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Spin Seebeck coefficient and spin-thermal diffusion in the two-dimensional Hubbard model
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We investigate the spin Seebeck coefficient Ss in the square lattice Hubbard model at high temperatures of
relevance to cold-atom measurements. We solve the model with the finite-temperature Lanczos and with the
dynamical mean-field theory methods and find they give similar results in the considered regime. Ss exceeds
the atomic Heikes’ estimates and the Kelvin entropic estimates drastically. We analyze the behavior in terms
of a mapping onto the problem of a doped attractive model and derive an approximate expression that allows
relating the enhancement of Ss to distinct scattering of the spin-majority and the spin-minority excitations. Our
analysis reveals the limitations of entropic interpretations of Seebeck coefficient even in the high-temperature
regime. Large values of Ss could be observed on optical lattices. We also calculated the full diffusion matrix. We
quantified the spin-thermal diffusion, that is, the extent of the mixing between the spin and the thermal diffusion
and discuss the results in the context of recent measurements of the spin-diffusion constant in cold atoms.

DOI: 10.1103/PhysRevResearch.4.023197

I. INTRODUCTION

Cold-atom systems on optical lattices provide a novel lens
on poorly understood transport regimes of correlated electrons
[1,2]. The cold atoms can realize the Hubbard model—the
standard model of correlated electrons that interact with an on-
site repulsion U and move on the lattice (hopping t)—without
real world complications, such as lattice vibrations and dis-
order. Hence one can directly and quantitatively compare the
outcome of the experiment with those of the numerical solu-
tions of the Hubbard model [1,2]. Such a cross-verification
turned very successful in the measurements of the charge
diffusivity [1]. Besides providing an important mutual bench-
mark of the methods it led to a quantification of the vertex
corrections [3]. Intriguingly, related measurements of spin
diffusivity revealed a disagreement between the numerical
methods and the experiment [2]. An independent numerical
investigation [4] confirmed the results of the theory but dis-
agreed with the experiment.

This disagreement thus calls for a close inspection of the
underlying assumptions of the experimental analysis. One
of the assumptions is that the spin-thermoelectric effect is
unimportant. This holds strictly at a vanishing magnetization,
but in the actual experiment this condition was only approxi-
mately met as some spin imbalance mz = (n↑ − n↓)/2 is seen
in the measurements: |mz| � 0.05 [2]. The strength of the
spin-thermoelectric effect is quantified by the spin Seebeck
coefficient Ss given by the ratio of the magnetic field and
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thermal gradient at the condition of vanishing spin current,
Ss = ∇B/∇T | js=0. Ss is a quantity that is relevant for spin-
tronics applications [5–8] but has to our knowledge not been
discussed for the Hubbard model (surprisingly, as this is the
paradigmatic model of correlated electrons). The intention of
our work is to fill this gap, establish how large Ss is in the
high-temperature regime, and use that knowledge to discuss
whether the measurements of spin-diffusion in cold atoms
could be influenced by the spin-thermoelectric effects.

Some intuition concerning Ss could be expected from con-
siderations that relate the ordinary charge Seebeck coefficient
Sc to thermodynamic quantities, such as the high-temperature
Heikes limit SH = μ/T or the Kelvin formula SK = dμ/dT
that relate the Seebeck coefficient to the temperature de-
pendence of the chemical potential [9–12]. Namely, it was
demonstrated that often at high temperatures the Kelvin for-
mula describes the Seebeck coefficient well [11] (but some
exceptions to this were also noted [13]).

To apply this intuition to Ss one can use a mapping that
relates the spin transport in a magnetized repulsive Hubbard
model to the charge transport in a doped attractive Hubbard
model [14–21]. This mapping proceeds via a particle-hole
transformation on particles of only one spin, e.g., ↓, with
ci,↓ → (−1)ic†

i,↓ and results in an interchange of spin and
charge degrees of freedom, explicitly n↑ − n↓ → n↑ + n↓,
n↑n↓ → −n↑n↓. Accordingly, Hubbard repulsion goes to at-
traction, Un↑n↓ → −Un↑n↓. Via this mapping, one can relate
the spin Heikes estimate for spin Seebeck coefficient SH

s =
B/T |mz=const (or Kelvin estimate SK

s = dB/dT |mz=const ) to
the corresponding charge Heikes and Kelvin estimates for
a model with an opposite sign of repulsion (that is, an at-
tractive model for the case of interest here). Actually, by
exploiting the mapping one can use the results from the
literature [22] and obtain Ss = 8kBmz at a high-temperature
(T > U ) and Ss = 4kBmz at a lower temperature (T < U ).
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From these estimates—that one is inclined to trust, especially
in the high-temperature regime T > t pertinent to cold-atom
measurements—one expects only small values of the spin
Seebeck coefficient Ss � kB, since mz � 1.

