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Singular optimal driving cycles of stochastic pumps
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The investigation of optimal processes has a long history in the field of thermodynamics. It is well-known
that finite-time processes which minimize dissipation often exhibit discontinuities. We use a combination of
numerical and analytical approaches to study the driving cycle that maximizes the output in a simple model of
a stochastic pump: a system driven out of equilibrium by a cyclic variation of external parameters. We find that
this optimal solution is singular, with an infinite rate of switching between sets of parameters. The appearance of
such singular solutions in thermodynamic processes is surprising, but we argue that such solutions are expected
to be quite common in models whose dynamics exhibit exponential relaxation, as long as the driving period is
not externally fixed and is allowed to be arbitrarily short. Our results have implications to artificial molecular
motors that are driven in a cyclic manner.
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I. INTRODUCTION

Questions regarding the optimal way of performing a task
or operating a machine fit naturally into the scope of the
theory of thermodynamics [1]. Examples range from Carnot’s
celebrated work on heat engines [2] to more modern geo-
metrical approaches [3–5]. Technological advances allow the
manipulation and observation of molecular motors, nanoscale
machines, and microscopic information or heat engines. The
theory of stochastic thermodynamics offers a consistent and
illuminating thermodynamic description of such small out-of-
equilibrium systems [6–9]. In particular, the theory accounts
for the unavoidable fluctuations due to the random interactions
of a small system with its environment. This research effort
has led to several fundamental results that enhance our under-
standing of out-of-equilibrium systems and processes, such as
fluctuation relations [10–15], thermodynamic uncertainty re-
lations [16–19], and a renewed interest in the thermodynamics
of information [20]. The predictions of the theory were tested
experimentally using colloidal particles [21–25], RNA hair-
pins [26,27], single-electron boxes [28,29], molecular motors
[30,31], and more [32].

A substantial body of research was devoted to the in-
vestigation of the role of optimal processes in stochastic
thermodynamics. Schmiedl and Seifert pointed out that
finite-time processes which minimize the work often exhibit
discontinuities at initial and final times [33]. The appearance
of such discontinuities is known in control theory [34], but
is somewhat surprising in the context of thermodynamic pro-
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cesses. This result therefore generated considerable interest,
and similar discontinuities were found in several other out-of-
equilibrium systems [35–37]. Several works showed how to
apply techniques from control theory to stochastic thermody-
namics problems, see, e.g., Refs. [37–40]. While much of the
work on the subject focused on finite-time transitions between
two states, several papers studied the optimal operation of
periodically driven systems [41–44].

In this paper, we investigate the optimal driving cycles of
stochastic pumps. The term stochastic pump is used to de-
scribe models with discrete states which are driven away from
equilibrium due to cyclic variation of system parameters. Sev-
eral experimental realizations of artificial molecular machines
can be modeled as stochastic pumps [45–48]. Various aspects
of stochastic pumps were studied theoretically in the last
two decades. These include (i) the underlying similarities and
differences between steady states and periodically driven sys-
tems [49,50], (ii) adiabatic and geometrical pumping [51–54],
and the no-pumping theorem [55–62], as well as other aspects
of such pumps [63–71]. Additional results are summarized in
several review papers devoted to this topic [72–75].

The optimization problem studied here exhibits two as-
pects that should be highlighted. One is the presence of a
resisting external force. The pump performs work against
this external force. Much of the existing literature on op-
timal stochastic thermodynamic processes was centered on
minimizing dissipation when transitioning between two states
or maximizing a pump current. By focusing on the pump’s
power output, we set up a different optimization problem. The
second aspect is the full freedom of choosing the time depen-
dence of parameters (within a predefined range). Specifically,
there are no additional restrictions on the shape of the driving
cycle or its period. This in turn means that there are no evident
approximations that can be used to reduce the dimension of
the optimization problem. Nevertheless, progress can be made
by considering a simple two-site model of a stochastic pump.
We use a combination of analytical and numerical techniques
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to identify the driving cycles that maximize the power output.
Interestingly, these optimal cycles turn out to be singular.
Specifically, the external parameters alternate between two
sets of values. The maximum output is found when the rate
of switching between the sets approaches infinity. While such
solutions are known in the literature on control theory [76,77],
they are uncommon in the context of thermodynamic pro-
cesses. Our results therefore add another facet to the study
of the stochastic thermodynamics of optimal processes.

Our paper is structured as follows. In Sec. II, we dis-
cuss some qualitative aspects of artificial molecular machines
that serve as motivation for the problem investigated in what
follows. We present the model and define the relevant thermo-
dynamic observables in Sec. III. Section IV describes some
physically motivated restrictions that we place on the driving
cycles. Such restrictions are needed to make the optimiza-
tion problem well-defined. In Sec. V, we identify and study
a family of driving cycles which are a good candidates for
optimal solutions. We then demonstrate in Sec. VI that these
cycles locally maximize the output of the pump. A numerical
approach based on genetic algorithms is presented and applied
in Sec. VII. It suggests that the optimal solution is attained
when the period of the cycles from Sec. V approaches zero.
In Sec. VIII, we study a regularized problem in which a
small cost is associated to changes in site energies. A good
agreement between the analytical and numerical approaches
is found for this regularized problem. Furthermore, the regu-
larized solutions approach the their singular counterparts from
Sec. VII when the additional cost is decreased. Finally, we dis-
cuss the implications and generality of our results in Sec. IX.

II. MOTIVATION: PERIODICALLY DRIVEN
MOLECULAR MACHINES

Our bodies are teeming with proteins that act as machines.
Life would not have been possible without molecules that
transport cargo, copy or translate nucleic acids, assist cell
division, and more [78]. The fascination with molecules that
can act as machines inspired chemists to design and synthesize
artificial molecular machines. The success of this fascinating
research effort has resulted in the awarding of the 2016 Nobel
Prize in Chemistry, which was awarded to Sauvage, Stoddart,
and Feringa.

The work presented below is motivated by a certain type of
artificially made molecular machines, built from complexes of
mechanically interlocked molecules [48]. As pioneered by the
groups of Stoddart and Leigh, such mechanically interlocked
molecules can be operated as machines by making a closed
cycle of changes in the molecules or in their environment. The
motion of such molecules in solution is highly overdamped
and exhibits relatively large fluctuations. The dynamics is of-
ten described in terms of transitions between a few metastable
conformations. Since the changes made during the cycle are
often local, it is natural to model them theoretically as exter-
nally controlled changes in the free energy of the metastable
states and barriers between them. When these are varied cycli-
cally, the system is operated as a stochastic pump. Artificial
molecular machines of this kind include switches, shuttles,
and rotary motors. Specific examples and details regarding

the chemical structure and operation can be found in several
review papers [45–48,74].

Figure 1(a) heuristically depicts a part of a molecular ma-
chine of this kind. A small ringlike molecule can move along
the backbone of a larger molecule. a and b are energetically
favorable binding sites for the ring due to hydrogen bonds or
van der Waals interactions. The purple ball represents part of
the backbone that acts as a barrier.

The free energy landscape of such a system is the multidi-
mensional generalization of the simple free-energy landscape
shown in Fig. 1(b). The motion in such a landscape consists
of relatively rapid local equilibration in the wells, with occa-
sional transitions between the wells. When G‡ − Ga � kBT ,
the transitions between the metastable configuration are ther-
mally activated, with rates

Rba � ν exp

[
−G‡ − Ga

kBT

]
. (1)

Here Ga and G‡ are the free energies of the configuration
a and the ring at the top of the barrier, and ν is an attempt
frequency. For overdamped dynamics, the expression Eq. (1)
can be justified using Kramers rate theory [79]. Such rates are
commonly used to model the dynamics of artificial molecular
machines.

