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Questioning the question: Exploring how physical degrees of freedom
are retrieved with neural networks
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When studying a physical system, it is crucial to identify the degrees of freedom that characterize that system.
Recently, specific neural networks have been designed to retrieve these underlying degrees of freedom automati-
cally. Indeed, fed with data from a physical system, a variational autoencoder can learn a latent representation of
that system that directly corresponds to its underlying degrees of freedom. However, the understanding of these
neural networks is limited on two fronts. First, very little is known about the impact of the question vector, a
key parameter in designing performant autoencoders. Second, there is the mystery of why the correct degrees
of freedom are found in the latent representation, not an arbitrary function of these parameters. Both gaps in
our understanding are addressed in this paper. To study the first question on the optimal design of the question
vector, we investigate physical systems characterized by analytical expressions with a limited set of degrees of
freedom. We empirically show how the type of question influences the learned latent representation. We find
that the stochasticity of a random question is fundamental in learning physically meaningful representations.
Furthermore, the dimensionality of the question vector should not be too large. To address the second question,
we make use of a symmetry argument. We show that the learning of the degrees of freedom in the latent space is
related to the symmetry group of the input data. This result holds for linear and nonlinear transformations of the
degrees of freedom. In this way, in this paper, we contribute to the research on automated systems for discovery

and knowledge creation.
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I. INTRODUCTION

A crucial task in physics is identifying the degrees of
freedom of the system under investigation based on experi-
mental data [1]. When observing data in a time series, e.g.,
representing planetary motion [2], one typically wants to
extract the underlying physical parameters that give rise to
these dynamics. In physics, this is often accomplished us-
ing first-principles arguments [3], symmetry considerations
[4], or analogies with other theoretical models [5]. In the
context of machine learning, parameter extraction often goes
under the name of dimensionality reduction, the action of
reducing an input time series to a minimal representation that
describes it.

Recently, the neural network architecture SciNet was pro-
posed to discover the underlying degrees of freedom in
physical data [6]. SciNet is based on a popular genera-
tive model in the machine learning literature called the
B-variational autoencoder (B8-VAE). This generative model
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creates a latent representation of the input data that captures
all relevant information. To make the latent representation
physically relevant, a so-called question was introduced in the
architecture of SciNet.

For time-series input data, e.g., the position of a damped
harmonic oscillator, this question is the specific time points
for which we want to reconstruct the time series. The output
of the network then corresponds to the time series at the time
point(s) encoded by the question(s). While previous work
showed good results in learning the degrees of freedom, it
remained however elusive how variations of this question
influence the latent representation that is learned. Moreover,
it is unclear why the latent representation would store exactly
the degrees of freedom and not an arbitrary function of them.

In this paper, we show that the introduction of a question is
crucial to learning a physically meaningful latent representa-
tion. Without an added question, the standard architecture of a
B-VAE, where the original time series input is reconstructed,
does not lead to a physically interpretable representation in
the latent space. A careful design of the question is thus key
in giving physical meaning to the latent representation formed
in neural networks.

To study what is learned in the latent representation, we
take a look at a symmetry argument given in Ref. [7]. The
argument proposes that we want to learn a disentagled repre-
sentation. This is a representation of which the parts transform
independently under the subgroups of the symmetry group of
the input data. We show that, using this symmetry argument,
we indeed expect to find the degrees of freedom. Our results
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show that a B-VAE can learn disentangled representations of
physical systems.

This paper is divided as follows. Section III covers the
architecture that we use and its learning dynamics. It also
explains how the architecture changes for different questions.
Section IV shows the results when training architectures with
different questions on three datasets of physical time series.
These datasets are generated from analytical expressions. The
results are further discussed in Sec. V. The final Sec. VI
contains our conclusions and perspectives.

