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Approximate distillation of quantum coherence
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Coherence distillation is a basic information-theoretic task in the resource theory of coherence. In this paper,
we develop the framework of the approximate coherence distillation under strictly incoherent operations. This
protocol considers the situation that we cannot transform an initial state ρ into a target state ψ with certainty;
instead, we aim to deterministically transform the initial state ρ into an intermediate state φ that is most
approximate to the target state ψ in terms of fidelity. We also present the explicit conversion strategy of the
approximate coherence distillation.
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I. INTRODUCTION

Quantum coherence is a fundamental feature of quantum
physics which is responsible for the departure between the
classical and the quantum worlds. It is an essential component
in quantum information processing [1] and plays a central role
in various fields, such as quantum computation [2,3], quan-
tum cryptography [4], quantum metrology [5,6], and quantum
biology [7]. Recently, the resource theory of coherence has
attracted a growing interest due to the rapid development
of quantum information science [8–10]. The resource theory
of coherence establishes a rigorous framework to quantify
coherence and provides a platform to understand quantum
coherence from a different perspective.

Any quantum resource theory is characterized by two fun-
damental ingredients: The free states and the free operations
[11]. For the resource theory of coherence, the free states
are quantum states which are diagonal in a prefixed refer-
ence basis. The free operations are not uniquely specified.
Motivated by suitable practical considerations, several free
operations were presented [10], such as the maximally inco-
herent operations [8], the incoherent operations [9], and the
strictly incoherent operations [12,13]. In this paper, we fo-
cus our attention on the strictly incoherent operations, which
were first proposed in Ref. [13] and it has been shown that
these operations neither create nor use coherence and have a
physical interpretation in terms of interferometry in Ref. [12].
Thus the set of strictly incoherent operations is a physically
well-motivated set of free operations for the resource theory
of coherence.
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When we are performing a quantum information process-
ing task, it is usually the pure coherent states that play the
central role. Thus the ability of a quantum state to transform it
into some pure coherent state is an important characterization
of the given state. Since coherence distillation is the measure
characterizing this ability, much effort has been devoted to
investigate the distillation of coherence [11]. Previous coher-
ence distillation protocols can be divided into two different
settings: The asymptotic regime [13–17] and the one-shot
regime [18–34]. For the coherence distillation protocols under
strictly incoherent operations, the necessary and sufficient
conditions for the asymptotic distillability were presented and
the optimal rate for this distillation process was evaluated
analytically in Refs. [15–17]. In this case, the protocol has
been assumed that there is an unbounded number of indepen-
dent and identically distributed copies of a quantum state. The
exact coherence distillations including the deterministic co-
herence distillation and the probabilistic coherence distillation
were studied in Refs. [18–25]. In this exact case, we focus
on the transformation that converts a collection of coherent
states having different amounts of coherence into a target pure
coherent state with certainty.

However, previous results about the exact coherence distil-
lations show that the restriction to exact coherence distillation
is too stringent. In other words, for an initial state ρ and a
target state ψ , the transformation from ρ into ψ may not
be achievable by using strictly incoherent operations. In this
case, we consider the approximation coherence distillation.
For the approximate coherence distillation, instead of obtain-
ing the target state ψ exactly, we only need to get an inter-
mediate state which has a high fidelity with the target state
ψ . Here since it is usually the pure states that play the central
role in quantum information processing tasks, we require the
intermediate state to be a pure state or a pure state ensemble.
In this protocol, the most fundamental questions are: For an
initial state ρ and the target state ψ , what is the maximal
fidelity achievable in the approximate coherence distillation
and what is the intermediate state achieving this maximal
fidelity?
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In this paper, we address the above questions by developing
a general framework of approximate coherence distillation.
More precisely, for an initial state ρ and the target state ψ ,
we obtain the maximal fidelity achieved in the approximate
coherence distillation and we also present the intermediate
state that achieves the maximal fidelity. This distillation pro-
tocol can be seen as a generalization of the exact coherence
distillation.

