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Graphene as a source of entangled plasmons
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We analyze nonlinear optics schemes for generating pairs of quantum entangled plasmons in the terahertz-
infrared range in graphene. We predict that high plasmonic field concentration and strong optical nonlinearity of
monolayer graphene enables pair-generation rates much higher than those of conventional photonic sources. The
first scheme we study is spontaneous parametric down conversion in a graphene nanoribbon. In this second-order
nonlinear process a plasmon excited by an external pump splits into a pair of plasmons, of half the original
frequency each, emitted in opposite directions. The conversion is activated by applying a dc electric field that
induces a density gradient or a current across the ribbon. Another scheme is degenerate four-wave mixing where
the counter-propagating plasmons are emitted at the pump frequency. This third-order nonlinear process does not
require a symmetry-breaking dc field. We suggest nano-optical experiments for measuring position-momentum
entanglement of the emitted plasmon pairs. We estimate the critical pump fields at which the plasmon generation
rates exceed their dissipation, leading to parametric instabilities.
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I. INTRODUCTION

Graphene plasmonics has emerged as a platform for realiz-
ing strong light-matter interaction on ultrasmall length scales
[1,2]. Launching, detection, and manipulation of plasmons
by near-field probes has been demonstrated at infrared/THz
frequencies [3–14]. High concentration of electric field, a key
factor for nonlinear optical phenomena, has been achieved
by exciting plasmons of wavelength λp as small as few hun-
dred nanometers, about two orders of magnitude shorter than
the vacuum photon wavelength λv . Plasmonic quality fac-
tors up to Q ∼ 130 have been reached [9] in encapsulated
graphene structures [5,7], fulfilling another condition—low
dissipation—necessary for prominent nonlinear effects.

Numerous theoretical [15–24] and a few experimental
[25,26] papers have explored manifestations of nonlinear cou-
pling of light to graphene in the context of conventional
far-field optics. However, both nonlinear [23,27–30] and
quantum [28,31,32] effects could be more pronounced in the
near-field domain because of plasmonic field concentration.
Plasmon interaction phenomena we study in this paper include
the parametric down conversion (PDC) and four-wave mix-
ing (FWM) [33]. Spontaneous PDC and FWM can generate
entangled pairs of plasmons, similar to how the usual pho-
tonic spontaneous PDC produces entangled pairs of photons
[34–41].
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We propose that a graphene ribbon containing an electro-
statically induced p-n junction [5,42–46], see Fig. 1(a), can be
a highly efficient PDC source. The plasmon spectrum of such
a system, which we will call the device of type A, consists of
multiple continuously dispersing subbands. The lowest sub-
band (labeled “0”) is gapless and the next one (labeled “1”)
is gapped due to transverse confinement in the ribbon, see
Fig. 1(b). In the simplest picture, the PDC process is split-
ting of a mode-1 plasmon of frequency ω1 and momentum
q1 = 0 into two mode-0 plasmons of frequency ω0 = ω1/2
and momenta ±q0 that propagate away in opposite directions
along the ribbon. The energy-momentum conservation (phase
matching) in this conversion is guaranteed without any fine
tuning of the device. This advantage of the counterpropagat-
ing PDC scheme has been previously exploited in photonic
waveguides [36,39,47,48]. In a more precise description, fre-
quencies ω0 and so the momenta q of the outgoing plasmons
have some uncertainty. The spontaneous PDC generates a
superposition of states of different momentum:

|ψ〉 =
∫

dq f (q) |−q〉 |+q〉 (1)

where |−q〉 |+q〉 means a two plasmon state with one plasmon
at momentum −q and the other at +q, see Sec. II D. This
superposition is not factorizable, which implies that the pairs
are position-momentum entangled, similar to particles in the
original Einstein, Podolsky, and Rosen (EPR) paper [34]. The
amplitude function f (q) in Eq. (1) is peaked at q0 and has a
characteristic width δq ∼ γ /v0 where

γ = ω0/Q (2)

is the plasmon damping rate [9] and v0 = dω0/dq0 is the
mode-0 plasmon group velocity.
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FIG. 1. (a) Type-A device: A graphene ribbon with a lateral p-n
junction (blue/gold denoting electron/hole doping) induced by a split
gate (golden bars). A pump field of frequency ω1 applied in the ŷ
direction (thick arrows) generates plasmon pairs of frequency ω0

propagating in the ±x̂ direction (red-undulating arrows). (b) Plas-
mon dispersion in a ribbon of half-width a = 200 nm with the p-n
junction on the midline and the carrier density n = ±1012 cm−2 at
the edges. The dotted lines form the “light cone” for the dispersion
of vacuum photons. The blue dot represents the mode-1 plasmon
pumped by the incident photon, which then decays into two mode-0
plasmons (the two red dots) as shown by the arrows. (c) The spatial
distribution of the amplitude of the quasistatic electric potential of
the two modes.

The role of the split-gate represented by the golden bars in
Fig. 1(a) is twofold. First, it induces a gradient of carrier con-
centration in graphene when a dc voltage is applied between
the two parts of the gate. The p-n junction is created when this
voltage is high enough [44]. Such a system lacks inversion
symmetry and therefore the PDC is allowed. Second, the split-
gate serves as an optical antenna amplifying the incident pump
field [44,49] that excites mode-1 plasmons. The coupling is
facilitated by a large transverse dipole moment of the mode-1
plasmons and a strong field enhancement λv/λp � 1 of the
antenna.

Note that the inversion symmetry can also be broken by a
dc current across a uniformly doped ribbon, which we refer to
as the device of type B. In contrast, the FWM is a third-order
nonlinear effect, which does not require symmetry breaking
fields. The degenerate FWM, in which the two pump photons
of frequency ω are converted into a pair entangled plasmons
of the same frequency, can take place in either a nanoribbon or
a more typical larger-area graphene sheet, which are devices
of type C.

Plasmonic effects similar to those we explore here have
been considered in a few recent theoretical papers. For
example, plasmonic sum-frequency generation in graphene
nanoflakes [17] is based on the nonlinear mechanism similar
to that underlying our plasmonic PDC. However, since the
plasmon spectrum of a flake is discrete, only flakes of certain
shapes can fulfill the energy-momentum conservation con-
straint for the sum (or difference) frequency generation. As
mentioned above, in a long ribbon such kinematic constraints
can be met without delicate fine tuning. Another related pa-
per studied photon-plasmon difference frequency generation
[26,50] and entanglement [51], which is a phenomenon inter-
mediate between the usual all-photon PDC [34] and our fully
plasmonic PDC.

The remainder of the paper is organized as follows. In
Sec. II, we summarize our main results for the type-A device.
In the last part of that section we discuss possible experiments
that can probe the plasmon entanglement. In Sec. III we
consider the third-order nonlinear effects. The FWM relevant
for the operation of type-C devices is analyzed in Sec. III B
and the current induced PDC in type-B devices is examined
in Sec. III C. Section IV contains discussion and outlook.
Finally, the summary of the notations and some details of the
derivations are given in the Appendix.

II. PLASMONIC PDC IN A GRAPHENE RIBBON

To simplify the analysis of a type-A device, we assume
that the edges of the ribbon y = ±a are not too close to those
of the split-gate, so that the dc electric field created by the
gate is approximately constant across the ribbon. The induced
density response of graphene can be modeled [42] assuming
the local chemical potential is linear in y:

μ(y) = a + y

2a
μt + a − y

2a
μb . (3)

If the chemical potentials μt and μb at the two edges of the
ribbon are opposite in sign, a p-n junction forms. If μt = −μb,
the junction is located on the midline y = 0 of the ribbon.

The plasmon frequency dispersion computed numerically
as a function of momentum q along the strip is shown in
Fig. 1(b) (For related analytical results, see Ref. [52]). The
lowest-frequency branch, which we refer to as mode 0, is
gapless:

ω(q) = ξv

√
αgakF vF q = ξvvaq . (4)

Here

va =
√

(e2/h̄)vF kF a ∼ vF

√
kF a , (5)

is a characteristic scale of the plasmon velocity, vF ≈ c/300
is the Fermi velocity, αg = e2/(h̄vF ) is the dimensionless
strength of the Coulomb interaction, and kF denotes the Fermi
momentum corresponding to the maximum absolute chem-
ical potential max(|μt |, |μb|) in the ribbon. Dimensionless
parameter ξv ∼ 1 is a slow (logarithmic) function of q. It also
depends on the doping profile of the ribbon. The dispersion
law (4) is similar to that of one dimensional (1D) plasmons
[6,10,13].

The first gapped mode, mode 1, can be viewed as a lin-
ear combination of 2D plasmons of momenta qx̂ ± qyŷ with
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FIG. 2. Transition from stable to unstable regime of plasmon-
pair generation in the type-A device as pump field is increased. The
black curve is the rate of generation of plasmon pairs per unit length.
The red curve is the relative growth rate (κ − γ )/ω0 in the unstable
regime. The plasmon damping rate is assumed to be γ = 0.1ω0.
Other parameters are from Fig. 1 and the temperature is T = 300 K.

qy ∼ 1/a. The frequency of this mode at q = 0 is

ω1 = ξ1

√
2αgv

2
F kF /a , (6)

where ξ1 ∼ 1 is another dimensionless shape factor. The elec-
tric potential profile of the ω1 mode [Fig. 1(c)] indicates
that mode-1 excitations have a nonzero dipole moment in
the y-direction. Thus, they can be resonantly excited by a
y-polarized pump field [53].

In this paper we describe the mode-1 to mode-0 PDC in the
quantum language. However, there is a complementary clas-
sical picture, which is as follows. Plasmonic oscillations of
mode-1 modulate the total carrier density of the ribbon viewed
as a one dimensional conductor. This in turn modulates the
frequencies of mode-0 plasmons and causes their parametric
excitation. In the standard theory of optical parametric am-
plification [33] (see also Appendix B), one of the generated
mode-0 plasmon is referred to as the idler and the other as the
signal. The idler is assumed to have a finite spectral power,
e.g., due to equilibrium fluctuations in the beginning of the
process. The signal is then produced from the pump and the
idler by the difference frequency generation (DFG).

For weak pump fields E , the pair-generation rate grows
linearly with the pump power, see Fig. 2. As E becomes
stronger, a parametric instability is reached at some critical E .
At even stronger pump field, the signal exhibits an exponential
growth in the undepleted pump approximation. In Sec. II A
below we evaluate the dependence of the pair-generation rate
and the critical pump field on experimental parameters, such
as the ribbon width and its doping profile.

A. PDC Hamiltonian

The second-order nonlinear conductivity [16,23,51,54]
leads to interaction between the plasmons of modes
0 and 1. This interaction can be modeled by the

Hamiltonian H = H0 + H (2):

H0 = h̄ω1(a†
1a1 + 1/2) +

∑
q

h̄ω(q)(a†
qaq + 1/2),

H (2) =
∑

q

g(2)
q a1a†

qa†
−q + c.c., (7)

where a1, aq are the annihilation operators for mode-1 at
zero momentum and mode-0 of momentum q, respectively.
The interaction Hamiltonian H (2) leads to pair generation in
the weak coupling regime (g(2)a1Q/ω � 1) and two-mode
squeezing in the strong coupling regime (g(2)a1Q/ω > 1),
as shown in Fig. 2. Since we study the PDC on resonance,
ω(q0) = ω0 = ω1/2, we can treat the interaction strength g(2)

as a constant, g(2) = g(2)
q0

. As shown in Appendix C,

g(2) = ξg
π1/2

213/4

e1/2 h̄3/4v
3/4
F

k5/4
F a7/4L1/2

, (8)

where L is the length of the gated part of the ribbon (Fig. 1)
and dimensionless factor 0 � ξg � 1 depends on the carrier
density profile across the ribbon.