II. RELATED WORK

A significant number of scientists and engineers are work-
ing on the interface of physics and artificial intelligence (Al),
intending to create an Al system for knowledge discovery.
Such a system could understand experimental data and for-
mulate theories and analytical expressions describing them.
Exciting work in this area includes the development of the Al
physicist [8]. This learning agent can discover the dynamics
of several so-called mystery worlds with various physical
interactions such as gravitational or electromagnetic fields.
More recently, the AI Feynman was created, an algorithm that
can discover analytical expressions based on data of complex
functions [9]. In both previous use cases, it is essential to
find the degrees of freedom, a task sometimes referred to as
symbolic pregression. Two approaches have been taken to
accomplish this task. The first approach uses an autoencoder
that is regularized by a loss penalizing the nonlinearity of
the autoencoder [10]. The second approach regularizes the
autoencoder according to the rules of a B-VAE [6]. This is
the approach we elaborate on in this paper.

Since the occurrence of a VAE [11], many variations of
this architecture have been proposed such as the 8-VAE [12],
AnnealedVAE [13], FactorVAE [14], B-TCVAE [15], and
DIP-VAE-I [16]. For a comprehensive overview, see Ref. [17].
The goal of these variations is to learn more disentangled
representations, where each dimension is independent of the
other. In physical systems, this exactly corresponds to learning
a degree of freedom in each latent dimension. This has been
applied to classical and quantum systems [6] as well as dark
matter research [18].

The VAE is not the only neural network architecture that
can be used to uncover physical concepts. An architecture
called a restricted Boltzmann machine was used to extract the
relevant degrees of freedom in a classical statistical mechan-
ics system [19]. Moreover, classical fully connected neural
networks were used to discover different phases of matter
[20] and to discover the concept of a quantum mechanical
wave function and the Schrodinger equation it obeys [21].
In addition, fully connected neural networks were used to
extract interpretable physical parameters from spatiotempo-
ral data of a partial differential equation [22] and to find
an analytical expression for dark matter dynamics [23]. In
a final example, fully connected neural networks were used
to directly learn the conserved quantities from a time series
[24-26].

A lot of progress has also been made extracting dynamical
equations from experimental data [27-31], but so far, these
methods still require prior domain knowledge. In contrast, the

B-VAE, discussed in this paper, does not need prior knowl-
edge on the physics of the system.

III. METHODS

The neural network architecture in this paper consists of
two parts, the encoder and the decoder, as shown in Fig. 1.
Both are fully connected neural networks. The encoder maps
an input X to a vector z that we call the latent representation.
The aim is to store the degrees of freedom underlying the
input x in the different nodes of the latent layer z. Instead of
learning this vector directly, we learn a probabilistic encoder
¢(z|x). This ensures that we have a continuous and smooth
latent space, in which the interpolation between two points
corresponds to a meaningful input.

To learn this probability distribution, we need to restrict it
to a fixed family of functions. A popular family of functions is
the set of multivariate Gaussians, for which every dimension
of the latent vector z corresponds to a normal distribution
N (u, o). The encoder returns the parameters w and o of this
distribution.

For the decoder to make a reconstruction, we need to sam-
ple a latent vector z from the probability distribution g(z|x).
Since the sampling operation is not differentiable, we use
the reparameterization trick: instead of sampling directly, we
draw a random vector € from N (0, 1). The latent vector z is
then given by

Z=Uu+€-o0. @))]

Crucially, at this point, the representation z is concatenated
with a question vector q that contains the time points at which
we want to evaluate the time series. The decoder then maps the
question q and the latent representation z to an output y that
is of the same dimension as the question—the output vector
needs to encode the answer to the question vector using the
information stored in the latent representation. The introduc-
tion of the question allows us to control what is learned in
the latent representation. It forces the latent representation to
maximally store physically relevant information that can be
used to predict the time series at different time points from
the question vector.