The paper is organized as follows. In Sec. II, we recall
some notions of the resource theory of coherence and the
notions of majorization and fidelity. In Sec. III, we present
the main result of this paper, i.e., the approximate coherence
distillation. Section IV offers our remarks and conclusions.

II. PRELIMINARIES

To present our result clearly, it is instructive to introduce
some elementary notions of the resource theory of coherence
[9]. Let {|i〉}d

i=1 be the prefixed basis in the finite dimensional
Hilbert space. A state is said to be incoherent if it is diagonal
in the basis and the set of such states is denoted by I. Coherent
states are these not of this form. For a pure state |ϕ〉, we will
write ϕ := |ϕ〉〈ϕ|.

A strictly incoherent operation [12,13] is a completely
positive trace preserving (CPTP) map, expressed as

�(ρ) =
N∑

μ=1

KμρK†
μ, (1)

where the Kraus operators Kμ satisfy not only
∑N

μ=1 K†
μKμ =

I but also KμIK†
μ ⊂ I and K†

μIKμ ⊂ I for every Kμ [12,13].
One sees by inspection that there is at most one nonzero ele-
ment in each column and row of Kμ, and Kμ are called strictly
incoherent operators. From this, it is elementary to show that
a projector is incoherent if it is of the form Pμ = ∑

i |i〉〈i| and
we will denote Pμ as a generic strictly incoherent projector.
Hereafter we will use �ρ = ∑d

i=1 |i〉〈i|ρ|i〉〈i| to denote the
fully dephasing channel. A CPTP map is an incoherent oper-
ation if each Kμ only satisfies K†

μIKμ ⊂ I for all μ [9].
With the definition of strictly incoherent operations, we

then introduce the notion of stochastic strictly incoherent
operations [35]. A stochastic strictly incoherent operation is
constructed by a subset of strictly incoherent Kraus oper-
ators. Without loss of generality, we denote the subset as
{K1, K2, . . . , KL}. Otherwise, we may renumber the subscripts
of these Kraus operators. Then, a stochastic strictly incoherent
operation, denoted as �s(ρ), is defined by

�s(ρ) =
∑L

μ=1 KμρK†
μ

Tr
( ∑L

μ=1 KμρK†
μ

) , (2)

where {K1, K2, . . . , KL} satisfies
∑L

μ=1 K†
μKμ � I.

Clearly, the state �s(ρ) is obtained with probability
P = Tr(

∑L
μ=1 KμρK†

μ) under a stochastic strictly incoherent
operation �s, while state �(ρ) is fully deterministic under
a strictly incoherent operation �. Here we emphasize that
the stochastic transformation with

∑L
μ=1 K†

μKμ � I means
that a copy of �s(ρ) may be obtained from a copy of ρ

with probability P = Tr(
∑L

μ=1 KμρK†
μ)(� 1). That is, the

stochastic transformation runs the risk of failure with certain
probability.

Since the notion of majorization is to play a central role in
what follows, let us recall some notations about it [36]. For
the d-dimensional probability distributions Pd , we say that
a probability distribution p = (p1, p2, ..., pd ) is majorized by
q = (q1, q2, ..., qd ), in symbols

p ≺ q, (3)

if there are

l∑
i=1

p↓
i �

l∑
i=1

q↓
i , (4)

for all 1 � l � d − 1, where ↓ indicates that elements are
to be taken in descending order. Hereafter we will apply
majorization to density operators and write ρ1 ≺ ρ2 if the
corresponding majorization relation holds for the eigenvalues
of ρ1 and ρ2. More precisely, let ρ1 and ρ2 be two quantum
states with their eigenvalues being (λ1 � λ2 � · · · � λd ) and
(λ′

1 � λ′
2 � · · · � λ′

d ), respectively. Then, ρ1 ≺ ρ2 implies
that there are

Cs(ρ1) :=
d∑

i=s

λi � Cs(ρ2) :=
d∑

i=s

λ′
i (5)

for all 1 � s � d − 1 [36]. Here and hereafter we use ρ↓ to
indicate that the eigenvalues of ρ are to be taken in descending
order and we denote ρ ≺ ∑

n pnρ
↓
n as Cs(ρ) � ∑

n pnCs(ρn)
for all 1 � s � d − 1.