In this paper we show that this reasoning is incorrect. We
calculate Ss for a square lattice Hubbard model at high T
using the finite temperature Lanczos method (FTLM) and the
dynamical mean-field theory (DMFT) approaches and find
that it strongly exceeds the bounds just discussed. Ss violates
the thermodynamic expectations even in the high-temperature
regime, an unexpected finding based on what was previously
known for the ordinary thermoelectric effect. Large values of
Ss call for a reexamination of the possible spin-thermoelectric
effects in cold-atom measurements of spin diffusion. To es-
timate those, we calculated the full diffusion matrix D. In
general, the eigenvalues of D deviate from those found in
the absence of spin-thermoelectric effect. Interestingly, we
find the deviations are related to the difference between the
actual value of spin Seebeck coefficient and its thermody-
namic Kelvin approximate, Ss − SK

s . We discuss why in spite
of this difference being sizable (it exceeds kB at large U ) the
final influence on the measured spin diffusion for moderate
magnetization is unimportant.

We note that large values of Seebeck coefficient for the
attractive model were earlier found in the DMFT [21] but
were not compared with the thermodynamic estimates and
the importance of those results for the spin-thermoelectric
response was not discussed.

The remainder of the paper is structured as follows. In
Sec. II we specify the model, the methods, and the notation.
In Sec. III we show our main results for the spin Seebeck
coefficient. In Sec. IV we describe the DMFT calculation of
transport and in Sec. V we exploit it in conjunction with the
mapping to an attractive model to interpret our results. In
Sec. VI we investigate the influence of the spin-thermoelectric
effect for the spin diffusion. In Sec. VII we give our conclu-
sions. The Appendix discusses the behavior of spin Seebeck
coefficient for a phenomenological ansatz spectral function.

II. MODEL AND METHOD

We study the square lattice Hubbard model,

H = −t
∑

〈i, j〉,s=↑,↓
c†

i,sc j,s + U
∑

i

ni,↑ni,↓, (1)

with t being the hopping between the nearest neighbors. We
take h̄ = kB = e = gμB = 1. We likewise take lattice spacing
a = 1. We use t as the energy unit.

We solve the Hamiltonian with FTLM [23–25] on a N =
4 × 4 cluster and in the thermodynamic limit with the DMFT
[26] [that is, we solve the Hamiltonian Eq. (1) in a local
approximation]. The DMFT equations are solved using the
numerical-renormalization group (NRG) [27] in the NRG-
Ljubljana implementation [28] as the impurity solver.

III. SPIN SEEBECK COEFFICIENT

Figure 1(a) displays Ss as a function of temperature for
U = 10 evaluated with the FTLM (full, thick) and the DMFT
(symbols). At highest temperatures, Ss approaches the high-

FIG. 1. (a) The spin Seebeck coefficient for U = 10 at half filling
for magnetization mz = 0.05, calculated using the FTLM (thick) and
the DMFT (+). Kelvin estimates (thin) and the two Heikes’ estimates
are also shown (dashed). (b) The FTLM data for U = 10, 20, 40
(thick) along the Kelvin estimates (thin). The DMFT data for U = 20
are also shown (crosses).

temperature Heikes value, 2 log(1 + 2mz )/(1 − 2mz ) ≈ 8mz,
which is the expected behavior. The Kelvin estimate from
dB/dT |mz evaluated using the FTLM (thin; DMFT gives sim-
ilar results) agrees with the Kubo evaluation in this regime.
On lowering the temperature, surprisingly, instead of di-
minishing in amplitude as suggested by the Heikes value
corresponding to T < U , log[(1 + 2mz )/(1 − 2mz )] ≈ 4mz

[22], Ss increases and reaches a maximum value well above
the Heikes estimate and only drops consequently at lower
T . This behavior with a substantial increase of the spin-
thermoelectric coefficient above the high-temperature and
thermodynamic estimates becomes even more pronounced for
larger U , as displayed in Fig. 1(b). The magnitude of the peak
diminishes with decreasing magnetization but increases with
increasing U . It is, as we show below, proportional to mzU/T .

