systems occur in
condensed-matter physics, for example, if monopoles decay
into Alice rings [26,32]. This situation creates a new chal-
lenge: the field may no longer admit a lift taking values in
the CARC, as is illustrated by Fig. 2. However, one can define
the π1-equivalence class of topological charge of the field �

inside an embedded sphere � ⊂ C as above, generalizing the
definition of topological charge of an isolated monopole to
this situation. We would like to define the topological charge
of a ring defect in a similar fashion, but here a problem arises:
there may be multiple homotopically inequivalent embedded
spheres S2 ⊂ C that enclose only a single ring defect and no
other defects [see Figs. 3(a) and 3(b)]. Hence, without any
further choices, the topological charge of a ring defect is ill
defined, even as an element of π2(X, x)/π1(X, x).

A conceptually clear solution to all of the problems men-
tioned above is provided by equipping each singular ring
with a membrane, that is, a two-dimensional disk, possibly
deformed, closing the loop. The complement C′ of the mem-
branes in C is simply connected. Moreover, the ring-shaped
core has a unique homotopy class of enclosing spheres that
do not cross the membrane, and the topological charge inside
such a sphere is referred to as the Cheshire charge of the
ring defect [10,23]. Importantly, the restriction � ′ of � to
C′ admits a lift �̃ ′ : C′ → X̃ taking values in the CARC by
Lemma B.2.

The lifted field �̃ ′ behaves in an interesting fashion near
the membranes: there are two limiting configurations on the
membrane obtained by approaching it from opposite sides
(Fig. 4). This behavior is analogous to the gauge disconti-
nuities that appear in the study of Alice rings in cosmology
[10,23] and branch cuts that appear when investigating

FIG. 1. Charge ambiguity and addition for a nematic vector field.
A nematic field � taking values in RP2 and its lifts �̃1 and �̃2. All
configurations have z as an axis of rotational symmetry. The field
� is visualized as a field of arrows without heads, or rods, and the
lifted fields �̃1 and �̃2, taking values in the universal cover S2, are
illustrated as the oriented versions of �. Topological charges of the
monopoles are well defined in the lifted fields �̃i, red and blue indi-
cating charge +1 and −1, respectively. The two lifts are interchanged
by the symmetry of the CARC that reverses the orientation of the
arrows. Any two monopoles will have either identical or opposite
signs regardless of the chosen lift, and the absolute value of the total
charge inside the cloud is always +1.
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FIG. 2. Once a monopole in the nematic field (dot on the left)
decays into an Alice ring (ring on the right), the field may no longer
admit a lift along a covering space. This failure is caused by the
existence of closed loops that would have to flip the orientation,
as illustrated in the figure. Mathematically, this is the content of
Lemma B.2 and Remark B.1.

knotted defects in nematic liquid crystals [30]. A convenient,
although not physically distinguishable, way to mathemati-
cally describe this behavior is to consider every ring with a
membrane as a portal that operates on fields passing through
by applying to them a discrete symmetry of the CARC X̃
relative to X .

The framework described in the previous paragraph also
provides some insight on charge transfer, which has been
studied previously [12,21,22]. The order parameter field near
a monopole which travels through a membrane is transformed

FIG. 3. [(a), (b)] Two homotopically nonequivalent ways of en-
closing the ring-shaped singularity inside a sphere while leaving the
monopole outside. If the ring is equipped with a membrane, as in
(c), there exists a unique homotopy class of embedded spheres that
do not cross the membrane and enclose only the ring defect. [(c),
(d)] Additional homotopically nonequivalent choices of membranes.
(e) The following two processes are topologically equivalent: the
membrane is moved past a monopole and the monopole is moved
through the membrane. Note that the Cheshire charge of the ring
after the monopole has passed through it is equal to the topological
charge inside the sphere in (b).