The Hamiltonian H (2) governs the spontaneous decay of
the mode-1 plasmon into a pair of mode-0 plasmons with
momenta q and −q. In the weak-coupling regime, the de-
cay rate � can be calculated using Fermi’s golden rule (see
Appendix C5)

� = |g(2)|2
h̄2

L

v0

(
n0 + 1

2

)
, (9)

where n0 is the occupation number of mode-0 plasmons of fre-
quency ω � ω0; in thermal equilibrium, n0 = 1/(eh̄ω0/T − 1)
at temperature T . Normalizing � to the plasmon frequency ω0,
we obtain the dimensionless decay rate of mode-1 plasmons:

�

ω1
= ξdf

�0

ω1
,

�0

ω1
= π

28

1√
αg

1

(kF a)7/2
, (10)

where ξdf ∼ 1 is another dimensionless factor. The depen-
dence of ξdf on the carrier density profile across the ribbon
is plotted in Fig. 3. For a ribbon with the carrier density n =
±1012 cm−2 at the edges and a half-width of a = 200 nm,
we find ω1/(2π ) ≈ 5 THz and �0/ω1 ∼ 10−8. Therefore, due
to PDC alone a mode-1 plasmon decays into a mode-0 plas-
mon pair every �−1

0 ∼ 10−5 s. If the plasmon Q factor due
to other damping channels (phonon and impurity scattering
[9]) is Q = ω0/γ ∼ 10, the PDC efficiency is �0/γ ∼ 10−7,
which is much higher than in available photonic PDC devices
[39,55]. Furthermore, this efficiency scales as a−4, and so can
be higher still in a narrower strip.

B. Pumping mode-1

In a uniform external ac electric field E in the y direction,
the gapped mode-1, as a harmonic oscillator, is driven to a co-
herent state |β〉 = eβa†

1−(β2/2)|0〉. Specifically, the magnitude
of the charge density profile of the mode is related to the
external pump field as

ρ =
σ (ω)

ω
ω1

σ (ω1 )(
1 − σ (ω)

ω
ω1

σ (ω1 )

) α

S
E (11)
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FIG. 3. The shape factors for type-A device as functions of the
doping profile parameter sd = (μb + μt )/(μb − μt ) at temperature
T = 300 K. The green, black, and red curves are the decay rate shape
factor ξdf, the occupation number shape factor ξβ and the shape factor
ξQ for the relative subharmonic growth rate (defined in Appendix A).
Each colored stripe below the horizontal axis illustrates the corre-
sponding graphene ribbon with blue/gold representing electron/hole
doping.

where σ (ω) is the two-dimensional optical conductivity and
α/S is an O(1) constant determined by the doping profile of
the ribbon, see Appendix C1. On resonance, from its relation
to ρ (see Appendices C2 and C4), β is found to be

β = ξββ0, β0 = 2
3
4

π
1
2

Q

√
L

a

eaE(
e2

a

) 3
4 ε

1
4
F

(12)

where ξβ ∼ 1 is a shape factor shown in Fig. 3. The occupa-
tion of the gapped mode modifies the pair-generation rate to

R = N� ∝ E2a−3/2L, N = β2 ∝ E2a5/2L . (13)

For n = 1012 cm−2, a = 200 nm, L = 1 μm, E = 103 V/cm,
and a plasmon quality factor of Q ∼ 10 for ultraclean samples
at room temperature [5,7,9,56], we have β0 = 15, indicating
an average occupation number of N ∼ 400, thus boosting
the generation rate to R ∼ 4×109 s−1. It means that in a
nanosecond-long pulse, there are four pairs of subharmonic
plasmons generated while there are ∼106 photons incident
onto the ribbon area. This rate is higher than conventional
photonic [39] and quantum dot [38] devices.

As the pump field increases, Fermi’s golden rule ceases
to be valid. The pair-generation rate can be derived from the
classical parametric oscillator theory (Appendix B)

R = N�√
1 − (κ/γ )

, κ = βg(2)

h̄
. (14)

The growth rate κ is to be discussed in the next section. The
pair-generation rate diverges at the instability threshold κ =
γ , as shown in Fig. 2.

C. Two mode squeezing and parametric amplification

The coupling Hamiltonian Eq. (7) in the interaction picture
reads

HI =
∑

q

g(2)
q e−iδt a1a†

qa†
−q + c.c.,

where δ = ω1 − 2ωq is the frequency mismatch. We focus on
the pair of acoustic modes ω(q1) = ω0 = ω1/2 for which HI

is on resonance:

HI = g(2)a1a†
qa†

−q + c.c. . (15)

When mode-1 is pumped into a coherent state, one can replace
a1 by its classical value β. This Hamiltonian generates a two-
mode-squeezing time evolution operator [57]

S(βg(2)t/h̄) = e−iHI t = e−i(g(2)βa†
qa†

−q+c.c.)t/h̄ , (16)

which squeezes the pair of mode-0 plasmons at momenta
(q,−q). Therefore, the plasmons are generated as two-mode
squeezed states [34]. The squeezing operator leads to expo-
nential growth of the amplitudes of the observables (e.g., the
electric field of the mode) with the growth rate κ = g(2)β/h̄.
We define the dimensionless relative growth rate

κ

ω0
= 1

4
ξQQ

ζ

αg
, ζ = eE

εF kF
(17)

that is made only of intensive quantities. Here ζ is the di-
mensionless small parameter that controls the second-order
nonlinear effects of graphene plasmons. Note that the relative
growth rate depends only on the maximum doping level, the
pump electric field, and the dimensionless shape factor ξQ.
Parameter ξQ ∼ 1, plotted in Fig. 3, depends only on the scale
invariant doping profile of the ribbon. The pump induced
growth rate κ reduces the plasmon damping rate from γ to
γ − κ , thereby further enhancing the pair-generation rate. The
system reaches parametric instability at κ = γ , see Fig. 2.
Beyond this threshold, the plasmons are unstable with expo-
nential growth rate κ − γ . When amplifying a classical source
as the seed, this effect is known as parametric amplification
[33]. For n = 1012 cm−2 and E = 104 V/cm, we have κ =
0.12ω0 in the p-n junction regime, high enough to compete
with the damping rate γ .

The split-gate structure, as an antenna with width in y
larger than the vacuum wave length λv of the incident light,
could enhance the pump field Ev to the total field E by a
factor of roughly F = E/Ev = λv/(2πws) [44,49] where ws

is the distance separating the two halves of the gate, see Fig. 1.
For the typical parameters in Fig. 1, one has λv = 43 μm at
ω1 = 7 THz and ws could be chosen as 0.5 μm, rendering
the field enhancement factor F ≈ 14. (To increase the work-
ing frequency to, e.g., ω1 = 30 THz corresponding to λv =
10 μm, the ribbon width needs to be shrinked to 2a ∼ 20 nm.)
Therefore, to achieve the plasmon instability regime in Fig. 2,
the actual incident field just needs to be of the order of Ev =
102–103 V/cm. We note that the antenna also amplifies the
radiative damping rate γR of the dipolar active modes (e.g.,
mode-1) of the ribbon by the same factor F . For ribbons of
size much smaller than the vacuum wavelength, a, L � λv ,
the normalized radiative damping rate Q−1

R = γR/ω0 is ampli-
fied by the antenna from Q−1

R ∼ a2L/λ3
v to aL/λ2

v , which is
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still much smaller than γ /ω0 ∼ 0.1 [5,7,9,56] for the param-
eters given above. Therefore, the intrinsic damping γ (e.g.,
due to phonons and the electronic system itself) should be
the major plasmon dissipation pathway in the system and the
effect of the radiative damping can be neglected.

D. Measuring the entanglement

In general, the plasmon pair state can be expressed as

|ψ〉 =
∫

d p1d p2 f (p1, p2)|p1〉 |p2〉 . (18)

To quantify the standard deviations, we approximate the wave
function by the Gaussian form

f (p1, p2) = Ze
− (p1+p2 )2

4�2+
− (p1−p2−2p0 )2

4�2− (19)

where Z is a normalization factor. The EPR state in Eq. (1)
corresponds to �+ = 0. After p1 (or p2) is measured, the stan-
dard deviation of p2 (or p1) becomes �p = ( 1

�2+
+ 1

�2−
)−1/2.

Similarly, after measuring either position, the standard de-
viation of the unmeasured position becomes �x = (�2

+ +
�2

−)−1/2. Thus we arrive at

�x�p =
(

2 + �2
−

�2+
+ �2

+
�2−

)−1/2

� 1

2
. (20)

The apparent violation of the uncertainty principle happens
whenever �+ 
= �−. In the extreme case of Eq. (1), we have
�x�p = 0.

If momentum is conserved in the type-A device in Fig. 1,
we have p1 = −p2 exactly satisfied. However, the length L of
the device limits momentum conservation and leads to �+ ∼
1/L. The damping rate limits the plasmon line width and
renders �− ∼ 1/l where l = v0/γ is the propagation length
of the mode-0 plasmons. For device satisfying L � l , we have
�x�p ∼ L/l � 1/2. Note that in our case, entanglement is
between continuous variables, and so the fidelity of the state
can not be defined in the conventional way [58]. Instead, it
is more natural to use Eq. (20) to quantify the entanglement.
Alternatively, one could use entanglement witnesses or entan-
glement negativity [35], which are more technically involved.
To detect the position-momentum entanglement of a plasmon
pair, one can place grating structures on both sides of the
device, which would convert the plasmons to far-field pho-
tons. Passing through the beam splitters, the photons are read
either by single photon detectors [34,59], which have good
time precision or those with good energy resolution, as shown
in Fig. 4. The coincidence rate measured by the former as a
function of path length difference gives a time uncertainty �t ,
while the spectrum correlation of the energy detectors gives
the energy uncertainty �E . The EPR entanglement is mani-
fested in the relation �t�E = �x�p < 1/2 [34,60,61]. This
“energy time entanglement” detection scheme is the same as
that in Ref. [61] with the entangled photon source replaced
by the plasmonic type-A device in Fig. 1 or type-B device
in Fig. 8. Alternatively, homodyne detection experiments can
measure the entanglement property of the squeezed state [34].

In addition, the Franson scheme [40,41,62] is also appli-
cable as shown in Fig. 5. As mentioned in Sec. I, near-field
technique based on scanning probes has been successful in

FIG. 4. (a) Schematic of the experiment setup for coincidence
measurement of the energy-time entanglement of the generated EPR
plasmon pairs. The plasmon pair generator can be either a type-A
(Fig. 1) or type-B device (Fig. 8). The vertical yellow bars are
the grating structures to convert plasmons into far field photons.
(b) Illustration of the time (left) and energy (right) correlations. The
widths of the ellipses are the �t (left) and �E (right).

probing plasmons in graphene [2–13]. To implement the Fran-
son scheme, one needs two scanning probes, as shown in
Fig. 5(a). The plasmons can either travel to the scanning
probes directly or after being reflected by the edges of the
ribbon, which we call short and long paths respectively. The
coincidence detection arises from interference between the
short-short and long-long paths. If the coincidence rate be-
tween the signals from two near-field tips is measured as a
function of L1 ≈ L2, the distance between each tip and the
edge, it will oscillate as Rc ∼ cos2 ((L1 + L2)/λ), like that in
Fig. 5(b). However, the condition L � Li � l needs to be
satisfied. The first inequality guarantees that there are no sin-
gle photon (or “short-long” path) interference contributions,
and the second inequality ensures that plasmon damping is

FIG. 5. (a) The Franson scheme of measuring EPR entanglement
with two scanning probes as the two interferometers. The plasmon
pair generator can be either a type-A (Fig. 1) or type-B device
(Fig. 8). (b) The coincidence rate as a function of (L1 + L2)/λ.
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FIG. 6. Near-field imaging of the parametric amplification of the
mode-0 plasmons. The right figure is plotted for a type-A device
using the parameters in Fig. 1. The parametric plasmon amplifier can
also be a type-B device in Fig. 8.

not important. Note that in a prior study on measuring plas-
mon entanglement [63], the interfering particles were actually
photons in optical fibers. In the proposed scheme (Fig. 5)
the interference occurs between plasmons. Additionally, our
implementation involves highly confined terahertz-infrared
plasmons and scanning probes operating on deeply subdiffrac-
tional length scales.