Once the neural network is set up, we train it by minimizing
a loss function called the ELBO, given by

ELBO = (y — §)* + B - DxiIq(z|x)||p(2)]. 2)

The first term is the mean squared error between the real
output y and the output § generated by the decoder. Minimiz-
ing this term leads to an accurate reconstruction of the time
series at the time points of the question . The second term
is a KL divergence between the distribution over the latent
representation and a prior Gaussian p(z) ~ N(0, 1). It regu-
larizes the representation such that it is minimal by forcing
the architecture to activate a latent dimension only when it
provides useful information. If there is no useful information
to be stored in an extra dimension, the values in a dimension
are Zzero.

The last and perhaps most important question is how to
design the question vector q. In the general literature on
autoencoders, the goal is usually to make an accurate recon-
struction of the input. We can achieve this by constructing the
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FIG. 1. The architecture of a 8-VAE consists of an encoder and a decoder. The encoder maps an input to a latent representation of dimension
m. The degrees of freedom appear in this latent representation. Then a question of dimension # is concatenated with the representation and fed
to the decoder. This results in an output of dimension # that contains the answer to the question. The encoder and decoder in our experiments
are fully connected neural networks with two hidden layers each of 100 nodes and the Swish activation function.

question vector in agreement with the fixed sampling time
points of the input. The time series at these sampling points
is then exactly the original input.

The other option explored in Ref. [6] is to ask a question
at one random time point. This random time point is different
for each training sample. We see thus that we have a choice
of randomly sampling time points at which we evaluate or
having fixed points that are the same for every data sample.
The number of time points, or in other words the dimension
of the question q, is also something we can vary.

We explore two adaptations of the question vector. The first
is to change the dimension of the question. We evaluate the
time series at time points a fixed distance apart but at lower
dimension than the input. The second way to adapt the ques-
tion vector is to add stochasticity. Instead of asking a question
at fixed time points, we allow for random time points. The
question vector can thus be different for every data sample.
We can also change the question dimension in this stochastic
case. The adaptation explored in Ref. [6] used a stochastic
question vector of dimension one. In this paper, we rigorously
investigate how these choices influence the learning of the
latent representation.

IV. RESULTS

To study the impact of the question that we add to the latent
representation, we train several neural networks with a differ-
ent question vector q. First, we make the comparison between
a question asked at fixed time intervals, i.e., the question
vector contains uniformly spaced time coordinates identical
for all data samples, and a question vector that contains ran-
dom time points, different for every data sample. Second, we
change the dimension of the question vector, where we go
from the limit of asking a question containing only one time
point to the case of asking a question of the same number of
time points as the input vector.

The neural networks are trained on three different datasets,
created from analytical expressions. These expressions

include a unity amplitude sine wave with the frequency f as
the only degree of freedom, a sine wave with both amplitude
A and f as degrees of freedom, and a damped harmonic
oscillator with two degrees of freedom k and b.

A. Sine wave with one degree of freedom

The first dataset consists of sine waves defined as

fort € [0, 27]. (3)

The frequency f € [2, 3.5] is the single degree of freedom
in this dataset. We evaluate the sine functions for 200 evenly
spaced values of 7 € [0, 2], creating a dataset of 100 000
sine functions. Some example sine functions are shown in
Fig. 2(a).

The encoder and decoder are both neural networks with
two hidden layers with 100 neurons and the Swish activation
function. We use the Adam optimizer with a learning rate of
1073, batch size of 250, and B =0.001.

We train different architectures where the question is either
evaluated on fixed time points that are the same for the full
dataset or on random points in the time interval, different for
every sample in the dataset. We do this for different dimen-
sions of the question vector q that we vary from 1 up to 200,
the size of the input vector.

To test the performance of the trained neural networks, we
divide the dataset of 100 000 sine waves into a training set, a
validation set, and a test set, following a 80-10-10 split. The
neural network uses the training set for actual training, the
validation set is used to tune hyperparameters, and the test set
is used to report the final performance.