The existence of this class of periodically driven molecular
machines raises various fundamental questions regarding their
thermodynamics. What is the optimal way of driving such
systems? Should externally controlled parameters be varied
gradually or in an abrupt manner? Here we study how the
output of such systems should be maximized. The number
of time-dependent control parameters makes this a nontrivial
problem. We therefore focus on a simple example. Consider
the system depicted in Fig. 1(c). It has two metastable con-
figurations (which we call sites) and two possible transition
between them. We imagine that the free energies of the two
sites and the barriers can be manipulated externally. Our
model also includes a resisting force f that makes counter-
clockwise transitions more likely. (Strictly speaking, f is a
shorthand for the force times the distance between sites, and
thus has units of energy.) The system is operated as a pump
when the ring is driven against this resisting force.

Our model is quite similar to a molecular machine realized
by the Leigh group [80]. Their artificial molecular motor has
the structure depicted in Fig. 1(c), but its kinetics differs
from the one we explore in several important aspects. The
system realized in Ref. [80] was autonomous, and further-
more exhibited nontrivial coupling between the position of the
smaller ringlike molecule and the kinetics of the barriers. In
contrast, we assume that the barriers are externally controlled
in a way that does not depend on the sites. In addition, the
machine of Ref. [80] had no resisting force. Nevertheless, this
beautiful experiment demonstrates the feasibility of molecular
machines of this kind and motivates the theoretical investiga-
tion of their dynamics and thermodynamics.

III. THE TWO-SITE MODEL

The system we examine is a two-site stochastic pump, as
depicted in Fig. 1(c). Each site has an energy that can be
manipulated externally. (To simplify the terminology, we will
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FIG. 1. Heuristic depiction of artificial molecular machines that are modeled as stochastic pumps. (a) Part of a mechanically interlocked
system in which a small ringlike molecule can move along a larger backbone molecule. The two green regions depict areas capable of
forming favorable noncovalent interactions between the ring and backbone. The dent and purple ball represent a region with steric or repulsive
interactions that acts as a local barrier. (The barrier is lower when the ball is absent.) (b) A one-dimensional free energy landscape can be used
to describe the system depicted in Fig. 1(a). The minima represent the landing sites and the maximum represents the barrier. The free energies
of the wells and the barrier can be modified by replacing the side groups attached to the backbone. The system is typically in a solvent at room
temperature. As a result, transitions between the wells are thermally activated, with rates given by Eq. (1). (c) A depiction of the model studied
in this paper. A small ringlike molecule can move between two stable landing sites on a larger ring. Each of the transition paths has its own
barrier.

refer to the site and barrier free energies as energies in the
following. The two distinct bidirectional transitions have local
energy barriers B1,2 that must be overcome for a transition to
occur. The resisting force f makes counter-clockwise transi-
tions more likely by biasing the transitions. These rates are
taken to be Markovian and thermally activated, meaning that
the stochastic pump is assumed to be in contact with an exter-
nal reservoir with a well-defined temperature T , for instance,
a large quantity of solvent molecules in thermal equilibrium.
We consider rates of the form

R(1)
ba = exp

[
Ea − B1 − θ f

T

]
,

R(1)
ab = exp

[
Eb − B1 + (1 − θ ) f

T

]
,

R(2)
ba = exp

[
Ea − B2 + (1 − θ ) f

T

]
,

R(2)
ab = exp

[
Eb − B2 − θ f

T

]
. (2)

Here R(1)
ba is the rate of transitions from site a to site b that

are made via mechanism 1. Similar notation is used for the
rest of the rates. 0 � θ � 1 is a load distribution factor that
describes the way that the resisting force is divided between
two opposite transitions.

Two comments regarding the rates in Eq. (2) are in order.
These rates were brought to a simple form that would simplify
the subsequent calculations. Specifically, we work in units
where kB = 1. We also measure energies and barriers with

respect to reference values E0 and B0. We then rescale time
to absorb the factor of ν̃ = ν exp[−B0−E0

T ] that is common
to all rates. This crucially means that E > B in Eq. (2) does
not mean that the metastable state is destroyed. In fact, we
assume that the sites are stable for all the values of the site
energies and barriers used below, and that as a result the
thermal activation description of the transitions remains valid.

The two-site system can be operated as a stochastic pump
by varying the two energies Ea(t ), Eb(t ), and the two barriers
B1(t ), B2(t ) periodically in time. In contrast, the tempera-
ture and the resisting force are kept fixed. In the following,
we also assume that we are given a period τ , so the ex-
ternally controlled parameters must satisfy Ei(t + τ ) = Ei(t )
and Bj (t + τ ) = Bj (t ). Note that demanding an external pe-
riod of τ allows for time dependence that exhibits smaller
periods, as long as an integer number of periods are completed
within time τ .

The probability to find the system in the sites, Pa(t ) and
Pb(t ) = 1 − Pa(t ), evolves according to the time-dependent
master equation

d �P
dt

= R(t ) �P(t ), (3)

with �P =
(

Pa

Pb

)
, and

R(t ) =
(

−R(1)
ba − R(2)

ba R(1)
ab + R(2)

ab

R(1)
ba + R(2)

ba −R(1)
ab − R(2)

ab

)
. (4)
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When the transition rates are periodic in time, the mas-
ter equation has a periodic asymptotic solution satisfying
�P(ps)(t + τ ) = �P(ps)(t ). In the following, we will be interested
in properties of the pump in this periodic solution, ignoring
transient solutions. We will therefore omit the superscript (ps)
in the rest of the paper, since we will never consider any other
solutions of the master equation.

Changing the energies and barriers periodically does not
ensure that the system is operated as a stochastic pump. Call-
ing the system a pump implies that the external variation of
parameters is the source of energy that drives the system and
that this energy is transduced to some useful form of work.
Here this means work done against the resisting force f . This
is achieved by making more a → b than b → a transitions
using mechanism 1, and similarly more b → a transitions
using mechanism 2.

This qualitative description can be made precise by calcu-
lating the energy that the pump exchanges with the outside
world. The work that is done on the pump in each cycle is
given by

W =
∫ t+τ

t
dt ′[Ėa(t ′)Pa(t ′) + Ėb(t ′)Pb(t ′)]. (5)

The useful output is due to transitions against the resisting
force. This definition is motivated by the ability to interpret the
transitions as involving the storage or release of useful energy,
e.g., by lifting a mass or compressing a spring. The energy
output during a cycle is given by

� = f
∫ t+τ

t
dt ′[R(1)

ba (t ′)Pa(t ′) − R(1)
ab (t ′)Pb(t ′) + R(2)

ab (t ′)Pb(t ′)

− R(2)
ba (t ′)Pa(t ′)

]
. (6)

The system is operated as a stochastic pumps when
W ��> 0. In this regime, the pump’s efficiency is

η = �

W
. (7)

IV. STATING THE OPTIMIZATION PROBLEM

Our goal is to find the periodic functions
Ea(t ), Eb(t ), B1(t ), and B2(t ) that would result in maximal
output �. For a fixed period, this is equivalent to maximizing
the output power �/τ . Equation (6) allows us to express
the output as a functional of the energies and barriers. Some
consideration reveals that this optimization problem is not
well posed. During times in the cycle when probability
flows from a to b, it is beneficial to take Ea(t ) → ∞ and
Eb(t ) → −∞ and also B2(t ) → ∞ and B1(t ) → −∞.
Similar considerations apply when the probability flows from
b to a.

This tendency of sending the parameters to infinity is un-
physical and therefore unwanted. It is not realistic to expect
that in any real-world realization of a stochastic pump, the
experimentalists will have arbitrary freedom to control the
system’s parameters. We will therefore assume that the en-
ergies can be varied in a limited range:

0 � Ea(t ), Eb(t ) � Emax. (8)

Similarly, we will demand that both barriers satisfy

0 � B1(t ), B2(t ). (9)

Note that we do allow the barriers to be arbitrarily large, since
being able to completely prevent transitions at certain times
can be beneficial, and is not that different from the solution
that would be found when using a finite but very large barrier
height. We note that the lower bound of barriers can be chosen
to be 0, for convenience, since it is measured from an almost
arbitrary reference point, as discussed earlier.