Finally, the fidelity of two states ρ1 and ρ2 is defined to be
[37]

F (ρ1, ρ2) = Tr(
√√

ρ1ρ2
√

ρ1). (6)

From Ref. [37], we have the following observations:
(1) F (|ϕ〉, |ψ〉) = |〈ϕ|ψ〉|; (2) F (|ϕ〉, ρ) = 〈ϕ|ρ|ϕ〉.

III. APPROXIMATION COHERENCE DISTILLATION

We start by presenting the basic task of the approximation
coherence distillation via strictly incoherent operations.

For an initial state ρ, we want to transform it into a target
state ψ . However, we may not achieve this task exactly. In this
case, we may transform ρ into some pure state φ or some pure
state ensemble {pμ, ϕμ} whose fidelity with the target state ψ

is maximal instead.
For the sake of simplicity, we define Sρ as the set of

pure states φ or pure state ensembles {pμ, ϕμ} which can be
obtained from ρ by using strictly incoherent operations and
we denote Fmax(ψ,Sρ ) as the maximal fidelity achievable in
the protocol.

First, we show that it is the pure coherent-state subspaces of
ρ that play the role in the approximate coherence distillation.
To obtain this, let us recall the following result, which was
given in Ref. [25].

Theorem 1. The transformation ρ → {pμn, |ϕμn〉}μn can be
achieved by using strictly incoherent operations if and only
if there is an orthogonal and complete set of incoherent
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projectors {Pμ} such that, for all μ, there are

PμρPμ

Tr(PμρPμ)
= ψμ and �ψμ ≺

∑
n

pn|μ�ϕ↓
μn, (7)

where ψμ are pure states, pμ = Tr(PμρPμ), and pn|μ :=
pμn/pμ.

In particular, for ρ being a pure state and some pμn = 1,
we recover the results obtained in Ref. [18].

Theorem 1′. The transformation ϕ → ψ can be achieved
by using strictly incoherent operations if and only if there is
�ϕ ≺ �ψ .

Thus from Theorem 1, we note that it is the parts of ρ that
PρP being rank one are useful in the transformation ρ →
{pμ, |ϕμ〉}μ. For the sake of simplicity, we call these parts as
the pure coherent-state subspaces of ρ. More precisely, if there
is an incoherent projector P such that PρP = ϕ with the co-
herence rank [38] of ϕ being n � 0, then we say that ρ has an
n + 1-dimensional pure coherent-state subspace correspond-
ing to P . Furthermore, we say that the pure coherent-state
subspaces with the projector P for ρ is maximal if the pure
coherent-state subspace cannot be expanded to a larger one
with an incoherent projector P ′ such that P ′ρP ′ = ϕ′, ϕ′ 
= ϕ,
and Pϕ′P = ϕ.

To identify the pure coherent-state subspaces of a state ρ,
we resort to the following matrix

A = (�ρ)−
1
2 |ρ|(�ρ)−

1
2 . (8)

Here for the given state ρ = ∑
i j ρi j |i〉〈 j|, the matrix |ρ| reads

|ρ| = ∑
i j |ρi j ||i〉〈 j| and (�ρ)−

1
2 is the diagonal matrix with

elements (�ρ)
− 1

2
ii = {ρ− 1

2
ii , if ρii 
= 0;

0, if ρii = 0.
A useful property of A

to identify the pure coherent-state subspaces of ρ can be
presented as the following Theorem 2 (see Appendix A for
details).

Theorem 2. The rank of PρP is 1 if and only if all of its
corresponding elements of A are 1.