The results of the different architectures are shown in
Figs. 3(a), 3(d), 3(g), and 3(h), where we plot the mean
absolute error on the test set (test MAE), the final KL diver-
gence, and the number of active dimensions. A dimension is
active when u; is not zero for all test samples, formally when
Cov(u;) > 6, where § is a threshold value set to 0.001. The
covariance is computed over all values of u; that are obtained

y = sin(f1),
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FIG. 2. Three datasets with analytical expressions parameterized by a limited number of degrees of freedom. (a) The first dataset contains
sine waves with variable frequency f € [2, 3.5]. Different waves are shown in gray. The gold cross indicates the location of the random
question. (b) The second dataset contains sine waves with variable frequency f € [2, 3.5] and variable amplitude A € [1, 4]. The gold crosses
indicate the location of the random question of dimension five. (c) The third dataset contains instances of a damped harmonic oscillator with
variable parameters k € [5, 10] and b € [0.5, 1]. The gold crosses indicate the location of the fixed question of dimension five.
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FIG. 3. Training results for different datasets. (a)-(c) Mean absolute error on the test set (test MAE) as a function of the dimension of the
question asked. We compare the cases where the question consists of random points in the time interval (blue) or points that are a fixed distance
apart in the time interval (yellow). (d)—(f) Final KL divergence on the training set vs the dimension of the question asked. (g)—(1) Number of
active dimensions in the latent space. A dimension is activated when Cov(u;) > § for the test set, where ; is the mean of the latent dimension
and the threshold § = 0.001. A red arrow is drawn when the degrees of freedom are successfully learned in the active latent dimensions.
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FIG. 4. Scatter plot between the dimensions of the latent space and the degree of freedom f for neural networks trained on the dataset
sin(f1). The first row shows the latent representation for a network trained with a question of dimension five, evaluated at random points on
the time interval. There is one active dimension, indicated in yellow. This dimension shows an approximately linear correlation with the degree
of freedom f, which indicates that f is stored inside this latent variable. The second row shows the latent representation for a network trained
with a question of dimension 25, evaluated at evenly spaced points on the time interval. There are four active dimensions, indicated in yellow.
While all active dimensions show a relation with f, this relation is not monotonous. Therefore, we cannot say that f is stored in any of these

dimensions; the information is spread out across the four dimensions.

for the test set. All architectures have 10 latent dimensions in
which information can be stored. The red arrows in Fig. 3(g)
mark the neural networks where the latent representation cor-
responds to the underlying degree of freedom f.

We see that a good latent representation can be learned for
a random question of dimensions 1, 2, or 5. For these cases,
we also obtain a test MAE <0.03. For higher dimensions of
the random question vector, the test MAE gets progressively
worse. We also see an increase in the number of latent dimen-
sions, such that we get a nonminimal latent representation.
While the latent dimensions are still correlated with f, there
is no clear linear relationship.

For a question at fixed time points, the test MAE is <0.03
for all numbers of output nodes. The information about the
sine wave is stored inside the latent representation, but there is
no single dimension containing f. This is shown in Fig. 4. The
first row shows a good latent representation for a neural net-
work with one random question of dimension five. One active
dimension, indicated in yellow, has a linear correlation with
the frequency. The second row shows the latent dimensions
for a neural network with a fixed question of dimension 25.
While the neural network can make sound predictions of the
time series, four active dimensions are formed to store some
of the information on the frequency f.

B. Sine wave with two degrees of freedom

The second dataset consists of sine functions given by
y = Asin(ft),

The frequency f € [2,3.5] and the amplitude A € [1, 3]
are the two degrees of freedom in this dataset. These sine
functions are evaluated for 200 evenly spaced values of t €
[0, 27r], leading to 100 000 sine functions. Some example sine
functions are given in Fig. 2(b).

We use the same hyperparameters for the neural network
as for the previous dataset. However, the training process
for this dataset was not always stable, leading to predictions
of not a number. To stabilize the training, we optimized the
hyperparameter §. The random question of dimensions 1, 2,
and 5 was trained with 8 = 0.005, and the random question
of dimensions 10, 25, 50, 100, and 200 was trained with

fort € [0, 27]. 4)

B = 0.01. The fixed questions were trained with g = 0.001,
except for the fixed question of dimension 10, trained with
B =0.01.