With these restrictions on the values of the energies and
barriers, the problem of finding the driving protocol that
would maximize the output Eq. (6) seems well posed. As
will become clear in the following, even such a well-posed
problem can exhibit singular optimal solutions.

V. A FAMILY OF CANDIDATES FOR
THE OPTIMAL SOLUTION

The model depicted in Fig. 1(c) is simple enough for one
to use physical intuition to identify driving protocols that are
good candidates for optimal solutions. Consider a driving pro-
tocol with a period τ . In any nontrivial cycle, the probability
must flow between sites a and b. As the overall phase of the
cycle is arbitrary, we can assume that probability flows from
a to b in the first half of the cycle and in the opposite direction
in the second half. We can try to maximize the output in
the first half of the cycle by preventing transitions through
2, since they would contribute negatively. Similarly, we gain
more output by increasing the energy difference Ea − Eb. This
results in Ea(t ) = Emax, Eb(t ) = 0, B1(t ) = 0, and B2(t ) = ∞
for 0 � t < τ

2 . In the other half of the cycle, probability flows
from b to a. Repeating the same considerations suggests tak-
ing Ea(t ) = 0, Eb(t ) = Emax, B1(t ) = ∞, and B2(t ) = 0 for
τ
2 � t < τ . Below we calculate the solution of the master
equation with this driving protocol and study its properties,
focusing on the output.

This driving cycle has piecewise constant rates, which can
attain only two nonvanishing values. For 0 � t < τ

2 , we have

R(1)
ba (t ) = exp

[
Emax − f θ

T

]
≡ K1, (10)

R(1)
ab (t ) = exp

[
f (1 − θ )

T

]
≡ K2, (11)

and R(2)
ba (t ) = R(2)

ab (t ) = 0. The transition rate matrix in this
part of the cycle is given by

R1 =
(−K1 K2

K1 −K2

)
. (12)

The propagator for the first half of the cycle can be calcu-
lated with the help of the spectral decomposition of R1; see
Appendix A for details. We find

U1 = eR1
τ
2 = 1

K1 + K2

(
K2 + xK1 K2(1 − x)
K1(1 − x) K1 + xK2

)
, (13)

where x ≡ exp[−(K1 + K2) τ
2 ] is a useful abbreviation.
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The second half of the cycle is treated in the same way.
Here

R2 =
(−K2 K1

K2 −K1

)
(14)

and

U2 = eR2
τ
2 = 1

K1 + K2

(
K1 + xK2 K1(1 − x)
K2(1 − x) K2 + xK1

)
. (15)

The periodic solution of the master equation satisfies

�P(τ ) = U2U1 �P(0). (16)

The two-site model exhibits some symmetry. In particular,
states a and b play equivalent roles at different times during
the cycle. Here, this means that the dynamics during the sec-
ond half of the cycle is identical to that of the first half as long
as one replaces a ↔ b and 1 ↔ 2. One can therefore replace
Eq. (16) with(

Pb(0)
Pa(0)

)
=

(
Pa(τ/2)
Pb(τ/2)

)
= U1

(
Pa(0)
Pb(0)

)
. (17)

After a straightforward calculation, one finds

Pa(0) = K1 + xK2

(K1 + K2)(1 + x)
(18)

and

Pb(0) = 1 − Pa(0) = K2 + xK1

(K1 + K2)(1 + x)
. (19)

The probability after half a cycle can be found with the help
of Eq. (17), e.g., Pa(τ/2) = Pb(0).

Calculation of the power output of the pump is simplified
considerably for this cycle because at any given time only
transitions that use one of the mechanisms are possible. This
creates a strong coupling between the currents and the changes
of probabilities during the cycle. The contribution of transi-
tions through link 1 to the output comes from the first half
of the cycle and is equal to f (Pa(0) − Pa(τ/2)). Taking into
account also a similar contribution from the second half of the
cycle, we have

� = f (Pa(0) − Pa(τ/2)) + f (Pb(τ/2) − Pb(τ )). (20)

Substituting the value of the probabilities at different times
results in

� = 2 f (K1 − K2)(1 − x)

(K1 + K2)(1 + x)
. (21)

Note that this output is indeed positive as long as K1 > K2 or,
equivalently, Emax > f .

The work that is done on the pump originates from the
changes in the energies at times t = 0, τ

2 . It is given by

W = Emax

[
Pa(0) − Pb(0) − Pa

(
τ

2

)
+ Pb

(
τ

2

)]
. (22)

Substituting the probabilities leads to

W = 2Emax(K1 − K2)(1 − x)

(K1 + K2)(1 + x)
. (23)

The efficiency of the pump in this driving cycle turns out to
be particularly simple:

η = f

Emax
. (24)

An equivalent expression for the efficiency was previously
found in a similar three-site model of a stochastic pump [65].

We point out that the τ periodicity of energies allows for
solutions that are composed of a combination of cycles with
smaller periods. Of particular interest are ones composed of
n repetitions of a cycle with a period τ ′ = τ/n. The solution
given above is easily modified to apply for the these cycles,
meaning that the calculations above actually describe a family
of solutions with different periods.

VI. LOCAL OPTIMALITY OF THE DRIVING PROTOCOLS

In this section, we examine the stability of the solutions
studied in Sec. V to small perturbations. Specifically, we ex-
amine small changes in the switching time and in the energies
and barriers but not in the overall period τ . We find below that
such changes reduce the output of the cycles, meaning that
these cycles locally maximize the output.

A. Stability to small changes in the switching time

Let us consider a cycle that is deformed by slightly modi-
fying the duration of the two half cycles, so the overall period
of the cycle is kept fixed. Without losing generality, we can
assume that the time in which the rate matrix is changes from
R1 to R2 is now τ/2 + δt instead of τ/2. We wish to find
out how such a change will affect the output of the cycle. For
small δt , this can be studied using perturbation theory. The
calculation is almost straightforward, but care should be taken
because the perturbation also results in small corrections to
the periodic solution of the master equation in Eq. (3), and
they must be taken into account.

The propagator of the first segment of the cycle is now
given by

U′
1 = eR1( τ

2 +δt ) = U1 + δtxR1 − δt2x

2
(K1+K2)R1+O

(
δt3

)
.

(25)

Here we kept terms up to order δt2, since it will become clear
that this is the leading order correction to the output of the
cycle. Similarly, the propagator of the second segment of the
cycle is

U′
2 = eR2( τ

2 −δt ) = U2 − δtxR2−δt2x

2
(K1 + K2)R2+O

(
δt3).
(26)

The propagator of the full cycle is simply the product U′
2U′

1.
To second order, we find

U′ = U2U1 + δtx(K1 − K2)

(−1 −1
1 1

)

+ δt2

2
x
(
K2

1 − K2
2

)(−1 −1
1 1

)
+ O

(
δt3). (27)
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The appearance of the matrix (−1 −1
1 1 ) is a result of conser-

vation of probability and the fact that the system has only two
sites. As a result, deviations from the unperturbed periodic
solutions are always proportional to ( 1

−1) to avoid violating the
demand that P′

A(t ) + P′
B(t ) = 1. Multiplication of the matrix

above and any normalized probability distribution results in a
term which is proportional to the vector ( 1

−1).
The periodic solution of the perturbed cycle can be found

with the help of Eq. (16), where one uses the modified propa-
gator in Eq. (27). Some algebra results in

P′
A(0) = K1 + xK2

(K1 + K2)(1 + x)
− δt

x

1 − x2
(K1 − K2)

− δt2

2

x

1 − x2

(
K2

1 − K2
2

) + O(δt3), (28)

where, as always, P′
B(0) = 1 − P′

A(0). The calculation of the
output requires knowledge of the probabilities at the switching
time t = τ/2 + δt . These can be calculated from the proba-
bilities at t = 0 with the help of the propagator U′

