
PHYSICAL REVIEW RESEARCH 4, 023195 (2022)

Information-theoretic formulation of dynamical systems: Causality, modeling, and control

Adrián Lozano-Durán and Gonzalo Arranz
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 17 November 2021; accepted 6 May 2022; published 6 June 2022)

The problems of causality, modeling, and control for chaotic, high-dimensional dynamical systems are
formulated in the language of information theory. The central quantity of interest is the Shannon entropy, which
measures the amount of information in the states of the system. Within this framework, causality is quantified
by the information flux among the variables of interest in the dynamical system. Reduced-order modeling is
posed as a problem related to the conservation of information in which models aim at preserving the maximum
amount of relevant information from the original system. Similarly, control theory is cast in information-theoretic
terms by envisioning the tandem sensor-actuator as a device reducing the unknown information of the state
to be controlled. The new formulation is used to address three problems about the causality, modeling, and
control of turbulence, which stands as a primary example of a chaotic, high-dimensional dynamical system. The
applications include the causality of the energy transfer in the turbulent cascade, subgrid-scale modeling for
large-eddy simulation, and flow control for drag reduction in wall-bounded turbulence.
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I. INTRODUCTION

Information theory is the science about the laws governing
information or, in other words, the mathematics of message
communication. A message can be thought of as the bits (ones
and zeros) of an image transfer via the internet, but also as the
cascade of energy in a turbulent flow or the drag reduction in
an airfoil when applying a particular control strategy. Informa-
tion theory is one of the few scientific fields fortunate enough
to have an identifiable beginning: Shannon [1], who ushered
us into the “information age” with a quantitative theory of
communication. Since then, a field that started as a branch of
mathematics dealing with messages, ultimately matured into
a much broader discipline applicable to engineering, biology,
medical science, sociology, psychology...[e.g., [2]]. The suc-
cess of information theory relies on the notion of information
as a fundamental property of physical systems, closely tied
to the restrictions and possibilities of the laws of physics [3].
The fundamental nature of information provides the founda-
tions for the principles of conservation of information and
maximum entropy highly regarded within the physics com-
munity [4–6]. Interestingly, despite the accomplishments of
information theory in many scientific disciplines, applications
to some branches of physics are remarkably limited. The goal
of the present paper is to advance our physical understanding
of chaotic, high-dimensional dynamical systems by looking
at the problems of causality, reduced-order modeling, and
control through the lens of information theory.
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The grounds for causality as information are rooted in the
intimate connection between information flux and the arrow
of time: The laws of physics are time-symmetric at the micro-
scopic level, and it is only from the macroscopic viewpoint
that time-asymmetries arise in the system [7]. Such asymme-
tries determine the direction of time, that can be leveraged
to measure the causality of events using information-theoretic
metrics based on the Shannon entropy. Modeling can be posed
as a problem of conservation of information: Reduced-order
models contain a smaller number of degrees of freedom than
the original system, which in turn entails a loss of information.
Thus, the goal of a model is to guarantee as much as possible
the conservation of relevant information from the original sys-
tem. Similarly, control theory for dynamical systems can be
cast in information-theoretic terms if we envision the tandem
sensor-actuator as a device aimed at reducing the unknown
information associated with the state of the system to be con-
trolled. In all of the cases above, the underlying idea advanced
is that the evolution of the information content in a chaotic
system greatly aids the understanding and manipulation of the
quantities of interest.

In the present paper, (i) a new definition of causality is
proposed based on the information required to attain total
knowledge of a variable in the future, (ii) the conditions
for maximum information-preserving models are derived and
leveraged to prove that accurate models maximize the infor-
mation shared between the model state and the true state,
and (iii) new definitions of open/closed-loop control, observ-
ability, controllability, and optimal control are introduced in
terms of the information shared among the variable to control
and/or the sensors and actuators. The information-theoretic
formulation of causality, reduced-order modeling, and control
is introduced in Secs. IV, V, and VI, respectively. The sec-
tions are self-contained and follow a consistent notation. Each
section provides a brief introduction of the topic and closes
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with the application of the theory to tackle a problem in turbu-
lent flows. Nonetheless, the theory is broadly applicable to any
chaotic dynamical system. Given our emphasis on turbulent
flows, we provide next a summary of current approaches for
turbulence research. The reader interested in the formulation
of the theory is directly referred to Sec. II.

A. Abridged summary of modeling, control, and causality
in turbulence research

Turbulence, i.e., the multiscale motion of fluids, stands as a
primary example of a chaotic, high-dimensional phenomenon.
Broadly speaking, efforts in turbulence research can be subdi-
vided into physical insight, modeling, and control. The three
branches are intimately intertwined, yet they provide a con-
ceptual partition of the field, which is useful in terms of goals
and methods. Even a brief survey of the methods for mod-
eling, control, and causality would entail a monumental task
that will not be attempted here. Instead, common pathways
to tackle these problems are discussed along with the some
pitfalls and limitations.

In the context of modeling, the field of fluid mechanics
is in the enviable position of owning a set of equations that
describes the motion of a fluid to near-perfect accuracy: the
Navier-Stokes equations. Thus, significant ongoing efforts are
devoted to capturing the essential flow physics in the form of
reduced-order models. Prominent techniques include proper
orthogonal decomposition and Galerkin projection [8], bal-
anced truncation and dynamic mode decomposition [9], or
extensions by Koopman theory [10]. Machine learning also
provides a modular and agile framework that can be tailored
to address reduced-order modeling [11,12]. Linear theories
are still instrumental for devising reduced-order models, while
other approaches rely on phenomenological arguments. The
modeling application of this paper is centered on large-eddy
simulation (LES), in which the large eddies in the flow are
resolved and the effect of the small scales is modeled through
a subgrid-scale model (SGS). Most SGS models are derived
from a combination of theory and physical intuition. [13–15].
In addition, Galilean invariance, along with the principles
of mass, momentum, and energy conservation, are invoked
to constrain the admissible models [e.g., [16,17]]. However,
although we do possess a crude practical understanding of
turbulence, flow predictions from the state-of-the-art models
are still unable to comply with the stringent accuracy require-
ments and computational efficiency demanded by the industry
[18].

Control, the ability to alter flows to achieve the desired out-
come, is a matter of tremendous consequence in engineering.
In system control, sensors measure the state of the flow, while
actuators create the flow disturbances to prevent or trigger a
targeted condition (e.g., drag reduction, mixing enhancement,
etc.). Recent decades have seen a flourishing of activity in
various techniques for control of turbulent flows—active, pas-
sive, open-loop, closed-loop [12,19–23]. A common family
of methods originates from linear theories, which constitutes
the foundation of many control strategies [10,24–28]. How-
ever, linear methods have sparked criticism as turbulence is a
highly nonlinear phenomenon, and universal control strategies
cannot be anticipated from a single set of linearized equa-

tions. Nonlinear control strategies are less common, but they
have also been available for years [e.g., [29–31]]. They are,
nonetheless, accompanied by a considerable penalty in the
computational cost, which renders nonlinear control impracti-
cal in many real-world applications.

Causality is the mechanism by which one event contributes
to the genesis of another [32]. Whereas control and modeling
are well-established cornerstones of turbulence research, the
same cannot be said about the elusive concept of causal-
ity, which has been overlooked within the fluids community
except for a handful of studies [33–36]. In the case of tur-
bulence research, causal inference is usually simplified in
terms of the cross-time correlation between pairs of time
signals representing the events of interest (e.g., kinetic energy,
dissipation, etc.). The correlation method dates back to the
work of the mathematician A.-M. Legendre in the 1800s, and
undoubtedly constitutes an outdated legacy tool. Efforts to in-
fer causality using time-correlation include the investigations
of the turbulent kinetic energy [37,38] and the space-time
signature of spectral quantities [e.g., [39–44]], to name a few.
However, it is universally accepted that correlation does not
imply causation [45], as the former lacks the directionality and
asymmetry required to quantify causal interactions. Despite
this limitation, the correlation between time signals stands as
the state-of-the-art tool for (nonintrusive) causality quantifica-
tion in fluid mechanics.

The goal of the present paper is to further advance the
field of turbulence research by introducing a new information-
theoretic formalism for causality, modeling, and control. To
date, the use of information-theoretic tools in the fluid me-
chanics community is still in its infancy. Betchov [46] was
one of first authors to propose information-theoretic metrics
to quantify the intricacy of turbulence. Cerbus and Goldburg
[47] applied the concept of conditional Shannon entropy to
analyze the energy cascade in 2-D turbulence. The work by
Cerbus [48] also contains additional discussions on the use
of established tools in information theory for fluid dynamics.
Materassi et al. [49] used normalized transfer entropy to study
the cascading process in synthetic turbulence generated via
the shell model. In a series of papers, Granero-Belinchón
et al. [50], Granero-Belinchón et al. [51], Granero-Belinchon
[52], Granero-Belinchón et al. [53] investigated the informa-
tion content, intermittency, and stationarity characteristics of
isotropic turbulence using information-theoretic tools applied
to experimental velocity signals. Liang and Lozano-Durán
[34] and Lozano-Durán et al. [35] applied information-
theoretic definitions of causality to unveil the dynamics of
energy-containing eddies in wall-bounded turbulence. A sim-
ilar approach was followed by Wang et al. [54] to study
cause-and-effect interactions in turbulent flows over porous
media. Lozano-Durán et al. [35] also discussed the use of
information transfer among variables to inform the design of
reduced-order models. Shavit and Falkovich [55] used singu-
lar measures and information capacity to study the turbulent
cascade and explore the connection between information and
modeling. More recently, Lee [56] leveraged the principle of
maximum-entropy to analyze the turbulence energy spectra.
The aforementioned studies have offered a new perspective
of turbulence using established tools in information theory. In
the following, we further develop the theory of information
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for dynamical systems with the aim of advancing the field of
turbulence research.

II. BASICS OF INFORMATION THEORY

Let us introduce the concepts of information theory re-
quired to formulate the problems of causality, modeling, and
control. The first question that must be addressed is the mean-
ing of information, as it departs from the intuitive definition
used in our everyday life. Let us consider the discrete random
variable X taking values equal to x with probability mass
function p(x) = Pr{X = x} over the finite set of outcomes of
X . The information of observing the event X = x is defined as
[1]:

I (x) = − log2[p(x)]. (1)

The units of I (x) are set by the base chosen, in this
case “bits” for base 2. The base of the logarithm is ar-
bitrary and can be changed using the identity loga p =
loga b logb p. For example, consider tossing a fair coin with
X ∈ {heads, tails} such that p(heads) = p(tails) = 0.5. The
information of getting heads after flipping the coin once is
I (heads) = − log2(0.5) = 1 bit, i.e., observing the outcome
of flipping a fair coin provides one bit of information. If
the coin is completely biased towards heads, p(heads) = 1,
then I (heads) = − log2(1) = 0 bits (where 0 log 0 = 0), i.e.,
no information is gained as the outcome was already known
before flipping the coin. This simple but revealing example
illustrates the meaning of information in the present paper:
Information is the statistical notion of how unlikely it is
to observe an event. Low probability events provide more
information than high probability events. Thus, within the
framework of information theory, the statement “tomorrow
the sun will rise in the west” contains more information than
“tomorrow the sun will rise in the east”, simply because the
former is extremely unlikely. The information can also be
interpreted in terms of uncertainty: I (x) is the number of bits
required to unambiguously determine the state x. The latter
interpretation will be frequently evoked in this paper.

The reader might ask why not choosing information to
be directly proportional to p(x) rather than to − log2[p(x)].
However, the logarithm function is the most natural choice
for a measure of information that is additive in the number
of states of the system considered. This might be illustrated
by tossing a fair coin n times. The information gathered for a
particular sequence of events is

I (heads, heads, tails, ...) = − log2(0.5n) = n bits. (2)

In general, when two systems with N different states are com-
bined, the resulting system contains N2 states (i.e., Cartesian
product of the states of both systems), but the amount of
information is 2N [57] as illustrated in the example above.
Another viewpoint of Eq. (2) is that the probability of observ-
ing a sequence of events is a multiplicative process given by
p(x1)p(x2)...p(xN ), whereas it would be preferable to work
with an additive process. The latter is attained by taking the
logarithms of the probabilities, − log2[p(x1)] − log2[p(x2)] −
· · · − log2[p(xN )], where the minus sign is introduced for
convenience to obtain an outcome that is equal or larger than
zero.