One can also probe the classical effects. If the pump
field is comparable to the parametric instability threshold,
the enhancement of plasmon lifetime can be detected. Upon
pumping of the ω1 mode of the type-A device in Fig. 1 (or
type-B in Fig. 8), the ω0 modes with momenta q and −q
are parametrically driven such that their effective damping
rate is reduced to γ − κ (see Appendix B), and their quality
factor is boosted to ω0/(γ − κ ), as shown in Fig. 6. In a
scanning near-field experiment, its manifestation is simply
increased propagation length of the plasmons. One can also
measure near-field DFG using classical interference between
the signal and idler in these experiments, which is discussed
in Appendix F.

III. PLASMON GENERATION BY THE
THIRD-ORDER NONLINEARITY

In this section we study the effects of third-order non-
linearity [15,19,21,24,64,65] on plasmon interactions, which
occurs already in the long wavelength limit. This nonlinearity
originates from the linearity of the dispersion of Dirac quasi-
particles in graphene, which breaks Galilean invariance [24].
At low frequency ω � εF , interband effects can be neglected
and the third-order nonlinear conductivity σ (3) in graphene
assumes the third-order “Drude” form

σ
(3)
ilmn = iD(3)

ω1ω2ω3
�ilmn (21)

both in the kinetic [66] and hydrodynamic [24] regimes where
ωi are the frequencies of the three electric fields that generate
the third-order current together. The symmetric tensor �ilmn

is the sum of all isotropic tensors �ilmn = δilδmn + δimδln +
δinδlm. Close to zero temperature (T � μ), the third-order
optical weight is predicted to be D(3) = 1

24π
e4vF

h̄3kF
in the kinetic

regime and twice as large in the hydrodynamic regime [24].
In what follows, we assume the system is the kinetic regime
since we are mostly interested in the mid infrared plasmons

whose frequencies are larger than the typical electron-electron
scattering rate [23,24].

A. FWM Hamiltonian

We start with the plasmonic effective Lagrangian of
an electronic system whose linear conductivity is in the
dissipation-less Drude form: σ jk = iD/π

ω
δ jk where D is the

Drude weight. In the near-field approximation (meaning there
is only longitudinal electric field and no magnetic field) and
in the gauge Aμ = (0, A) for the electric field where A is the
vector potential viewed as the plasmonic field, the Lagrangian
is

L =
∫

d3r

(
1

8πc2
Ȧ2 − D

2πc2
A2δ(z)

)
+ L(3)

=
∑

q

(
1

8πc2

2

|q| Ȧ−qȦq − D

2πc2
A−qAq

)
+ L(3), (22)

where c is the speed of light. The first term is the electric
field energy and the second term has the interpretation of the
center of mass kinetic energy of the charge carriers. For two-
dimensional (2D) Drude conductors modeled as the x-y plane
embedded in 3D space, since the current is localized on the 2D
plane, the second term of the top line in Eq. (22) is nonzero
only on the plane. In the second line of Eq. (22), Aq = q̂Aq

are the Fourier components of A evaluated on the 2D plane.
The 2/|q| comes from integrating over the fields exponen-
tially decaying into the three dimensional (3D) space. Note
that the summation is over q = (qx, qy), and instead of three,
there is only one plasmon mode for each q since the field is
constrained to be longitudinal. The resulting Euler-Lagrange
equation of motion for Aq yields the 2D plasmon dispersion
ωq = √

2Dq where the Drude weight is D = vF kF e2/h̄ for
graphene at zero temperature. Quantization of the plasmonic
field

Aq = iq̂Aqu(aq + a†
−q), Aqu/c = √

π h̄ωq/(2SD) (23)

leads to the Hamiltonian

H = H0 + H (3), H0 =
∑

q

h̄ωq

(
a†

qaq + 1

2

)
(24)

where S is the area of the sample.
The H (3) = −L(3) contains products of four plasmonic cre-

ation and annihilation operators. It describes FWM, which
is caused by the third-order optical conductivity σ (3). Writ-
ing the third-order current j (3) in terms of vector potentials,
Eq. (21) indicates

j (3)
i = �ilmnAl AmAn/c3

and the interaction Hamiltonian

H (3) = − 1

4c4

∫
d2r�ilmnAiAlAmAn

= − D(3)

4c4

∑
�ilmnAi

q1
Al

q2
Am

q3
An

q4
, (25)

where the kernel �ilmn = D(3)�ilmn is perfectly local in space
and time, and the summation runs over all qi constrained by
q1 + q2 + q3 + q4 = 0 due to momentum conservation. Note
that although Eq. (25) is a negative φ4 term in this bosonic
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FIG. 7. (a) Generation of entangled plasmon pairs due to spon-
taneous four wave mixing. The red dot at the center represents the
pump. The red circle on the plasmon dispersion curve represents the
generated plasmons at the same frequency as the pump but nonzero
momenta. The opacity of the circle and thickness of the arrows show
the angular dependence of the pair generation intensity. (b) The
decay of two mode-1 plasmons into a pair of entangled mode-0
plasmons on a graphene ribbon (same as type-A device in Fig. 1
but without doping gradient) due to spontaneous FWM. (c) The
schematic of a near-field measurement of the enhanced plasmon
lifetime on a type-C device.

field theory, the system is stable due to higher-order nonlinear
couplings.

B. Spontaneous four wave mixing

This subsection discusses spontaneous FWM shown in
Fig. 7 in uniformly doped graphene. Equation (25) implies
that entangled plasmon pairs with frequency ω can be gener-
ated by incident light of the same frequency. We model far
field photon incident on the graphene plane by an uniform
ac electric field with amplitude E0 = ωA0 in ŷ direction, and
represent it by the vector potential

A0 = ŷA0(e−iωt + eiωt )

where we have assumed A0 to be real without loss of general-
ity. When two fields in the product are replaced by the source
A0, Eq. (25) becomes

H (3) = −
∑
qx>0

g(3)
q (t )(aq + a†

−q )(a−q + a†
q) (26)

where the pair generation strength is

g(3)
q (t ) = 1

8 h̄ωqξ
2
ω(1 + 2 sin2 θq)(2 + e−2iωt + e2iωt ) (27)

and θq is the angle of the plasmon momentum q relative to the
x̂ axis. We have defined the dimensionless small parameter

ξω = eE0/ω

h̄kF
, (28)

which controls the strength of FWM and other third-order
effects in graphene. In Eqs. (24) and (26), it is enough to con-
sider terms close to resonance in the interaction picture. The
number-conserving terms in Eq. (26) like aqa†

q imply the field
induced Kerr shift [33] of the plasmon frequency, which are
red shifts in graphene due to its negative third-order conduc-
tivity [24]. The terms like e−2iωt a†

qa†
−q lead to pair generation

in the weak-interaction regime (g(3)Q/ω � 1 where Q = ω/γ

is the plasmon quality factor) and two mode squeezing (insta-
bility) in the strong-interaction regime (g(3)Q/ω > 1).

In the weak-interaction regime, the plasmons with exactly
the same frequency as ω are generated as entangled pairs and
with an angular distribution of (1 + 2 sin2 θq)2, as shown in
Fig. 7(a). The pair-generation rate is determined by Fermi’s
golden rule [analogous to Eq. (9)]:

� = 2π

h̄
〈|g(3)|2〉θ · S

16π

ω3

D2
(29)

where 〈〉θ means angular average, the second part comes from
the 2D plasmon density of states and we have assumed ω � T
so the relevant plasmons are not occupied in equilibrium. The
resulting dimensionless generation rate is

�

ω
= 9

210
ξ 4S

ω4

α2
gv

2
F ω2

F

. (30)

For n = 1012 cm−2, E0 = 103 V/cm, and S = 1 μm2, we
have �/ω = 3.2×10−8. This leads to superior generation
rates compared with conventional FWM sources, as we will
discuss in Sec. IV. Since there is no need to break the in-
version symmetry, this effect could be observed simply using
uniformly doped graphene, which we call the type-C device.
One may also use the ribbon in Fig. 1(a) but a lateral p-n junc-
tion is no longer necessary. The spontaneous FWM process
in a transversely pumped ribbon is illustrated in Fig. 7(b).
To distinguish the generated entangled plasmon pairs from
the linearly excited plasmons, the key experimental signa-
ture would be satisfaction of the EPR criterion [34] in the
quadrature measurement in Fig. 4 or the nonlocal interference
phenomenon in the Franson experiment in Fig. 5.

In the strong-interaction regime, the plasmons are squeezed
in pairs and experience parametric amplification. The result-
ing relative exponential growth rate is [similar to Eq. (17)]

Q−1
g =

∣∣g(3)
q

∣∣
h̄ω

= 1

8
ξ 2(1 + 2 sin2 θq) (31)

for the the plasmons propagating in θq direction, which agrees
with the classical result (see Appendix E). In a typical near-
field experiment shown in Fig. 7(b), this reduces the plasmon
damping rate from γ to γ − g(3)

q /h̄. Therefore, to overcome
the typical damping rate γ ∼ 0.1ω of graphene plasmons,
one needs ξ ∼ 0.3, which requires a pump field of E0 ∼
105 V/cm for n = 1012 cm−2 and ω = 30 THz.
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FIG. 8. (a) Parametric down conversion of the pump of fre-
quency 2ω into pairs of subharmonic plasmons of frequency ω in
current carrying graphene. (b) Realization in a ribbon (type-B de-
vice), which is similar to the type-A device in Fig. 1 except that the
density gradient is replaced by a dc current J flowing between the
contacts.

C. Spontaneous PDC in current carrying graphene

The third-order nonlinearity can also lead to PDC in a
current-carrying graphene, as shown in Fig. 8. This effect
can also be understood as FWM with one “pump wave” in
Eq. (25) replaced by a dc current flow (ω = 0). If the other
pump source has frequency 2ω, then the process looks like
a PDC: 2ω → ω + ω. Another point of view is that the dc
current with flow velocity u breaks the inversion symmetry,
resulting in a nonzero second-order nonlinear conductivity
σ (2) ∼ u

vF

e3vF

h̄2
1
ω2 . To leading order in the dc current J = enu,

the equations from Sec. III B can be directly applied to the
present case. We assume that the pump field is polarized
parallel to the dc current, such that the PDC Hamiltonian
is the same as Eqs. (26) and (27) but with ξ 2

ω replaced by
ξ2ωξ0 where ξ0 = eEdc/(γdch̄kF ) ≈ u/vF is the dimensionless
parameter due to the dc electric field Edc that drives the dc
current.

In the weak pump regime, entangled subharmonic plasmon
pairs at frequency ω are generated with the angular distribu-
tion of (1 + 2 sin2 θq)2 in an infinite graphene sheet, same as
that of spontaneous FWM. Summed over all angles, the total
relative generation rate is the same as Eq. (30) but with with ξ 4

replaced by ξ 2
2ωξ 2

0 . To measure the entanglement property of
the emitted pairs, one can use the graphene ribbon in Fig. 8(b)
as a plasmon pair source to perform either the energy-time
entanglement measurement in Fig. 4 or the Franson scheme
in Fig. 5. In the ribbon, the generated subharmonic pairs are
not in every direction, but can only propagate along x̂ [similar
to Fig. 1(b)] with the generation rate described by roughly the
same formula as that for an infinite sheet. For n = 1012 cm−2,
ω1 = 2ω = 30 THz, E0 = 103 V/cm, a ribbon size of S =
0.2 μm×5 μm and a dc current of J = 0.16 mA/μm corre-

sponding to u = 0.1vF , one has ξ0 ≈ 0.1 and a normalized
generation rate of �/ω ≈ 0.9×10−6 from this type-B source.

In the strong pump regime, the plasmon lifetime is en-
hanced. The pump induced relative growth rate of plasmons
of frequency ω is

Q−1
g = 1

16ξ2ωξ0�ilmnq̂iq̂l ÊmĴn , (32)

similar to Eq. (31). Here X̂ means the unit vector along X
and q̂ is the unit vector of the momentum of the subharmonic
plasmon. For a current of J = 0.5 mA/μm at the doping level
of n = 1012 cm−2 and under a pump field of 3×105 V/cm at
ω1 = 2ω = 30 THz polarized along ŷ, the subharmonic plas-
mon running along ŷ has a relative growth rate of Q−1

g ≈ 0.03,
while those along x̂ has a growth rate of Q−1

g ≈ 0.01, compa-
rable to the plasmon loss at low temperatures [9].