1. A short
calculation results in

P′
A

(
τ

2
+ δt

)
= K2 + xK1

(K1 + K2)(1 + x)
− δt

x

1 − x2
(K1 − K2)

+ δt2

2

x

1 − x2

(
K2

1 − K2
2

) + O(δt3). (29)

The calculation of the output is essentially the same as for
the unperturbed cycle. During the first segment of the cycle, a
probability of P′

A(0) − P′
A( τ

2 + δt ) flows from site a to site b.
In the second segment of the cycle, the same probability flows
back. In both segments, one of the pathways is open and the
other is closed, so this flow must contribute positively to the

output. As a result, the output is given by

�′ = 2 f

[
P′

A(0) − P′
A

(
τ

2
+ δt

)]
= 2 f (K1 − K2)(1 − x)

(K1 + K2)(1 + x)

− δt2 2 f x

1 − x2

(
K2

1 − K2
2

) + O
(
δt3

)
. (30)

The first term on the right-hand side of Eq. (30) is the output of
the unperturbed cycle. We note that 0 < x < 1 and K1 > K2.
It is therefore clear that small changes in the switching time
always reduce the output of a cycle, as long as the overall
period is unchanged. The argument also covers changes in
the time of the switch from R2 to R1. This can be seen by
changing the origin of time to the time when R2 is replaced
by R1, which maps the problem to the one studied above.

B. Linear response corrections due to small changes
in the barriers and energies

We now consider how the power output of the solutions
discussed in Sec. V is affected if the time dependence of the
energies and barriers is slightly modified. To this end, we write

R′(t ) = R(t ) + δR(t ), (31)

where both R(t ) and δR(t ) are periodic with the same period
τ . In the following, we consider δR(t ) to be small. We then
examine the linear order corrections to the power output from
such perturbations. The small changes in the rates result in a
perturbed periodic state:

�P′(t ) = �P(t ) + δ �P(t ). (32)

Here �P is the solution of the unperturbed problem:

d �P
dt

= R(t ) �P(t ). (33)

This unperturbed solution can be calculated explicitly using
the spectral decomposition found in Appendix A and the ini-
tial condition Eq. (18). A straightforward calculation results
in

�P(t̃ ) = 1

(K1 + K2)(1 + x)

⎧⎪⎪⎨
⎪⎪⎩

(
K2(1 + x) + xt̃ (K1 − K2)
K1(1 + x) + xt̃ (K2 − K1)

)
0 � t̃ < τ

2(
K1(1 + x) + xt̃−τ/2(K2 − K1)
K2(1 + x) + xt̃−τ/2(K1 − K2)

)
τ
2 � t̃ < τ.

(34)

Here t̃ ≡ t mod τ , and xt ≡ exp[−(K1 + K2)t]. We use this
compact notation since exponentials like xt are ubiquitous in
the following calculations. We remind the reader that xτ/2 = x
as this specific term appears quite often. It is easy to verify that
this solution is consistent with Eqs. (18) and (19).

The linear correction to the power output is obtained by
taking the leading order variation of Eq. (6). We find

δ� = f
∫ τ

0
dt ′[δR(1)

ba Pa − δR(1)
ab Pb + δR(2)

ab Pb − δR(2)
ba Pa

+ R(1)
ba δPa − R(1)

ab δPb + R(2)
ab δPb − R(2)

ba δPa
]
.

(35)

To be able to say something useful about the sign of δ� we
need to rewrite this quantity as a time integral over the change
of the rates, δRi j (t ), multiplied by known functions of time.
The first four terms in Eq. (35) already have the desired form,
but the last four terms do not. To proceed, we first find explicit
expressions for the linear corrections to the periodic state. The
details are given in Appendix B.

The symmetry of the model and cycle can be used to
simplify the calculations. As mentioned above, in the unper-
turbed solution, the two sites and barriers play the same role
at different parts of the cycle. As a result a change in Ea at
time 0 < t < τ

2 plays the same role as the same change in
Eb at time t + τ

2 . This means any perturbation in the second
half of the cycle has an equivalent counterpart in the first
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half. Moreover, in linear order the contributions from different
times are additive. It is therefore enough to show that δ� is
negative to all possible small changes of rates in the first half
of the cycle. Substituting the value of the unperturbed rates,
we find

δ� = f
∫ τ

2

0
dt ′[δR(1)

ba Pa − δR(1)
ab Pb + δR(2)

ab Pb − δR(2)
ba Pa

]

+ f (K1 + K2)

[∫ τ
2

0
dt ′δPa(t ′) −

∫ τ

τ
2

dt ′δPa(t ′)
]
. (36)

By integrating Eq. (B7) from 0 to τ
2 , and from τ

2 to τ , one
can obtain

(K1 + K2)

[∫ τ
2

0
dt ′δPa(t ′) −

∫ τ

τ
2

dt ′δPa(t ′)
]

= 2

[
δPa(0) − δPa

(
τ

2

)]
+

∫ τ
2

0
dt ′[(δR(1)

ab + δR(2)
ab

)
Pb

− (
δR(1)

ba + δR(2)
ba

)
Pa

]
. (37)

With the help of Eq. (B11), the linear correction for the output
can be written as

δ�=2 f
∫ τ

2

0
dt ′

{[
1− 1

1 + x
e−(K1+K2 )[ τ

2 −t ′]
](

δR(2)
ab Pb−δR(2)

ba Pa
)

+ 1

1 + x
e−(K1+K2 )[ τ

2 −t ′](δR(1)
ba Pa − δR(1)

ab Pb
)}

.

(38)

The possible perturbations of the rates are not independent
since, for instance, a small change in Ea will affect both δR(1)

ba

and δR(2)
ba . We wish to write the linear correction to the output

as a sum over independent terms. It will be convenient to
work with the variables Ea,b = eEa,b/T and B1,2 = e−B1,2/T . The
rates can be expressed in terms of these variables as R(1)

ba =
EaB1e− f θ/T , R(1)

ab = EbB1e f (1−θ )/T , R(2)
ba = EaB2e f (1−θ )/T , and

R(2)
ab = EbB2e− f θ/T .

We now focus on perturbations made in the first half of the
cycle. 0 � t < τ

2 . During the first half of the cycle, Ea(t ) =

Emax = eEmax/T and Eb(t ) = 1, and only perturbations with
δEa(t ) � 0 and δEb(t ) � 0 are admissible. For the barriers, we
have B1(t ) = 1 and B2(t ) = 0 and as a result the perturbations
must have δB1(t ) � 0 and δB2(t ) � 0. The linear variation of
the rates during the first half of the cycle can the be recast as

δR(1)
ba = δEae− f θ/T + δB1Emaxe− f θ/T = δEaK1/Emax + δB1K1,

δR(1)
ab = δEbe f (1−θ )/T + δB1e f (1−θ )/T = δEbK2 + δB1K2,

δR(2)
ba = δB2K1e f /T = δB2EmaxK2,

δR(2)
ab = δB2K1/Emax. (39)

Substitution of Eq. (39) allows us to rewrite Eq. (38) in the
form

δ� = 2 f
∫ τ

2

0
dt ′[δEa(t ′)ga(t ′) + δEb(t ′)gb(t ′)

+ δB1(t ′)g1(t ′) + δB2(t ′)g2(t ′)]. (40)

We find that ga(t ) = K1
(1+x)Emax

e−(K1+K2 )[ τ
2 −t]Pa(t ) � 0.

Since δEa(t ) � 0, one sees that small changes in
Ea must result in a smaller output. Noting that
gb(t ) = − K2

(1+x) e
−(K1+K2 )[ τ

2 −t]Pb(t ) � 0 and that δEb � 0,
we conclude that the same applies for small changes in Eb(t ).