Equations (1) and (2) provide the information gained
observing one particular event or a sequence of events, respec-
tively. Usually, we are interested in the average information in
X given by the expectation 〈·〉 over all the possible outcomes

H (X ) = 〈I (x)〉 =
∑

x

−p(x) log2[p(x)] � 0, (3)

which is referred to as the Shannon entropy and represents the
generalization to arbitrary variables of the well-known ther-
modynamic entropy [58,59]. Following the example above,
the entropy of the system “flipping a fair coin n times” is H =
−∑

0.5n log2(0.5n) = n bits, where the sum is performed
over all the possible outcomes of flipping a coin n times
(namely, 2n). As expected, flipping n times a biased coin with
p(heads) = 1 provides no information (H = 0). Shannon [1]
showed that Eq. (3) corresponds to the minimum average
number of bits needed to encode a source of n states with
probability distribution p. As a measure of uncertainty, H is
maximum when all the possible outcomes are equiprobable
(large uncertainty in the state of the system) and zero when
the process is completely deterministic (no uncertainty in the
outcome).

The Shannon entropy can be generalized to m random
variables X = [X1, X2, . . . , Xm] as

H (X ) = 〈I (x)〉 =
∑

x1,...,xm

−p(x1, x2, . . . , xm)

× log2[p(x1, x2, . . . , xm)] (4)

where p(x1, x2, . . . , xm) is the joint probability mass func-
tion Pr{X1 = x1, X2 = x2, . . . , Xm = xm}. Similarly, given the
random variables X and Y and the conditional distribution
p(x|y) = p(x, y)/p(y) with p(y) = ∑

x p(x, y) as the marginal
probability distribution of Y , the entropy of X conditioned on
Y is defined as [60]

H (X |Y ) =
∑
x,y

−p(x, y) log2[p(x|y)]. (5)

It is useful to interpret H (X |Y ) as the uncertainty in the state
X after conducting the “measurement” of the state Y . This
interpretation is alluded to in the following sections. If X and
Y are independent random variables, then H (X |Y ) = H (X ),
i.e., knowing the state Y does not reduce the uncertainty in X .
Conversely, H (X |Y ) = 0 if knowing Y implies that X is com-
pleted determined. Finally, the mutual information between
the random variables X and Y is

I (X ;Y ) = H (X ) − H (X |Y ) = H (Y ) − H (Y |X ), (6)

which is a symmetric metric I (X ;Y ) = I (Y ; X ) representing
the information shared among the state variables X and Y .
The mutual information between variables will be also central
to the formalism presented below. Figure 1 depicts the rela-
tionship between the entropy, conditional entropy, and mutual
information.

The concepts above provide the foundations to the
information-theoretic formulation of causality, modeling, and
control detailed in the following sections. First, we introduce
the formalism of information in dynamical systems. Several
studies have already discussed this topic, mostly in the context
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FIG. 1. Venn diagrams of (a) the conditional entropy and mutual
information between two random variables X and Y , and (b) total
entropy in two random variables.

of predictability and chaos [e.g., [61–65]]. The exposition
here is extended and tailored to our particular interests.

III. INFORMATION IN DYNAMICAL SYSTEMS

Let us consider the continuous deterministic dynamical
system with state variable q = q(x, t ), where x is the vector
of spatial coordinates, and t is time. The dynamics of q are
governed by the partial differential equation

∂q
∂t

= F(q), (7)

that might represent, for example, the equations of conser-
vation of mass, momentum, and energy. Equation (7) can be
integrated in time from tn to tn+1 to yield

q(x, tn+1) = q(x, tn) +
∫ tn+1

tn

F(q)dt, (8)

where tn+1 − tn is an arbitrary time span. We consider a spa-
tially coarse-grained version of q at time tn denoted by qn =
[qn

1, . . . , qn
N ], where N is the number of degrees of freedom of

the system. We assume that the dimensionality of qn is large
enough to capture all the relevant dynamics of Eq. (8). In the
context of fluid dynamics qn might represent, for example, the
three velocities components and pressure at discrete spatial lo-
cations, the Fourier coefficients of the velocity, the coefficients
from the Karhunen-Loève decomposition of the flow [8], or in
general, any spatially-finite representation of the continuous
system.

We treat qn as a random variable, indicated by Qn =
[Qn

1, . . . , Qn
N ], and consider a finite partition of the phase

space D = {D1, D2, . . . , DNq}, where Nq is the number of par-

titions, such that D = ∪Nq

i=1Di and Di ∩ Dj = ∅ for all i �= j.
The system is said to be in the state Di if qn ∈ Di. The
probability of finding the system at state Di at time tn is pq

i =
Pr{Qn ∈ Di}. For simplicity, we refer to the latter probability
simply as p(qn). The dynamics of Qn, are determined by

Qn+1 = f (Qn), (9)

where the map f is derived from Eq. (8). Note that the system
considered in Eq. (9) is closed in the sense that no external
stochastic forcing is applied.

The information contained in the system at time tn is given
by the entropy of Qn, namely, H (Qn). As the system evolves in
time according to Eq. (9), its information content is bounded
by

H (Qn+1) = H ( f (Qn)) � H (Qn), (10)

which is the result of the entropy of transformed random
variables [2]. A consequence of Eq. (10) is that the dynamical
system in Eq. (9) either conserves or destroys information, but
never creates information. Another interpretation of Eq. (10)
is that, for deterministic systems, the information of fu-
ture states is completely determined by the initial condition,
whereas the converse is not always true. For example, dis-
sipative systems cannot be integrated backwards in time to
univocally recover its initial state.

The entropy of the system at tn can be related to the
entropy at tn+1 through the Perron-Frobenious operator P [·]
[66], which advances the probability distribution of the system

p(qn+1) = P [p(qn)]. (11)

By construction of the system in Eq. (9), we can derive the
zero conditional-entropy condition

H (Qn+1|Qn)

=
∑

−p(qn+1, qn) log2[p(qn+1|qn)]

=
∑

−P [p(qn|qn)]p(qn) log2{P [p(qn|qn)]} = 0, (12)

which shows that there is no uncertainty in the future state
Qn+1 given the past state Qn. Equation (12) merely echoes the
deterministic nature of the governing equations, and will be
instrumental in the formulation of the principles for causality,
modeling, and control. Additionally, if the map f is reversible,
namely, Qn = f −1(Qn+1), then we obtain the conservation of
information for dynamical systems

H (Qn+1) = H (Qn), (13)

which can be regarded as a fundamental principle underlying
the rest of conservation laws.

The condition in Eq. (12) may be generalized by adding
the noise W n, which accounts for uncertainties in the system
state Qn, numerical errors, unknown physics in the map f ,
etc. The new governing equation is then Qn+1 = f (Qn,W n),
which implies that H (Qn+1|Qn) � 0 (information can be cre-
ated) unless the effect of noise is taken into consideration, i.e.
H (Qn+1|Qn,W n) = 0. A consequence of the latter is that for
long integration times in chaotic systems, a small amount of
noise will also result in H (Qn+1|Qn) � 0. Hereafter, we center
our attention on fully deterministic systems and assume that
the impact of the noise on Qn+1 is negligible (W n = 0) for the
problems of causality and modeling. The effect of the noise
will be introduced in the formulation of control.

IV. INFORMATION FLUX AS CAUSALITY

One of the most intuitive definitions of causality relies
on the concept of interventions: Manipulation of the causing
variable leads to changes in the effect [32,67]. Interventions
provide a pathway to evaluate the causal effect that a process
A exerts on another process B by setting A to a modified
value Ã and observing the postintervention consequences on
B. Despite the intuitiveness of interventions as a measure of
causality, the approach is not free of shortcomings. Causality
with interventions is intrusive (i.e., it requires modification
of the system) and costly (the simulations need to be re-
computed if numerical experiments are used). When the data
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are collected from physical experiments, the causality with
interventions might be even more challenging or directly im-
possible to practice (for instance, we cannot use interventions
to assess the causality of the prices in the stock market in
2008). Causality with interventions also poses the question
of what type of intervention must be introduced in A and
whether that would affect the outcome of the exercise as a
consequence of forcing the system out of its natural attractor.
The framework of information theory provides an alterna-
tive, nonintrusive definition of causality as the information
transferred from the variable A to the variable B. The idea
can be traced back to the work of Wiener [68] and was first
quantified by Granger [69] using signal forecasting via linear
autoregressive models. In the context of information theory,
the definition was formalized by Massey [70] and Kramer [71]
through the use of conditional entropies with the so-called
directed information. Schreiber [72] introduced an heuristic
definition of causality inspired by the direction of information
in Markov chains. Liang and Kleeman [64] and later Sinha
and Vaidya [73] proposed to infer causality by measuring
the information changes in the disturbed dynamical system.
The new formulation of causality proposed here is motivated
by the information required to attain total knowledge of a
future state. Similar to previous studies, the definition relies
on conditional entropies. However, our information-theoretic
quantification of causality is directly grounded on the zero
conditional-entropy condition for deterministic systems [i.e.,
Eq. (12)] and generalizes previous definitions of causality to
multivariate systems. We also introduce the concept of infor-
mation leak as the amount of information unaccounted for by
the observable variables.

A. Formulation

1. Information flux

The goal of this section is to leverage the information flux
from present states of the system to future states as a proxy
for causal inference. Without loss of generality, let us derive
the information transferred from Qn to Qn+1

j . The dynamics of

Qn+1
j is governed by the jth component of Eq. (9),

Qn+1
j = f j (Qn). (14)

From Eq. (14) and the propagation of information in deter-
ministic systems [Eq. (12)], it follows that

H
(
Qn+1

j

∣∣Qn
) = 0, (15)

which shows that all the information contained in Qn+1
j orig-

inates from Qn. Let us define the subset of variables Qn
ı̄ =

[Qn
ı̄1
, . . . , Qn

ı̄M
], where ı̄ = [ı̄1, . . . , ı̄M] is a vector of indices

with M � N , and the vector of remaining variables Qn

�̄ı
, such

that Qn = [Qn

�̄ı
, Qn

ı̄ ]. If only the information from Qn

�̄ı
is ac-

cessible, then the uncertainty in the future state Qn+1
j can be

nonzero,

H
(
Qn+1

j

∣∣Qn

�̄ı
)

� 0. (16)

Equation (16) quantifies the average number of bits required
to completely determine the state of Qn+1

j when Qn
ı̄ is un-

known, or in other words, the information in Qn
ı̄ contributing

to the dynamics of Qn+1
j . The interpretation of Eq. (16) as

the information flux from Qn
ı̄ to Qn+1

j motivates our definition
of causality. The information-theoretic causality from Qn

ı̄ to
Qn+1

j , denoted by Tı̄→ j , is defined as the information flux from

Qn
ı̄ to Qn+1

j ,

Tı̄→ j =
M−1∑
k=0

∑
ı̄(k)∈Ck

(−1)kH
(
Qn+1

j

∣∣Qn

�̄ı(k)

)
, (17)

where ı̄(k) is equal to ı̄ removing k components and Ck is the
group of all the combinations of ı̄(k). Equation (17) represents
how much the past information in Qn

ı̄ improves our knowledge
of the future state Qn+1

j , which is consistent with the intuition
of causality [68]. Note that the information flux from Tı̄→ j

does not overlap with the information flux from Tı̄ ′→ j for ı̄ dif-
ferent from ı̄ ′ even if ı̄ ∩ ı̄ ′ �= ∅. For example, the information
flux from T[1,2]→ j does not overlap with T1→ j . This implies
that Tı̄→ j only accounts for the information flux exclusively
due to the joint effect of all the variables in Qn

ı̄ . Figure 2(a) il-
lustrates the Venn diagram of entropies and information fluxes
for a system with three variables. The information flux can be
cast in compact form using the generalized conditional mutual
information,

Tı̄→ j = I
(
Qn+1

j ; Qn
i1 ; Qn

i2 ; ...; Qn
iM

∣∣Qn

�̄ı
)
, (18)

where I (·; ·; ·; ...|·) is the conditional co-information [74,75]
recursively defined by

I
(
Qn+1

j ; Qn
i1 ; ...; Qn

iM−1
; Qn

iM |Qn

�̄ı
)

(19a)

= I
(
Qn+1

j ; Qn
i1 ; ...; Qn

iM−1

∣∣Qn

�̄ı
)−I

(
Qn+1

j ; Qn
i1 ; ...; Qn

iM−1

∣∣[Qn
iM , Qn

�̄ı
])

.