D. Field enhancement in a ribbon

From previous discussion, high field is essential to make
the proposed devices practical. By design, these devices natu-
rally enhance the incident field by two mechanisms, helping to
achieve this goal. First, as discussed in Sec. II C(a), the split
gate for type-A device in Fig. 1, or the contacts for type-B
device in Fig. 8(b), act as antennas. They enhance the pump
field by a factor of F = E/Ev = λv/(2πws) ≈ 10 [49] for the
channel width ws = 200 nm and the vacuum wave length of
the pump light λv ≈ 10 μm at ω1 = 30 THz. Second, close to
the resonance at ω1 with the gapped mode of the ribbon [see,
e.g., Fig. 1(b) and Fig. 7(b)], there is another field enhance-

ment factor of FQ = ξ f
ω2

1
(ω−ω1+iγ )(ω+ω1+iγ ) where ξ f is an O(1)

shape factor, see Eqs. (11) and (C1). On resonance, this leads
to a field enhancement factor of FQ ∼ Q ∼ 10.

The antenna effect together with the resonance field en-
hancement gives a net enhancement factor of QF ∼ 100.
Therefore, the spontaneous PDC rate in the type-B device
(Fig. 8) is enhanced by a factor of (QF )2 while the sponta-
neous FWM rate in a ribbon is enhanced by (QF )4. Similarly,
to reach a pump field of 105 V/cm for parametric instability,
the external incident field just needs to be of the order of
103 V/cm.

Note that the resonant field enhancement also occurs in
photonic cavities such as microring resonators [40,67–70]. In
our devices, the vacuum photons play the role of the waveg-
uide photons in the bus waveguide therein, and the graphene
ribbon plays the role of the ring resonator. Unlike the plasmon
modes in the nanoribbon whose line width is dominated by
intrinsic damping, the field enhancement on resonance in the
micro-rings scales as

√
Q instead of Q [68] because the line

width γp of the photon modes in the micro-ring resonator is
dominated by radiation leakage into the bus waveguide. As
a result, the enhancement of the FWM pair-generation rate
due to resonant pumping scales as Q2, see, e.g., Eq. (4) of
Ref. [67]. Note also that in both our devices (short devices
with length L0 � l) and photonic cavities, the resonance con-
ditions with the generated modes contributes another factor of
Q to the enhancement of the generation rate.

IV. DISCUSSION AND EXPERIMENTAL OUTLOOK

We proposed several graphene spontaneous PDC and
FWM devices, which have promising quantum information
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TABLE I. Comparison of graphene with conventional platforms for entangled photon generation following that in Ref. [40]. Although
plasmons in these graphene devices can work in a broad frequency range from terahertz to infrared, we picked specific frequencies for
estimations in the table. For graphene type-A device, the plasmon frequency is shown in Fig. 1(b) while for type-B device (with a current
flow velocity of u = 0.1vF ) and FWM, we used a pump frequency of 30 THz. We used a = 200 nm and the quality factor of Q = 10 for
all the graphene devices. Since we are using the Gaussian unit system while the majority of nonlinear optics literature uses the SI unit, we
translated from the latter in the literature to the former in this table. The refraction indices used for conversion of χ (3) are AlGaAs: N = 3.2 at
λ = 1.55 μm, Silicon: N = 3.5 at λ = 1.55 μm, InP: N = 3.4 at λ = 1.49 μm, Si3N4: N = 2.0 at λ = 1.55 μm.

PDC devices Frequency Q χ (2) (cm/V) Generation rate (s−1mW−1)

Graphene type-A device [Fig. 1(a)] 4 THz 10−100 2×10−6 9×1011

Graphene type-B device [Fig. 8(b)] 15 THz 10−100 3×10−6 2×1012

Semiconductor coupled quantum wells [47,71,72] 1−50 THz ∼10−6

LiNbO3 [73] 0.79 eV 2×10−10 2×107

AlN [74] 0.80 eV 1×105 4×10−11 6×106

FWM devices Frequency Q χ (3) (cm2/V2) Generation rate (s−1mW−2)

Graphene type-B device with no dc current 30 THz 10−100 4×10−14 6×1014

AlGaAs on insulator [40] 0.80 eV 1×106 7×10−17 2×1010

Silicon on insulator [75,76] 0.80 eV ∼105 4×10−17 2×108

InP [77] 0.83 eV 4×104 2×10−16 1×108

Si3N4 [78] 0.80 eV 2×106 4×10−19 4×106

applications [79] as efficient sources of entangled plasmon
pairs, photon-plasmon converters and plasmon amplifiers
[80–84], etc., for future quantum plasmonic/polaritonic cir-
cuits. These plasmons are in the THz-infrared spectra range,
which is an important energy range in condensed matter
physics where superconductivity, magnetism, spin liquid,
fractional quantum Hall effect, and other correlated phenom-
ena are relevant. The quantum sources proposed here may
enable quantum imaging [85] and sensing [86] of these novel
states of matter.

Let us compare our devices with conventional photonic
PDC sources. In photonic PDC, the nonlinearity is usually
characterized by a nonlinear susceptibility χ (2), which has the
unit of inverse electric field. We can convert the 2D conduc-
tivity σ (2) to an effective 3D nonlinear susceptibility χ (2) as
follows. The 2D nonlinear susceptibility (in the Gaussian unit
system) is [87] χ

(2)
2D = iσ (2)/ω0. For the type-A device, which

is a ribbon with half width a, the extent of the electric field of
the plasmon in the out-of-plane direction is 1/q0 ∼ a. Hence,
the effective 3D nonlinear susceptibility is χ (2) ∼ χ

(2)
2D /a ∼

1/(ek2
F ). For kF = √

π×106 cm−1 corresponding to carrier
density n = 1012 cm−2, we find χ (2) ∼ 2×10−6 cm/V, which
is much larger than that of conventional photonic media,
e.g., LiNbO3 [41,73], but is of the same order as χ (2) in
sophisticated photonic waveguides made of coupled quantum
wells [47,71,72], see Table I. Nevertheless, a more important
figure of merit is the dimensionless decay factor

�

ω0
∼ |χ (2)|2 h̄ω0

a3
(33)

[same as Eq. (10) noting that g(2) ∼ χ (2)ω
3/2
0 a−1L−1/2] of a

waveguide mode into subharmonic modes due to spontaneous
PDC. Due to strong mode confinement (a � c/ω0), this fig-
ure of merit is much larger than those of photonic devices.
Physically, this is because electric field of a single plasmon in
our device is much larger than that of a single photon.

As discussed in Sec. III C, a comparable χ (2) can also
be achieved in a type-B device where inversion symmetry is
broken by applying a dc current flow to an uniformly doped
ribbon if the flow velocity is moderately fast: u > 0.1vF .

We also consider the FWM [33] in Sec. III B, a third-order
nonlinear effect. Such a process does not require inversion-
symmetry breaking and can take place in either a ribbon or a
plain graphene sheet (type-C device in Fig. 7). This plasmon
instability requires a relatively strong incident field controlled
by the small parameter χ (3), but it may be easier to real-
ize experimentally since there is no specific requirement for
the nanostructure. Compared with other nonlinear materials,
χ (3) = iσ (3)/(ωa) in graphene is much stronger, as shown in
Table I.

A brief discussion of units conversion is in order. The
Gaussian unit system defines the 3D nonlinear susceptibil-
ities in terms of the effective dielectric function ε = 1 +
4π [χ + χ (2)E + χ (3)E2 + · · · ] while the SI system defines
them as ε/ε0 = 1 + χSI + χ

(2)
SI E + χ

(3)
SI E2 + · · · [33] where

ε0 is the vacuum permittivity. Therefore, besides converting
the units of electric fields, there is an additional 4π factor:
χ (n) = χ

(n)
SI /(4π ). The unit m2/W is also used in the litera-

ture [40,75] for third-order nonlinearity N3 defined as δN =
1

2N χ
(3)
SI E2 = 4π

2N χ (3)E2 ≡ N3P where N = √
1 + 4πχ is the

linear refraction index, δN is the change of effective refraction
index due to third-order nonlinearity and the pump field, and
P is the power flux of the pump field. Therefore, besides
converting m2/W → 0.00132806 m2/V2, one also needs
the conversion χ (3) = N

2π
N3 to obtain the χ (3) in Gaussian

unit.
We note that the properties of the type-A device may

have substantial temperature dependence arising from the
middle of the ribbon [Fig. 1(a)] where the system is close
to charge neutrality. The gapped mode is an antisymmetric
charge oscillation between the upper and lower half of the
strip, and thus strongly depends on the conductivity at the
middle of the junction where the carriers are thermally excited
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electrons and holes. Therefore, the frequency of the gapped
mode (the shape factor ξ1 in Sec. II) increases with tempera-
ture. In our derivation, we included only the intraband contri-
butions [20,23,51,54] to the second-order nonlinear conduc-
tivity [Eq. (C20)]. Close to the middle of the junction where
μ � h̄ω, interband contributions may be important. There the
total σ (2) is suppressed by a factor of (μ/h̄ω)M with M � 2
compared to the intraband expressions used in this paper,
but σ (2) may diverge at the narrow region where μ = h̄ω at
the interband threshold for Pauli blocking [20,51,54,87–89].
This divergence is rounded by nonzero temperature, and
would thus lead to substantial temperature dependence if in-
cluded. We note that even in homogeneously doped graphene,
there are 3 ∼ 4 orders of magnitude inconsistencies [90] be-
tween theories (e.g., Refs. [20,51,54,87,88]) and experiments
[25,26]. At this stage, it is premature to include such details in
the model, and instead, we provide order of magnitude scaling
results for the PDC. Incidentally, experiment and theory seem
to agree for σ (3) [65].

As mentioned in Sec. I, generation of plasmons by PDC in
graphene has also been considered by Ref. [51]. In that study,
the pump and idler are far field photons. In contrast, here
all three modes are plasmons such that frequencies are much
lower and momenta are much larger, making this process
much more efficient. Moreover, our proposed device involves
an antenna that further increases the coupling efficiency to
far field pump. As a result, the threshold power to achieve
parametric instability is about four orders of magnitude lower
than Ref. [51].

Since plasmons do not have the polarization degree of free-
dom (they are always longitudinally polarized), entanglement
of polarization frequently discussed in quantum optics does
not apply here. In plasmonics one focuses on the position-
momentum (or energy-time) entanglement. For example, it
has been shown this entanglement survives photon-plasmon
conversion processes [31,63,91]. Here we proposed a scheme
to directly generate and measure the entanglement of plasmon
pairs on a chip using the modern tools of near-field optics.

The following estimate shows that graphene will not be
damaged by the strong electric field required. The incident
light heats up the electron gas in graphene with the heating
power Pheat = 2Re[σ ]|E |2 and electron phonon scattering pro-
vides its cooling channel. The cooling power is approximated
by Pcool = Cvγc(Te − Tl ) where Te(Tl ) is the electron(lattice)
temperature, Cv ∼ g(εF )T is the heat capacity of the electron
gas and γc ∼ 1 ps−1 is the cooling rate revealed by previous
experiment [7]. The lattice is a good heat conductor and is as-
sumed to stay at the same temperature as the environment. The
balancing of heating and cooling Pheat = Pcool determines the

stationary electron temperature Te − Tl ∼ 1
4π2

γ

γc

ε2
F

T ξ 2 where
we have set the Boltzmann constant to one. At the typical dop-
ing level and frequency scale considered in this paper, for Tl =
300 K and E = 104 V/cm, we conclude that Te − Tl ∼ 6 K,
which is quite small compared to either room temperature or
the Fermi energy.