From this, we could obtain that if there are n-dimensional
principal submatrices Aμ of A with all its elements being 1,
then the corresponding subspace of ρ is an n-dimensional
pure coherent-state subspace. By using this result, one can
easily identify the pure coherent-state subspaces of ρ. For a
state ρ, let the corresponding Hilbert subspaces of principal
submatrices Aμ (μ = 1, . . . ,U) be Hμ, which is spanned
by {|iμ1 〉, |iμ2 〉, . . . , |iμdμ

〉} ⊂ {|1〉, |2〉, . . . , |d〉} and the corre-
sponding incoherent projectors be Pμ, with its rank being dμ,
i.e.,

Pμ = ∣∣iμ1 〉〈
iμ1

∣∣ + ∣∣iμ2 〉〈
iμ2

∣∣ + · · · + ∣∣iμdμ

〉〈
iμdμ

∣∣. (9)

Acting {Pμ} on the state ρ, we then obtain the set {ϕμ}Uμ=1,
where ϕμ have the form ϕμ = (PμρPμ)/Tr(PμρPμ). Let the
pure states corresponding to maximal pure coherent-state sub-
spaces be

Pm
μ ρPm

μ

Tr
(
Pm

μ ρPm
μ

) = ϕm
μ . (10)

Here Pm
μ are the incoherent projectors corresponding to max-

imal pure coherent-state subspaces. Then, after acting the

incoherent projectors {Pm
μ } on ρ, we obtain a set of pure states

ϕm
μ with probability pμ = Tr(Pm

μ ρPm
μ ), i.e., there is

�P (ρ) =
U∑

μ=1

Pm
μ ρPm

μ =
U⊕

μ=1

pμϕm
μ . (11)

By Theorem 1 and the definitions of {Pm
μ } and {Pμ}, it is

apparent to see that, to obtain a pure state or a pure state
ensemble from the state ρ, we only need to consider the state

ρm =
U⊕

μ=1

pμϕm
μ , (12)

since general ρ ′ = ⊕
μ pμϕμ can be obtained from ρm by

using strictly incoherent operations.
The results presented above imply that, to obtain some pure

state φ or some pure state ensemble {pμ, φμ} whose fidelity
with the target state ψ is maximal from ρ, we only need to
study each ϕm

μ .
Second, for an initial pure state ϕ and a target pure state

ψ , let us calculate the maximal fidelity achievable in the
approximate coherence distillation.

For the pure coherent state ϕ, it may be transformed into
a pure state φ or a pure state ensemble {pμ, ϕμ} by using
strictly incoherent operations. We show that for the problem
considered here, we only need to consider the former case.
This leads to the following Theorem 3 (see Appendix B for
details).

Theorem 3. Let us define F̄ (ψ, {pμ, ϕμ}) :=∑
μ pμF (ψ, ϕμ), where {pμ, ϕμ} is a pure state ensemble

obtained from ϕ by using strictly incoherent operations. Then,
the maximum of F̄ (ψ, {pμ, ϕμ}) can always be obtained by
F (ψ, φ) with φ ∈ Sϕ .

With the above Theorem 3, for an initial pure state ϕ

and a target pure state ψ , to obtain the intermediate state
achieving the maximal fidelity with ψ , we only need to con-
sider the pure state in Sϕ . Next, we are ready to present the
maximal fidelity and the intermediate state. To this end, we
introduce some elementary notations. Let |ϕ〉 = ∑d

i=1 ϕi|i〉
and |ψ〉 = ∑d

i=1 ψi|i〉 be two pure coherent states with |ϕ1| �
|ϕ2| � · · · � |ϕd | and |ψ1| � |ψ2| � · · · � |ψd |, respectively.
For the state |ϕ〉, we define Cϕ

s as Cϕ
s = ∑d

i=s |ϕi|2. Let us
denote s1 ∈ {1, . . . , d} as the smallest integer such that

q1 = Cϕ
s1

Cψ
s1

:= min
s

Cϕ
s

Cψ
s

. (13)

We should note that there may be the case that q1 = 1 and
s1 = 1 at the same time. If this is not the case, for any
a, b, c, d ∈ R+, the equivalence of a(b + d ) < b(a + c) and
ad < bc implies that for any integer s ∈ [1, s1]

Cϕ
s − Cϕ

s1

Cψ
s − Cψ

s1

> q1. (14)