(19b)

The recursion in Eq. (19) is repeated until obtaining
the pairwise definition of conditional mutual information
I (X ;Y |Z ) = H (X |Z ) − H (X |[Y, Z]).

By construction of Eq. (17), it is satisfied that the amount
of information in the state Qn+1

j is equal to the sum of all the

information fluxes from Qn
ı̄ and Qn

�̄ı
to Qn+1

j ,

H
(
Qn+1

j

) =
∑
ı̄ ′∈C

Tı̄ ′→ j, (20)

where C is the group of all combinations of vectors ı̄ ′ of
length 1 to N with components taken from ı̄ ∪ �̄ı. Another
important property of the information flux is that Tı̄→ j = 0 if
the dynamics of Qn+1

j does not depend explicitly on the states
Qn

ı̄ , namely,

Qn+1
j = f j

(
Qn

�̄ı
) ⇒ Tı̄→ j = 0. (21)

The zero-information-flux condition above is again consistent
with the intuition that no direct causality should emerge from
Qn

ı̄ to Qn+1
j unless the latter depends on the former. Addition-

ally, the information flux is based on probability distributions
and, as such, is invariant under shifting, rescaling and, in
general, nonlinear C1-diffeomorphism transformations of the
signals [76]. One more attractive feature of the information
flux is that Tı̄→ j accounts for direct causality excluding in-
termediate variables. For example, if the causality flow is
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FIG. 2. (a) Schematic of the entropies at time tn for a system with three variables [Qn
1, Qn

2, Qn
3] and their relation to the entropy of the future

variable Qn+1
2 . Note that the entropy of Qn+1

2 must be contained within the entropy of H (Qn
1, Qn

2, Qn
3 ) for consistency with Eq. (15). (b) Similar

to (a), but for a system of observables states [Eq. (22)]. In this case, the entropy of Y n+1
2 in not contained within H (Y n

1 ,Y n
2 ,Y n

3 ), leading to
T Y

leak, j = H (Y n+1
2 |Y n

1 ,Y n
2 ,Y n

3 ) > 0.

Qi → Qj → Qk , then there is no causality from Qi to Qk (i.e.,
Ti→k = 0) provided that the three components Qi, Qj , and Qk
are contained in Q.

The definition from Eq. (17) is trivially generalized to
quantify the information flux from Qn

ı̄ to a set of variables
with indices j̄ = [j̄1, j̄2, ...] by replacing Qn+1

j by Qn+1
j̄ . It can

be shown that given two arbitrary sets of variables with index
vectors ı̄ and j̄ , in general, it is satisfied that Tı̄→j̄ �= Tj̄→ı̄ ,
and thus the information flux is asymmetric.

2. Information flux of observable states

In many occasions, we are interested in, or only have access
to, an observable state

Y n = h(Qn), (22)

where Y n = [Y n
1 , . . . ,Y n

NY
] with NY � N . Equation (22) gen-

erally entails a loss of information

H (Y n) = H (h(Qn)) � H (Qn), (23)

such that complete knowledge of Y n does not necessarily
imply that the future state Y n+1 is known. This is revealed by
the inequality H (Y n+1|Y n) � H (Y n+1|Qn) = 0, that particu-
larized for the j component of Y n results in

H
(
Y n+1

j

∣∣Y n
)

� 0. (24)

In light of Eq. (24), the definition of information flux from
Eq. (17) should be modified to account for the lack of knowl-
edge from unobserved states. The information flux from an
observable state Y n

ı̄ to a future observable state Y n+1
j is defined

as

T Y
ı̄→ j =

[
M−1∑
k=0

∑
ı̄(k)∈Pk

(−1)kH
(
Y n+1

j

∣∣Y n

�̄ı(k)

)]
+ (−1)MH

(
Y n+1

j

∣∣Y n
)
, (25)

where ı̄ is again a vector of indices, ı̄ = [ı̄1, . . . , ı̄M], now with
M � NY , and Pk is analogous to Ck . The term H (Y n+1

j |Y n)
in Eq. (25) quantifies the information loss from unobserved

states and is naturally absorbed into the summation as

T Y
ı̄→ j =

M∑
k=0

∑
ı̄(k)∈Pk

(−1)kH
(
Y n+1

j

∣∣Y n

�̄ı(k)

)
. (26)

The definition above can be written in compact form using
again the conditional coinformation as

T Y
ı̄→ j = I

(
Y n+1

j ;Y n
i1 ;Y n

i2 ; ...;Y n
iM

∣∣Y n

�̄ı
)
. (27)

When Y n = Qn, then H (Y n+1
j |Y n) = 0 and Eq. (17) is re-

covered. Moreover, for ı̄ = [i], the information flux for
observable states is

T Y
i→ j = H

(
Y n+1

j

∣∣Y n

�i
) − H

(
Y n+1

j

∣∣Y n
)
, (28)

that is the multivariate generalization of the transfer en-
tropy proposed by Schreiber [72]. Another difference from
Schreiber [72] is that the new definition of causality accounts
for the information flux due to the joint effect of variables
when ı̄ has more than one component. We will show in the
example below that the joint information flux might be of the
same order as the information flux from individual variables.

We have shown in Eq. (20) that the total information in a
future state is determined by the sum of all information fluxes.
However, limiting the knowledge of the system to a reduced
set of observable variables Y n entails a leak of information
towards future state Y n+1

j such that now

H
(
Y n+1

j

) =
∑
ı̄∈P

T Y
ı̄→ j + T Y

leak, j, (29)

where P is analogous to C in Eq. (20), and T Y
leak, j is the

information leak or amount of information in Y n+1
j that cannot

be explained by Y n, and it is given by

T Y
leak, j = H

(
Y n+1

j

∣∣Y n
)
. (30)
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The information flux in Eq. (17) and Eq. (26) has units of
bits. It is then natural to introduce the normalized information
flux as

TNY
ı̄→ j = T Y

ı̄→ j

H
(
Y j

n+1

) , (31a)

TNY
leak, j = T Y

leak, j

H
(
Y j

n+1

) , (31b)

which satisfies ∑
ı̄∈P

TNY
ı̄→ j + TNY

leak, j = 1. (32)

A similar normalization was proposed by Materassi et al. [49]
in the context of delayed mutual information. Other normal-
izations are discussed in Duan et al. [77].

As an example, we elaborate on the information flux for-
mulas for Y n+1

2 in a system with three observable variables
(NY = 3), as depicted in Fig. 2(b). For ı̄ = [1] and j = 2, we
get

T Y
1→2 = H

(
Y n+1

2

∣∣Y n
2 ,Y n

3

) − H
(
Y n+1

2

∣∣Y n
1 ,Y n

2 ,Y n
3

)
, (33)

for ı̄ = [1, 3] and j = 2,

T Y
[1,3]→2 = H

(
Y n+1

2

∣∣Y n
2

) − H
(
Y n+1

2

∣∣Y n
1 ,Y n

2

)
− H

(
Y n+1

2

∣∣Y n
2 ,Y n

3

) + H
(
Y n+1

2

∣∣Y n
1 ,Y n

2 ,Y n
3

)
, (34)

and for ı̄ = [1, 2, 3] and j = 2, we have

T Y
[1,2,3]→2 = H

(
Y n+1

2

)
−H

(
Y n+1

2

∣∣Y n
1

) − H
(
Y n+1

2

∣∣Y n
2

) − H
(
Y n+1

2

∣∣Y n
3

)
+H

(
Y n+1

2

∣∣Y n
1 ,Y n

2

) + H
(
Y n+1

2

∣∣Y n
1 ,Y n

3

)
+H

(
Y n+1

2

∣∣Y n
2 ,Y n

3

) − H
(
Y n+1

2

∣∣Y n
1 ,Y n

2 ,Y n
3

)
. (35)

In the three examples above, T Y
1→2, T Y

[1,3]→2 and T Y
[1,2,3]→2 con-

tain nonoverlapping information similar to the sketch shown
in Fig. 2(a). The total information in Y n+1

2 is given by

H
(
Y n+1

2

) = T Y
1→2 + T Y

2→2 + T Y
3→2 + T Y

[1,2]→2

+ T Y
[1,3]→2 + T Y

[2,3]→2 + T Y
[1,2,3]→2 + T Y

leak, j,

(36)

where T Y
leak, j = H (Y n+1

2 |Y n
1 ,Y n

2 ,Y n
3 ).

We close this section by noting that T Y
ı̄→ j (similarly for

Tı̄→ j) is not constrained to be larger or equal to zero when
the number of variables considered is odd. This might not
be obvious from Fig. 2(b), as conditional entropies do not
obey the conservation of areas depicted by the Venn diagram
shown in the plot. However, the possibility of negative values
of the coinformation is a known property often discussed in
the literature [see, for instance, [75]]. In general, negative
information flux will occur when there is backpropagation of
information from the future to the past, i.e, the knowledge of
an event in the future would provide information about an
event in the past, but not the other way around. The reader
is referred to James et al. [78] for a deeper discussion on the
topic.

3. Optimal observable states and phase-space partition
for information flux

The analysis of information fluxes is considerably sim-
plified when the mutual information between pairs of
components in Y n is zero,

I
(
Y n

i ;Y n
j

) = 0, i �= j. (37)

In that case, we can focus on the information flux from one
single variable to the future state as shown in Eq. (28). Given
an observable state Y n, we define the optimal observable rep-
resentation for information flux as Y n∗ = w∗(Y n), where w∗
is the reversible transformation satisfying

w∗ = arg min
w(Y n )

( ∑
i, j, i �= j

I
(
Y n

i ;Y n
j

))
, subject to

H (Y n∗) = H (Y n). (38)

The new observable state Y n∗ has the advantage of minimizing
the causal links due to the joint effect of two or more variables
acting together, which might ease the identification of key
physical processes and facilitate the reduced-order modeling
of the system. A similar argument can be applied to the phase-
space partition D = {D1, D2, . . . , DNq} to define the optimal
D∗ for causal inference as

D∗ = arg min
D

( ∑
i, j, i �= j

I
(
Qn

i ; Qn
j

))
subject to

Di ∩ Dj = ∅ ∀i �= j. (39)

B. Application: Causality of the energy cascade
in isotropic turbulence

The cascade of energy in turbulent flows, i.e., the transfer
of kinetic energy from large to small flow scales or vice versa
(backward cascade), is the cornerstone of most theories and
models of turbulence since the 1940s [79–85]. Yet, under-
standing the dynamics of the kinetic energy transfer across
scales remains an outstanding challenge in fluid mechanics.
Given the ubiquity of turbulence, a deeper understanding of
the energy transfer among the flow scales would enable signif-
icant progress across various fields ranging from combustion
[86], meteorology [87], and astrophysics [88] to engineer-
ing applications of aero/hydro-dynamics [89–93]. In spite
of the substantial advances in the last decades, the causal
interactions of energy among scales in the turbulent cascade
remain uncharted. Here, we use the formalism introduced in
Sec. IV A to investigate the information flux of the turbulent
kinetic energy across different scales. Our goal is to assess
the local-in-scale cascade in which the kinetic energy is trans-
ferred sequentially from one scale to the next smaller scale as
sketched in Fig. 3.