Results for architectures with a different question vector
are shown in Figs. 3(b), 3(e), 3(i), and 3(j). We retrieve the
degrees of freedom for a random question dimension 1, 2, or
5. For these questions, we also find a low test MAE <0.03. For
random questions of dimension 10, 25, 50, 100, or 200, the
degrees of freedom are not found in latent space. Furthermore,
the test MAE gets progressively worse, so these networks
cannot give good predictions of the time series.

The degrees of freedom are also not found in the latent
space for the fixed questions. We do, however, have good
predictions of the time series. The active dimensions of the
latent space thus capture the information in A and f but spread
them over multiple dimensions in a nonlinear way. This is like
what happens for the first dataset, where the frequency f is
spread out over four active dimensions. A plot of the latent
space for A and f can be found in the Supplemental Material
[32].

C. Damped harmonic oscillator

The third dataset represents the damped harmonic oscil-
lator. This dataset was first studied using neural networks in
Iten er al. [6]. We use the code of this paper provided on
Github for further experiments. The analytical expression of
the oscillator is given by

—b / b2
O, k, b) = exp <E) cos ( K — Zt) 5)

The parameters « € [5, 10] and b € [0.5, 1] are the two
degrees of freedom of the system. We evaluate the time series
for 50 evenly spaced values of ¢ € [0, 5], creating a dataset of
100 000 time series. Some examples for the damped harmonic
oscillator are given in Fig. 2(c).

The architecture and hyperparameters are identical to the
ones used for the first dataset. In the scenario where we
construct the question at random time points, we retrieve the
degrees of freedom for a question dimension of 1, 2, 5, or
10, as shown in Figs. 3(c), 3(f), 3(k), and 3(1). The MAE on
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the test set is <0.02, which makes for a good reconstruction.
Upon closer inspection of the two active dimensions, we find
that one of these dimensions has a linear correlation with k,
while the other has a linear correlation with b. Note that this
reproduces and generalizes the results of SciNet, which has a
random question of dimension one [6].

The results get increasingly worse for a question dimension
of 25 or 50. The test MAE increases, while the KL diver-
gence decreases, corresponding to a decrease in information
captured in the latent representation. There is only one active
dimension for this case. This dimension correlates linearly
with k. We thus only retrieved one degree of freedom.

As revealed by a low test MAE, we have a good reconstruc-
tion for a question vector at fixed time points of dimensions 1,
2, or 5. However, looking at the 1 or 2 active dimensions, we
find that they are correlated nonlinearly with both k and b. The
information is contained as a combination of both degrees of
freedom, in the same way as we saw that the info on f was
spread out over four active dimensions for the first dataset.

For a question dimension of 10, 25, or 50, we find &
and b in separate active dimensions. The test MAE is again
very low. We also see that the KL divergence is higher than
for question dimensions 1, 2, and 5, showing an increase in
information contained in the latent representation. A plot of
the latent spaces for the harmonic oscillator is provided in the
Supplemental Material [32].

The claim that b and « are found in the latent space is
supported by the linear correlation between the mean of the
latent dimension and these parameters. An important question
is why exactly these parameters are found and no others. We
can define the frequency of the damped harmonic oscillator

w=./kK — %2. It turns out that, if we plot this parameter w

together with the dimension in which « is found, we also find
a linear relation. We can thus equally well say that w was
found. According to the formal definition of a disentangled
representation, given in Ref. [7], one would also expect to
retrieve this parameter o based on a symmetry argument.

To check whether « or w is really learned, we can compare
the Pearson correlation coefficients. Taking the average over
the networks that found the degrees of freedom, we find a
Pearson correlation between the active dimension and k of
0.998 and between the active dimension and w of 0.999. While
both Pearson correlations are very high, we conclude that not
k but w is found in this latent space. This insight refines earlier
results [6].