The dependence on changes in the barriers is somewhat
more complicated. One finds g1(t ) = 1

1+x e−(K1+K2 )[ τ
2 −t ′] ×

{K1Pa(t ) − K2Pb(t )}. The term in curly brackets is minimal
at t = τ

2 , where its value is (K1 + K2)x/(1 + x). In fact,
K1Pa(t ) − K2Pb(t ) will reach zero if the system is left to re-
lax to equilibrium with time independent rates. As a result,
K1Pa(t ) − K2Pb(t ) � 0 for all 0 � t � τ/2 in the unperturbed
solution. We therefore find that g1(t ) > 0. Combined with
δB1(t ) � 0, we find that reducing the height of the barrier B1

results in a smaller output.
The remaining term involves the function g2(t ) = [1 −

1
1+x e−(K1+K2 )[ τ

2 −t]]( K1
Emax

Pb(t ) − K2EmaxPa(t )). The term in the
first square brackets is clearly positive. The second term is
largest at t = τ

2 , where its value is

K1

Emax
Pb

(
τ

2

)
− K2EmaxPa

(
τ

2

)
= 1

(K1 + K2)(1 + x)Emax

[
K2

1 (1 − e
2 f
T ) + xK1K2

(
1 − E2

max

)]
. (41)

Noting that f > 0 and Emax > 1, we find that g2(t ) < 0
for 0 � t < τ

2 . The allowed perturbations δB2(t ) � 0 can
therefore only decrease the output. We just checked that all
admissible small changes to the rates always decrease the
output.

The conclusion from the preceding calculations is that the
cycles studied in Sec. V locally maximize the output with
respect to small changes in the driving cycle. This should not
be taken as a rigorous proof that such cycles are indeed the
optimal solution. The reason is that we have not shown that
the cycle is also maximal with respect to so-called needle
perturbations, which allow for large changes of parameters
for an infinitesimal time. Such perturbations are commonly
studied in optimal control [34]. In the next section, a numer-

ical approach will suggest that this solution is unstable to
changes in the period τ , which can be interpreted as a needle
perturbation. Nevertheless, the same numerical results show
that the optimal cycle can be understood in terms of cycles
of the type studied here by comparing cycles with different
periods.

VII. NUMERICAL MAXIMIZATION USING
A GENETIC ALGORITHM

We complement the analytical arguments given above with
a numerical approach that searches for the optimal solution in
an completely different way. Finding out that two independent
approaches lead to the same results will greatly strengthen our
confidence in the validity of the results.
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A. A genetic algorithm

Numerically searching for the driving protocol that max-
imizes the output is challenging due to the need to explore
the space of four periodic functions, Ea,b(t ) and B1,2(t ). A
gradient-based search is likely to wander around in nearly flat
regions of the space and then be trapped in some local maxi-
mum. Instead, we used an approach that is based on a genetic
algorithm [81]. The term genetic algorithm is used here to
describe a heuristic method of searching for a maximum that
is inspired by the way that populations of living organisms
evolve to improve their fitness. In evolution, a phenotype
relevant for survival can be present in a generation of a pop-
ulation. The phenotype results from an expression of genes
and genetic variation results in variability of phenotypes. The
survivors of natural selection then constitute the next gener-
ation. This population includes members with random minor
changes due to mutations. The process repeats itself and the
fitness of the entire population improves because, although
most individual changes are detrimental, beneficial changes
are more likely to be propagated to the following generations.
Our genetic algorithm operates similarly, with the output as

the phenotype, and the time dependence of the energies and
barriers as the genetic code.

Specifically, the genetic code of a member of the popula-
tion is defined as the values of Ea(t ), Eb(t ), B1(t ), and B2(t )
during the cycle. In practice, the cycle was divided into N
time segments, [τ i/N, τ (i + 1)/N ), with i = 0, 1, 2, . . . , N −
1. We used τ = 2π/6, and N = 128 in all the results presented
below. In each time segment, the energies and barriers were
taken to be constant during the segment. The driving protocol
is then identified by recording the energies and barriers in each
of the segments, Ea,b(ti ) and B1,2(ti). These 512 values define
the genetic code of each driving cycle. For practical reasons,
we enforced a maximal value of Bmax = 10 to the various
barriers. The maximal energy was chosen to be Emax = 2.

The selection criterion is, naturally, based on the maxi-
mization the output φ of the system, as defined in Sec. III.
It can be calculated efficiently as described in the following.
In each of the time segments, one can generalize the spectral
decomposition presented in Appendix A to a rate matrix with
arbitrary, but time-independent, rates. The resulting propaga-
tor for the ith time step is

Ui = 1∣∣λ(i−1)
2

∣∣
⎛
⎝R(i−1)

ab + eλ
(i−1)
2 (ti−ti−1 )R(i−1)

ba R(i−1)
ab [1 − eλ

(i−1)
2 (ti−ti−1 )]

R(i−1)
ba [1 − eλ

(i−1)
2 (ti−ti−1 )] R(i−1)

ba + eλ
(i−1)
2 (ti−ti−1 )R(i−1)

ab

⎞
⎠. (42)

Here R(i)
ab ≡ R(1)

ab (ti ) + R(2)
ab (ti ), R(i)

ba ≡ R(1)
ba (ti ) + R(2)

ba (ti ), and λ
(i)
2 = −R(i)

ab − R(i)
ba . The propagator of a complete cycle, U = ∏

i Ui,
can then be used to find the periodic solution satisfying �P(τ ) = U �P(0) = �P(0).

Once the periodic solution is found, the output of the cycle is calculated by adding contributions from each time step. In the
ith time step, Ui can be used to propagate the probabilities Pa,b(ti−1) to Pa,b(ti ). Then the contribution of this time step to the
output of the stochastic pump is calculated using

δφi = 2 f∣∣λ(i−1)
2

∣∣ (ti − ti−1)
[
R(1)

ba (ti−1)R(2)
ab (ti−1) − R(2)

ba (ti−1)R(1)
ab (ti−1)

]

+ f∣∣λ(i−1)
2

∣∣ [R(1)
ba (ti−1) + R(1)

ab (ti−1) − R(2)
ba (ti−1) − R(2)

ab (ti−1)
]{Pb(ti) − Pb(ti−1)}. (43)

A derivation of Eq. (43) can be found in Appendix C.
Summation of the contributions from all the time steps results
in the output of the whole cycle. Numerical calculations that
are based on piecewise constant parameters turn out to be
fast and reliable, since there is no need for naive numerical
integration that requires subdivision of the time segments to
smaller time steps.

A genetic algorithm that is built upon those calculations is
then applied. A population consisting of 200 different driving
protocols is generated and constitutes the first generation.
Initially, the energies were drawn randomly while the barriers
were set to 1. This population is then subjected to an evolution
is which new generations replace old ones by a process of
mutations and selection. Our algorithm used several types of
mutations and other genetic variations to generate new driving
protocols:

(1) In small mutations, one of the parameters, i.e., B2(ti ),
was chosen at random. This value was then modified by
adding a random number taken from the range ±2.5Emax/100.

The new value was truncated if it exceeded the allowed range
for this parameter.

(2) Large mutations are similar, but the change in the
parameter could be as large as ±0.5Emax.

(3) Group mutations are similar to small mutations, but the
change is applied to all the values of the same parameter in a
small time segment (one to five time steps).

(4) A replication is made by picking a time ti at random
and then copying the values of Ea,b(ti ) and B1,2(ti ) onto their
counterparts at time ti+1.

(5) An inversion mutation is created by picking a time ti
and a time segment at random. The segment can have any
length between one time step to half of the cycle. For all
the parameters in this time segment, one applies the inversion
E → Emax − E and, similarly, B → Bmax − B.

(6) Barrier-lowering mutations were used to help some
systems escape local maximums. An initial time and segment
length (between τ/128 and τ/2) were chosen at random. Then
one of the energies (namely, a or b) and one of the barriers
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FIG. 2. Results of the genetic algorithm: (a) Output as a function of the number of generations. (b) The time dependence of barriers in the
cycle with highest output. (c) Time dependence of the site energies in this cycle. (d) The time dependence of the probability, Pa(t ). To avoid
clutter, only the first quarter or so of the external period τ are shown in panels (b)–(d).