Let us then denote s2 ∈ [1, s1 − 1] as the smallest integer such
that

q2 = Cϕ
s2

− Cϕ
s1

Cψ
s2 − Cψ

s1

:= min
s

Cϕ
s − Cϕ

s1

Cψ
s − Cψ

s1

, (15)
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where q2 > q1. Repeating this process until sk = 1 for some
k, we obtain a series of k + 1 integers s0 > s1 > s2 > · · · >

sk (s0 := d + 1) and k positive real numbers 0 < q1 < q2 <

· · · < qk by means of which we denote the final state as

|φ〉 :=
d∑

i=1

φi|i〉 with φi := q jψi if i ∈ [s j, s j−1 − 1]. (16)

It is direct to examine that |φi| � |φi+1| and there are

Cϕ
s � Cφ

s , ∀s ∈ [1, d], (17)

i.e., �ϕ ≺ �φ. By Theorem 1′, this means that the state |ϕ〉
can be transformed into |φ〉 by using some strictly incoherent
operation with certainty. Let us further define positive quanti-
ties

Aj := Cϕ
s j

− Cϕ
s j−1

=
s j−1−1∑

i=s j

|ϕi|2,

Bj := Cψ
s j

− Cψ
s j−1

=
s j−1−1∑

i=s j

|ψi|2, (18)

where we have assumed that Cϕ
s0

= 0 and Cψ
s0

= 0. By using
Eq. (16), we immediately derive that the fidelity between |φ〉
and the target state |ψ〉 is

F (φ,ψ ) =
k∑

j=1

√
AjBj . (19)

With the above notations, we arrive at Theorem 4.
Theorem 4. For the initial state |ϕ〉 = ∑d

i=1 ϕi|i〉 and the
target state |ψ〉 = ∑d

i=1 ψi|i〉 with |ϕ1| � |ϕ2| � · · · � |ϕd |

and |ψ1| � |ψ2| � · · · � |ψd |, respectively, there is

Fmax(ψ,Sϕ ) := max
ε∈Sϕ

F (ψ, ε) =
k∑

j=1

√
AjBj . (20)

The intermediate state achieving Fmax(ψ,Sϕ ) is the state |φ〉
presented in Eq. (16).

Proof. Let |ε〉 = ∑d
i=1 εi|i〉 with |εi| � |εi+1| be an arbi-

trary pure state belonging to the set Sϕ . By direct calculations,
we obtain F (ε, ψ ) = ∑d

i=1 |εiψi|. By a · b � |a||b|, we derive

F (ω,ψ ) =
d∑

i=1

|εiψi| �
k∑

j=1

√
A′

jB j, (21)

where we have defined A′
j := ∑s j−1−1

i=s j
|εi|2. Since ε can be

obtained by strictly incoherent operations from ϕ, then there
are Cε

s � Cϕ
s for all s. We further define x j as

x j := Cϕ
s j

− Cε
s j
. (22)

The condition ε ∈ Sϕ implies that x j � 0 for all j. Let us
further define a function

f (x) :=
k∑

j=1

√
(Aj − x j + x j−1)Bj . (23)

Next, we present that f (x) obtains its maximum at x = 0 by
showing that the Hessian is negative semidefinite at 0 [39]. By
direct calculations, we immediately derive

∂ f (x)

∂x j
=

(√
Bj+1

Aj+1 − x j+1 + x j
−

√
Bj

Aj − x j + x j−1

)
. (24)

We note that ∂ f (0)
∂x j

are negative for all j since there are
Aj

B j
<

Aj+1

Bj+1
. Further, we can derive that the Hessian matrix

H := [ ∂2 f (x)
∂xi∂x j

] reads

H =

⎛
⎜⎜⎜⎜⎝

−(z1 + z2) z2 0 · · · 0
z2 −(z2 + z3) z3 · · · 0
0 z3 −(z3 + z4) · · · 0
...

...
...

. . .
...