The case selected to study the energy cascade is isotropic
turbulence in a triply periodic box with side L. The data
were obtained from the DNS of Cardesa et al. [38], which
is publicly available in Torroja [94]. The conservation of
mass and momentum equations of an incompressible fluid are
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FIG. 3. Schematic of the Richardson’s turbulent energy cascade
[79] in which energy is transferred sequentially between eddies of de-
creasing size. The kinetic energy flows from the largest flow motions,
characterized by the integral length-scale Lε , to the Kolmogorov
length-scale η, where it is finally dissipated.

given by

∂ui

∂t
+ ∂uiu j

∂x j
= − 1

ρ

∂�

∂xi
+ ν

∂2ui

∂x j∂x j
+ fi,

∂ui

∂xi
= 0, (40)

where repeated indices imply summation, x = [x1, x2, x3] are
the spatial coordinates, ui for i = 1, 2, 3 are the velocities
components, � is the pressure, ρ is the flow density, ν is
the kinematic viscosity, and fi is a linear forcing sustaining
the turbulent flow [95]. The flow setup is characterized by
one nondimensional parameter, the Reynolds number, which
quantifies the separation of length-scales in the flow. The
Reynolds number based on the Taylor microscale [96] is
Reλ ≈ 380. The simulation was conducted by solving Eq. (40)
with 10243 spatial Fourier modes, which is enough to accu-
rately resolve all the relevant length-scales of the flow. The
system is multiscale and highly chaotic, with roughly 109

degrees of freedom.
In the following, we summarize the main parameters of

the simulation. The reader is referred to Cardesa et al. [38]
for more details about the flow set-up. The spatial- and
time- average of the turbulent kinetic energy (K = uiui/2)
and dissipation (ε = 2νSi jSi j) are denoted by Kavg and εavg,
respectively, where Si j = (∂ui/∂x j + ∂u j/∂xi )/2 is the rate-
of-strain tensor. The ratio between the largest and smallest
length-scales of the problem can be quantified by Lε/η =
1800, where Lε = K3/2

avg /εavg is the integral length-scale, and
η = (ν3/εavg)1/4 is the Kolmogorov length-scale. The data
generated is also time-resolved, with flow fields stored every
	t = 0.0076Tε, where Tε = Kavg/εavg, and was purposely run
for long times to enable the reliable computation of condi-
tional entropies. The total time simulated after transients was
equal to 165Tε.

The next step is to quantify the kinetic energy carried
by the energy-containing eddies at various length-scales as a
function of time. To that end, the ith component of the instan-
taneous flow velocity ui(x, t ) is decomposed into large and
small components according to ui(x, t ) = ūi(x, t ) + u′

i(x, t ),

FIG. 4. Isosurfaces of the instantaneous kinetic energy transfer

i for filter sizes (a) 	̄ = 	̄1 = 163η (denoted by 
1) and (b) 	̄ =
	̄4 = 21η (denoted by 
4) at the same time.

where ¯(·) denotes the low-pass Gaussian filter operator,

ūi(x, t ) =
∫

V

√
π

	̄
exp[−π2(x − x′)2/	̄2]ui(x′)dx′, (41)

and 	̄ is the filter width. The kinetic energy of the large-scale
field evolves as(

∂

∂t
+ ū j

∂

∂x j

)
1

2
ūiūi

= − ∂

∂x j

(
ū j�̄ + ūiτ

SGS
i j − 2νūiS̄i j

)
+
 − 2νS̄i j S̄i j + ūi f̄i, (42)

where τ SGS
i j = (uiu j − ūiū j ) is the subgrid-scale stress tensor,

which represents the effect of the (filtered) small-scale eddies
on the (resolved) large-scale eddies. The interscale energy
transfer between the filtered and unfiltered scales is given by

 = τ SGS

i j S̄i j , which is the present quantity of interest.
The velocity field is low-pass filtered at four filter widths:

	̄1 = 163η, 	̄2 = 81η, 	̄3 = 42η, and 	̄4 = 21η. The filter
widths selected lay in the inertial range of the simulation
within the integral and Kolmogorov length-scales: Lε > 	̄i >

η, for i = 1, 2, 3, and 4. The resulting velocity fields are
used to compute the interscale energy transfer at scale 	̄i,
which is denoted by 
i(x, t ). Examples of three-dimensional
isosurfaces of 
1 and 
4 are featured in Fig. 4 to provide a
visual reference of the spatial organization of the interscale
energy transfer. We use the volume-averaged value of 
i over
the whole domain, denoted by 〈
i〉, as a marker for the time-
evolution of the interscale energy transfer. Note that 〈
i〉 is
only a function of time. Figure 5 contains a fragment of the
time-history of 〈
i〉 for i = 1, 2, 3, and 4.

We can now relate the current formulation with the no-
tation introduced in Sec. IV A. The full system state Qn is
given by the velocity components ui and pressure � for the
10243 Fourier modes. The map Qn+1 = f (Qn) is obtained
from the spatiotemporal discretization of the Navier–Stokes
equations in Eq. (40). The observable states Y n are repre-
sented by the interscale turbulent kinetic energy transfer Y n =
[〈
1〉, 〈
2〉, 〈
3〉, 〈
4〉], and the mapping for the observable
states Y n = h(Qn) is derived from the definition of 
i in
conjunction with the discrete version of Eq. (40).
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FIG. 5. An extract of the time-history of 〈
1〉, 〈
2〉, 〈
3〉, and
〈
4〉 (from black to red). Although not shown, the whole time span
of the signals is 165Tε .

We examine the propagation of information among 〈
i〉 by
evaluating the information flux defined in Eq. (26). We focus
first on the information flux from one single energy transfer
〈
i〉 at time t to the energy transfer 〈
 j〉 at time t + 	t ,
termed as T 


i→ j . The time-delay selected is 	t = 0.046Tε,
which is consistent with the time-lag for energy transfer re-
ported in the literature [38]. It was tested that the conclusions
drawn below are not affected when the value of 	t was halved
and doubled. It was also assessed that

∑
T 


ı̄→ j + T 

leak, j is

equal to H (〈
 j〉) to within machine precision. The informa-
tion fluxes T 


i→ j are normalized by H (〈
 j〉) and organized into
the causality map shown in Fig. 6(a). Our principal interest is
in the interscale propagation of information (T 


i→ j with i �= j).
Consequently, the self-induced intrascale information fluxes
(T 


i→i) in Fig. 6(a) are masked in light red, as they tend to
dominate (i.e., variables are mostly causal to themselves). The
information fluxes in Fig. 6(a) vividly capture the forward
energy cascade of information toward smaller scales, which
is inferred from strongest information fluxes:

T 

1→2 → T 


2→3 → T 

3→4. (43)

Backward transfer of information from smaller to larger scales
is also possible, but considerably feeble compared to the for-
ward information flux. Hence, the present analysis provides
the first evidence of the forward, sequential-in-scale turbulent
energy cascade from the information-theoretic viewpoint for
the full Navier–Stokes equations. Our results are consistent
with previous studies on the forward the energy cascade using
correlation-based methods [38,85] and information-theoretic

tools applied to the Gledzer-Ohkitana-Yamada shell model
[49].

It is also revealing to compare the results in Fig. 6(a) with
an equivalent time-cross correlation, as the latter is routinely
employed for causal inference by the fluid mechanics commu-
nity. The time-cross-correlation “causality” from 〈
i〉 to 〈
 j〉
is defined as

Ci→ j =
∑Nt

n=1〈
i〉(tn)〈
 j〉(tn + 	t )(∑Nt
n=1〈
i〉2(tn)

)1/2(∑Nt
n=1〈
 j〉2(tn)

)1/2 , (44)

where 〈
i〉(tn) signifies 〈
i〉 at time tn, and Nt is the total num-
ber of times stored of the simulation. The values of Eq. (44)
are bounded between 0 and 1. The correlation map Ci→ j is
shown in Fig. 6(b). The process portrayed by Ci→ j is far more
intertwined than its information-flux counterpart offered in
Fig. 6(a). Similarly to T 


i→ j , the correlation map also reveals
the prevailing nature of the forward energy cascade (Ci→ j

larger for j > i). However, Ci→ j is always above 0.8, implying
that all the interscale energy transfers are tightly coupled. This
is inconsistent with the information flux in Fig. 6(a) and is
probably due to the inability of Ci→ j to compensate for the
effect of intermediate variables (e.g., a cascading process of
the form 
1 → 
2 → 
3 would result in nonzero correlation
between 
1 and 
3 via the intermediate variable 
2). As
a consequence, Ci→ j also fails at shedding light on whether
the energy is cascading sequentially from the large scales to
the small scales (i.e., 〈
1〉 → 〈
2〉 → 〈
3〉 → 
4), or on the
other hand, the energy is transferred between noncontiguous
scales (e.g., 〈
1〉 → 〈
3〉 without passing through 〈
2〉). We
have seen that the information flux in Fig. 6(a) supports the
former: The energy is predominantly transfer sequentially
according to relation in Eq. (43). Overall, the inference of
causality based on the time-cross correlation is obscured by
the often mild asymmetries in Ci→ j and the failure of Ci→ j

to account for the effects of a third variable. In contrast, the
causal map in Fig. 6(a) conveys a more intelligible picture of
the influence among energy transfers at different scales.

For completeness, Fig. 7 includes the information flux due
to the joint effect of two and three variables, where the values
of T 


[i, j]→ j and T 

[i, j,k]→ j have also been masked for clarity. The

(a) (b)

FIG. 6. (a) Information flux T 

i→ j among interscale energy-transfer signals at different scales. (b) Correlation map Ci→ j between interscale

energy-transfer signals as defined by Eq. (44). The self-induced intrascale information fluxes T 

i→i in are masked in light red.
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FIG. 7. Information flux among energy-transfer signals at different scales for (a) T 

[i,k]→ j and (b) T 


[i,k,l]→ j . The intrascale information fluxes
T 


[i,k]→i and T 

[i,k,l]→i are masked with light-red color.

largest information fluxes are

T 

[1,2]→3, T 


[2,3]→4, and T 

[1,2,3]→4, (45)

which are found to be of the same order of magnitude as T 

i→ j .

The result is again consistent with the prevailing downscale
propagation of information of the energy cascade.

Finally, we calculate the information leak (T 

leak, j) from

Eq. (30) to quantify the amount of information unaccounted
for by the observable variables. The ratios T 


leak, j/H (〈
 j〉) are
found to be 0.35, 0.24, 0.18, and 0.13 for j = 1, 2, 3, and
4, respectively. Therefore, the information from unobserved
states diminishes towards the smallest scales. The largest leak
occurs for 〈
1〉, where ∼35% of the information comes from
variables not considered within the set [〈
1〉, 〈
2〉, 〈
3〉,
〈
4〉].

V. MODELING

A crucial step in reduced-order modeling of physical sys-
tem consists of the identification of transformations enabling
parsimonious, yet informative representations of the full sys-
tem. While in some cases transformations can be carried
out on the basis of intuition and experience, straightforward
discrimination of the most relevant degrees of freedom is
challenging for complex problems, most notably for chaotic,
high-dimensional physical systems. In this context, informa-
tion theory has emerged as a valuable framework for model
selection and multimodel inference. Particularly noteworthy
is the work by Akaike [97–99], where models are selected
on the basis of the relative amount of information from
observations they are capable of accounting for. The ap-
proach, which shares similarities with Bayesian inference,
offers an elegant generalization of the maximum likelihood
criterion via entropy maximization [99]. Akaike’s ideas have
also bridged the use of the Kullback’s information for pa-
rameter estimation and model identification techniques [100].
Other relevant studies have leveraged information-theoretic
tools for coarse-graining of dynamical systems assisted by
Monte Carlo methods, renormalization group, or mapping-
entropy techniques [e.g., [101–103]]. A detailed survey of
information-theoretic model selection and inference can be

found in Burnham and Anderson [104] and Anderson [105].
In the last decade, information theory has also become in-
strumental in machine learning, mostly within the subfield
of deep reinforcement learning [106]. Examples of the latter
are neural network training via the cross-entropy cost func-
tional and estimation of confidence bounds for value functions
and agent policies [e.g., [107–112]]. In this section, we for-
mulate the problem of reduced-order modeling for chaotic,
high-dimensional dynamical systems within the framework of
information theory. We derive the equation that relates model
accuracy with the amount of information preserved from the
original system. The conditions for maximum information-
preserving models are also formulated in terms of the mutual
information and Kullback-Leibler divergence of the quantities
of interest. The theory is applied to devise a subgrid-scale
model for large-eddy simulation of isotropic turbulence.