FIG. 4. (a) Slice of a ring-shaped singularity (purple dots) with
a membrane (gray line) together with the lifted order parameter field
on the complement of the membrane. (b) The lifted order parameter
field has two limiting configurations on the membrane, which in the
picture are related to each other by the antipodal symmetry of S2. It
is possible to show that, in general, the two limiting configurations
are related to each other by a symmetry of the CARC X̃ relative to X
(Definition B.4). (c) If a monopole passes through such a membrane,
one has to apply the symmetry g to the order parameter field around
it, altering the topological charge of the monopole from q to g.q.
Since the total charge inside the sphere remains unchanged, the
Cheshire charge of the ring must change by q − g.q [10,22].

by a symmetry g of the CARC X̃ . This can affect the charge
of the traveling defect, and consequently charge conservation
dictates that the Cheshire charge of the ring must also be
affected, as shown in Fig. 4.

We end this section by proposing a mathematical definition
of an Alice ring which captures the essential topological fea-
tures. The proposed definition generalizes cosmic Alice rings
[10,23] and half-quantum vortex rings [21,22].

Definition II.1. Let D ⊂ B3 be an unknotted ring-shaped
singularity, and let γ be a small loop that winds about the sin-
gularity once. We define D to be an Alice ring (for monopoles)
if any element, or equivalently every element, of the conju-
gacy class of π1(X, x) corresponding to � ◦ γ : S1 → X acts
nontrivially on π2(X, x). In physical terms, D is an Alice ring
if it there exists a type of monopoles, the charge of which
would be altered by traveling about D.

III. CONFIGURATIONS OF MONOPOLES
AND RING DEFECTS

In this section, we study and classify defect configura-
tions consisting of monopoles and unknotted ring defects,
generalizing the well-known classification of monopole con-
figurations [9] and of isolated ring defects [29]. Our method
is to decompose the complement of the cores into simple
pieces, and then invoke standard properties of mapping spaces
reviewed in Appendix C.

More precisely, we aim to find the elements of the set
[C, X ], where C—as in Sec. II B—is the complement of iso-
lated points and unknotted circles inside a solid ball B3. Note
that the elements of [C, X ] are the topological-defect config-
urations of the system with a prespecified core configuration,
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FIG. 5. (a) Solid ball containing two unknotted ring defects and
a monopole (purple dashed circle, purple dot) is equivalent to the
space obtained from several balls containing a single defect by at-
taching them together at a point. (b) The complement of an unknotted
circle inside a solid ball is equivalent to the space that is obtained
by attaching a circle and a sphere at a point. The intermediate
spaces are a hollow sphere with a chord running through it, and a
homeomorphic (abstract) topological space presented by a different
three-dimensional embedding.

considered up to continuous deformations leaving the cores
fixed. However, as any smooth isotopy of the configuration of
cores—roughly speaking, deformation in which defect cores
are not allowed to be pinched, to cross each other, or to be
pierced by the order parameter field—can be canceled by an
ambient isotopy of B3 [28], the set [C, X ] may be regarded as
classifying topological-defect configurations up to continuous
deformations that change the core configuration up to smooth
isotopy.

As illustrated in Fig. 5, C is homotopically equivalent to
a space that is obtained from several clouds, each of which
contains a single defect, by attaching them at a single point.
Moreover, each of these pieces is equivalent to either S2 if
the cloud contains a monopole or the space obtained from
attaching a circle S2 and a two-sphere S2 at a single point.
Such a decomposition allows us to compute [C, X ] using the
methods of Appendix C (Proposition C.2 and Corollary C.1):
[C, X ] is isomorphic to

[∏
y

π2(X, x)y

]
×

[∏
d

π1(X, x)d × π2(X, x)d

]/
π1(X, x),

(1)

where y and d range over all the monopoles and the ring
defects of the system, and where π1(X, x) acts on each factor
of the product by the usual π1 action on πi (Definition B.6).
In other words, the equivalence class of the configuration is
completely determined by the topological charges of all the
defects and the topological vorticities of all the ring defects,
and these data are ambiguous up to the simultaneous action of
π1(X, x).

IV. INSTABILITY OF MULTIPLY CHARGED MONOPOLES

In this section, we study the stability properties of isolated
monopoles. We will proceed by identifying the topological
charge with the degree of a proper map of manifolds and then
invoking well-known transversality theorems. The physical
interpretation of this is that a multiply charged monopole may
be split into multiple singly charged monopoles.