(1 or 2) were chosen randomly. The values of the barrier [e.g.,
B2(ti )] in all times during the segment were set to Emax/10,
whereas values of the energy in the segment were set to a
time-independent random value (between 0 and Emax).

(7) In a recombination, two new cycles are created from
an existing pair of cycles by exchanging the values of the pa-
rameters between two equal length segments. Both the initial
times as well as the length of the segment (between one step
and τ/2) were chosen randomly.

A new generation was created from an existing one using
the following scheme. The ten members with the highest
output were passed to the new generation without any mod-
ifications. Twenty members were created by applying small
mutations to these ten members. Similarly, ten members were
the result of group mutations. Twenty members of the new
generations were created by choosing at random a member
of the current generation and applying a large mutation. An-
other ten members were created using a similar process with
replication, ten members underwent barrier lowering, and a
further 20 had inversion mutations. Finally, the remaining
100 members were generated by randomly choosing 50 pairs
of members of the current generation and using recombina-
tion. The resulting new generation thus includes a population
of 200, the same as its predecessor. This process leads to
generations that are built from small variations to the mem-
bers with the highest output and a variety of members with

larger changes to their genetic code, thereby maintaining a
diverse population. The algorithm progresses between suc-
cessive generations until it seems that the maximal output
observed in each generation saturates. One then hopes that the
cycle with the maximal output is indeed the globally optimal
solution.

B. Results

Figure 2(a) depicts the variation of the maximal output
with different generations. One can see that for a while the
output tends to increase with progressing generations. The
figure is smoothed by only including points taken every 2000
generations. After a certain number of generations, the maxi-
mal output saturates, suggesting convergence to either a deep
local or the global maximal output cycle.

Figures 2(b) and 2(c) show the time dependence of the
energies and barriers of the optimal cycle (according to the
genetic algorithm). For clarity, only the first quarter of the
cycle is depicted, since it is hard to distinguish different lines
when the full period is shown. At each time step, the value
of the parameters match one of the two sets of parameters
that were identified in the cycles studied in Sec. V. To be pre-
cise, we find either Ea = 2, Eb = 0, B1 = 0, B2 = 10 or Ea =
0, Eb = 2, B1 = 10, B2 = 0. Crucially, the solution that the
algorithm found alternates between the two sets of parameters
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at each time step. Figure 2(d) depicts the time evolution of the
probability Pa(t ) in the optimal cycle. The rapid switching of
parameters keeps this probability fairly close to its symmetric
value Pa = Pb = 1/2.

C. Comparison with the analytical approach

At first, the numerical candidate for an optimal solution
may seem at odds with the locally optimal solutions studied in
Secs. V and VI. However, a careful consideration reveals that
our discussion there assumed that the period τ of the cycle was
fixed, whereas we actually demanded that Ea(t ) = Ea(t + τ ),
etc. This is consistent with cycles with a period of τ/n for any
positive integer n, as well as other, suboptimal combinations
of cycles with smaller periods. For cycles with period τ/n, the
output accumulated after a time τ is

�n(τ ) = n
2 f (K1 − K2)

K1 + K2

1 − exp
[−(K1 + K2) τ

2n

]
1 + exp

[−(K1 + K2) τ
2n

] . (44)

�n(τ ) increases with n, meaning that the maximal output is
obtained in the limit of vanishing cycle period. The output
accumulated after a time τ is therefore bounded by

�∗ = lim
n→∞ �n(τ ) = f τ

2
(K1 − K2). (45)

This observation fits well with the numerical results. The nu-
merical algorithm converged to the solution with the smallest
cycle period that was available to it. It suggests that the two-
site stochastic pump is operated at maximum output when a
singular driving protocol is used. In this singular cycle, the
pump alternates between the two sets of parameters at an
infinite rate, meaning that one cannot assign a definite value
for Ea,b(t ) and B1,2(t ). The resulting maximal power output is
given by

�̇∗ = f

2
e− f θ

T [e
Emax

T − e
f
T ], (46)

which can be used to numerically calculate the resisting force
f that would increase the power further. In the linear response
regime, one finds f ∗ = Emax

2 , as expected.
Solutions that involve infinitely fast switching of the exter-

nal driving are known in the field of control theory [76,77].
The terms chattering and sliding control are used to describe
various control solutions with this property. The combination
of numerical results and the analytical arguments given here
suggest that a solution exhibiting such rapid switching is the
optimal solution for the problem studied here.

VIII. COMPARISON OF REGULARIZED ANALYTICAL
AND NUMERICAL OPTIMAL SOLUTIONS

A possible problem with the results presented in the previ-
ous section is that the numerically obtained optimal solution
was restricted by the discrete times steps we used. One may
be worried that the resulting driving cycle is a numerical
artifact rather than the best possible approximation for the
unconstrained optimal solution. It is therefore desirable to test
the genetic algorithm in situations where its convergence is
less affected by this specific externally placed restriction. In
this section, we chose to modify the criterion for optimiza-

tion to penalize too-frequent parameter switching events. The
modified optimal solutions are regularized to exhibit finite
periods.

In the genetic algorithm, we apply this scheme by defining
a cost that includes a (typically small) penalty to changes in
site energies:

C(ε, τ ) ≡ �(τ ) − ε

N∑
i=1

∑
α=a,b

|Eα (ti+1) − Eα (ti)|. (47)

Here �(τ ) is the accumulated output up to time τ . We then use
the genetic algorithm to look for the solutions that maximize
this cost. For small values of ε, we expect that this penalty will
not drastically change the nature of the solutions, in the sense
that they still switch between the same two sets of variables,
albeit at a finite rate.

Figure 3 depicts the results of the algorithm for ε =
0.0044. Figure 3(a) shows the maximal value of the cost
for different generations. The curve is smoothed by only
including points spaced by 2000 generations. The results in
the panel show convergence to a (global or local) maximum.
Figures 3(b)–3(d) present the resulting optimal solution. One
sees that this solution alternates between the same two sets of
parameters as its counterpart with ε = 0. However, it does so
at a finite rate that is not constrained by the lattice of time
points used. The solution completes four full cycles in the
externally mandated period τ . The longer period of the cycle
result in a larger variation of the probability Pa(t ), as can be
seen by comparing Fig. 2(d) with Fig. 3(d).

A simple, but approximate, analytical description of the
way that the parameter ε affects the period of the optimal
solution can be made based on the properties of the cycles
studied in Sec. V. For small ε, it is reasonable to expect that
the optimal solution is composed of n cycles with period τ/n,
so in each period Ea and Eb switch twice between 0 and
Emax (at different times). The barriers behave similarly. The
accumulated output is therefore given by Eq. (44). The penalty
due to changes in energy is then −4nεEmax. One then needs to
consider the cost

C(ε, τ ) = φn(τ ) − 4nεEmax. (48)

TABLE I. Comparison of the predicted and observed number of
cycles completed in t = τ as a function of ε. The number of cycles
is controlled by a cost of changing energies, parametrized by ε. ñ is
the number of compete cycles that maximizes the cost Eq. (48). n∗ is
found by treating this number is being continuous rather than integer.
Finally, nobs is the number of cycles found in the solutions identified
by the genetic algorithm.

ε n∗ ñ nobs

1.21×10−6 64.070 64 64
9.70×10−6 31.997 32 32
3.39×10−5 21.069 21 21
7.70×10−5 16.008 16 16
6.00×10−4 8.011 8 8
1.38×10−3 6.019 6 6
4.40×10−3 3.997 4 4
9.55×10−3 2.994 3 3
2.51×10−2 2.004 2 2
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FIG. 3. Results of the genetic algorithm for optimization with respect to the cost (47): (a) The cost as a function of the number of
generations; (b) The time dependence of barriers in the converged solution; (c) Time dependence of the site energies in the solution; and,
(d) The time dependence of the probability to reside in site a.