A. Formulation

Let us denote the state of the system to be modeled at
time tn by Qn = [Qn

1, . . . , Qn
N ], where N is the total number

of degrees of freedom. The dynamics of the full system are
completely determined by

Qn+1 = f (Qn), (46)

where the map f advances the state of the system to an
arbitrary time in the future. It was shown in Sec. III that by
construction of Eq. (46), it holds that

H (Qn+1|Qn) = 0, (47)

i.e., there is no uncertainty in the future state Qn+1 given the
past state Qn.

We aim at modeling a subset of the phase-space of the full
system denoted by Q̃

n = [Qn
1, . . . , Qn

Ñ
] with Ñ < N , where Ñ

are the degrees of freedom of the model. Accordingly, the state
vector of the full system is decomposed as

Qn = [Q̃
n
, Q′n], (48)

where Q̃
n

is the state to be modeled (e.g., the information ac-
cessible to the model) and Q′n are the inaccessible degrees of
freedom that the model must account for. The exact dynamics
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FIG. 8. Schematic of the relationship among the entropies of the

modeled (accessible) state Q̃
n
, the future modeled state Q̃

n+1
, and the

inaccessible degrees of freedom Q′n.

of the modeled state is governed by

Q̃
n+1 = f̃ (Q̃

n
, Q′n), (49)

where f̃ are the components of f corresponding to the states
Q̃

n
. It can be readily shown from Eq. (49) that disposing of

Q′n may result in an increase of uncertainty in the future states
quantified by

H (Q̃
n+1|Q̃n

) = I (Q̃
n+1

; Q′n|Q̃n
) � H (Q̃

n+1|Q̃n
, Q′n) = 0.

(50)
Equation (50) represents the fundamental loss of information
for truncated systems: given the initial truncated state Q̃

n
, the

uncertainty in the future state Q̃
n+1

is equal to the information

shared between Q′n and Q̃
n+1

that cannot be accounted for by
Q̃

n
. Figure 8 provides a visual representation of Eq. (50). If

the system is reversible, then Eq. (50) reduces to

H (Q̃
n+1|Q̃n

) = H (Q′n|Q̃n
), (51)

and the uncertainty in the future truncated state Q̃
n+1

is equal
to the amount of information in Q′n that cannot be recovered
from Q̃

n
.

1. Information-theoretic bounds to model error

Let us consider a model with access to the information
contained in Q̃

n
(i.e., the exact initial condition for the trun-

cated state) but not to the information in Q′n (i.e., inaccessible
degrees of freedom). The governing equation for the model is
denoted by

Q̂
n+1 = f̂ (Q̃

n
), (52)

where Q̂
n+1

is the model prediction, which does not need to

coincide with the exact solution Q̃
n+1

obtained from Eq. (49)
using the exact map f̃ . We aim at finding a model map f̂ that
predicts the future state to within the error ε,

||Q̂n+1 − Q̃
n+1|| � ε, (53)

where || · || is the L1 norm. In particular, we are interested in
the bounds for the error expectation

E[||Q̂n+1 − Q̃
n+1||]. (54)

Given the model prediction from Eq. (52), the uncertainty in
the exact solution is quantified by

H (Q̃
n+1|Q̂n+1

), (55)

that we seek to relate to the model error ε. In general, nothing

can be said about the relationship between H (Q̃
n+1|Q̂n+1

) and

the loss of information of the truncated system H (Q̃
n+1|Q̃n

).
Thus, the latter might be smaller, equal, or larger than

H (Q̃
n+1|Q̂n+1

) contingent on f̂ .
Let us denote by Pe the probability of obtaining a modeling

error above the prescribed tolerance ε,

Pe = Pr(||Q̂n+1 − Q̃
n+1|| > ε). (56)

The error from Eq. (53) can be related to the uncertainty in
Eq. (55) via a generalized Fano’s inequality as

Pe � H (Q̃
n+1|Q̂n+1

) − log2(ε/	Q) − 1

log2(Ñ ) − log2(ε/	Q)
, (57)

where 	Q is a measure of the size of the phase-space partition
Di introduced in Sec. III. Equation (57) reveals that, given a
model f̂ , the probability of incurring an error larger than ε

is lower bounded by the information loss of the model. It is
convenient to rewrite Eq. (57) as

Pe � H (Q̃
n+1

) − I (Q̃
n+1

; Q̂
n+1

) − log2(ε/	Q) − 1

log2(Ñ ) − log2(ε/	Q)
, (58)

where I (Q̃
n+1

; Q̂
n+1

) is the mutual information between the
“true” state and the model prediction. A lower bound for the
expected error is found by applying the Markov’s inequality
to Eq. (58),

E[||Q̂n+1 − Q̃
n+1||]

� ε
H (Q̃

n+1
) − I (Q̃

n+1
; Q̂

n+1
) − log2(ε/	Q) − 1

log2(Ñ ) − log2(ε/	Q)
. (59)

Note that H (Q̃
n+1

) in Eq. (59) is just the information con-
tent of the true state, which is unaffected by the model.
Therefore, the potential predictive capabilities of a model are

attained by maximizing the mutual information between Q̃
n+1

and Q̂
n+1

. Equation (59) echoes the intuition that the perfor-
mance of a reduced-order model improves with the amount
of information preserved from the system to be modeled.
Another advantage of formulating the modeling problem in

terms of mutual information I (Q̃
n+1

; Q̂
n+1

) is that the latter
is a concave function of its arguments, which facilitates the
optimization of Eq. (59).

A second model condition can be derived by relaxing the
error constraint in Eq. (53) to

||p(̂qn+1) − p(̃qn+1)|| � ε′. (60)

where p(̃qn+1) is the true probability distribution of the system
state and p(̂qn+1) is the probability distribution of the model
state. The error constraint in Eq. (60) is weaker than the

constraint in Eq. (53), as evidenced by the fact that ||Q̂n+1 −
Q̃

n+1|| � 0 even if p(̂qn+1) = p(̃qn+1). Hence, a model can
flawlessly replicate the probability distribution (i.e., the statis-
tics) of the actual state, yet the sequential samples drawn from
the model (i.e., the dynamics) might not coincide with the
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ground truth owing to the lack of mutual information between

Q̂
n+1

and Q̃
n+1

.
The error defined by Eq. (60) allow us to estimate an

upper bound for the expectation of the modeling error of
probabilities. First, let us introduce the Kullback-Leibler (KL)
divergence between p(̃qn+1) and p(̂qn+1),

KL(Q̃
n+1

, Q̂
n+1

) =
∑

p(̃qn+1) log2[p(̃qn+1)/p(̂qn+1)],
(61)

which is a measure of the average number of bits required
to recover p(̃qn+1) using the information in p(̂qn+1). From

a Bayesian inference viewpoint, KL(Q̃
n+1

, Q̂
n+1

) represents
the information lost when p(̂qn+1) is used to approximate
p(̃qn+1). Equation (61) is an extension of Shannon’s concept
of information and is sometimes referred to as relative entropy
[113,114]. It can be shown via the Pinsker’s inequality [115]
that

KL(Q̃
n+1

, Q̂
n+1

) � 1

2 ln 2
||p(̂qn+1) − p(̃qn+1)||2, (62)

with KL(Q̃
n+1

, Q̂
n+1

) = 0 if and only if the model predictions
are statistically identical to those from the original system.
Equation (62) provides a connection between information loss
and probabilistic model performance. Desirable maps f̂ are
those minimizing Eq. (61), which results in models containing
the coherent information in the data, while leaving out the
incoherent noise. Similarly to the mutual information, the KL
divergence has the advantage of being convex with respect
to the input arguments, which facilitates the search of the
minimum.

Equation (61) can be written as

KL(Q̃
n+1

, Q̂
n+1

) =
∑

−p(̃qn+1) log2[p(̂qn+1)] − H (Q̃
n+1

)
(63)

where the first term in the right-hand side of Eq. (63) is

referred to as the cross entropy between Q̃
n+1

and Q̂
n+1

.

Taking into account that H (Q̃
n+1

) is fixed and the cross en-

tropy is equal or larger than zero, minimizing KL(Q̃
n+1

, Q̂
n+1

)
also implies minimizing the cross entropy, resulting in the
minimum cross-entropy principle [59,116]. Additionally, if
p(̃qn+1) is taken to be the uniform distribution, then

KL(Q̃
n+1

, Q̂
n+1

) =
∑

− 1

Ñ
log2[p(̂qn+1)] − log2(Ñ ), (64)

and minimizing Eq. (64) is equivalent to maximizing∑
log2[p(̂qn+1)]. The latter is the well-known maximum like-

lihood principle, which surfaces as a particular case of the
KL-divergence minimization proposed here.

2. Conditions for maximum information-preserving models

The error bounds presented above provide the information-
theoretic foundations for model discovery. The discussion has

been centered on Q̃
n+1

; however, in most occasions, we are
not interested in the prediction of the full truncated state, but
rather in some quantity of interest

Ỹ
n+1 = h(Q̃

n+1
), (65)

such that the dimensionality of Ỹ
n+1

, denoted by NY , is much

smaller than the dimensionality of Q̃
n+1

, i.e., NY � Ñ . One
example is the aerodynamic modeling of an airfoil: The mod-

eled state Q̃
n+1

is the flow around the airfoil, which could

contain millions of degrees of freedom, whereas Ỹ
n+1

may be
the surface forces, which contain a few degrees of freedom.
Most of the discussion in Sec. V A 1 is applicable to the

modeling of Ỹ
n+1

. Given the quantity of interest predicted by
the model

Ŷ
n+1 = h(Q̂

n+1
), (66)

the bounds for the modeling error are:

E[||Ŷ n+1 − Ỹ
n+1||]

� εY
H (Y n+1) − I (Ỹ

n+1
; Ŷ

n+1
) − log2(εY /	Y ) − 1

log2(NY ) − log2(εY /	Y )
,

(67a)

||p(̂yn+1) − p(̃yn+1)|| � (2 ln 2 KL(Ỹ
n+1

, Ŷ
n+1

))1/2, (67b)

where 	Y is the partition size for the state Ỹ
n+1

. In summary,
Eq. (67) establishes that a faithful model must (i) maximize
the mutual information between the model state and the true
state, and (ii) minimize the KL divergence between their
probabilities. The mutual information assists the model to
reproduce the dynamics of the original system, while the KL
divergence enables the accurate prediction of the statistical
quantities of interest. Whether we choose to optimize the
mutual information, the KL divergence, or a combination
of both depends on the scope of the model. We close this
section by remarking that Eq. (67) is a necessary condition
for the discovery of accurate models, but it is not sufficient.
Eq. (67) does not provide the information of what physical
quantities should be preserved by the model, nor the modeling
assumptions to undertake. Those will rely on physical insight
of the system to model and clear understanding of the relevant
characteristic scales (length, time, velocities,...) involved in
the problem.

B. Application: Maximum information-preserving
subgrid-scale model for LES

Most turbulent flows of engineering significance cannot be
simulated by solving all the fluid motions of the Navier-Stokes
equations because the range scales involved is so large that
the computational cost becomes prohibitive. In LES, only the
large eddies are resolved, and the effect of the small scales on
the larger eddies is modeled through an SGS model [117] as
illustrated in Fig. 9. The approach enables a reduction of the
computational cost by several orders of magnitude while still
capturing the statistical quantities of interest. In the present
section, we demonstrate the principle of maximum conserva-
tion of information discussed in Sec. V by devising an SGS
model for LES.
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FIG. 9. Schematic of an LES grid and the turbulent eddies of dif-
ferent sizes. Only the large eddies are resolved by the grid, whereas
the information from the small-scale eddies is lost.