As in Sec. II A, C is the complement of finitely many points
in the interior of a solid ball. Furthermore, we assume that
the order parameter space is such that the CARC is of the
form S2 × Y , where Y is a space with trivial π2(Y ). The first
four rows of Table I are examples of such order parameter
spaces. An order parameter field � : C → X admits a lift
�̃ : C → S2 × Y by Lemma B.2. Moreover, by neglecting the
Y component of �̃, and accounting for the magnitude of the
order parameter, we obtain a map 	 : B3 → R3. Note that
C is the preimage of R3\{0̄}, where 0̄ denotes the origin,
and the cores of the monopoles are exactly the points in the
preimage of 0̄. A monopole at y ∈ B3 is regular if 	 is a local
homeomorphism at y; i.e., there exists an open neighborhood
of y mapping homeomorphically—in a way that admits a
continuous inverse—onto an open neighborhood of 0̄. Such
a monopole has topological charge ±1. We assume that none
of the monopoles is situated at the boundary ∂B3 of the cloud;
in other words, the image 	(∂B3) is disjoint from 0̄.

Let U be an open ball around 0̄ ∈ R3 that is small enough
to be contained in the complement of 	(∂B3). The preim-
age V := 	−1U ⊂ B3 consists of the volume of the cloud
on which the order parameter is “small” in magnitude. We
assume for simplicity that V is homeomorphic to the disjoint
union

∐
i∈I Vi, where each Vi contains a single monopole,

located at yi, the degree of which is denoted by ni. It turns
out that the restricted maps 	i : Vi → U have degree ni [33],
respectively. Well-known results in the topology of manifolds
[34] imply that the field 	 can be modified, locally around
the points yi (i.e., leaving 	 unchanged outside V ), up to
homotopy, in a way that splits the monopole at yi into exactly
|ni| regular monopoles contained in the near vicinity of yi (i.e.,
inside Vi). Moreover, these local modifications can be chosen
to be arbitrarily small.

In fact, multiply charged monopoles are extremely unstable
in the following sense. Let us call v ∈ B3 a regular point of 	

if 	 is a local homeomorphism at v, and u ∈ R3 a regular
value of 	 if the preimage 	−1{u} consists of finitely many
regular points. A point or a value that is not regular is called
critical. Under the assumption that 	i : Vi → U is open and
discrete [35], sets of critical points and critical values have a
codimension of 2 inside U [35,36]. It follows that for every
regular value u, i.e., every point of U outside a subset of
codimension 2, the preimage of u consists of |ni| regular
points. Under the alternative hypothesis that the 	i are once
continuously differentiable, by Sard’s theorem [37,38] the set
of critical values in U has measure 0, and so the preimage of
almost any u ∈ U consists of regular points, whose degrees
add up to ni. See Fig. 6 for illustration of this behavior in one
dimension. Hence, in either of the two cases considered above,
applying almost any small perturbation by a constant function
to the field 	 will split all the monopoles into monopoles of
charges ±1 in a way that preserves the total charge.
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FIG. 6. Transposed graph of a proper and continuously differ-
entiable map f : R → R is projected to the value f (x). The map
f is orientation reversing on the segment between points y1 and y2

(marked in blue), and orientation preserving elsewhere. It is not open
at y1 and y2 where it changes orientation, as the images of small open
neighborhoods of these points are half-open intervals. If we regard
f as an order parameter field, there exists a “monopole” of degree 1
at y3 and a monopole of degree 0 at y2. A small perturbation either
completely destroys the monopole at y1 or creates a ±1 monopole-
antimonopole pair in its place, depending on the direction of the
perturbation. In either case, the total charge is conserved.

V. CONCLUSIONS

We studied charges of topological defects using a particu-
larly symmetric covering space of the order parameter space
X . Even though the charge of an isolated monopole is well
defined only up to the π1 action on π2(X ), the configuration
of n charges is well defined up to a simultaneous π1 action on∏n

i=1 π2(X ), allowing for the computation of the combined
charge of several monopoles as an element of π2(X )/π1(X ).
This is an improvement over the orbit group approach [20],
which may be used to compute the combined charge only
modulo the subgroup of π2(X ) generated by elements of form
q − α.q, where q ∈ π2(X ) and α ∈ π1(X ). Our method also
illuminates the influence of ring-shaped defects on monopoles
and the phenomenon of Cheshire charge. We also suggested a
definition for an Alice ring in purely topological terms: it is a
ring defect the vortex type of which, considered as an element
of π1, has a nontrivial action on π2.