Throughout the considered regime, the temperatures are
high (T > t) and one cannot attribute the deviations from
the thermodynamic estimates to the occurrence of coherent
transport or to a proximity to a magnetically ordered regime.
The observed deviations are in stark contrast to the behavior
of the charge thermopower that at temperatures T > t does
follow the thermodynamic estimates [11].

IV. DMFT DESCRIPTION OF TRANSPORT

In order to understand this behavior it is convenient to
discuss the transport properties within the DMFT approach.
The DMFT expresses the transport coefficients in terms of the
transport function [29]

�σ (ω) =
∑

k

v2
k A2

kσ (ω), (2)

where vk is the band velocity: vk = dε/dkx with εk the band
energy. Akσ is the spectral function at momentum k and spin
σ . The charge Seebeck Sc and the spin Seebeck Ss coefficients
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FIG. 2. (a) The DMFT spectral function A(ω) for the doped
attractive model δ = n − 1 = 0.1 (corresponding to mz = 0.05) for
−U = 10, 20 at temperature T = 6. (b), (c) The corresponding
imaginary part of the self-energy, and (d) the DMFT transport func-
tion �(ω).

are, respectively,

S(s,c) = (1, 2)

∫
(�↑(ω) ± �↓(ω))(−ω/T )(−df /dω)dω∫

(�↑(ω) + �↓(ω))(−df /dω)dω
.

(3)
As seen in Fig. 1(a), the DMFT results are similar although
not identical to the FTLM ones. To what extent the differ-
ences are technical (it is quite challenging to converge the
DMFT calculations in this regime as discussed in Ref. [21])
or physical, such as emanating in nonlocal fluctuations and/or
the vertex corrections neglected in DMFT, is a question that
goes beyond the scope of the present paper. It is likely that at
low T the vertex corrections become more important as the
DMFT calculation gives an insulator with a spin gap whereas
the actual behavior is that of a spin conductor described by
a Heisenberg model. For our purpose we will ignore these
differences between the two methods and exploit the more
transparent DMFT formulation of transport to interpret the
FTLM results.

V. MAPPING TO THE ATTRACTIVE MODEL

It is convenient to analyze the results in terms of the
mapping of the spin to the charge degrees of freedom for an
attractive model, that is Ss(U ) = 2Sc(−U ), with the spin po-
larization 2mz → δ becoming the charge doping with factors
of 2 occurring due to the definition of spin.

Figure 2(a) presents the local spectral function
∑

k Ak (ω)
of the doped attractive model at T = 6, for two values of
attraction −U = 10, 20. As discussed in earlier studies of the
attractive model [16,17,21,30], the spectral function consists
of two peaks, which are as for the repulsive Hubbard model
centered at −μ and −μ + U , with μ ∼ U/2. The important
distinction between the doped attractive and the doped repul-
sive model is in the behavior of the chemical potential with
temperature that can at high T be most simply obtained from
a grand-canonical treatment of the atomic problem. There,

average electron occupancy can be evaluated from

n = 2 exp(βμ) + 2 exp(−β(U − 2μ))

1 + 2 exp(βμ) + exp(−β(U − 2μ))
. (4)

In the attractive model, terms that include exp(−βU ) grow at
low temperatures and should be retained. Hence one obtains

μ = U/2 + δμ = U/2 + T log((1 + δ)/(1 − δ)). (5)

The fact that μ ∼ U/2 at low T represents a crucial difference
with respect to the repulsive case causes the spectral function
to be gapped at a nonvanishing doping. Namely, the spectral
function consists of two peaks displaced by δμ from ±U/2 as
shown on Fig. 2(a) for two values of U . Because at large |U |
the gap is well developed, the lower and upper Hubbard bands
must have unequal spectral weight to yield a finite doping.

Figure 2(d) presents the transport function. One sees that
this exhibits the two Hubbard bands and is overall similar to
the density of states. There is, however, an important differ-
ence: Because � contains A2

k , the weights of the upper and
the lower Hubbard band parts are affected by the amplitude
of scattering, as given by self-energy depicted in Figs. 2(b)
and 2(c) for |U | = 20, 10, respectively. When the spectral
function is a sharply peaked function, A2

k ∼ Ak/(2π	k ) with
	k = −Im
(ωk ), and hence the transport function is modu-
lated by the value of the self-energy at the peak frequency
ωk . In passing we note that this finding can be used to con-
nect the bubble expression to the Boltzmann calculation, see
Refs. [31,32] for a recent discussion.