The governing equations for LES are formally derived by
applying a spatial filter to Eq. (40),

∂ ūi

∂t
+ ∂ ūiū j

∂x j
+ ∂τ SGS

i j

∂x j
= − 1

ρ

∂�̄

∂xi
+ ν

∂2ūi

∂x j∂x j
,

∂ ūi

∂xi
= 0,

(68)

where ¯(·) denotes spatially filtered quantity, and τ SGS
i j is the

effect of the subgrid scales on the resolved eddies, which has
to be modeled. The filter operator on a variable φ is defined as

φ̄(x, t ) ≡
∫

V
G(x − x′; 	̄)φ(x′, t )dx′, (69)

where G is the filter kernel with filter size 	̄, and V is the
domain of integration. The system in Eq. (68) is assumed to
be severely truncated in the number of the degrees of freedom
with respect to Eq. (40). The objective of LES is to model the
SGS tensor as function of known filtered quantities,

τ SGS
i j = τ SGS

i j (S̄i j, �̄i j, 	̄; θ), (70a)

where S̄i j = (∂ ūi/∂x j + ∂ ū j/∂xi )/2, and �̄i j = (∂ ūi/∂x j −
∂ ū j/∂xi )/2 are the filtered rate-of-strain and rate-of-rotation
tensors, respectively, and θ are model parameters.

In the present formulation, the map f in Eq. (46) corre-
sponds to a discrete version of Eq. (40), in which all the space
and time scales are accurately resolved. The state vector Qn is
given by the discretization of ui and � in a grid fine enough
to capture all the relevant scales of motion. The map for the
model f̂ is derived from the discretization of Eq. (40), and
the model state Q̂

n
corresponds to the filtered velocities and

pressure, ūi and �̄.
A common misconception in LES modeling is that the

closure problem of determining τ SGS
i j arises from introducing

the filter operator. Interestingly, this is not entirely accurate.
Instead, the formalism introduced in Sec. V shows that the
closure problem is a consequence of the loss of information
introduced by the filter rather than the action of filtering itself.
This is easy to demonstrate by noting that the analytic form
of τ SGS

i j is completely determined when the filter is reversible,
i.e., the information is conserved [118–121]. One example of

FIG. 10. Visualization of (a) the instantaneous turbulent kinetic
energy uiui/2 and (b) enstrophy ωiωi, where ωi is the vorticity. The
colormap ranges from 0 (dark) to 0.8 of the maximum value (light)
of turbulent kinetic energy and enstrophy, respectively.

reversible filter is given by the differential filter [122]

G(x − x′; 	̄) = 1

4π	̄2

exp(−|x − x′|/	̄)

|x − x′| , (71)

such that the analytic form of the τ SGS
i j is exactly given by

τ SGS
i j = ūiū j − 	̄2ū j

∂ ūi

∂xk∂xk
− 	̄2ūi

∂ ū j

∂xk∂xk

+ 	̄4 ∂ ūi

∂xk∂xk

∂ ū j

∂xk∂xk
− ūiū j . (72)

Equation (72) is a function of the filtered velocities ūi, which
are accessible to the model, and does not pose any closure
problem. The actual closure problem emerges from the appli-
cation of irreversible filters and/or the coarse discretization of
the governing equations, which entail a truncation of the num-
ber of degrees of freedom in the system. In those situations,
the LES grid resolution is unable to represent the small scales
(i.e., subgrid scales), which in turn entails a loss of infor-
mation. Hence, the paradigm of conservation of information
discussed in Sec. V A arises naturally as a fundamental aspect
of LES modeling.

We leverage Eq. (67b) to construct an SGS model for
turbulent flows. The flow considered is similar to that pre-
sented in Sec. IV B: forced isotropic turbulence [123] in a
triply periodic, cubic domain with size equal to L as shown
in Fig. 10. The exact solution is obtained from a DNS using
5123 dealiased Fourier modes for the spatial discretization and
a fourth-order Runge-Kutta time stepping method. The turbu-
lence is sustained by adding a linear forcing to the right-hand
side of Eq. (40) equal to fi = Aui, where A was adjusted to
maintain on average Reλ ≈ 260. The simulation was run for
50 integral times after initial transients. Figure 10 features a
visualization of the energy field and dissipation field from the
DNS, highlighting the separation of scales in the system. The
functional form considered for the SGS stress tensor is

τ SGS
i j − 1

3τ SGS
kk δi j

= θ1	̄
2S̄i j

√
S̄nmS̄nm + θ2	̄

2(S̄ik�̄k j − �̄ik S̄k j ), (73)
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(a) (b)

FIG. 11. (a) Probability mass distributions of the interscale energy transfer and viscous dissipation, �̄1, �̄2, and �̄3, at filter cut-offs 	̄1 =
L/32, 	̄2 = L/16, and 	̄3 = L/8, respectively. The results are for DNS using sharp Fourier filter and are normalized by the standard deviation
of p(�̄1), denoted by σ1. (b) Probability mass distributions of the rescaled interscale energy transfer and viscous dissipation, �̄1, �̄2γ2, �̄3γ3

with γ2 = (	̄2/	̄1)2/3 and γ3 = (	̄3/	̄1)2/3.

where δi j is the Kronecker delta, and θ1 and θ2 are modeling
parameters to be determined. Equation (73) is derived by
retaining the two leading terms from the general expansion
of the SGS tensor in terms of S̄i j and �̄i j proposed by Lund
and Novikov [124].

Let us introduce the interscale energy transfer and viscous
dissipation at the filter cut-off 	̄ given by

� = (uiu j − uiu j )Si j − 2νSi jSi j . (74)

The modeling assumption proposed here is that the informa-
tion content of p(�̄1) must be equal to the information content
of p(�̄2γ ), where �̄1 and �̄2 are � at two different scales 	̄1

and 	̄2, respectively, and γ = (	̄1/	̄2)2/3 is a scaling factor.
This self-similarity in the information implies that the energy

transfer at two different scales should satisfy

p(�̄1) ≈ p(�̄2γ )/γ . (75)

The hypothesis in Eq. (75) is corroborated in Fig. 11 using
DNS data. Figure 11(a) shows p(�̄i ) for three different values
of the filter widths: 	̄1 = L/32, 	̄2 = L/16, and 	̄3 = L/8.
The scaling condition from Eq. (75) is tested in Fig. 11(b),
which reveals the improved collapse using the factor γ . A
similar scaling result was observed by Aoyama et al. [83].

In the case of LES, the interscale energy transfer and dissi-
pation also depends on the contribution of the SGS model as

�̄ = (uiu j − uiu j )Si j − 2νS̄i j S̄i j + τ SGS
i j S̄i j . (76)

Hence, the model proposed aims at minimizing the
information lost when p(�̄1) is used to approximate p(�̄2γ )
in the LES solution with 	̄1 = 2	̄ and 	̄2 = 2	̄1. The model

101 102

10-6

10-4

10-2

DNS
LES IP-SGS
LES optimal SGS
LES No Model

(a) (b)

FIG. 12. (a) Visualization of the instantaneous turbulent kinetic energy uiui/2. The colormap ranges from 0 (dark) to 0.8 of the maximum
value (light) of turbulent kinetic energy. (b) The kinetic energy spectra as a function of the wave number for the “exact” DNS solution, LES
with IP-SGS model, LES with optimal SGS model, and LES without SGS model. The energy spectra are normalized by u2

ref/2L, where u2
ref/2

is the mean kinetic energy of the DNS solution.

023195-14



INFORMATION-THEORETIC FORMULATION OF … PHYSICAL REVIEW RESEARCH 4, 023195 (2022)

is formulated using the KL divergence, which ensures that
the average information required for reconstructing p(�̄2γ ) is
minimum given the information in p(�̄1),

θ = arg min
θ′

KL(�̄2γ , �̄1), (77)

where θ = (θ1, θ2) from Eq. (73). We will refer to the model
as “information-preserving” SGS model, or as IP-SGS model
for short. Note that the IP-SGS model only relies on the
physical assumption that the information content of p(�̄1)
is equal to the information content of p(�̄2γ ), and does not
require any DNS data to be trained.

To validate the model, an LES is conducted using 643

Fourier modes. The turbulence is driven by a linear forcing
with the same A value obtained for the DNS. The kernel
selected is the sharp Fourier filter. The LES entails a severe
truncation of the number of degrees of freedom of the original
system: The DNS contains more than 130 million degrees
of freedom, whereas in the LES system the number of de-
grees of freedom is reduced to only 0.3 million. The IP-SGS
model is implemented as follows: During the LES runtime,
statistics are collected on-the-fly to reconstruct the probability
distributions of �̄2γ and �̄1. Every 100 time steps, the model
parameters θ1 and θ2 are computed from Eq. (77) using a
gradient descent method that minimizes the KL divergence.

The performance of the SGS model is evaluated in Fig. 12
after initial transients in the system. We use as figure of merit
the kinetic energy spectrum E (κ ), where κ is the wave num-
ber. The predictions are compared against a case without SGS
model and the optimal model. The latter is defined as the SGS
model of the form dictated by Eq. (73) with the values of θ1

and θ2 that yield the best prediction of E (κ ) in the L2-norm
sense. The optimal values of θ1 and θ2 were obtained by a
parametric sweep. The results in Fig. 12 show that the IP-SGS
model offers an accuracy comparable to the optimal model,
while providing a nontrivial improvement with respect to the
case without SGS model. This modeling exercise demon-
strates the viability of the information-theoretic formulation
presented in Sec. V as an effective framework for reduced-
order modeling of highly chaotic systems with large number
of degrees of freedom.

VI. CONTROL

The first entropic analysis of feedback control for dy-
namical systems was proposed by Weidemann [125], who
envisioned the sensor/actuator device as an information trans-
formation of the data collected. The optimal control of
time-continuous systems was later attempted by Saridis [126],
and further extended to discrete systems by Tsai et al. [127].
Tatikonda and Mitter [128] investigated the lower bounds of
controllability, observability, and stability of linear systems
under communication constraints between the sensor and the
actuator. Touchette and Lloyd [129] substantially advanced
the information-theoretic formulation of the control problem
by redefining the concepts of controllability and observabil-
ity using conditional entropies. They posed the problem of
control as a task of entropy reduction, and proved that the
maximum reduction of entropy achievable in a system after
a one-step actuation is bounded by the mutual information

between the control parameters and the current state of the
system. The analysis by Touchette and Lloyd [129] was
broaden by Delvenne and Sandberg [130] to more general,
convex, cost functions. In the same vein, Bania [131] recently
developed an information-aided control approach, which pro-
vides results akin to those from dynamic programming but
at a more affordable computational cost. A review on the
thermodynamics of information and its connection with feed-
back control can be found in Parrondo et al. [132]. Despite
the merits of the previous works, a notable caveat is their
limited applicability to stochastic control of problems with a
low number of degrees of freedom (see the examples in [133]).

In this section, we provide an information-theoretic for-
mulation of the problem of optimal control for chaotic,
high-dimensional dynamical systems. New definitions of
open/closed-loop control, observability, and controllability
are introduced in terms of the mutual information between
different states of the system. The task of optimal control
is posed as the reduction in uncertainty of the controlled
state given the information collected by the sensors and the
action performed by the actuators. In contrast to the traditional
formulation of control, which emphasizes the differential
equations of the dynamical system, our formulation is cen-
tered in the probability distribution of the states. The theory is
applied to achieve optimal drag reduction in a wall-bounded
turbulent flow using opposition control at the wall.

A. Formulation

Let us denote the state of the system to be controlled at
time tn by Qn = [Qn

1, . . . , Qn
N ], where N are the total number

of degrees of freedom. The state of the uncontrolled system
is denoted by Qn

u (with subscript u) and its dynamics is com-
pletely determined by

Qn+1
u = f

(
Qn

u

)
, (78)

where f is the map function introduced in Sec. III. The system
is controlled to a new state Qn+1 (without subscript u) by
means of a sensor and an actuator that together constitute the
controller. The state of the sensor and actuator are denoted
by S and A, respectively, and both are considered random
variables. The properties of the controller are parametrized by
the vector θ (e.g., actuator/sensor locations, actuator intensity
and frequency, etc.). In general, the full state Qn is inaccessi-
ble and only a subset of the phase-space is observable by the
sensor,

Sn = h(Qn,W n; θ), (79)

where W n represents random noise in the measurements. We
will consider that W n is uncorrelated with Qn. The noise W n

introduces additional information into the system that can be
labeled as spurious, since it masks the actual information from
the state Qn. The actuator gathers the information from the
sensor and acts according to the control law

An = g(Sn,V n; θ), (80)

where V n is an auxiliary random variable, which provides ad-
ditional stochasticity (hence, information) to the actuator and
is independent of Qn. Then, the controlled system is governed
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by

Qn+1 = f (Qn, An). (81)

In the case of high-dimensional, chaotic systems, control
of the full state constitutes an impractical task and hence is
not the main concern here. Instead, our goal is to control
a few degrees of freedom, which are the most impactful on
reducing or enhancing a quantity of interest. The substate to
be controlled is denoted by Jn, and is also assumed to be a
random variable derived from Qn,

Jn = l (Qn). (82)

In many situations, we are interested in the controlled state
once the system has reached the statistically steady state. In
those cases, the time step n + 1 represents the state of the
system after initial transients. As an example (in line with
the application in Sec. VI B), we can consider the reduction
of drag in an airfoil by blowing and suction of air over its
surface. In this case, Qn is a (high-dimensional) discrete repre-
sentation of the velocity and pressure fields in all the domain
surrounding the airfoil, Sn are pressure probes at the airfoil
surface, An is a flow jet at the wall, which modifies the air
velocity around the airfoil, and Jn+1 represents the controlled
(low-dimensional) drag state after transients. The goal of the
control law is then to alter the probability distribution of the
drag to reduce (i) its mean value and (ii) its standard deviation
to mitigate extreme drag events.