We worked in the kinetic regime where plasmon frequency
is much larger than the electron-electron scattering rate ω �
�ee [23]. In the low frequency hydrodynamic regime ω �
�ee [23,81,92–98], the nonlinear conductivities are similar in

magnitude as long as the temperature is not much larger than
chemical potential [23,24,99]. Therefore, our estimate of the
generation rates should apply as well to the collective modes
in the hydrodynamic regime such as the charged “demons”
[23,81,92–94,96,97]. However, in the case of T � μ, the
demons become almost charge neutral, driven mainly by kine-
matic pressure, and the physics could be quite different. It may
be interesting to study nonlinear and quantum effects for these
collective modes [24,100].

Since the ribbon width is much larger than the lattice
constant, the Dirac dispersion approximation for the electrons
in graphene are valid. We used the “local” approximation to
compute the plasmonic modes, which neglects dependence
of the optical conductivity σ (ω, q) on the field wave vector
q, see Appendix C1. The nonzero q effects enter σ (ω, q)
as a power expansion in the dimensionless small number
v2

F q2/ω2 [8,11,23], see, e.g., the supporting information of
Refs. [11,23]. For the relevant modes of the ribbons such as
mode-1 in Fig. 1, one has q ≈ 2π/(4a) and vF q/ω ≈ 0.36,
meaning that the devices are indeed in the local regime. As
an estimate, the leading-order nonlocal correction δω1 to the
plasmon frequency ω1 is just δω1

ω1
= 1

2
3
4 ( vF q

ω
)2 ≈ 0.05 in the

kinetic regime we are considering. Therefore, the Drude (or
“local”) approximation is well justified.

Extension of these nonlinear effects to polaritonic modes
[101–103] beyond those in graphene is a meaningful fu-
ture direction. For example, monolayer hexagonal boron
nitride [104,105] should exhibit strong second-order opti-
cal nonlinearity due to broken inversion symmetry of the
crystal lattice, and would be a natural platform for generat-
ing entanglement between the long lived hyperbolic phonon
polaritons [106–115]. Similar nonlinear processes exist for
optical phonons in SiC [116], Josephson plasmons in layered
superconductors [84,117–119] and the collective modes in
excitonic insulators [120–124].
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APPENDIX A: SUMMARY OF NOTATIONS
FOR THE RIBBON CASE

The main results of this paper are written in terms of var-
ious “shape” parameters and physical quantities such as size
(a, L), Fermi momentum (εF ), Fermi velocity (vF ), electric
field (E ), and frequency (ω). Most of the shape parameters
are dimensionless numbers of the order of unity. They are S′

0,

023208-10



GRAPHENE AS A SOURCE OF ENTANGLED PLASMONS PHYSICAL REVIEW RESEARCH 4, 023208 (2022)

S′
1, α′, η′, ξ0, ξ1, ξg, ξdf, ξβ , and ξQ. Their definitions for the

case of a ribbon are as follows:

S′
0 =

∫ 1

−1
dyσ̃ (y)|Ẽ0|2 ,

S′
1 =

∫ 1

−1
dyσ̃ (y)|Ẽ1|2 ,

α′ =
∫ 1

−1
dyσ̃ (y)ê · Ẽ1 ,

η′ = q′2
x

∫ 1

−1
dy ∂2

y ϕ1 ϕ2
0 g̃(y) ,

ξv (q) = ω(q)√
αg(akF )vF q

= ω(q)

vaq
,

ξ0 = ξv (q0) ,

ξ1 = h̄ω1√
2e2EF /a

,

ξg = ξ
1/2
1

η′

S′1/2
1 S′

0

,

ξdf = va

vl

η′

S′
1S′2

0

,

ξβ = 1

ξ
3/2
1

α′

S′1/2
1

,

ξQ = η′

ξ 2
1

α′

S′
0S′

1

.

The remaining ones, S, α and |ρ̃|2, are just the corresponding
dimensionless ones multiplied by aL, one half of the total area
of the ribbon.

APPENDIX B: PARAMETRIC OSCILLATOR

The spontaneous PDC process in Sec. II is similar to what
happens in a parametric oscillator (PO) except that the former
leads to two-mode squeezing while the latter corresponds to
single-mode squeezing [57]. Optical POs are widely used to
generate subharmonic light and to create entangled photon
pairs. To make the paper self-contained, we review the basic
theory of the PO in this Appendix.

A PO can be modeled with the equation of motion

L̂x(t ) = [
∂2

t + γ ∂t + (1 + 2δ cos �t )ω2
0

]
x(t ) = F (t ) , (B1)

where � is the frequency of the pump modulating the natural
frequency ω0 of the oscillator by a relative amount ∼δ. The
difference

� = � − 2ω0 (B2)

of � from the primary parametric resonance frequency 2ω0 is
referred to as the detuning. Given the initial conditions x(0),
ẋ(0) ≡ ∂t x(t )|t=0, the solution of Eq. (B1) can be written in
terms of the retarded Green’s function G = G(t, t ′):

x(t ) = {[ẋ(0) + γ x(0)]G − x(0)∂t ′G}|t ′=0

+
∫

G(t, t − τ )�(t − τ )F (t − τ )dτ , (B3)

FIG. 9. Behavior of the Green’s function G(t, 0) of Eq. (B1) at
several values of the modulation parameter δ at resonance � = 2ω0.
The solid lines show the exact Green’s function [Eq. (B4)], the dots
are the approximations constructed from Eq. (B18). The damping
rate is γ = 0.1ω0 corresponding to δc ≈ 0.1.

where �(t ) is the Heaviside step-function. One simple ex-
ample is x(0) = 0, ẋ(0) = 1, F (t ) ≡ 0, in which case x(t ) =
G(t, 0).

As usual, the Green’s function is constructed from an arbi-
trary pair of linearly independent solutions x1(t ), x2(t ) of the
homogeneous equation L̂x(t ) = 0:

G(t, t ′) = �(t − t ′)
x1(t ′)x2(t ) − x2(t ′)x1(t )

W (t ′)
, (B4)

W (t ) = x1(t )∂t x2(t ) − x2(t )∂t x1(t ) . (B5)

By virtue of the Abel formula, the Wronskian determinant
[Eq. (B5)] has the following t dependence:

W (t ) = W (0)e−γ t . (B6)

One possible choice of x1(t ) and x2(t ) is

x1(t ) = e− 1
2 γ t C

(
4ω2

0 − γ 2

�2
, −4δω2

0

�2
,

1

2
�t

)
, (B7)

x2(t ) = e− 1
2 γ t S

(
4ω2

0 − γ 2

�2
, −4δω2

0

�2
,

1

2
�t

)
, (B8)

where C(a, b, z) and S(a, b, z) are the even and the odd
Mathieu functions, respectively, as defined in Mathemat-
ica [125] (Mathematica notations are MathieuC[a, b, z]
and MathieuS[a, b, z]). These functions are normalized as
C(a, 0, z) = cos(

√
az), S(a, 0, z) = sin(

√
az) for b = 0.

From Eqs. (B4)–(B8), we conclude that

G(t, 0) = x2(t )

ẋ2(0)
, (B9)

so that an instability, i.e., the exponential growth of G(t, 0)
is possible if S(a, b, z) is increasing faster than e

1
2 γ t . This

occurs if |δ| exceeds some threshold value δc = δc(γ ,�).
Conversely, the response function G(t, 0) exhibits exponential
decay with time if |δ| < δc. Examples of such stable and
unstable behaviors are shown in Fig. 9.

Approximate analytical calculation of δc can be done for
low damping γ � ω0 and small detuning � � ω0. Thus, one
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can show that

δc �
√

�2 + γ 2

ω0
, (B10)

in agreement with Fig. 9.
The derivation goes as follows. Let us seek a solution of

Eq. (B1) in the form

x(t ) = A(t )eiω0t + B(t )e−iω0t , (B11)

where A(t ), B(t ) are slowly varying. Matching the coefficients
for the rapidly oscillating phase factors of Eq. (B1), we obtain(

2i∂t + iγ ω0δei�t

ω0δe−i�t −2i∂t − iγ

)(
A
B

)
=

(
0
0

)
. (B12)

To eliminate the factors e±i�t , we change variables to

A(t ) = e
i
2 �t a(t ) , B(t ) = e− i

2 �t b(t ) , (B13)

arriving at(
2i∂t + iγ − � ω0δ

ω0δ −2i∂t − iγ − �

)(
a
b

)
=

(
0
0

)
. (B14)

The general solution of this equation is(
a
b

)
= eλ1t

(
u1

v1

)
+ eλ2t

(
u2

v2

)
, (B15)

where

λ1,2 = −γ

2
± i

2

√
�2 − (ω0δ)2 (B16)

are the growth rates and(
u j

v j

)
=

(
ω0δ

� − iγ − iλ j

)
, j = 1, 2 (B17)

are the corresponding eigenvectors. Two linearly independent
solutions for x(t ) could be chosen as

x j = eλ j t
(
u je

i �
2 t + v je

−i �
2 t

)
, j = 1, 2 , (B18)

and the Green’s function can be constructed per Eq. (B4).
Assuming Re[λ2] � Re[λ1], the instability threshold is deter-
mined by the condition

Re[λ2] = 0 , (B19)

which leads to Eq. (B10). A comparison with the exact
Green’s function confirms the validity of this approximation
for small damping and detuning, such as γ = 0.1ω0 and � =
0 in Fig. 9.

Consider now the response of the PO to a periodic driving
source

F (t ) = fωe−iωt + c.c. . (B20)

In the stable case, |δ| < δc, where the effect of the initial
conditions disappears at long times, xω is the linear response
to F :

xω(t ) = fωe−iωt
∫ ∞

0
G(t, t − τ )eiωτ dτ + c.c. . (B21)

Without the pump, G(t, t − τ ) is a function of τ only, and
so the integral on the right-hand side reduces to a constant.
Under pumping, G(t, t − τ ) is periodic in t with the period

2π/�. Accordingly, the Fourier spectrum of xω(t ) becomes
a frequency comb of Floquet harmonics ω + m� where m is
an arbitrary integer. For small γ and �, however, it is easier
to compute xω(t ) not from Eq. (B21) but from Eq. (B14)
supplemented with the appropriate right-hand side. The result
is

xω(t ) = fωe−iωt

(ω − ν1)(ω − ν2)

(
� − 2ω − iγ + �

4ω0
− δ

4
ei�t

)

+ c.c.. (B22)

Apparently, this approximation accounts only for the dom-
inant Floquet harmonics: ω − �, ω, and ω + �. In the
complex plane of ω, function xω (or the linear response kernel)
has two poles, at ν1 and ν2, given by

ν1,2 = �

2
+ iλ1,2 = ω0 + �

2
− iγ

2
∓ 1

2

√
�2 − (ω0δ)2 .

(B23)

The pole ν2 has a larger imaginary part, which grows with |δ|.
At |δ| = δc, ν2 crosses over into the upper half-plane of ω,
signaling the instability.

Instead of a periodic driving source, we can consider a
stochastic one, namely, a Langevin source defined by the
two-point correlator

〈F (t )F (0)〉 = γ T

π
δ(t ) . (B24)

In this case the total driving force F (t ) contains a continuum
of Fourier harmonics, and the response x(t ) is obtained by
integrating expressions like Eq. (B22) over ω. The stochastic
drive leads to random fluctuations of x, causing a nonzero av-
erage power injection by the parametric pump into the system:

P = 2ω2
0δ〈cos �t x∂t x〉 . (B25)

A straightforward calculation based on Eqs. (B22) and (B25)
yields

P = (ω0δ)2γ T

γ 2 + �2 − (ω0δ)2
. (B26)

Finally, we generalize this result to the quantum case. We
do not show a formal derivation, but sketch a more physical
approach. The essential point is that the power injection P by
the pump is enabled by the nonzero quantum/thermal fluctu-
ations of x. The starting point is a Hamiltonian of the total
system (PO plus environment) in the form

H (t ) = HPO − F (t )x + Henv , (B27)

HPO = p2

2
+ 1

2
(1 + 2δ cos �t )ω2

0x2 . (B28)

The purpose of Henv is to describe the Langevin noise source
and the dissipation effects. A standard device to achieve this
is to use the Caldeira-Leggett model of a bath of harmonic
oscillators. We surmise that the final answer for P is similar
to the classical Eq. (B26) except the thermal energy T is
replaced by h̄ω0(nb + 1

2 ) where nb = 1/(eh̄ω0/T − 1) is the
boson occupation number. Since the injected power increases
the energy of the PO, the pump must be generating quanta of
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TABLE II. Physical meanings of the dimensionless profile func-
tions whose typical local values are order unity.