0 0 0 · · · −(zk + zk+1)

⎞
⎟⎟⎟⎟⎠,

where Hj j = −(z j + z j+1), Hj( j−1) = z j , and Hj( j+1) = z j+1

with z j = 1
4

√
Bj (Aj − x j + x j−1)−3/2. Finally, we show that

H is negative semidefinite. To this end, let us recall the Gerš-
gorin disk theorem, which says that if H = [Hi j], then there
is

{λ(H )} ⊂ G(H ) =
N⋃

n=1

Gn(H ), (25)

where λ(H ) are the eigenvalues of H and

Gn(H ) :=
{

z ∈ C : |z − Hnn| �
∑
j 
=n

|Hn j |
}

. (26)

From this, we immediately derive

|λ − Hnn| � |Hnn−1| + |Hnn+1|. (27)

Then, for all i, there are

−(z j + z j+1) � λ(H ) � 0. (28)

Thus the matrix H is negative semidefinite. This further im-
plies that f (x) obtains the maximum at x = 0. Henceforth we
obtain

f (x)max =
k∑

j=1

√
AjBj . (29)

Since the state φ defined in Eq. (16) could achieve this maxi-
mum, we complete the proof of this theorem. �
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Finally, we present the approximate coherence distillation
for a mixed state.

From Theorem 1, for a state ρ, we only need to consider the
protocol of the state ρm = ⊕U

μ=1 pμϕm
μ in Eq. (12). Thus for

the initial state ρ and the target state ψ , we should calculate
each Fmax(ψ,Sϕm

μ
) as in Theorem 3, respectively. Then we

immediately obtain

Fmax(ψ,Sρ ) = min
μ

Fmax
(
ψ,Sϕm

μ

)
. (30)

We then summarize the above results as Theorem 5.
Theorem 5. For an initial state ρ and a target state ψ , let

the state corresponding to its maximal pure coherent-state
subspaces be �P (ρ) = ⊕U

μ=1 pμϕm
μ . The maximal fidelity

achievable by using strictly incoherent operations is

Fmax(ψ,Sρ ) = min
μ

Fmax
(
ψ,Sϕm

μ

)
, (31)

where Sρ is the set of pure states that can be obtained from ρ

by using strictly incoherent operations.
In particular, it is reminiscent of the case of entanglement

[40], where the approximate transformations of pure entan-
gled states were studied with the fidelity being F (ρ1, ρ2) =
Tr(

√√
ρ1ρ2

√
ρ1)2.

We point out that for pure states, the results presented in
Theorem 4 can be naturally extended to incoherent operations
by following the same arguments around Theorem 4. How-
ever, this is not the case for mixed states. To see this, let us
consider the initial state ρ as

ρ =

⎛
⎜⎜⎜⎜⎝

1
4 0 1

2
√

5
1

4
√

5

0 1
4 − 1

4
√

5
1

2
√

5
1

2
√

5
− 1

4
√

5
1
4 0

1
4
√

5
1

2
√

5
0 1

4

⎞
⎟⎟⎟⎟⎠ (32)

and the target state as |ψ〉 = 1√
2
(|1〉 + |2〉). Then, by direct

calculations, Fmax(ψ,Sρ ) = 1√
2
. However, by using the inco-

herent operations �(·) = K1(·)K†
1 + K2(·)K†

2 with

K1 =

⎛
⎜⎜⎝

4
5

3
5 0 0

0 0 1√
5

2√
5

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

K2 =

⎛
⎜⎜⎝

− 3
5

4
5 0 0

0 0 − 2√
5

1√
5

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (33)

the maximal fidelity achievable is Fmax = 1.

IV. REMARKS AND CONCLUSIONS

Before concluding, we would like to compare the approxi-
mation coherence distillation with the deterministic coherence
distillation [19] and the probabilistic coherence distillation
[23]. To this end, let us consider the following question: (i)
For an initial state ρ, if we want to transform it into some pure
state φ whose fidelity with the target state ψ is equal to or
larger than some value F0, then can we achieve this task? By

using Theorem 5, we only need to compare if there is

Fmax(ψ,Sρ ) � F0. (34)

Suppose Fmax(ψ,Sρ ) � F0, then we can achieve the task
successfully. Conversely, if Fmax(ψ,Sρ ) < F0, then we can-
not achieve this task with certainty. In the latter case, we
could consider the problem (ii): If we cannot complete this
distillation scheme with certainty, then what is the maximal
probability of success in such a transformation? For this prob-
lem, let us define the set S := {μ|Fmax(ψ,Sϕm

μ
) � F0}. Then,

the maximal probability of success in such a transformation is

Pmax =
∑
μ∈S

pμ. (35)

In particular, if the desired fidelity F0 is 1, then we can recover
the results of deterministic coherence distillation [19] and the
probabilistic coherence distillation [23].