We classified defect configurations consisting of
monopoles and ring defects, up to continuous deformations
that leave the cores fixed. The configurations are classified by
the topological charges of the defects and by the topological
vortex types of the ring defects, up to simultaneous π1

actions. We also studied the stability of multiply charged
monopoles and showed that it is possible to split a multiply
charged monopole into monopoles of degrees ±1 using only
small local modifications to the order parameter field. In
physical terms this implies that a multiply charged monopole
is topologically equivalent to a defect configuration consisting
of multiple singly charged monopoles.

Our results provide a “geometric” means to understand
topological charge amalgamation and the topological influ-
ence of vortices on topological charges, generalizing the

method of orienting fields of nematic vectors. They can
be used as tools in the theoretical investigation of a wide
variety of condensed-matter systems containing monopoles
and ring defects. Moreover, many interesting questions about
condensed-matter systems containing more complicated de-
fect configurations, such as knotted or linked vortex loops,
remain open.
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APPENDIX A: MATHEMATICAL NOTATION

Here, we explain common mathematical notation used
throughout the article.

Symbol Meaning

∼= Isomorphism or a homeomorphism.
� Homotopy equivalence.
[x] Equivalence class of x.
{x} One-element set containing x.
X → Y Map from X to Y .
X ↪→ Y Injective map X → Y .
x 	→ f (x) Formulaic description of a map f : X → Y .

Also known as an anonymous function.
f −1S Inverse image of S ⊂ Y in a map f : X → Y .
[X,Y ] Homotopy classes of continuous maps

X → Y .
[X,Y ]∗ Basepoint-preserving homotopy classes of

pointed maps (X, x) → (Y, y). The
basepoints x ∈ X and y ∈ Y are usually
omitted from notation.

πn(X, x) nth homotopy group of X based at x ∈ X .
Isomorphic as a set to [Sn, X ]∗.

Deck(X̃/X ) Group of deck transformations of a covering
space X̃ → X .

X
∐

Y Disjoint union.
X ∨ Y Wedge sum of pointed spaces (X, x) and

(Y, y).
g.x Given an action of a group G on a space or a

set X , this denotes the result of acting by
g ∈ G on x ∈ X .

X/G Quotient space or set. Also called the set or
the space of orbits.

APPENDIX B: COVERING SPACES

In this section, we recall the basics of the theory of cov-
ering spaces. A basic reference with many pictures is Chap.
1.3 of Hatcher’s book [27]. As a general rule, we give full
statements of the results, but we do not explain the technical
terminology unless absolutely necessary. We stress here that
all the technical assumptions appearing in this section hold
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FIG. 7. (a) Examples of a trivial and nontrivial covering space
(of degree 2) of the circle S1. (b) Nontrivial covering of degree n
of S1, regarded as the unit circle in the complex plane. The unique
lift γ̃ of the path γ starting at 1 is indicated in the picture. The
group of deck transformations is given by rotations by 2π/n rad.
Since there are exactly n such rotations this is a Galois covering.
(c) The fiber F1 over one of the six-fold cover. The monodromy action
of [γ ] cyclically permutes the elements in the fiber. Note that for
each deck transformation ψ , there exists a homotopy class of loops
whose monodromy action on F1 coincides with the action of ψ on F1

(cf. Proposition B.1). (d) Example of a non-Galois covering space:
the only deck transformation is the identity, but the covering has
degree 3.

for manifolds, which should be connected if the result asks
for connectivity. We do not repeat the statement of this as-
sumption below.

Definition B.1. Let X be a topological space. Then a cov-
ering space of X is a continuous morphism p : X̃ → X
having the property that for any x ∈ X , there exists an open
neighborhood U of x and a homeomorphism φ :

∐
i∈I Ui →

p−1U—each Ui being a copy of U—such that the composition∐
i∈I

Ui
φ−→ p−1U

p|p−1U−−−→ U

restricts to the identity map on each Ui. If X is path connected,
then the degree deg(p) of p is the cardinality of any set I that
appears as above. See Fig. 7 for examples.