Symbol Physical quantity

σ̃ (r) conductivity
g̃(r) 2nd-order conductivity σ (2)

ρ̃(r) charge density of a mode
Ẽ(r) electric field of a mode

the PO motion. Dividing P by the energy 2h̄ω0 of two such
quanta, we obtain the pair-generation rate

R = P

2h̄ω0
= γ

γ 2 + �2 − (ω0δ)2

(ω0δ)2

2

(
nb + 1

2

)
. (B29)

Note that formally, in the quantum mechanical language, this
nonperturbative result in the parametric pump δ can be ob-
tained by computing the linear response to δ (bubble diagram)
[120], with the boson propagators replace by the renormal-
ized ones by δ [see Eq. (B22)]. As shown by Eq. (B29), at
weak pumping, R scales quadratically with δ, consistent with
Fermi’s Golden Rule. The precise match is obtained in the
limit γ → 0, ω0δ/γ → 0 where R is nonzero only at the
resonance, R ∝ δ(�). As δ increases, deviations from Fermi’s
Golden rule appear. As δ approaches the critical value δc

[Eq. (B10)], the pair-generation rate diverges.
Lastly, expressing δ in terms of the coupling constant g(2) in

Sec. II and integrating over the acoustic modes in the vicinity
of ω0 we obtain Eq. (14).

APPENDIX C: DERIVATION FOR THE GRAPHENE
RIBBON (TYPE-A DEVICE)

1. Plasmon modes on a generic nano structure

Unlike the uniform two-dimensional (2D) electron gas,
a generic conducting nanostructure [17,126,127] breaks the
translational symmetry in at least one direction, and the plas-
mon modes can not be classified by 2D momenta. In this
section, we define necessary profile functions describing the
graphene nanoisland (e.g., a ribbon) such that the quantization
could be described semi-analytically. Meanings of the dimen-
sionless profile functions are summarized in Table II.

The linear optical conductivity is assumed local and in the
Drude form: j(r) = σ̂ (r)E(r) = i

π (ω+iγ ) D(r)E(r) where D(r)
is the local Drude weight. This holds for ω � vF q where q is
the characteristic momentum corresponding to the plasmon
modes and size of the nanostructure. In the case of a graphene
ribbon with a being its half width, this momentum is roughly
q ≈ π/(2a). We define the dimensionless conductivity profile
function σ̃ by σ̂ (r) = σ̂ σ̃ (r) (or D(r) = Dσ̃ (r)) where D is
the maximum local Drude weight. Assume a certain plasmon
mode has the charge density profile ρ(r) = ρρ̃(r), its electric
field profile is

E(r) = −∇V̂ ρ(r) = ρẼ(r) , Ẽ(r) ≡ −∇V̂ ρ̃(r) (C1)

where the Coulomb kernel V̂ (r, r′) is defined as an operator
such that V̂ f (r) = ∫

dr′2 1
|r−r′ | f (r′). Note that σ̃ , ρ̃ and Ẽ

are all dimensionless profile functions whose values are order
one.

From the charge continuity equation (CCE)

∂tρ(r) + ∇ · j = 0 (C2)

with only linear conductivity, the mode ρ(r) = ρρ̃(r) being
an eigenmode with frequency ω1 implies

−iω1ρ̃(r) − σ (ω1)∇σ̃ (r)∇V̂ ρ̃(r) = 0 . (C3)

Define the linear operator L̂ = ∇σ̃ (r)∇V̂ , the above equa-
tion simplifies to

L̂ρ̃(r) = −iω1

σ (ω1)
ρ̃(r) , (C4)

i.e., the shape function ρ̃(r) is an eigenvector of L̂ with eigen-
value −iω1/σ (ω1). We define inner product to be 〈 f |g〉 ≡∫

f ∗(r)V̂ (r, r′)g(r′)d2rd2r′ such that L̂ is Hermitian. Al-
though the plasmon frequency is complex with a small
imaginary part Im[ω1] = γ /2, the eigenvalue −iω1/σ (ω1) is
real since L̂ is a Hermitian operator.

If an external uniform electric field Eext = Eexte with fre-
quency ω is applied, the CCE becomes

( − iω − σ (ω)L̂)ρ̃(r)ρ + σ (ω)∇σ̃ (r)eEext = 0 . (C5)

Taking inner product with ρ̃(r), we arrive at(
−iω − σ (ω)

−iω1

σ (ω1)

)
|ρ̃|2ρ + σ (ω)αEext = 0, (C6)

where

|ρ̃|2 = 〈ρ̃|ρ̃〉 =
∫

ρ̃(r)V̂ (r, r′)ρ̃(r′)d2rd2r′

= σ (ω1)

iω1

∫
σ̃ (r)|Ẽ(r)|2d2r = σ (ω1)

iω1
S, (C7)

and the dipole factor is

α = 〈ρ̃|e · ∇σ̃ 〉 = e ·
∫

ρ̃(r)V̂ (r, r′)∇′σ̃ (r′)d2rd2r′

= e
∫

σ̃ (r)Ẽ(r)d2r . (C8)

Two new shape quantities are introduced: S has the interpre-
tation of the effective area [17] of this mode, α is the effective
dipole moment of the mode along e. Therefore, the charge
density amplitude induced by the external driving field is
Eq. (11). In this response function, there is a simple pole at
resonance ω = Re[ω1], leading to divergence. However, this
pole is broadened by the plasmon damping rate γ , and the
enhancement factor at resonance will be

ρ = (Q1/i)(α/S)Eext, (C9)

where Q1 = ω1/γ is the quality factor of this plasmon mode.

2. Quantization

For each plasmon mode as a harmonic oscillator, we
choose charge density ρ as the generalized coordinate and
write it in terms of plasmon creation and annihilation oper-
ators as

ρ = ρu(a + a†) . (C10)
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Equivalently [Eq. (C1)] the electric field is

E(r) = ρu(a + a†)Ẽ(r) . (C11)

Working in the gauge A = (0, A) for the vector potential, from
the relation E = −∂t A/c, we can write the vector potential as

A(r)/c = −i
ρu

ω1
(a − a†)Ẽ(r), (C12)

where the operators are time dependent ones from the interac-
tion picture a(t ) = ae−iω1t .

Since the potential energy of a harmonic oscillator is half
of its total energy, the quantum unit of density ρu can be
determined by

〈VCoulomb〉 = 1
2ρ2

u |ρ̃|2 = 1
4 h̄ω1, (C13)

which yields

ρu =
√

h̄ω1/(2|ρ̃|2) . (C14)

We note that due to nonzero damping, the modes here
should be understood as quasi-normal modes [128–130]. Nev-
ertheless, due to the nice properties of Drude response for
plasmons, we were able to cast the formalism into a Her-
mitian one with a simpler approach [Eq. (C4)] such that the
basis functions are automatically orthonormal. The quantiza-
tion procedure assumes no dissipation, which is then added
phenomenologically and should be understood as coming im-
plicitly from a bath.

3. Three mode coupling due to second-order nonlinearity

In general, the current generated in response to electric
field contains a second-order term

j (2)
i (r, t ) = σ̂

(2)
ilm[El (r, t )Em(r, t )] , (C15)

where σ̂
(2)
ilm is a tensor-valued operator nonlocal in space and

time. In a uniform system, this operator is diagonal in the
frequency-momentum space, so that

j (2)
i (−q3,−ω3) = σ

(2)
ilmEl (q1, ω1)Em(q2, ω2) . (C16)

where ω3 = −(ω1 + ω2), q3 = −(q1 + q2), and

σ
(2)
ilm = σ

(2)
ilm (q1, ω1; q2, ω2) . (C17)

By convention, the nonlinear second-order conductivity σ
(2)
ilm

is symmetrized, i.e., invariant under the interchange (1 ↔
2, l ↔ m). It is convenient to define another tensor �ilm,
which describes the current response to the vector potential
A. In the temporal gauge, E(q, ω) = (iω/c)A(q, ω), it is
given by

�̂ilm(ω3, q3; ω1, q1, ω2, q2) ≡ −ω1ω2σ
(2)
ilm , (C18)

so that

j (2)
i (−q3,−ω3) = 1

c2
�̂ilmAl (q1, ω1)Am(q2, ω2) . (C19)

Due to inversion symmetry of graphene, σ
(2)
ilm vanishes at

q1 = q2 = 0. It grows linearly with q1, q2 when these mo-
menta are small. The same properties are inherited by the
tensor �ilm. In particular, in the kinetic regime of graphene

[16,23,51,54] and neglecting dissipation, �ilm can be written
as

�̂ilm = − D(2)

ω1ω2ω3

[(
ω2

2q1 + ω2
1q2 + 2ω1ω2q3

)
iδlm + perm

]
,

(C20)

[When comparing to other expressions in the literature, one
should remember the constraint

∑
k ωk = ∑

k qk = 0.] The
notation “perm” stands for two additional terms obtained from
the first one by the permutations

(3, i; 1, l; 2, m) → (1, l; 3, i; 2, m) ,

(3, i; 1, l; 2, m) → (2, m; 1, l; 3, i) . (C21)

Accordingly, �̂ilm is symmetric under arbitrary permutations
of the triads {qk, ωk, μk}, where k = 1, 2, 3 and μk = i, l , m.
This symmetry can be understood as a consequence of energy
conservation.

The tensor �ilm defines the operator �̂ilm nonlocal in space
and time. The three-mode coupling Hamiltonian can be con-
structed as

Hc = − 1

3c3

∫
d2r�̂ilmAiAlAm . (C22)

This Hamiltonian obeys the requirement ∂Hc/∂A = −j(2)/c.
Assume any three plasmon modes 1, 2, and 3, Eq. (C22)
together with Eq. (C12) lead to their coupling Hamiltonian

Hc = − 2i
ρ1uρ2uρ3u

ω0ω2ω3

∫
d2r�̂ilmẼ1iẼ2l Ẽ3m

· (a1 − a†
1)(a2 − a†

2)(a3 − a†
3) . (C23)

In �̂, the momenta should be replaced by spatial gra-
dients acting on the corresponding field profiles, and
the frequency arguments should match those of the cre-
ation/annihilation operators [e.g., for terms like a1a†

2a†
3, it

should be �̂(−ω0, ω2, ω3)].
If the nanostructure has inversion symmetry, the plasmon

modes can have even or odd parity. In order for the interaction
Eq. (C23) not to vanish, the product of the three fields must
have even parity. In the case of subharmonic decay, the mode
0 should couple to light whose electric field is nearly uni-
form, and is thus an odd mode. The other two modes should
be nearly identical whose product is thus even, leading the
product of the three modes to be odd. Therefore, the desired
subharmonic decay does not happen in inversion symmetric
nanostructures. We investigate the approach to break the in-
version symmetry in the next section.

4. The graphene ribbon

For the graphene ribbon shown in Fig. 1, there is mirror
symmetry of x → −x while the static transverse electric field
breaks the mirror symmetry of y → −y. The gapped mode 1
and the acoustic mode 0 with momentum q along x have the
electric potential

ϕ1 = ϕ1(y) , ϕ0 = ϕ0(y)eiqx . (C24)
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Fully extracting the dependence on length scales, the effective
areas can be written as

S0 = aLS′
0 = aL

∫ 1

−1
dyσ̃ (y)|Ẽ0|2,

S1 = aLS′
1 = aL

∫ 1

−1
dyσ̃ (y)|Ẽ1|2, (C25)

where S′
0 and S′

1 are dimensionless factors of order one. The
dipole factor for the gapped mode is

α = aLα′ = aL
∫ 1

−1
dyσ̃ (y)ê · Ẽ1 . (C26)

where α′ is order one.
In Sec. C 2, we have assumed that the density shape func-

tions ρ̃(r), as transformation coefficients for the “generalized
coordinates” ρ, are all real functions. Due to the translational
invariance along x, it is convenient to define the “complex”
modes ρq with well defined momenta. In the conventional
quantization rule ρq = ρu(aq + a†

−q ), the creation operator a†
q

generates plasmon with momentum q, i.e., its action adds h̄q
to the total momenta. This set of creation and annihilation
operators are related to those of Eq. (C10) by a canonical
transformation.