In the Appendix we take advantage of the simple two-
peaked structure of the transport function and find an
expression

Sc = − U

2T

φ̃− − φ̃+
φ̃− + φ̃+

+ δμ

T
= S1 + δμ

T
, (6)

where the first term grows as U/T and is proportional to a co-
efficient that is expressed in terms of the effective weights of
the positive (negative) frequency peaks of the transport func-
tion φ̃±. This coefficient (that is found to be approximately
given by doping; see the Appendix) grows with the difference
in the scattering between the holes and the electrons. When
this difference does not vanish, the behavior of the Seebeck
coefficient differs from that of the thermodynamic expecta-
tions given by the second term in Eq. (6).

Let us relate this discussion to the repulsive case. At the
particle-hole symmetry, the spectral functions of the repulsive
and attractive case for, respectively, s =↑,↓ are related by
Ak↑,↓(ω)|U>0 = Ak↑,↓(±ω)|U<0. That is, taking advantage of
the mapping, Fig. 2 depicts s =↑ components of the spectral
function, the self-energy, and the transport function, and the
s =↓ components can be obtained by ω → −ω. The different
scattering between the electrons and the holes in the attractive
model thus relates to a different scattering between the spin
majority and the spin-minority carriers in the repulsive model,
and this in turn leads to Ss ∼ mzU/T behavior that explains
the enhancement over the thermodynamic estimates seen in
Fig. 1.
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VI. DIFFUSION MATRIX, DIFFUSION EIGENVALUES,
AND RELEVANCE FOR EXPERIMENT

Predicted large values of spin Seebeck coefficient at large
T and the increase of the peak value with increasing U (or
the corresponding behavior of the charge-Seebeck coefficient
in the attractive case) could be tested in future cold-atom
experiments. In the introduction we also raised a possibility
that the existing measurements of spin diffusion would be
affected by spin-thermoelectric effects, which could account
for values of the spin diffusion and the spin conductivity that
were found to be larger than theoretically expected.

Let us try to estimate the influence of thermoelectric effects
on spin conductivity using a hand-waving argument. At finite
magnetization, gradients of magnetic field are accompanied
by a gradient of energy and, assuming thermalization, a gra-
dient of temperature, ∇T ∼ ∇E/c = mz∇B/c with c as the
specific heat. Temperature gradients drive the spin current via
the spin-thermoelectric effect. Writing the spin current as js =
−Lss∇B − Lsq∇T/T , one has js = −Lss(1 − Ssmz/c)∇B. At
T ≈ 3 (relevant to experiment [2]), the values of specific
heat are of the order 0.3kB; hence the correction of the es-
timated spin conductivity due to spin thermoelectricity for
magnetization 0.05 where Ss ≈ 0.8 would be at the 15%
level. Importantly, because Ss and mz are of equal sign, this
estimate anticipates that the spin conductivity is actually re-
duced compared with the case where spin thermoelectricity is
neglected.

In order to make this discussion more precise, one must
consider a generalization of the Nernst-Einstein relation to
a matrix formulation allowing for a mixed response [33],
where the off-diagonal entries involve the mixed transport
coefficient Lsq and the thermoelectric susceptibility ξ =
−∂2 f /∂B∂T where f is the free-energy density. The dif-
fusion constant in matrix form reads D = −LA−1, where
{ jq, js} = L{∇T,∇B} defines the conductivity matrix L and
the heat-magnetization susceptibility matrix A is defined by
{T ∇s,∇mz} = A{∇T,∇B} [34]. The diffusion eigenmodes
that are involved in general nonvanishing spin and heat com-
ponents are obtained by diagonalizing the matrix D. We
denote the diffusion eigenvalue whose mode contains a pre-
dominantly spin (heat) component by D− (D+), respectively.
These are shown in Fig. 3(a) as a function of tempera-
ture for U = 10, mz = 0.05 and are compared to the bare
spin-diffusion constant Ds = σs/χs and bare heat diffusion
constant Dq = κ/c, where we use term “bare” to indicate that
the spin-thermal mixing is neglected.