The number of actual cycles that is expected, ñ, is the
one that maximizes Eq. (48) for given ε and τ . It can be
found by comparing the value of the cost for n = 1, 2, 3, . . .

or be approximated by finding the (noninteger) n∗ that satis-
fies ∂C

∂n |n=n∗ = 0. One then expects the genetic algorithm to
converge to a solution with this number of periods. This is
indeed what we observed for the cases we tested. For instance,
for ε = 0.044 the cost is maximized for n∗ � ñ = 4, and the
results depicted in Fig. 3 indeed show a solution with four
complete cycles. Table I compares the expected and observed
number of cycles for several values of ε. Excellent agreement
is found between the analytical prediction and the results of
the genetic algorithm in all cases.

We note that occasionally the algorithm may converge to
a solution with either one additional or one missing cycle.
Such solutions can serve as local maxima that trap the genetic
algorithm. While these solutions have a lower cost then the
one with the correct number of cycles, the genetic algorithm
sometimes finds it hard to escape from their neighborhood.
Nevertheless, comparison of several independent runs of the
algorithm is quite likely to find the correct maximum.

Figure 4 shows a comparison of the expected and observed
output as a function of the parameter ε. The curves correspond

to the the analytically calculated output. The blue dashed
curve is obtained by substituting n∗ in Eq. (44). The solid
black curve is obtained by substituting the integer number

FIG. 4. Comparison of the output of the optimal solutions found
by the genetic algorithm with the corresponding analytical estimates.
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of cycle that maximizes Eq. (48), ñ, in Eq. (44). Finally, the
red crosses denotes the output of the solution obtained by the
genetic algorithm.

The results depicted in Table I and Fig. 4 demonstrate that
the analytical estimate described above matches the results
of the genetic algorithm. Both the results depicted in Figs. 3
and 4 show that the optimal solutions of the model are indeed
built out of the locally optimal cycles studied in Sec. V. As ε

decreases, so does the period of the actual cycles that appear in
the optimal solution. This reinforces the expectation that in the
limit ε → 0 the optimal solution will exhibit singular behavior
with an infinite rate of switching between the two sets of site
energies and transition barriers. After all, this singular optimal
solution matches the trends seen in both the numerical and
analytical approaches used here.

IX. DISCUSSION

We have studied the driving cycles that maximize the
power output of a two-site stochastic pump. A combination of
an analytical approach and a numerical optimization based on
a genetic algorithm, suggests that the optimal driving protocol
switches between two system configurations in which the site
energies and barriers are either maximal or minimal. Surpris-
ingly, the optimal driving protocol turns out to be singular,
switching between the two configurations at an infinite rate.
In this optimal solution, the probabilities to reside in the two
sites stay arbitrarily close to 1

2 . Yet, in each infinitesimally
short time segment, an infinitesimal amount of probability if
pushed from one site to the other. Over finite times, these add
up to create a finite output.

This optimal solution can be regularized by introducing
an additional cost to changes in site energies. We find that
this results in optimal cycles with finite periods. Importantly,
both the numerical and analytical approaches predict the same
cycles. This agreement strengthens the conclusion regarding
the singular behavior of the optimal solutions when the cost
assigned to energy changes approaches zero.

One may ask if we should have anticipated such singu-
lar optimal solutions and how typical are they. In hindsight,
it seems that such solutions should be quite typical in
overdamped systems, as long as the period is not fixed ex-
ternally. Consider a similar model with several sites. For
time-independent rates, the system follows an evolution that
qualitatively exhibits a relaxation toward a steady state. This
relaxation is often described as a sum of several exponentially
decaying terms. A cycle is then typically composed of a finite
chain of such decays. Note that we assumed that any candidate
for optimal solution is of the bang-bang type, composed of a
series of segments in which the rates are fixed. The probability
to be in one of the sites will heuristically look like the curve
depicted in Fig. 5. One can expect the contribution to the
output, which is generated by fluxes entering and leaving
the site, to be roughly proportional to the overall change of
probability in the site, �Pi. The exact details depend on the
precise configuration of allowed transitions, resisting forces,
the site energies, and the barriers. By the nature of the expo-
nential relaxation, the magnitude of the probability variation
�Pi depends nonlinearly on the time spent in each segment
of the cycle. Crucially, doubling the time will not result in a

∆

FIG. 5. Heuristic depiction of a cycle in a more general stochas-
tic pump. The time dependence of the probability to be in site i is
shown. The cycle is composed of four different segments. In each
segment, the rates are assumed to be constant and the dynamics
exhibit a typical exponential relaxation toward a limiting state.

doubling of �Pi. For instance, in the two-site model studied
here �Pi ∝ tanh( K1+K2

4 τ ), see Eq. (21). But tanh( K1+K2
4 τ ) �

K1+K2
4 τ , meaning that the rate of accumulating output is max-

imized in the limit τ → 0, where the inequality is saturated.
This qualitative argument suggests that such behavior should
be quite typical for systems whose dynamics decay expo-
nentially toward a steady state, although one cannot exclude
some ways of tuning systems to achieve faster than expected
relaxation [82]. All this means that singular optimal solutions
with infinite rate of switching should be quite typical if the
problem is set up so infinitesimal cycle periods are allowed
and make physical sense.

Finally, it is worth commenting on the possible implica-
tions of the results to the design and operation of artificial
molecular machines. Indeed, an artificial molecular motor
whose structure is similar to the one studied here has been
realized [80]. Furthermore, models of stochastic pumps have
been used to theoretically describe some experimental realiza-
tions of molecular machines [73]. Such models are based on
an assumption of separation of timescales. Specifically, one
assumes that the external changes used to drive the molec-
ular machines are faster compared to the time it takes the
molecular machine to change its (mechanical) configuration.
Furthermore, it is assumed that the molecule reaches some lo-
cal equilibrium on a short timescale, allowing one to describe
its conformation changes as a memoryless (Markov) process.
Under such assumptions, the driving cycles used in several
experiments are similar to the cycles studied in Sec. V. They
are built of relatively fast external manipulations and time
segments in which the system is left to evolve under constant
conditions. One may wonder if such driving protocols are
optimal. Should one attempt to develop more sophisticated,
explicitly time-dependent driving mechanisms?

The results shown above suggest that such piecewise driv-
ing protocols can be locally optimal and that there is no
reason to expect any gain from developing a driving protocol
with more gradual time variation of external parameters. The
singular driving protocol which maximizes the power output
breaks all the assumptions about separation of timescales de-
scribed above. However, we point out that it is not realistic
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to expect to be able to switch between configurations with an
infinite rate. Moreover, most of the gain in power output is
obtained when the switching is comparable to the relaxation
rate. For instance, using τ = 1

2(K1+K2 ) in Eq. (21) gives about
77% of the maximal output Eq. (45). This means that most
of the output can be achieved under conditions where models
of the type studied here are valid. The results presented above
then suggest driving artificial molecular machines by making
sudden switches between configurations at a rate that is sev-
eral times faster than the typical relaxation rate of the system.

The example studied here was of a particularly simple
two-site system. It will be interesting to see how the results
generalize to other, less restricted, systems. Is there a qual-
itative change if one breaks the symmetry between the two
sites, for instance, by allowing different maximal energies?
What is the optimal cycle in a system of n sites linked by a
cycle of transitions? How does the optimal driving protocol
look if there are two coupled cycles? Is it better to mainly
drive transitions in the shorter cycle? And what happens if the
maximal barrier is finite and therefore one cannot fully isolate
one cycle? Such questions are left for future work.
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APPENDIX A: SPECTRAL DECOMPOSITION
OF THE RATE MATRIX

The cycle studied in Sec. V was characterized by rate
matrices that were piecewise constant in time. In the first half
of the cycle, we had

R1 =
(−K1 K2

K1 −K2

)
. (A1)

In the following, we find the spectral decomposition of R1

and use it to construct the propagator for the part of the cycle
where R1 is the rate matrix.