The interaction strength— If the chemical potential on this
ribbon varies slowly enough: 1/λμ � ω/vF where λμ is the
characteristic spatial scale of chemical potential variation, one
can make the local approximation, using Eq. (C20) as the local
second-order nonlinear coupling strength. The second-order
optical weight can be written as D(2) = D(2)

k g̃(y) where D(2)
k is

a typical value of D(2) on the strip and g̃(y) is an order one-
dimensionless shape function. Given fixed chemical potential,
the value of D(2)

k is temperature dependent [23]. In the high-
frequency kinetic regime, D(2)

k goes to a constant value

D(2)
0 = − 1

8π

e3v2

h̄2 sgn μ (C27)

at T � μ and vanishes as T � μ. Since μ � T at the edge
of the strip, we define D(2)

k to be its zero temperature value
D(2)

0 .
With Eqs. (C20), (C25), and (C14), the coupling Hamilto-

nian Eq. (C23) applied to modes 0, q and −q becomes

Hc = g(2)
q a1a†

qa†
−q + c.c. (C28)

where we have kept only the near resonant terms. Therefore,
we have derived the interaction term in Eq. (7) where the inter-
action strength g is given by Eq. (8) with ξg = ξ

1/2
1 η′/(S′1/2

1 S′
0)

and the dimensionless integral η′ defined as

η′ = q′2
x

∫ 1

−1
dy ∂2

y ϕ1 ϕ2
0 g̃(y) . (C29)

In the above expression for η′, we have dropped the terms
involving ∂yϕ0. This approximation is good if ∂xϕ0 � ∂yϕ0,
which is true for the subharmonic plasmons in Fig. 1(b). The
dimensionless momentum q′

x = qxa is order one.
In Fig. 3, we plot the resulting shape factors for

the strip as the linear doping profile varies. There
we have assumed the temperature and doping depen-
dence of the Drude weight and the second-order optical

FIG. 10. Feynman diagram for the self energy of mode-1 plas-
mon due to its parametric coupling to two mode-0 plasmons. Solid
lines are the plasmon propagators.

weight are D(μ, T ) = 2 e2

h̄2 T ln[2 cosh( μ

2T )] and D(2)
k (μ, T ) =

D(2)
0 tanh( μ

2T ), so that their dimensionless profile functions are
σ̃ (y) = 2T

μ(y) ln[2 cosh( μ(y)
2T )] and g̃(y) = tanh( μ(y)

2T ).
The occupation number—Under the ac electric field of the

incident light, the gapped mode ω1 is driven to a coherent state
|β(t )〉 where β(t ) = βe−iω1t . From Eq. (C10), the average
value of ρ is

〈ρ〉 = ρu〈β(t )|(a + a†)|β(t )〉 = ρu(βe−iω1t + c.c.), (C30)

which combined with Eq. (C9) yields

β = (Q/i)(α/S)Eext/ρu. (C31)

The above equation and Eq. (C14), (6) yields Eq. (12).

5. The decay rate

In this subsection, we derive Eq. (9), the decay rate �

of the mode-1 plasmon into two mode-0 plasmons through
the interaction Hamiltonian Eq. (7). This could be done by
calculating the self energy (Fig. 10) of the mode-1 plasmon.
It is a bubble diagram formed by two mode-0 propagators:

�(iω) =
∣∣∣∣g(2)

h̄

∣∣∣∣
2 ∑

q,i�n

ω(q)

(i�n)2 − ω(q)2

ω(q)

(iω + i�n)2 − ω(q)2

=
∣∣∣∣g(2)

h̄

∣∣∣∣
2 ∑

q

[2n(ω(q)) + 1]4ω(q)

(iω)2 − 4ω(q)2
, (C32)

where n(x) = 1/(eh̄x/T − 1) is the boson occupation number.
Its imaginary part at iω = ω1 would simply give the Fermi’s
golden rule:

Im[�(ω1)] =
∣∣∣∣g(2)

h̄

∣∣∣∣
2 ∑

q

[2n(ω(q)) + 1]πδ(ω1 − 2ω(q))

=
∣∣∣∣g(2)

h̄

∣∣∣∣
2

L

v0

(
n(ω1/2) + 1

2

)
, (C33)

which is just Eq. (9).

APPENDIX D: CLASSICAL PARAMETRIC
AMPLIFICATION VIA SECOND-ORDER

NONLINEARITY

1. Infinite plane

General—For the subharmonic generation to happen in
inversion symmetric systems, there needs to be a strong pump
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FIG. 11. (a) Schematic illustration of 2D plasmons parametri-
cally driven by the pump through second-order nonlinearity. The
blue curve is the plasmon frequency momentum dispersion. The
red dots are the two plasmon modes coupled by the pump field
at (q, ω) and its complex conjugate at (−q, −ω). (b) Degenerate
FWM of plasmons induced by third-order nonlinearity. The dots at
zero momentum represent the uniform pump field with frequency
ω and it complex conjugate. The dots at the same frequency but
nonzero momentum represent the plasmon modes coupled by this
field through third-order nonlinearity.

field with frequency ω and appreciable wave vector q whose
electric potential is

� = φei(qr−ωt ) + φ∗e−i(qr−ωt ) . (D1)

The equation of motion (EOM) of the plasmons is conve-
niently described by the second-order nonlinear conductivity

jμ(ω, q) =
∫

dω′dq′σ (2)
μαβ (ω − ω′, q − q′, ω′, q′)

× Eα (ω − ω′, q − q′)Eβ (ω′, q′) . (D2)

Since σ (2) is a real function in space-time domain, its fre-
quency momentum representation has the general property

σ
(2)
μαβ (−ω1,−q1,−ω2,−q2) = σ

(2)∗
μαβ (ω1, q1, ω2, q2) . (D3)

And if the system has inversion symmetry, then

σ
(2)
μαβ (ω1,−q1, ω2,−q2) = −σ

(2)
μαβ (ω1, q1, ω2, q2), (D4)

which means σ
(2)
μαβ (ω1, 0, ω2, 0) = 0. However, it can be

nonzero at finite momentum. By convention, σ (2) is defined to
be symmetric: σ

(2)
μαβ (ω1, q1, ω2, q2) = σ

(2)
μβα (ω2, q2, ω1, q1).

Due to σ (2) and the driving field, the equation of motion
for plasmons is modified. As illustrated in Fig. 11(a), any two
modes (q1, q2) with q1 + q = q2 are coupled by the driving
field through σ (2). The charge continuity equation for the

mode with momentum q2 is

∂tρq2 + ∇ · jq2 = 0 (D5)

and the current jq2 can be expanded to second order in electric
field

jμ(ω2, q2) = σμν (ω2, q2)E ν (ω2, q2) + σ
(2)
μαβ (ω1, q1, ω, q)

× Eα (ω1, q1)Eβ (ω, q) + σ
(2)
μαβ (ω, q, ω1, q1)

× Eα (ω, q)Eβ (ω1, q1) . (D6)

The electric field E (ω2, q2) is related to the charge density
through the Coulomb kernel

E(ω2, q2) = −iq2Vq2ρ(ω2, q2) . (D7)

Similar set of equations apply to the pairing mode ρq1 . Sepa-
rating the densities into products of amplitude and phase as

ρq1 = A1(t )ei(q1r−ω1t ), ρq2 = A2(t )ei(q2r−ω2t ) , (D8)

and plugging them into the continuity equations [Eq. (D5)
et al.], we get the equations for time evolution equation of
the amplitudes:(

∂t + γ κ2ei�t

κ1e−i�t ∂t + γ

)(
A1

A2

)
= 0 . (D9)

The parameters κ1, κ2 are

κ1 = iq2μσ
(2)
μαβ (ω1, q1, ω, q)(−iq1αVq1 )(−iqβφ)

+ iq2μσ
(2)
μαβ (ω, q, ω1, q1)(−iqαφ)(−iq1βVq1 )

= −i2φVq1σ
(2)
μαβ (ω1, q1, ω, q)q2μq1αqβ ,

κ2 = i2φ∗Vq2σ
(2)
μαβ (ω2, q2,−ω,−q)q1μq2αqβ . (D10)

Similar to Eq. (B12), the solution to Eq. (D9) has an exponen-
tial factor eλt . For there to be nonzero solutions, we require
the determinant to be zero, and obtain

λ = −γ ±
√

κ1κ2 − �2/2 (D11)

where � = ω − (ω2 − ω1). Therefore, the criterion for there
to be an exponentially growing solution is

Re
[√

κ1κ2 − �2/2
]

> γ . (D12)

Let us temporarily assume that there is no damping γ = 0. In
the ideal case, q1 = −q2, and � = 0, we have κ2 = κ∗

1 from
the property Eq. (D3). Therefore, Eq. (D12) is guaranteed to
be satisfied in any dissipationless system.

Applied to Graphene—In the kinetic regime of graphene,
expanding to linear order in q, the second-order nonlinear
conductivity reads [20,23]

σ
(2)
ilm (ω1, q1, ω2, q2) = D(2)

k

ω1ω2ω3

[(
q3 − ω1

2ω2
q2 − ω2

2ω1
q1

)
i

δlm +
(

2q2 − 2q1 − ω2

ω1
q1 + 3ω1

ω2
q2

)
m

δil

]
+

(
1 ↔ 2
l ↔ m

)
,

(D13)

where (ω3, q3) = (ω1 + ω2, q1 + q2) and the second-order
optical weight is D(2)

k = D(2)
0 tanh(μ/(2T )) [23] whose zero-

temperature limit is D(2)
0 . Applied to Eq. (D10) in the ideal

case q1 = −q2, and � = 0, we obtain the growth rate

√
κ1κ2 = 3

2

e3v2
F

h̄2

q3

ω3
|φ| . (D14)
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Taking into account the plasmon dispersion ω1 = √
2Dq1, we

arrive at the dimensionless relative growth factor

Q−1
g = 3

16αg
ζ . (D15)

2. Graphene ribbon

Assume the ω1 mode is excited by an external source tuned
exactly at ω1, the density is ρ(t ) = ρ0e−iω1t + c.c.. Through
second-order nonlinearity, the strong field of mode ω1 is going
to modify the CCE of the ω0 mode. Assuming the charge
density of the subharmonic mode is ρ1 = A(t )e−iω0t + c.c.,
plugging it into the CCE of this mode and taking inner product
with ρ̃1, one obtains equation for the amplitude:

∂t A + κA∗ = 0, (D16)

where |ρ̃1|2 is defined in Eq. (C7) and |κ| = |βg/h̄|. Equa-
tion (D16) leads to exponentially growing solution with the
relative growth rate

Q−1
g = |κ|

ω0
= ζ

Q

8αg

η′α′

ξ 2
0 S′

1S′
0

, (D17)

which agrees with Eq. (17), the quantum mechanical result.