1. Open-loop and closed-loop control

The information in the controlled system flows from the
system state Qn to the sensor Sn, and from the sensor to the
actuator An. In the general scenario, the sensor shares the
information with the actuator via a communication channel.
The capacity of the communication channel between Sn and
An is defined as

Ca = max
p(sn )

I (Sn; An), (83)

where the maximum is taken over all possible input distribu-
tions p(sn). By virtue of the noisy-channel coding theorem [1],
the capacity in Eq. (83) provides the highest information rate
(i.e., bits per second) that can be achieved with an arbitrarily
small error probability between the sensor and actuator.

The mutual information between the sensor and actuator
from Eq. (83) provides the grounds for the definition of open-
loop and closed-loop controllers. A control is said to be open-
loop if

I (An; Qn) = 0, (84)

i.e., there is no shared information between the actuator and
the state of the system at tn. Note that an open-loop control can
still modify the information content of future states because
I (Qn+1; An) � 0 by means of the auxiliary random variable
V n. Conversely, a control is closed-loop if

I (An; Qn) > 0, (85)

namely, the current state and the actuator share an amount of
information greater than zero. From Eqs. (79) and (80) it can

FIG. 13. Schematic of the entropies of the system in Eq. (81).
(a) Entropy of the new controlled state Qn+1, which is bounded by the
entropies of Qn and An, as inferred from Eq. (81). (b) Relationship
among the entropies of the current state, the sensor, and the actuator.

be shown that

I (An; Qn) � I (Sn; Qn). (86)

Thus, a sufficient condition for open-loop control is
I (Sn; Qn) = 0, whereas I (Sn; Qn) > 0 and I (An; Sn) > 0 are
necessary conditions for closed-loop control. A constraint
from Eq. (80) is that, if there is no auxiliary random noise
(V n), the actuator cannot contain more information than the
sensor, H (An) � H (Sn). The relationships among Qn, Sn, and
An are illustrated in Fig. 13(b).

It is also interesting to establish the information loss across
the controller. Let us assume an sparse sensor with Ns degrees
of freedom such that Ns � N . The information content of the
noise scales as H (W n) ∼ log Ns, while the information of the
system generally follows H (Qn) ∼ log N . It is then reasonable
to assume that H (W n) � H (Sn) will hold in most practical
situations where Ns � N . If we further assume that all the
information in the actuator is obtained from the sensor Sn,
then the hierarchy of information loss across the controlled
system is given by

H (Qn) � H (Sn) � H (An). (87)

Equation (87) shows that, when the measurements are sparse,
the state of the system contains more information than the
sensor, which in turn contains similar or less information
than the actuator. The first inequality in Eq. (87) might not
hold for systems with a few degrees of freedom or a large
number of sensors. In those situations, the noise could in-
crease the (spurious) information content of the sensor to yield
H (Qn) < H (Sn). Nonetheless, here we are interested in high-
dimensional systems controlled using a few measurements
such that Eq. (87) is likely to hold.

2. Observability and controllability

Observability (how much we can know about the system)
and controllability (how much we can modify the system)
represent two major pillars of modern control system theory.
Here, we formulate the information-theoretic counterparts of
observability and controllability. Our definitions are motivated
by the no-uncertainty conditions of deterministic systems
given by

H (Jn|Qn) = 0, (88a)

H (Jn+1|Qn, An) = 0. (88b)
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Equation (88a) is a statement about the observability of Jn:
There is no uncertainty in Jn when the full state of the sys-
tem in known. However, uncertainties might arise when the
information available is only limited to the state of the sensor.
Similarly, Eq. (88b) relates to the concept of controllability:
Given the system state Qn and the actuator action An, there is
no uncertainty in the future state Jn+1.

Consistent with the remarks above, observability of the
state Jn with respect to the sensor Sn is defined as

OJ ≡ I (Jn; Sn)

H (Jn)
, (89)

which represents the certainty in Jn given the information
from the sensor normalized by the total information in Jn such
that 0 � OJ � 1. The normalization by H (Jn) in Eq. (89) is
introduced to provide a relative measure of the observability
with respect to the total information in Jn. The observability
can also be expressed as a function of H (Jn|Sn) by

OJ = 1 − H (Jn|Sn)

H (Jn)
, (90)

which shows that the smaller the value of H (Jn|Sn) (i.e., the
uncertainty in the state Jn), the larger the value of OJ , in
line with the intuition of observability argued in Eq. (88a).
We say that a system with targeted variable Jn is perfectly
observable with respect to the sensor Sn if and only if there
is no uncertainty in the state to be controlled conditioned to
knowing the state of the sensor, namely,

H (Jn|Sn) = 0, (91)

which corresponds to OJ = 1. Conversely, OJ = 0 if none of
the information in Jn is accessible to the sensor. It can be
shown that in the presence of noise in the sensor, the upper
bound for observability is reduced as

0 � OJ � 1 − I (W n; Sn)

H (Jn)
. (92)

Thus, the observability of the controller degrades proportion-
ally to the noise contamination of the sensor as quantified
by I (W n; Sn), and perfect observability is unattainable when
I (W n; Sn) > 0.

Controllability of the future state Jn+1 with respect to the
action An is defined by

CJ ≡ I (Jn+1; An)

H (Jn+1)
, (93)

provided that for all future states jn+1 and initial condition qn

there exist a control an such that p( jn+1|qn, an) �= 0. Equa-
tion (93) quantifies the certainty in the targeted state Jn+1

knowing the present information from the control. Similar to
the observability, CJ is bounded by 0 � CJ � 1 and can also
be cast as

CJ = 1 − H (Jn+1|An)

H (Jn+1)
. (94)

The smaller the value of H (Jn+1|An) the larger the con-
trollability of the system (i.e., less uncertainty in the future
outcome). A system is perfectly controllable at state Jn+1 if
and only if the uncertainty associated with the latter upon

application of the control action An is zero, i.e., there exists
a nonempty set of control values such that

H (Jn+1|An) = 0, (95)

which corresponds to CJ = 1. Note that observability depends
on the targeted state at a given time (Jn), whereas controllabil-
ity relates the future targeted state (Jn+1) with the knowledge
of the system in the state at time tn. Overall, the highest ob-
servability and controllability are attained by maximizing the
mutual information between the target state and the control,
which will be leveraged in Sec. VI A 3 when seeking optimal
control strategies.

It is insightful to interpret the definitions in Eq. (89) and
Eq. (93) as the answer to the question: How much additional
information is needed to completely determine the state Jn at
time tn (observability) and at future times tn+1 (controllability)
considering that the state of the control is known at time tn.
The aforementioned statement can literally be translated as the
number of bits (for example, the size of a digital file) that are
required on average to obtain perfect observability and con-
trollability of the system. The amount of missing information
(MI) to achieve perfect observability of the state Jn is given
by

MIO = (1 − OJ )H (Jn). (96)

Analogously, the amount of missing information for perfect
controllability of the state Jn+1 is

MIC = (1 − CJ )H (Jn+1). (97)

For example, if the observability of the control is OJ = 0.8
and the state Jn has 120 megabytes of information, then the
control requires 24 megabytes of additional information to
unambiguously determine Jn. A similar example applies to
controllability. Another perspective on MIO and MIC is that
they signify the minimum number of yes and no questions
about the state Jn that must be asked on average in order to
attain perfect observability and controllability of the system,
respectively.

3. Optimal control

Let us consider the quantity of interest Jn+1 with mean
vector and covariance matrix given by

E[Jn+1] = μ, (98a)

var[Jn+1] = E[(Jn+1 − E[Jn+1])(Jn+1 − E[Jn+1])T ] = �,

(98b)

where E[·] is the expectation operator and superindex T
means transpose. The system is controlled by the tandem
sensor–actuator (Sn, An) characterized by the parametrization
θ. Let us define the control task as the modification of the
moments of Jn+1 in Eq. (98) and denote by μ̂ and �̂ the tar-
geted (i.e., desired) mean and variance for Jn+1, respectively.
The goal of the control is to drive the system to the optimal
state J∗, with mean μ∗ and variance �∗, as close as possible
to μ̂ and �̂, respectively, using the controller with optimal
parameters θ∗. The search for the optimal control parameters
can be posed as the reduction in uncertainty of the controlled
state given the information collected by the sensors and the
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FIG. 14. Sketch of the of the probability mass functions illustrat-
ing the effect of the transformation in Eq. (99b) and the relaxation
factors, αμ and αξ .

action performed by the actuators. The latter is formulated
as the minimization of Kullback-Leibler divergence between
Jn+1 and an auxiliary state Ĵ constructed by shifting the mean
of Jn+1 to μ̂ and scaling its variance to �̂. Then, the optimal
information-theoretic controller is attained for

θ∗ = arg min
θ

KL(Jn+1, Ĵ), (99a)

Ĵ = aJn+1 + b, (99b)

with

a2
i j = �̂i j

E
[(

Jn+1
i − μi

)(
Jn+1

j − μ j
)] , b = μ̂ − aμ.

The role of the matrix a and the vector b is to transform the
probability distribution of Jn+1 into the distribution Ĵ such
that E[̂J] = μ̂ and var[̂J] = �̂. Figure 14 illustrates the effect
of the transformation in Eq. (99b).

The optimization method posed in Eq. (99) can be sim-
plified by decomposing the controller parameters space into
three independent sets θ = [θs θp θa], where θs are the sensor
parameters (mainly, the sensor locations), θp are the passive
actuator parameters (i.e., those that do not directly modify
the state of the system, such as the actuator locations), and
θa are the active actuator parameters (that act on the state
of the system, such as the actuator amplitude, frequency,
etc.). The parameters θs and θp can be optimized to enhance
observability and controllability, respectively. It was shown
in Sec. VI A 2 that observability and controllability improve
with the mutual information shared among the state variable
Jn and the controller state. With this insight, the optimization
problem can be simplified as the following iterative process:

1. For a given iteration i, assume θa fixed and solve for θs

and θp,

θs ← arg max
θs

I (Jn; Sn), (100a)

θp ← arg max
θp

I (Jn; An). (100b)

The initial guess for θs and θp can be obtained from the
uncontrolled system, θa = 0.

2. Using the values of θs and θp from the previous opti-
mization, solve for θa as

θa ← arg min
θa

KL(Jn+1, Ĵ), (101)

3. Repeat steps 1 and 2 while KLi < KLi−1, being KLi =
KL(Jn+1, Ĵ) computed at iteration i.

To further facilitate the optimization, step 3 can be aided
by introducing relaxation factors such that

E[̂J] = (1 − αμ)μ̂ + αμμ, var[̂J] = (1 − αξ )�̂ + αξ�

(102)

within each iteration. These relaxation factors are within the
range 0 < αμ, αξ � 1 during the optimization, taking the lim-
its αμ → 0 and αξ → 0 as the iterations advance. The role of
the relaxation factors is sketched in Fig. 14. The optimization
procedure outlined above is algorithmically appealing, as it
can be performed using gradient ascent/descent methods such
as in reinforcement learning. One application of Eqs. (100)
and (101) is discussed in Sec. VI B for optimal control for
drag reduction in wall turbulence.