Lemma B.1 (Path lifting lemma). Let p : X̃ → X be a cov-
ering space, and let γ : [0, 1] → X be a continuous path in
X . Let x̃0 ∈ X̃ be such that p(x̃0) = γ (0). Then there exists a
unique continuous map γ̃ such that γ = p ◦ γ̃ and γ̃ (0) = x̃0.
The path γ̃ is called the lift of γ starting at x̃0.

Analogously, for each x̃1 satisfying p(x̃1) = γ (1), there
exists a unique lift of γ ending at x̃1.

Definition B.2. Let p : X̃ → X be a covering space, x ∈ X ,
and consider the fiber over x, Fx := p−1{x}. The monodromy
action of π1(X, x) on Fx is defined as follows: given [γ ] ∈
π1(X, x) and a ∈ Fx, we define [γ ].a as γ̃ (0), where γ̃ is the

unique lift of γ ending at a. The result does not depend on the
chosen representative γ .

The path lifting lemma can be used to prove a more general
lifting result. Before this, we need the following definition.

Definition B.3. A pointed space is a pair (X, x), where
X is a topological space and x ∈ X . A morphism or a map
f : (X, x) → (Y, y) of pointed spaces is a continuous map
f : X → Y satisfying f (x) = y.

Lemma B.2 (General lifting lemma). Let p : (X̃ , x̃) →
(X, x) be a (pointed) covering map, and let f : (Z, z) → (X, x)
be a morphism of pointed spaces, where Z is connected and
locally path connected. Then there exists a unique lift
f̃ : (Z, z) → (X̃ , x̃), i.e., f = p ◦ f̃ , if and only if the image
of f∗ : π1(Z, z) → π1(X, x) is contained in the image of the
injective homomorphism p∗ : π1(X̃ , x̃) ↪→ π1(X, x).

Remark B.1. Consider the fiber sequence

(Fx, x̃)
i

↪→ (X̃ , x̃)
p−→ (X, x),

where i is the inclusion of the fiber over x. The long exact
homotopy sequence gives the following sequence of maps,

{e} → π1(X̃ , x̃)
p∗−→ π1(X, x)

δ−→ Fx,

proving immediately that p∗ is injective. The map δ is closely
related to the monodromy action as δ sends [γ ] to [γ ].x̃.
The class [γ ] lies in the image of p∗ if and only if it lifts
to a closed loop starting at x̃. If X̃ is path connected, δ is
a surjection, and hence Fx—equipped with the monodromy
action—is isomorphic to the π1(X, x) set π1(X̃ , x̃)\π1(X, x)
(left cosets).

Definition B.4. The group of the covering-space automor-
phisms of p : X̃ → X , i.e., homeomorphisms ψ : X̃ → X̃
such that p = p ◦ ψ , is called the group of deck transforma-
tions of p, and it is denoted by Deck(X̃/X ). The canonical
group action of Deck(X̃/X ) on X̃ is compatible with the
projection p by definition. Hence, we obtain an induced mor-
phism p̄ : X̃/Deck(X̃/X ) → X .

Definition B.5. If both X̃ and X are path connected and p̄
is a homeomorphism, then p is called a Galois covering. Note
that by Lemma B.2, the action of Deck(X̃/X ) restricts to a free
action on the fibers Fx. It is clear that p is Galois if and only
if the action is transitive as well. Moreover, if deg(p) is finite,
then p being a Galois covering is equivalent to the equality
|Deck(X̃/X )| = deg(p).

Example B.1 (Finite Galois coverings arise as quotients).
If X is a connected Hausdorff topological space and a finite
group G acts on it freely, then the quotient map X → X/G
is a Galois covering with Deck(X/(X/G)) = G. Conversely,
if p : X̃ → X is a Galois covering, then p is equivalent to
X̃ → X̃/Deck(X̃/X ).