One sees that, consistent with the hand-waving discussion
above, the influence of the spin-thermoelectric effects is only
moderate; the diffusion eigenvalues are close to the values
obtained when there is no mixing. The behavior of D∓ being
smaller (larger) than the corresponding bare diffusion is that
of level repulsion.

The relatively small admixing occurs because the geomet-
ric mean of the off-diagonal elements

√
DsqDqs is significantly

smaller (� 10%) than Dqq − Dss. When any of the off-
diagonal elements vanish, the spin-thermoelectric effect on
diffusion vanishes. We inspect more closely Dsq. It can
be rewritten as Dsq = −Ds(

ξ+Ssχs

c ), which expresses spin-
thermal diffusion, i.e., spin-thermoelectric mixing between the

FIG. 3. (a) Bare spin-diffusion constant Ds, bare heat diffusion
constant Dq, and the two eigenvalues of diffusion matrix D for U =
10 and magnetization mz = 0.05. (b) Spin and heat components of
eigenmodes �v± at mz = 0.05

spin and the thermal diffusion. Note that Ss is multiplied by
χs/c, which becomes large at T → 0. This hints at a rich
behavior at low temperatures and should be explored in future
work. Using the Kelvin formula SK

s = dB/dT |mz , one can fur-
ther rewrite Dsq = −Ds

χs

c (Ss − SK
s ). Interestingly, when the

spin thermoelectricity or spin Seebeck coefficient is given by
the Kelvin estimate, Dsq = 0, which leads to D− and D+ being
respectively equal to Dss and Dqq. In this case the spin mod-
ulation decays with pure spin diffusion constant Dss = σs/χs

and has an admixed thermal (heat) component. An initial spin
modulation therefore also induces heat currents. On contrary,
D+ corresponds to pure heat diffusion decaying with the bare
heat diffusion constant Dqq = κ/c.

In experiment, an initial gradient of magnetization is im-
posed. Could larger values of the experimentally inferred
spin-diffusion constant occur because there is a significant
contribution of the heat eigenmode in the initial state that
decays faster (see larger values of Dq and D+ in Fig. 3)?
The components of eigenvectors �v± are shown on Fig. 3(b).
At T = 3.1 we find the spin-dominated eigenvector �v− =
{−0.53t, 0.84}, i.e., it contains a significant component of
heat current that only increases with temperature. (In this
expression we reintroduced t to indicate that the two compo-
nents of �v are in different units; because t is a natural unit
for the energy, it is meaningful to compare the numerical
values of the two components setting t = 1.) At the same tem-
perature, the heat-dominated �v+ = {0.999t,−0.02} is mostly
single component. One can first assume that the initial state is
given by a pure magnetization gradient. Expanding this profile
in terms of �v± we find only a small part of magnetization
is contained in �v+. To be specific, at T = 3.1, �v+ contains
∼ 2% of the initial spin modulation (the relative weight of �v+
is sizable, but it carries only a small magnetization). Hence the
faster decay of the �v+ cannot importantly affect the evolution
of the magnetization. What if the heat gradient component
is also initially present? Using the estimate δq ∼ mz

χs
δmz (de-

scribing the situation where the magnetic field responsible for
δmz is switched off and excess energy is instantly converted
into heat), we find that �v+ is more prominent in the initial
state but still accounts for ∼ 4% of the initial magnetization
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modulation. In both cases, the majority of spin diffusion is
therefore governed by D− ∼ Ds.

VII. CONCLUSIONS

In summary, we calculated the spin Seebeck coefficient
in the Hubbard model and discovered a rich behavior with
temperature. The spin Seebeck coefficient significantly ex-
ceeds the entropic estimate. This occurs due to the unequal
scattering of spin minority and spin-majority carriers which
give rise to an ∝ mzU/T dependence that adds up to the
Heikes’ estimate. This is a striking demonstration of the
breakdown of the entropic interpretation of the thermopower
in a high-temperature regime where a priori one would trust
it the most. Our predictions for a large spin-thermoelectric
effect could be tested on optical lattices. We also calculated
the diffusion matrix eigenvalues and estimated the influence
of spin thermoelectricity in the existing measurements of the
spin diffusion [2]. We found this influence to be moderate and
insufficient to explain the discrepancy between the experiment
and the theory. Possible directions for future research include
simulating explicitly the time dependence in such experiments
and the study of possible nonlinear effects.
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APPENDIX: SPIN TRANSPORT FORMALISM