Other variants of the optimization problem can be formu-
lated to accommodate different cost functionals. For example,
we might be interested in completely specifying a targeted
probability distribution for Jn+1 (i.e., control acting over all
the moments of Jn+1). In that case, the rescaling described in
Eq. (99b) is not needed and the optimization problem is posed
as

θ∗ = arg min
θ

KL(Jn+1, Jref ), (103)

where Jref is the prescribed (and thus known) probability
distribution that we aim to attain for the state Jn+1. The op-
timization in Eq. (103) provides the control parameters that
minimize the error between the probability distribution of
Jn+1 and Jref in terms of the L1 norm.

B. Application: Opposition control for drag reduction
in turbulent channel flows

The enhanced transport of mass, momentum, and heat
by turbulent flows has a significant impact on the design
and performance of thermofluid systems. As such, the need
of efficient control strategies to manipulate turbulent flows
remains an ubiquitous task in numerous engineering appli-
cations. Examples of turbulent flow control can be found in
drag reduction for airfoils and pipelines, and enhanced mixing
for combustor chambers and heat exchangers, to name a few
examples. Given its technological importance, flow control
remains a field of active research, and many control strategies
have been devised with different degree of success [134]. In
the present section, we consider an application of opposi-
tion control for drag reduction in a turbulent channel flow,
where flow is actively modified at the wall to attenuate turbu-
lence and reduce drag [135,136]. The optimal control strategy
is found using the information-theoretic tools described in
Sec. VI A 3.

The flow configuration considered is an incompressible tur-
bulent channel flow (see Sec. 7.1 in [96]) comprising the flow
confined between two parallel walls separated by a distance
2δ as shown in Fig. 15(a). The streamwise, wall-normal, and
spanwise directions are denoted by x, y, and z, respectively,
and the corresponding velocities are u, v, and w. The flow is
driven by imposing a constant mass flux in the streamwise
direction, which is identical for both the uncontrolled and
controlled cases. The bottom and top walls are located at y =
0δ and y = 2δ, respectively. The size of the computational
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FIG. 15. (a) Sketch of a channel flow. The mean velocity is in the streamwise (x) direction. (b) Schematic of the opposition control
technique. The contour corresponds to the instantaneous vertical velocity on a z plane. Colormap ranges from (red) v+ = −3.6 to (blue) 3.6.

domain is πδ × 2δ × πδ/2, in the streamwise, wall-normal,
and spanwise directions, respectively. The Reynolds number
is Re = Ubulkδ/ν ≈ 3200, where ν is the kinematic viscosity
and Ubulk is the mean streamwise velocity. The flow is cal-
culated by direct numerical simulation of the incompressible
Navier-Stokes equations in which all the scales of the flow are
resolved. The code employed to perform the simulations was
presented and validated in previous studies [36,137–139]. In
all the simulations, the domain is discretized into 64 × 90 ×
64 grid points in the x, y, and z directions, respectively, which
yields a total number of 368 640 degrees of freedom. The time
step of the simulation is fixed to 	t+ ≈ 5 × 10−3, where +
denotes nondimensionalization by ν and the friction velocity
uτ,u = √

ν∂〈u〉/∂y|w for the uncontrolled case. The operator
〈·〉 signifies average in x, z, and time, and the subscript w

denotes quantities evaluated at the wall.
Opposition control is a drag reduction technique based

on blowing and sucking fluid at the wall with a velocity
opposed to the velocity measured at some distance from the
wall. In the case of a channel flow, the measured velocity
is located in a wall-parallel plane at a distance ys from the
wall referred to as the sensing plane. Figure 15(b) provides
an schematic of the problem setup for opposition control in
a turbulent channel flow. The optimization problem consists
of finding the wall-normal distance of the sensing plane and
the blowing/suction velocity of the actuator. We consider a
prescribed law for the actuator such that the blowing/suction
velocity at the wall is proportional to the measured velocity in
the sensing plane. The instantaneous wall-normal velocity at
the wall in the controlled case is given by

v(x, 0, z) = −βv(x, ys, z), (104)

where β is the blowing intensity. The controller parameter
vector is θ = [θs, θa] = [ys, β], and Eqs. (79) and (80) take the
form of Sk = v(x, ys, z) and Ak = −βSk , respectively, at times
tk = tn and tk = tn+1. A control law equivalent to Eq. (104) is
applied at the top wall.

The quantity to be controlled is the mean wall shear stress
(i.e., the drag) in the statistically steady state of the con-
trolled channel flow, denoted by Jn+1 = τw. The analysis is
conducted considering two states: the state with no actuation,

Jn, and the final statistically steady state, Jn+1, after actuation
has been applied for a period of time equal to 	t+ = 60. The
targeted mean and standard deviation of Jn+1 in the controlled
state are set to μ̂+ = 0 and �̂1/2 ≈ 0.1〈τw,u〉, where 〈τw,u〉 is
the mean wall-shear stress of the uncontrolled case. The aux-
iliary probability distribution Ĵn+1 is defined as in Eq. (99b)
using μ̂ and �̂.

Several methods are available for the optimization problem
posed in Sec. VI A 3. In our case, a simply gradient descent
algorithm was sufficient to find the optimal state. The opti-
mum parameters in Eq. (100a) and Eq. (101) are respectively
computed iteratively as

θs ← θs + γ∇I (Sn+1; Jn+1),

θa ← θa − γ∇KL(Jn+1; Ĵ ),

where here n + 1 represents successive controlled states, γ

is the step size computed as in Barzilai and Borwein [140],
and the gradient is numerically computed using forward fi-
nite differences. The parametric space is bounded by θs ≡
y+

s ∈ [0, 180] (for the bottom wall) and θa ≡ β ∈ [−0.1, 1.1].
Values of β larger than 1 were found to be unstable, con-
sistently with the findings in Chung and Talha [141]. The
iteration process is started by finding the optimal sensor in
the uncontrolled state and setting β = 0. The best location of
the sensing plane before actuation is found to be y+

s ≈ 9.65.
The iterative process is then continued following the steps in
Sec. VI A 3. To aid the optimization, αμ and αξ in Eq. (102)
are initially set to 0.6 and gradually decreased within each
iteration. The optimal control is found at y+∗

s ≈ 13.9 and
β∗ = 1. Remarkably, our optimal control coincides with the
global optimum reported by Chung and Talha [141], who
performed a parametric study varying ys and β in a flow setup
identical to the one presented here.

In terms of drag, the optimal control provides ≈26% reduc-
tion with respect to the uncontrolled state. A similar value was
reported by other authors [135,136,141], which is expected
since our control parameters are similar. However, it is impor-
tant to remark that the methodology adopted here radically
differs from the approach followed in the aforementioned
references: instead of conducting simulations using a trial and
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(a) (b)

FIG. 16. (a) Probability mass distributions of the wall shear stress for the (—) uncontrolled state (k = n) and the (—) controlled state

(k = n + 1). The line styles are (—) for actual wall shear stress distribution (Jk) and (- - -) for the auxiliary state (̂J
k
). (b) KL divergence

between the final state and the auxiliary state (left); and mutual information between the sensor location and the state (right), normalized with
the entropy of the uncontrolled state.

error approach to find the optimal parameters, here we rely on
the information-theoretic principles introduced in Sec. VI.

For a more quantitative perspective, Fig. 16(a) displays the
probability mass distribution of the wall shear-stress for the
uncontrolled state and optimally controlled state. It can be
readily seen that both the mean and the standard deviation
are smaller for the case with the optimal control. Similarly,
Fig. 16(b) (left) shows that the Kullback-Leibler divergence is
lower for the controlled case with optimal parameters than for
the uncontrolled case. Figure 16(b) (right) depicts the mutual
information between the wall shear stress and the wall-normal
velocity at the sensing plane for the optimal sensor location,
y∗,k

s for the uncontrolled state (k = n) and controlled state
(k = n + 1). Interestingly, the mutual information is larger for
the actuated state, arguably because the wall shear stress in the
actuated case is more correlated with the imposed velocity at
the wall.

Finally, to provide additional insight into the effect of the
actuation on the flow, Fig. 17 shows the tangential Reynolds
stresses u′v′ (where prime denotes fluctuations about the mean
value) at y+

s ≈ 10 for the uncontrolled and controlled states. It
can be appreciated that the intensity of the tangential Reynolds
stresses is lower for the case with optimal control, indicating
a suppression of vortical structures near the wall.

VII. CONCLUSIONS

The problems of causality, reduced-order modeling, and
control for chaotic, high-dimensional dynamical systems have
been formulated within the framework of information theory.
In the proposed formalism, the state of the dynamical system
is considered a random variable in which its information (i.e.,
Shannon entropy) quantifies the average number of bits to
univocally determinate its value. A key quantity for the for-
malization of the theory is the conditional information, which
measures the uncertainty in the state of the system given the
partial knowledge of other states. In contrast to the equation-
centered formulation of dynamical systems, where individual
trajectories are the object of analysis, information theory of-
fers a more natural approach to the investigation of chaotic
systems from the viewpoint of the probability distributions of
the states.

We have argued that statistical asymmetries in the infor-
mation flux within the states of the system can be leveraged to
measure causality among variables. As such, the information-
theoretic causality from one variable to another is quantified
as the information flux from the former to the latter. Our defi-
nition of causality is motivated by the information required to
attain total knowledge of a future state and can be interpreted
as how much the past information of the system improves our
knowledge of the future state. The formulation of causality

FIG. 17. Instantaneous tangential Reynolds stress u′v′ at y+ ≈ 10 for (a) uncontrolled state and (b) optimally controlled state. The colormap
ranges from u′v′/u2

τ,u = −6.8 (blue) to 6.8 (red).
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proposed here is grounded on the zero conditional-entropy
condition for deterministic systems and generalizes to mul-
tiple variables the definition of causality by Schreiber [72].
The quantification of causality proposed also accounts for the
information flux due to the joint effect of variables, which was
absent in previous formulations. We have also introduced the
information leak as the amount of information unaccounted
for by the observable variables.

Reduced-order modeling of chaotic systems has been
posed as a problem of conservation of information: modeled
systems contain a smaller number of degrees of freedom than
the original system, which in turn entails a loss of information.
Thus, the primary goal of modeling is to preserve the maxi-
mum amount of useful information from the original system.
We have derived the conditions for maximum information-
preserving models and shown that accurate models must
maximize the mutual information between the model state and
the true state, and minimize the Kullback-Leibler divergence
between their probabilities. The mutual information assists
the model to reproduce the dynamics of the original system,
while the Kullback-Leibler divergence enables the accurate
prediction of the statistical quantities of interest.

Lastly, control theory has been cast in information-
theoretic terms by envisioning the controller as a device aimed
at reducing the uncertainty in the future state of the system to
be controlled given the information collected by the sensors
and the action performed by the actuators. We have reformu-
lated the concepts of controllability and observability using
mutual information between the present and future states.
The definitions of open- and closed-loop control have also
been introduced based on the information shared between the

actuator and the system state. The optimization problem was
posed as the minimization of the Kullback-Leibler divergence
between the probability distribution of the controlled state and
a targeted state derived from the latter.

We have applied our information-theoretic framework to
advance three outstanding problems in the causality, mod-
eling, and control of turbulent flows. Information-theoretic
causal inference was used to measure the information flux of
the turbulent energy cascade in isotropic turbulence. The prin-
ciple of maximum conservation of information was leveraged
to devise a subgrid-scale model for large-eddy simulation
of isotropic turbulence. Finally, information-theoretic control
was utilized to achieve optimal drag reduction in wall-
bounded turbulence using opposition control at the wall.
Overall, information theory offers an elegant formalization of
the problems of causality, modeling, and control for chaotic,
high-dimensional systems, aiding physical interpretation and
easing the tasks of modeling and control all within one unified
framework.
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Morzyński, and G. Tadmor, in Control and Observer Design
for Nonlinear Finite and Infinite Dimensional Systems, edited
by T. Meurer, K. Graichen, and E. D. Gilles (Springer, Berlin,
2005), pp. 369–386.

[30] D. M. Luchtenburg, K. Aleksić, M. Schlegel, B. R. Noack,
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