Proposition B.1 (Characterization of Galois covers). Let
X be connected and locally path connected, and suppose
p : X̃ → X is a connected covering. Then p is a Galois
covering if and only if there exists such a x̃ ∈ X̃ that the
subgroup

p∗ : π1(X̃ , x̃) ↪→ π1(X, p(x̃))

is normal. It this is the case, then the above holds for all x̃ ∈ X̃ .
Proposition B.2 (Presentation of the Galois group). Let

(X̃ , x̃) → (X, x) be a pointed Galois covering. Since
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FIG. 8. (a) Action of a path γ from x0 to x1 on higher homotopy
groups. Left: An element [A] ∈ πn(X, x1) is presented by depicting
A as a continuous map from the n hypercube to X taking constant
value x1 at the boundary. Right: The class γ∗[A] is presented in a
similar fashion. (b) Path α̃ in X̃ is the unique lift of a closed loop α

in X starting at x̃. If there exists a deck transformation ψα satisfying
ψα (x̃) = α̃(1) (unique such deck transformation exists if X̃ → X is
a Galois covering; see Proposition B.2), then it transforms a sphere
f : S2 → X̃ attached to x̃ by a path γ to a sphere that is attached in a
similar manner to α̃(1).

Deck(X̃/X ) acts freely and transitively on Fx, the function

φ : g ∈ Deck(X̃/X ) 	→ g.x̃ ∈ Fx

is a bijection of sets. Thus the composition

φ−1 ◦ δ : π1(X, x) → Deck(X̃/X ),

where δ is as in Remark B.1, is a surjective group homomor-
phism with kernel π1(X̃ , x̃). In particular

Deck(X̃/X ) ∼= π1(X, x)/π1(X̃ , x̃).

Definition B.6. Let X be a topological space. Then, a path
γ in X with γ (0) = x0 and γ (1) = x1 induces group homo-
morphisms γ∗ : πi(X, x1) → πi(X, x0) for all i � 1 (see Fig. 8
for details). The homomorphism γ∗ depends only on the path
homotopy class of γ ; i.e., it does not change if γ is deformed
while keeping the endpoints fixed. In particular, for every
x ∈ X , we obtain a group action of π1(X, x) on πi(X, x),
where each [γ ] ∈ π1(X, x) operates as γ∗ on πi(X, x). This
action is referred to as the π1 action on the homotopy groups.

Remark B.2 (Action of Deck(X̃/X ) is the π1 action). Let
p : (X̃ , x̃) → (X, x) be a pointed covering space, i � 2, and
let (Si, e) be the i sphere pointed at the north pole e. If
the π1(X̃ , x̃) action on πi(X̃ , x̃) is trivial, the set [Si, X̃ ] of
free homotopy classes of spheres is isomorphic to πi(X̃ , x̃).
Indeed, given a continuous map f : S2 → X̃ , choose a path
γ from x̃ to f (e) and let A f := γ∗([ f ]) ∈ πi(X, x̃). The class
A f does not depend on the choice of γ : given another path γ ′
from x̃ to f (e), then γ∗([ f ]) and γ ′

∗([ f ]) differ by the action

of a closed loop on πi(X̃ , x̃). Since the π1 action was assumed
to be trivial, A f does not depend on the choice of γ . We have
described a bijection ν : [Si, X̃ ] → πi(X, x).

Suppose then that p is a Galois covering, and consider
the deck transformation ψα associated to [α] ∈ π1(X, x) as in
Proposition B.2. Then, as in Fig. 8(b), ψa ◦ f : Si → X̃ can
be connected to x̃ by composing α̃ with ψα ◦ γ , where α̃ is
the lift of α starting at x̃. If we denote by B f ∈ πi(X̃ , x̃) the
element thus obtained, then

p∗(B f ) = α∗[p∗(A f )] ∈ πi(X, x),

where p∗ is the homomorphism πi(X̃ , x̃) → πi(X, x). Hence,

(p∗ ◦ ν)(ψα[ f ]) = α∗[(p∗ ◦ ν)[ f ]],

identifying the Deck(X̃/X ) action on [Si, X̃ ] with the π1 ac-
tion on πi(X, x).

Proposition B.3. Let (X, x) be connected, locally path con-
nected, and semilocally simply connected, and let I ⊂ N�1.
The π1 action on the homotopy groups provides a group
homomorphism

π1(X, x) →
∏
i∈I

Aut[πi(X, x)],

where Aut(G) denotes the automorphism group of G. Let
us denote the kernel of the above homomorphism by K .
There exists a connected pointed covering space (X̃ , x̃) with
π1(X̃ , x̃) = K , and this covering space is unique up to unique
isomorphism of pointed covering spaces. Moreover, this is a
Galois covering space as kernels are normal.