We should note that the intermediate state φ may not be a
coherent state. Thus given the initial state ρ, the target state ψ ,
and the desired fidelity F0, we can decide whether the protocol
is useful or not by comparing Fmax(ψ,Sρ ) with F0.

To summarize, we have characterized the framework of
approximate coherence distillation for a general state ρ. The
aim of this protocol is to obtain an intermediate state by
using strictly incoherent operations from ρ most approximate
to the target state ψ in terms of fidelity. We have presented
the explicit conversion strategy of the approximate coherence
distillation. This distillation protocol can be seen as a gener-
alization of the exact coherence distillation.

In passing, we would like to point out that the situation
we consider here is different from the one-shot coherence
distillation developed in Refs. [27,28], where the intermediate
state is not necessarily a pure state.
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APPENDIX A

Theorem 2. Let A := (�ρ)−
1
2 |ρ|(�ρ)−

1
2 . Then ρ is a pure

state if and only if all the elements of A are 1.
Proof. Let ρ = |φ〉〈φ| with |φ〉 = ∑d

i=1 φi|i〉 being a pure
state. Then there are ρi j = φiφ

∗
j , ρii = |φi|2, and ρ j j = |φ j |2.

It is direct to examine that all the elements of A are 1, i.e.,

Ai j =
√

|ρi j |2
ρiiρ j j

= 1 (A1)

for all i, j. This completes the only if part of the Lemma.
For the if part of the Lemma, let us consider the matrix

A′ := (�ρ)−
1
2 ρ(�ρ)−

1
2 , (A2)

with |A′| = A. It is direct to see that the matrix A′ is positive
semidefinite and thus A′

ii = Aii = 1 for all i. Since all the ele-
ments of A are 1, then there are |A′

i j | = 1 for all i, j. Without
loss of generality, let us assume that A = ∑

μ |ϕμ〉〈ϕμ| with
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|ϕμ〉 = ∑
i ϕ

μ
i |i〉. Then, by direct calculations, we obtain

|A′
i j |2 =

∣∣∣∣∣
∑

μ

ϕ
μ
i

∗
ϕ

μ
j

∣∣∣∣∣
2

�
∑

μ

∣∣ϕμ
i

∣∣2 ∑
μ

∣∣ϕμ
j

∣∣2 = A2
iiA

2
j j,

(A3)

with equality if and only if, for some ki j ∈ C, there are(
ϕ1

i , ϕ
2
i , . . . , ϕ

d
i

) = ki j
(
ϕ1

j , ϕ
2
j , . . . , ϕ

d
j

)
. (A4)

This implies that there are |ϕμ〉〈ϕμ| = |kμν |2|ϕν〉〈ϕν |. Thus
the rank of A′ is 1. This further implies that ρ is rank 1. To
see this, let us show that if A, B are Hermitian operators, if A
is invertible on Mn, then there is

Rank(B) = Rank(ABA†). (A5)

On the one hand, let B = ∑�
i=1 λi|λi〉〈λi|. Then there is

ABA† = ∑�
i=1 λi|ψi〉〈ψi|, where |ψi〉 := A|λi〉. This means

that

Rank(B) � Rank(ABA†). (A6)

On the other hand, since A is invertible, let C := A−1. Then,
there is B = CABA†C† = ∑�

i=1 λi|λi〉〈λi|. Thus we obtain

Rank(B) � Rank(ABA†). (A7)

From this, since the rank of A′ is 1, then ρ is also of rank 1.
i.e., ρ is a pure state. This completes the proof of the if part of
the Theorem. �

APPENDIX B

Theorem 3. Let us define F̄ (ψ, {pμ, ϕμ}) :=∑
μ pμF (ψ, ϕμ), where {pμ, ϕμ} is an pure state ensemble

obtained from ϕ by using strictly incoherent operations. Then,
the maximum of F̄ (ψ, {pμ, ϕμ}) can always be obtained by
F (ψ, φ) with φ ∈ Sϕ .