V. DISCUSSION

Both the stochasticity of the question and being of a low
dimension are important to learn a good latent representation.
We can get intuition as to why this is so by considering the
other extreme: a fixed (nonstochastic) question vector with the
same dimensionality as the input layer. This architecture can
hardly add information compared with the original 8-VAE, an
architecture that fails to structurally recover degrees of free-
dom. One can say that constructing a question vector at fixed
points of lower dimension does not make a large difference.
Correct predictions can still be achieved with a traditional
B-VAE and only outputting a specific part of the input.

Asking a random question thus improves the learning of
the latent representation because it adds stochasticity to the
output. This is an essential feature beyond a typical f-VAE
operation: the neural network needs to capture the full in-
formation hidden in the data in its latent space. When the
question vector has a lower dimension, the stochasticity is
more pronounced because the stochasticity is averaged out
when the dimension is too high. We thus need to add a ques-
tion of low dimension to benefit from the stochasticity fully.

An interesting question is why we find precisely the de-
grees of freedom we are looking for. In principle, the latent
space could store an arbitrary function of the degrees of
freedom since neural networks can learn this function in the
encoder and the inverse function in the decoder. The an-
swer can be found in the fact that the degrees of freedom
form a disentangled representation. A formal definition of a
disentangled representation is given in Ref. [7]: “A vector
representation is called a disentangled representation with
respect to a particular decomposition of a symmetry group
into subgroups if it decomposes into independent subspaces,
where each subspace is affected by the action of a single
subgroup, and the actions of all other subgroups leave the
subspace unaffected.”

This definition allows us to describe what the disentangled
representation is for the datasets described. The dataset of sine
functions is parameterized by an amplitude A and frequency
f. All sine functions in this dataset are related by the symme-
try group of horizontal and vertical scalings. It is important
to note that this is a symmetry group of the underlying two-
dimensional Euclidean space on which the graphs are defined.
However, it is not a proper symmetry of the dataset. Since
the sampled data were given on a large enough region of
input space, an approximate symmetry is found by the neural
network. The symmetry group decomposes in scalings along
the x and y axes. The scalings in the x direction only affect the
frequency f, and the scalings in the y direction only affect the
amplitude A. The degrees of freedom transform independently
under the subgroups of the scaling symmetry; hence, they are
the unique disentangled representation we want to find.

However, there is no particular reason why a §-VAE should
learn this disentangled representation. To verify if this ar-
chitecture is preferably finding disentangled representation
instead of others, we perform an experiment on a similar
dataset of sine functions with a different parametrization by C;
and C,. We construct a dataset using the following function:

C+C (CI_C2)
= sSin 1),
2 2

We have that C; € [3.5,4.5] and C, € [—1.5, —0.5], lead-
ing to a dataset of 100 000 sine waves. Looking at this
function, one would expect to retrieve C; and C; in the latent
space. However, we find, for an architecture of a random
question with dimension 1, 2, and 5, that C; and C, are not
retrieved in the latent space. Results for a question of dimen-
sion five are shown in Fig. 5. We can explain this by making
the following identification:

y fort € [0, 27]. (6)

C+C Cc -C
GtG _, 8-S _ @

2 2
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FIG. 5. Scatter plot between the dimensions of the latent space and the degrees of freedom C; and C, for the neural network trained on
a modification of the second dataset. Results are shown for a network trained with a question at random time points of dimension five. The
first two rows show the correlation with C; and C,. There are two active dimensions, indicated in yellow. The absence of a clear correlation
indicates that the degrees of freedom are not found in the latent representation. The last two rows show the correlation with S5 and C‘%CZ

2

There are two active dimensions indicated in yellow. A linear relation can be observed here. This shows that the latent representation stores a
linear combination of C; and C;. It is exactly this linear representation that forms a disentangled representation under the symmetry group of

the dataset.