Here we take advantage of the known general shape of the
transport function to obtain an approximate simple expression
for the Seebeck coefficient. The temperatures we consider
in our simulations (and that pertain to the cold-atom experi-
ments, which motivate our investigation) are large. In Ref. [2]
the estimated entropy is 1.1, which pertains to T ≈ 0.3|U |
(in this Appendix we will phrase the discussion in terms of
the attractive Hubbard model), comparable to the bandwidth.
Hence the derivative of the Fermi function df /dω does not
change substantially over each of the Hubbard bands and
hence in the transport integrals, Eq. (3), one can approximate
the transport function by two δ− peaks as

�(ω)=φ−δ(ω − U/2 + δμ) + φ+δ(ω + U/2 + δμ), (A1)

with different weights φ− and φ+ for the negative and pos-
itive frequency peaks, respectively. Note that U < 0 in this
case. One can evaluate the Seebeck coefficient using this
ansatz transport function. Taking also into account that δμ/T
is small, one can expand the derivative of the Fermi func-
tion, that is, −df /dω(±U/2 − δμ) = −df /dω(U/2)(1 ±
t0δμ/T ), where we define t0 = tanh(U/4T ). Introducing ef-
fective weights (modified from φ due to df /dω) φ̃± =
φ±(1 ∓ t0δμ/T ), one obtains a simple expression for the See-
beck coefficient

Sc = − U

2T

φ̃− − φ̃+
φ̃− + φ̃+

+ δμ

T
= S1 + δμ

T
. (A2)

The high-T Seebeck coefficient for the attractive model thus
has a Heikes’ term (second term of this expression, predicted

FIG. 4. (a) Weight of the negative frequency peak of transport
function φ− for attractive Hubbard model for δ = 0.1 and two values
of U . The data are normalized such that total weight φ− + φ+ = 2.
The value corresponding to the phenomenological estimate φ− =
(1 + δ)z with z = 2 is also indicated (dashed). (b) Seebeck coeffi-
cient for U = −10 compared with estimates based on the assumption
of the transport function weights being φ± = (1 ∓ δ)z for z = 1, 2.

by Chaikin and Beni [22]) but crucially also the first term,
S1, that is proportional to U/2T and the difference between
the effective weights of the peaks of the transport function.
Whenever this difference (that, as we discuss next, is due to
a different scattering of electrons and holes) does not vanish,
the Seebeck coefficient cannot be interpreted in terms of the
entropic considerations alone. This explains large values of
spin Seebeck coefficient seen in numerical results of Fig. 1.

Is scattering really important? Would not the effective
weights differ already due to the different weights of the cor-
responding Hubbard band weights in the density of states? If
this were the case, one would have φ± ∝ (1 ∓ δ) (simply from
the considerations of occupancy). Incidentally, the influence
of δμ just cancels at small T . Namely, for small doping,
δμ/T ≈ δ. As T/|U | becomes small, t0 → −1. Hence one
has φ̃± ≈ φ±(1 ± δ) and hence φ̃+ = φ̃−. In this limit S1

would vanish. One needs the to take the scattering into ac-
count to understand the occurrence of deviation from entropic
estimates.

We plot the weight φ− obtained from the integral of the
transport function over negative frequencies normalized such
that the total integral is 2 on Fig. 4(a). One sees that in most of
the studied temperature range φ− is close to the value expected
from the dependence (1 + δ)2. Only at smaller temperatures
the weight φ− decreases and actually approaches a smaller
value (1 + δ).

In Fig. 4(b) we compare numerical results for Sc with
the result of Eq. (A2) where we set δμ/T to the high-
temperature Heikes value we approximate the transport
function weights with φ± ∝ (1 ∓ δ)z with z = 1 (blue) and
with z = 2 (green). At small temperatures these lead to a
behavior S1 = −U/2T (z − 1)δ (where corrections of order
δ2 and higher are ignored). For z = 1, which corresponds
to taking into account just the different number of carriers,
S1 vanishes and the strong increase of Sc seen in numerical
simulations is not reproduced. One needs to take into account
also different scattering of carriers (as in this approximation
embodied for z = 2).
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[23] J. Jaklič and P. Prelovšek, Finite-temperature properties of
doped antiferromagnets, Adv. Phys. 49, 1 (2000).
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