We start by finding the eigenvalues of R1. The dynamics
generated by the master equation conserve probability. As
a result, one of the eigenvalues of R1 must be λ1 = 0. The
other eigenvalue can be obtained from the trace of R1, namely,
λ2 = −(K1 + K2).

The eigenvectors associated with the eigenvalue λ1 = 0
have a simple physical interpretation. The right eigenvector
is the equilibrium probability density:

v1 = 1

K1 + K2

(
K2

K1

)
. (A2)

The left eigenvector is associated with the summation over all
probabilities needed for normalization:

w1 =
(

1
1

)
. (A3)

The two remaining eigenvectors can be found from the de-
mand that they satisfy biorthogonality relations. Specifically,

wT
2 · v1 = 0 and wT

1 · v2 = 0. One finds

v2 =
(

1
−1

)
(A4)

and

w2 = 1

K1 + K2

(
K1

−K2

)
. (A5)

Once all the eigenvectors and eigenvalues are known, the
transition rate matrix R1 can be rewritten as

R1 = λ1v1 ⊗ w1 + λ2v2 ⊗ w2. (A6)

Here ⊗ is the outer product between two vectors, given by
v ⊗ w = vwT .

The spectral decomposition Eq. (A6) is useful because it
allows us to calculate the exponential of the matrix, namely,

exp [R1t] = eλ1tv1 ⊗ w1 + eλ2tv2 ⊗ w2

= 1

K1 + K2

(
K2 K2

K1 K1

)
− e−(K1+K2 )t

K1 + K2
R1. (A7)

Substitution of t = τ
2 results in Eq. (13).

In the second half of the cycle, the transition rate matrix is
given by Eq. (14). It is easy to see that one can use the results
given above also for the second half of the cycle as long as
one replaces K1 and K2.

APPENDIX B: LINEAR RESPONSE CORRECTION
TO THE PERIODIC STATE

In the linear response approximation the correction to the
probability distribution satisfies the inhomogeneous equation:

dδ �P
dt

= R0(t )δ �P(t ) + δR(t ) �P. (B1)

This equation has the following formal solution:

δ �P(t ) =
∫ t

−∞
dt ′U0(t, t ′)δR(t ′) �P(t ′), (B2)

where the lower limit of integration has been set so the solu-
tion is indeed periodic in time. U0(t, t ′) is the propagator of
the unperturbed dynamics. It satisfies

dU0(t, t ′)
dt

= R0(t )U0(t, t ′), (B3)

with the initial condition U0(t, t ) = I.
For the two-site model, the structure of the transition rate

matrix means that

δR(t ) �P(t ) = h(t )

(
1

−1

)
, (B4)

where h(t ) = [(δR(1)
ab + δR(2)

ab )Pb − (δR(1)
ba + δR(2)

ba )Pa]. Cru-

cially,

(
1

−1

)
is a right eigenvector of the unperturbed

transition rate matrix at all times during the cycle. The cor-
responding eigenvalue is λ2 = −(K1 + K2). As a result,

U0(t, t ′)
(

1
−1

)
= xt−t ′

(
1

−1

)
. (B5)
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Subsitution of Eqs. (B4) and (B5) into Eq. (B2) gives a simple
explicit expression for the linear correction to the asymptotic
periodic state:

δ �P(t ) =
∫ t

−∞
dt ′xt−t ′h(t ′)

(
1

−1

)
. (B6)

We note that Eq. (B6) means that δPa is the solution of the
scalar equation,

dδPa

dt
= −(K1 + K2)δPa + h(t ), (B7)

which will be used in the following.
The periodicity of δ �P(t ) is ensured by the one of h(t )

and the simple exponential structure of xt . This can be made
evident by dividing the integral:

δ �P(t ) =
(

1
−1

)[∫ t

t−τ

dt ′xt−t ′h(t ′) +
∫ t−τ

t−2τ

dt ′xt−t ′h(t ′)

+
∫ t−2τ

t−3τ

dt ′xt−t ′h(t ′) + · · ·
]
. (B8)

Using changes of variables of the form ti = t ′ + iτ allows us
to bring all the integrals in the series back to the same domain
of integration. A straightforward calculation results in

δ �P(t ) =
(

1
−1

) ∫ t

t−τ

dt ′xt−t ′h(t ′)
[
1 + x2 + x4 + · · · ]

= 1

1 − x2

∫ t

t−τ

dt ′xt−t ′h(t ′)
(

1
−1

)
. (B9)

This explicitly periodic expression for the correction to the pe-
riodic state, δ �P(t ), is helpful in calculating the linear response
correction to the power output.

Finally, some of the calculations done in the main text
also require an expression for the difference δPa( τ

2 ) − δPa(0).
Equation (B9) allows us to write

δPa

(τ

2

)
− δPa(0)

= 1

1 − x2

[∫ τ
2

− τ
2

dt ′x τ
2 −t ′h(t ′) −

∫ τ

0
dt ′xτ−t ′h(t ′)

]
, (B10)

where in the last term we used δPa(0) = δPa(τ ). With the help
of the periodicity of h(t ), this expression can be rewritten in
terms of integrals that are limited to the range 0 � t ′ � τ . We
find

δPa

(τ

2

)
− δPa(0)

= 1

1 + x

[∫ τ
2

0
dt ′x τ

2 −t ′h(t ′) −
∫ τ

τ
2

dt ′xτ−t ′h(t ′)
]
. (B11)

APPENDIX C: DERIVATION OF EQ. (43)

To derive Eq. (43), we note that the simple structure of the
system allows us to obtain several algebraic relations between
the integrated probability fluxes:

φ
( j)
αβ ≡

∫ t+�t

t
dt ′R( j)

αβPβ (t ′). (C1)

For time-independent rates, there are enough such relations
to solve for the fluxes and use them to calculate the output
that has accumulated between t and t + �t . Indeed, from the
definition of the output it is clear that it can be recast as

δ� = �(t + �t ) − �(t ) = f
[
φ

(1)
ba − φ

(1)
ab − φ

(2)
ba + φ

(2)
ab

]
.

(C2)

It is straightforward to relate the change in probabilities to
a linear combination of the fluxes:

Pa(t + �t ) − Pa(t ) = Pb(t ) − Pb(t + �t )

= φ
(1)
ba + φ

(2)
ba − φ

(1)
ab − φ

(2)
ab . (C3)

For time-independent transition rates, one also finds

φ
(1)
ba

φ
(2)
ba

= R(1)
ba

R(2)
ba

(C4)

and

φ
(1)
ab

φ
(2)
ab

= R(1)
ab

R(2)
ab

. (C5)

Finally, one can use conservation of probability Pb(t ) +
Pa(t ) = 1 to write, e.g.,

φ
(1)
ab

R(1)
ab

+ φ
(2)
ba

R(2)
ba

= �t . (C6)

Equations (C3)–(C6) can be solved to give

φ
(1)
ab = − 1

|λ2|R(1)
ab �Pb + 1

|λ2|
(
R(1)

ba + R(2)
ba

)
R(1)

ab �t,

φ
(1)
ba = + 1

|λ2|R(1)
ba �Pb + 1

|λ2|
(
R(1)

ab + R(2)
ab

)
R(1)

ba �t,

φ
(2)
ab = − 1

|λ2|R(2)
ab �Pb + 1

|λ2|
(
R(1)

ba + R(2)
ba

)
R(2)

ab �t,

φ
(2)
ba = + 1

|λ2|R(2)
ba �Pb + 1

|λ2|
(
R(1)

ab + R(2)
ab

)
R(2)

ba �t . (C7)

As before, the eigenvalue associated with the relaxation rate
is λ2 = −R(1)

ab − R(2)
ab − R(1)

ba − R(2)
ba . Substitution of Eqs. (C7)

in (C2) leads to Eq. (43).
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