APPENDIX E: CLASSICAL PARAMETRIC
AMPLIFICATION VIA THIRD-ORDER

NONLINEARITY

Assume a strong uniform electric field E = E0e−iωt + c.c.
which, due to momentum mismatch, cannot excite plasmons
through linear response. However, through third-order nonlin-
ear effect, this uniform E tends to make the plasmons grow in
amplitude. The CCE of the plasmons with momentum q is

∂tρq + ∇ · jq = 0 , (E1)

and the currents are

j(q, ω)i = σil (ω)E (q, ω)l + 3σ
(3)
ilmn(−ω,ω,ω)

× E (q,−ω)l E0mE0n,

j(q,−ω)i = σil (−ω)E (q,−ω)l + 3σ
(3)
ilmn(ω,−ω,−ω)

× E (q, ω)l E
∗
0mE∗

0n, (E2)

where E (q)l = −iqlvqρq. Thus the CCEs of the plasmon
mode q at frequencies ω and −ω are coupled by the pump field
E0, as shown in Fig. 11(b). Separating amplitude and phase of
the charge density as

ρq(t ) = A(t )e−iωt + B(t )eiωt , (E3)

we arrive at the equation for the amplitudes(
2∂t λ

λ′ 2∂t

)(
A
B

)
= 0 , (E4)

where

λ = 3σ
(3)
ilmn(−ω,ω,ω)qiqlvqE0mE0n ,

λ′ = 3σ
(3)
ilmn(ω,−ω,−ω)qiqlvqE∗

0mE∗
0n . (E5)

Due to the fact that σ
(3)
ilmn(ω,−ω,−ω) = σ

(3)∗
ilmn (−ω,ω,ω), we

have λ′ = λ∗. Therefore, Eq. (E4) has the solution

A(t ) = A+eκt + A−e−κt ,

B(t ) = B+eκt + B−e−κt , (E6)

where κ = |λ| is the growth/decay rate. Taking the “Drude”
form in Eq. (21) for σ (3) of graphene in the kinetic regime,
plugging in the square root dispersion of plasmons ω =√

2Dq, the dimensionless relative growth rate Q−1
g = κ/ω

simplifies to

Q−1
g = 3

8

e2E2
0 /ω2

(h̄kF )2
= 3

8
ξ 2 (E7)

for the plasmons propagating parallel to the direction of the
pump field. The dimensionless small number ξ = eE0/ω

h̄kF
=

δp/pF is simple to memorize: δp is just the change in electron
momentum caused by the electric field during one half cycle
of the oscillations, δt ∼ π/ω [24]. Note that due to third-order
nonlinearity, the plasmon frequency itself is also renormalized
by this strong uniform field [24], and the frequency ω through-
out this section should be considered as the renormalized one.

Although a result of third-order nonlinearity, this phe-
nomenon is different from modulational instability, which
is ubiquitous in nonlinear optics and fluid mechanics [131],
e.g., in surface gravity waves. In modulational instability, the
strong pump is a finite momentum “wave train” on resonance,
and the exponentially growing waves have momentums dif-
ferent from the pump by a small amount δk. If the criterion
of instability is satisfied, the growth rate scales linearly with
δk. For a negative Kerr nonlinearity as for graphene plas-
mons [24], the criterion requires ∂2

k ω > 0, not satisfied by
the square root dispersion. However, this criterion assumes a
non dispersive σ (3), which is not true in graphene. Therefore,
whether modulational instability happens in graphene needs
further investigation and is a weaker effect anyway. Indeed,
in a recent work on nonlinear plasmons [132], it was found
that second-order nonlinearity could lead to growth of side
bands in the presence of a wave train, similar to modulational
instability.

APPENDIX F: NEAR-FIELD PROBE OF DFG

In this section, we discuss a scanning near-field experiment
that could measure plasmonic DFG by classical interference.
The setup is similar to the left part of Fig. 6. Upon pumping
of the ω1 mode of the device Fig. 1(a), if the ω0 mode with
momentum q is launched by a classical source combined with
an “antenna”, e.g., the left edge of the ribbon, the counter
propagating mode with momentum −q will be generated by
DFG from the pump and the q mode. The q mode can be
described by a coherent state |a0〉, which satisfies aq|a0〉 =
a0|a0〉. The Hamiltonian (7) leads to equation of motion for
the −q mode:

(∂t + γ )〈a−q〉 = −iω0〈a−q〉 − ig(2)βa∗
0e−iω0t/h̄, (F1)
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where the phenomenological damping rate γ has been added.
After the driving term has been turned on for a time long
enough, the steady state solution is

〈a−q〉 = i
g(2)β

h̄γ
a∗

0e−iω0t = i
κ

γ
a∗

0e−iω0t . (F2)

Therefore, if the “reflection coefficient” κ/γ is at the order of
one, the two waves would interfere to form fringes with period
λ0/2 where λ0 = 2π/q is the wavelength of the subharmonic
plasmon. These fringes could be picked up by the near-field
scanning probe.
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F. J. García de Abajo, L. A. Rozema, and P. Walther, Quantum
computing with graphene plasmons, npj Quantum Inf. 5, 37
(2019).

[80] A. F. Page, F. Ballout, O. Hess, and J. M. Hamm, Nonequilib-
rium plasmons with gain in graphene, Phys. Rev. B 91, 075404
(2015).

[81] Z. Sun, D. N. Basov, and M. M. Fogler, Adiabatic Amplifica-
tion of Plasmons and Demons in 2D Systems, Phys. Rev. Lett.
117, 076805 (2016).

[82] S. de Vega and F. J. García de Abajo, Plasmon generation
through electron tunneling in graphene, ACS Photon. 4, 2367
(2017).

[83] J. Wilson, F. Santosa, M. Min, and T. Low, Temporal control
of graphene plasmons, Phys. Rev. B 98, 081411(R) (2018).

[84] S. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D.
Gu, S. R. Clark, D. Jaksch, and A. Cavalleri, Parametric am-
plification of a superconducting plasma wave, Nat. Phys. 12,
1012 (2016).

[85] P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett,
Imaging with quantum states of light, Nat. Rev. Phys. 1, 367
(2019).

[86] S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and
S. Lloyd, Advances in photonic quantum sensing, Nat. Photon.
12, 724 (2018).

[87] X. Yao, M. Tokman, and A. Belyanin, Efficient Nonlinear
Generation of THz Plasmons in Graphene and Topological
Insulators, Phys. Rev. Lett. 112, 055501 (2014).

[88] H. Rostami, M. I. Katsnelson, and M. Polini, Theory of
plasmonic effects in nonlinear optics: The case of graphene,
Phys. Rev. B 95, 035416 (2017).

[89] C. Wolff, C. Tserkezis, and N. A. Mortensen, Enhanced pon-
deromotive force in graphene due to interband resonance,
New J. Phys. 21, 073046 (2019).

[90] C. J. Tollerton, J. Bohn, T. J. Constant, S. A. R. Horsley,
D. E. Chang, E. Hendry, and D. Z. Li, Origins of all-optical
generation of plasmons in graphene, Sci. Rep. 9, 3267 (2019).

[91] E. Altewischer, M. P. van Exter, and J. P. Woerdman, Plasmon-
assisted transmission of entangled photons, Nature (London)
418, 304 (2002).

[92] T. V. Phan, J. C. W. Song, and L. S. Levitov, Ballis-
tic heat transfer and energy waves in an electron system,
arXiv:1306.4972.

[93] D. Svintsov, Hydrodynamic-to-ballistic crossover in dirac ma-
terials, Phys. Rev. B 97, 121405(R) (2018).

[94] A. Lucas and S. Das Sarma, Electronic sound modes and plas-
mons in hydrodynamic two-dimensional metals, Phys. Rev. B
97, 115449 (2018).

[95] G. Patrick, Y. Chan-Shan, L. Tairu, T. Fanglin, K. Rai, Z.
Hai, W. Kenji, T. Takashi, and W. Feng, Quantum-critical
conductivity of the Dirac fluid in graphene, Science 364, 158
(2019).

[96] V. Andreeva, D. A. Bandurin, M. Luskin, and D. Margetis,
Dipole excitation of collective modes in viscous two-
dimensional electron systems, Phys. Rev. B 102, 205411
(2020).

[97] B. N. Narozhny, I. V. Gornyi, and M. Titov, Hydrodynamic
collective modes in graphene, Phys. Rev. B 103, 115402
(2021).

023208-20

https://doi.org/10.1103/PhysRevLett.94.110501
https://doi.org/10.1038/s41565-018-0145-8
https://doi.org/10.1038/s41566-018-0175-7
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1364/OL.25.000554
https://doi.org/10.1364/OL.35.003006
https://doi.org/10.1038/nphoton.2008.228
https://doi.org/10.1038/nphoton.2009.259
https://doi.org/10.1063/1.112328
https://doi.org/10.1038/nphoton.2007.70
https://doi.org/10.1103/PhysRevLett.124.163603
https://doi.org/10.1038/lsa.2016.249
https://doi.org/10.1364/OE.15.005976
https://doi.org/10.1364/OE.25.032995
https://doi.org/10.1063/1.5080397
http://arxiv.org/abs/arXiv:1508.04358
https://doi.org/10.1038/s41534-019-0150-2
https://doi.org/10.1103/PhysRevB.91.075404
https://doi.org/10.1103/PhysRevLett.117.076805
https://doi.org/10.1021/acsphotonics.7b00695
https://doi.org/10.1103/PhysRevB.98.081411
https://doi.org/10.1038/nphys3819
https://doi.org/10.1038/s42254-019-0056-0
https://doi.org/10.1038/s41566-018-0301-6
https://doi.org/10.1103/PhysRevLett.112.055501
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1088/1367-2630/ab2f30
https://doi.org/10.1038/s41598-019-39961-1
https://doi.org/10.1038/nature00869
http://arxiv.org/abs/arXiv:1306.4972
https://doi.org/10.1103/PhysRevB.97.121405
https://doi.org/10.1103/PhysRevB.97.115449
https://doi.org/10.1126/science.aat8687
https://doi.org/10.1103/PhysRevB.102.205411
https://doi.org/10.1103/PhysRevB.103.115402


GRAPHENE AS A SOURCE OF ENTANGLED PLASMONS PHYSICAL REVIEW RESEARCH 4, 023208 (2022)

[98] A. Levchenko and J. Schmalian, Transport properties of
strongly coupled electron–phonon liquids, Ann. Phys. 419,
168218 (2020).

[99] A. Principi, D. Bandurin, H. Rostami, and M. Polini, Pseudo-
Euler equations from nonlinear optics: Plasmon-assisted
photodetection beyond hydrodynamics, Phys. Rev. B 99,
075410 (2019).

[100] D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, Hydro-
dynamic electron transport and nonlinear waves in graphene,
Phys. Rev. B 88, 245444 (2013).

[101] D. N. Basov, M. M. Fogler, and F. J. García de Abajo,
Polaritons in van der Waals materials, Science 354, 195
(2016).

[102] T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang,
P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and
F. Koppens, Polaritons in layered two-dimensional materials,
Nat. Mater. 16, 182 (2017).

[103] D. N. Basov, A. Asenjo-Garcia, P. J. Schuck, X. Zhu,
and A. Rubio, Polariton panorama, Nanophotonics 10, 549
(2021).

[104] S. Dai, W. Fang, N. Rivera, Y. Stehle, B.-Y. Jiang, J. Shen,
R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain et al.,
Phonon polaritons in monolayers of hexagonal boron nitride,
Adv. Mater. 31, 1806603 (2019).

[105] N. Li, X. Guo, X. Yang, R. Qi, T. Qiao, Y. Li, R. Shi, Y. Li, K.
Liu, Z. Xu et al., Direct observation of highly confined phonon
polaritons in suspended monolayer hexagonal boron nitride,
Nat. Mater. 20, 43 (2021).

[106] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod,
M. K. Liu, W. Gannett, W. Regan, K. Watanabe et al., Tunable
phonon polaritons in atomically thin van der Waals crystals of
boron nitride, Science 343, 1125 (2014).

[107] E. Yoxall, M. Schnell, A. Y. Nikitin, O. Txoperena, A.
Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. L.
Koppens, and R. Hillenbrand, Direct observation of ultraslow
hyperbolic polariton propagation with negative phase velocity,
Nat. Photon. 9, 674 (2015).

[108] P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S.
Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and
T. Taubner, Hyperbolic phonon-polaritons in boron nitride
for near-field optical imaging and focusing, Nat. Commun. 6,
7507 (2015).

[109] Z. Sun, Á. Gutiérrez-Rubio, D. N. Basov, and M. M. Fogler,
Hamiltonian optics of hyperbolic polaritons in nanogranules,
Nano Lett. 15, 4455 (2015).

[110] N. Rivera, G. Rosolen, J. D. Joannopoulos, I. Kaminer, and M.
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Correction: The previously published Figure 2 contained an
incorrect unit on the abscissa and has been replaced to reflect
the correct unit, V/cm. The same unit has been fixed in the
last paragraph of Sec. III C and in the second paragraph of
Sec. III D.
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