The map p : X̃ → X is the smallest covering of X , on
which the π1 action on πi(X̃ , x̃) is trivial for all i ∈ I: given
another covering space q : X̃ ′ → X with this property, there
exists a continuous map ψ : X̃ ′ → X̃ satisfying q = p ◦ ψ .

APPENDIX C: MAPPING SPACES

In this section, we recall the basics of the theory of map-
ping spaces. A basic reference is Chap. 5 of tom Dieck’s book
on algebraic topology [39].

Definition C.1. Let X and Y be compactly generated
spaces (e.g., unions of manifolds). The mapping space
Map(X,Y ) is the set of all continuous maps X → Y equipped
with the compact-open topology. If (X, x) and (Y, y) are com-
pactly generated pointed spaces, then the pointed mapping
space Map∗(X,Y ) is the subspace of Map(X,Y ) consisting of
those continuous morphisms f : X → Y satisfying f (x) = y.

Proposition C.1. Let I denote the unit interval, and let
(X, x) and (Y, y) be compactly generated pointed spaces. Then
there exists a natural homeomorphism

Map[I, Map(X,Y )] ∼= Map(I × X,Y )

that identifies the paths in Map(X,Y ) with homotopies of
continuous maps X → Y . Similarly, the composition

Map[I, Map∗(X,Y )] → Map[I, Map(X,Y )]
∼= Map(I × X,Y )

identifies the paths in Map∗(X,Y ) with basepoint-preserving
homotopies of morphisms (X, x) → (Y, y).
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The previous result identifies the set of path components
of Map(X,Y ) with the set [X,Y ] of homotopy classes of
continuous maps X → Y . Similarly, the path components of
Map∗(X,Y ) are identified with [X,Y ]∗, that is, the set of
morphisms (X, x) → (Y, y) up to basepoint-preserving homo-
topies.

Theorem C.1. If (X, x) and (Y, y) are pointed spaces, and
(X, x) is well pointed (e.g., X is a manifold or X admits
a triangulation with x as a vertex), then the evaluation at
x, evx : Map(X,Y ) → X , is a fibration with fiber ev−1

x {y} =
Map∗(X,Y ).

Fibrations p : E → B admit a path-lifting result analogous
to Lemma B.1, but instead of the lift being unique, it is only
unique up to homotopies preserving the starting point and the
composition with p. Similarly to Definition B.2, this gives rise
to the monodromy action of π1(B, b) on the path components
of p−1{b}. As the path components of E are precisely the or-
bits of the monodromy action, we obtain the following result.

Corollary C.1. If (X, x) and (Y, y) are compactly gener-
ated pointed spaces and (X, x) is well pointed, then there
exists a natural isomorphism

[X,Y ] ∼= [X,Y ]∗/π1(Y, y).

Example C.1. If (Sn, e0) is the n sphere pointed at the north
pole and (X, x) is a compactly generated pointed space, then
[Sn, X ]∗ ∼= πn(X, x), and the monodromy action coincides
with the usual π1 action on the nth homotopy group.

Next, we recall a decomposition result that is useful for
computing mapping spaces.

Definition C.2. Let (X, x) and (Y, y) be pointed topological
spaces. Then their wedge summation is the pointed space
(Y ∨ Z, ∗), where Y ∨ Z is the space obtained by attach-
ing Y and Z along y and z, and ∗ ∈ Y ∨ Z is the point of
attachment.

The defining feature of the wedge sum is that, for
any third pointed space (Z, z), there exists a canonical
homeomorphism

Map∗(X ∨ Y, Z ) ∼= Map∗(X, Z ) × Map∗(Y, Z ). (C1)

This has the following immediate consequence.
Proposition C.2. Let (X, x), (Y, y), and (Z, z) be pointed

topological spaces. Then

[Y ∨ Z,W ]∗ ∼= [Y,W ]∗ × [Z,W ]∗. (C2)
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