These two combinations then form a disentangled repre-
sentation of the sine functions. When we plot the correlations
with these linear combinations of C; and C,, we see that they
are retrieved in the latent space. This shows that, even though
the dataset was created by varying C; and C,, we retrieve the
disentangled representation of % and %

The interesting question now arises whether the disentan-
gled representation can be learned after being nonlinearly
transformed. Therefore, we introduce two new datasets
with

y = +/D1sin(Dst),
y = (E1)* sin(Eat),

fort € [0, 27].
fort € [0, 27].

®)

The latent spaces for these datasets are shown in Fig. 6.
We plot correlations between the latent dimensions and both
the original variable Dy, D,, E|, and E; and the disentangled
representations /D1, D,, (E;)?, and E,. While there is a good
linear correlation with both sets of variables, closer inspection
using the Pearson correlation coefficient reveals that the cor-
relation is higher for the disentangled representations, shown
in Table I. Results show that a disentangled representation is
retrieved, even when starting with a dataset where the degrees
of freedom are nonlinearly transformed.

‘We now turn to the third dataset of the harmonic oscillator.
The formula is given by

_ / 2
O(t, k,b) = exp (Z_tb> cos ( K — %t) )

Comparing this to the previous sine dataset, we see that
the functions of the damped harmonic oscillator can also be
related by horizontal and vertical scalings. The vertical scal-
ings correspond to the parameter b, and the horizontal scalings

correspond to the frequency ,/x — % = w of the cosine.

We showed earlier that b and w were found in the latent
representation, even though we expected to find b and k. The
disentangled representation is thus retrieved by the 8-VAE in
the case of the damped harmonic oscillator. It provides an

TABLE 1. Pearson correlation between latent dimensions and
degrees of freedom. A high correlation means that the degree of
freedom is stored in the latent dimension.

Dimension G @ Dimension C G ;CZ
s —0.701 —-0.997 o 0.700 0.997
Dimension D, VD Dimension E, (E))?
o 0.992 0.995 m —0.995 —-0.997
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FIG. 6. Scatter plot between the dimensions of the latent space and the degrees of freedom D;, D,, E;, and E, for the neural network
trained on a nonlinear modification of the second dataset. The first four rows show results for network trained with a question at a random time
point of dimension one. The first two rows show the correlation with D; and D5, and the following two rows correlation with the parameters
+/D; and D, of the disentangled representation. There are two active dimensions, indicated in yellow. The following four rows show results
for network trained with a question at a random time points of dimension five. The first two rows show the correlation with £, and E,, and the
following two rows correlation with the parameters (E; ) and E, of the disentangled representation. There are two active dimensions, indicated
in yellow.
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example of how the symmetry argument can give insight into
the latent parameters that are learned.

VI. CONCLUSIONS

Neural networks can retrieve the underlying physical
parameters driving the dynamics of a time series. The archi-
tecture consists of an encoder that maps the time series to a
latent representation and a decoder that maps the representa-
tion to an output. For the physical degrees of freedom to be
learned in the latent representation, it is crucial to introduce
a question in the neural network architecture. The question
consists of different time points at which the time series is
evaluated. The output of the decoder is then the answer to this
question.

Applying this to three datasets, we have shown that this
question needs to be asked at random time points that are
different for every data sample. The degrees of freedom in
both sine datasets can only be retrieved when the question is
asked at a low number of random time points for each data
sample. A higher number of time points does not lead to a

good representation nor to a good prediction of the sine. The
added stochasticity of the random question is fundamental in
learning physically meaningful representations.

In this paper, we also test a symmetry argument to better
understand what is learned in the latent space. Our results
support the claim that a disentangled representation is learned
in the latent space. The results are valid for linear as well
as nonlinear transformations. In our case, the disentangled
representation consists of exactly the degrees of freedom of
the physical systems.

Looking forward, we have shown that asking a stochastic
question to a latent representation can give it a physical mean-
ing. These efforts lead the way to better and more interpretable
Al systems that can be used for autonomous knowledge gen-
eration of physical systems.
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