Proof. We first show that for two pure states |ϕ〉 =∑d
i=1 ϕi|i〉 and |ψ〉 = ∑d

i=1 ψi|i〉, there are

FU
m := max

U
F (ϕ,UψU†) =

d∑
i=1

|ϕ↓
i ||ψ↓

i |, (B1)

where the maximum is taken over incoherent unitary opera-
tions U .

To this end, an incoherent unitary U can be expressed as

U =
d∑

j=1

eiθ j |π ( j)〉〈 j|, (B2)

where π is a permutation of {1, · · · , d}. Then, we derive

F (ϕ,UψU†) = |〈ϕ|U |ψ〉| =
∣∣∣∣∣

d∑
j=1

eiθπ ( j)ϕπ ( j)ψ j

∣∣∣∣∣. (B3)

By using the triangle inequality, we obtain∣∣∣∣∣
d∑

j=1

eiθπ ( j)ϕπ ( j)ψ j

∣∣∣∣∣ �
∑

j

∣∣ϕπ ( j)ψ j

∣∣. (B4)

By using a result in Ref. [36] which says that for any two d-
dimensional real vectors a, b, there is 〈a, b〉 � 〈a↓, b↓〉 where
↓ indicates that the elements are to be taken in descending
order, we get

∑
j

|ϕπ ( j)ψ j | �
d∑

i=1

|ϕ↓
i ||ψ↓

i |, (B5)

where the equality can be achieved by choosing the incoherent
unitary such that |ϕ1| � |ϕ2| � · · · � |ϕd | and |ψ1| � |ψ2| �
· · · � |ψd | and |ϕ↓

j ||ψ↓
j | = eiθ j ϕ jψ j .

From the results presented above, without loss of general-
ity, we assume that |ϕμ〉 = ∑dμ

i=1 cμ
i |i〉 with |cμ

i | � |cμ
i+1| � 0

and |ψ〉 = ∑d
i=1 ψi|i〉 with |ψi| � |ψi+1| � 0. Since {pμ, ϕμ}

is obtained from ϕ by using strictly incoherent operations,
then there are [18]

∑
μ

pμ

dμ∑
i=l

∣∣cμ
i

∣∣2 �
dμ∑
i=l

|ψi|2. (B6)

By direct calculations, we obtain

F̄max(ψ, {pμ, ϕμ}) =
∑

n

pn

∣∣∣∣∣
∑

i

ψic
μ
i

∣∣∣∣∣
�

∑
μ

pμ

n∑
i=1

∣∣cμ
i ψi

∣∣, (B7)

where the maximum is taken over all ensemble {pμ, ϕμ} that
can be obtained from ϕ by using strictly incoherent operations
and we have used the triangle inequality for the inequality. On
the other hand, let us consider the state

|φ〉 =
n∑

i=1

√∑
μ

pμ

∣∣cμ
i

∣∣2|i〉. (B8)

By using the relations in Eq. (B6) and Theorem 1′, it is direct
to examine that the transformation from ϕ into φ can be
realized with certainty by using strictly incoherent operations.
Thus the fidelity of |ψ〉 and |φ〉 is

F (ψ, φ) =
n∑

i=1

∣∣∣∣ψi

√∑
μ

pμ

∣∣cμ
i

∣∣2
∣∣∣∣. (B9)

Applying the concavity of the function f (x) = √
x, we obtain

n∑
i=1

|ψi|
∣∣∣∣
√∑

μ

pμ

∣∣cμ
i

∣∣2
∣∣∣∣ �

n∑
i=1

|ψi|
∑

μ

pμ

∣∣cμ
i

∣∣. (B10)

From Eqs. (B7) and (B10), we immediately obtain that

F (ψ, φ) � F̄ (ψ, {pμ, ϕμ}). (B11)

This completes the proof of the Theorem. �
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